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Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

13.1 The Sample Complexity of Linear Classes

We now apply the tools we developed so far to bound the complexity of learning linear classes. As an
application we will consider learning surrogate loss functions for two cases: Learning `2 regulerized classifiers
over the unit ball, and learning `1 regulerized classifiers over the cube. Recall that our objective is to bound
the performance of an empirical risk minimizer. Namely, given a learning problem (X ,H, `) we denote

LD(f) = E(x,y)∼D(`(f(x), y)) LS = 1
m

m∑
i=1

`(f(x(i)), yi)

Further, denote
` ◦ H = {`(f(x(i)), yi) : f ∈ H}

Then so far we’ve shown that w.p 1− δ: for each f` ∈ ` ◦ H:

LD(f`) ≤ LS(f`) + Rm(` ◦ H) +O(
√

log 1/δ
m

)

Note that if f`(x, y) = `(f(x, y) and (x, y) are sampled from D then LD(f`) measures the expected loss
of f and similarly LS w.r.t the empirical loss. Our aim now is to bound Rm(` ◦ H): We will consider the
Rademacher complexity of special classes of problems:

13.1.0.1 Learning `2 regulerized classifiers

We consider learning problem (X ,H, `), where ` is convex and L-Lipschitz1, X = {x : ‖x‖2 ≤ 1} and
H = {w : ‖w‖ ≤ B}, here we identify each w ∈ H with the operation x→ w · x.

Lemma 13.1. Let X = {x : ‖x‖2 ≤ 1}, be the unit ball of some Hilbert–space: Set H = {w : ‖w‖ ≤ B, w :
x→ w · x} and ` be a L-Lipschitz loss function then, let wS ∈ H be a function such that:

LS(wS) ≤ min
w∗∈H

LS(w) +O( LB√
m

)

then for every w∗ w.p. 1− δ:

LD(w) ≤ LD(w∗) +O

(
LB

√
log 1/δ
m

)
.

1Recall that a function f is L-Lipschitz if |f(a)− f(b)| ≤ L an alternative defintion for smooth functions is ‖∇f‖ ≤ L
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Proof. Racall that R(B · F) = |B|R(F) (see fact 12.1). Hence applying Lem. 12.3 we get that R(H) =
BR(H1) where H1 is the class of 1-norm bounded linear classifiers.

Applying Lem. 12.4 with φ(x,y)(w) = `(w · x, y) we obtain that

Rm(` ◦ H) ≤ LB√
m

As a corollary, w.p 1− δ over a sample S = ({x(i), yi}) drawn IID, we have for every w ∈ H:

LD(w) ≤ LS(w) +O

(
LB

√
log 1/δ
m

)
.

In particular for wS , since LS(wS) ≤ LS(w∗) +O(LB
√

log 1δ
m ):

LD(w) ≤ LS(w∗) +O

(
LB

√
log 1/δ
m

)
.

Using standard concentration bound for LS(w∗) we obtain the desried result.

13.1.0.2 Learning `1 regulerized classifiers

Next, we consider learning problem (X ,H, `), where ` is again convex and L-Lipschitz, X = {x : ‖x‖∞ ≤ 1}
and H = {w : ‖w‖1 ≤ B}. We obtain a similar result using Masart Lemma:

Lemma 13.2. Let X = {x : ‖x‖∞ ≤ 1}, be the unit cube in Rd: Set H = {w : ‖w‖1 ≤ B, w : x → w · x}
and ` be a L-Lipschitz loss function then, let wS ∈ H be a function such that:

LS(wS) ≤ min
w∈H

LS(w) +O

(
L
B log d

δ√
m

)
then for every w∗ w.p. 1− δ:

LD(wS) ≤ LS(w∗) +O

LB
√

log d
δ

m

 .

Proof. Let A = {±ei}di=1 be the standard basis vector in Rd, then note that

H = conv{±ei},

thus we obtain for φ(x,y)(w) = `(w · x, y)

Rm(` ◦ H) ≤ LRm(F) = LRm(A)

Where first equality is by Lem. 12.4 and second equality is due to property 2 in fact 12.1. Finally by Masart’s
Lemma (Lem. 12.2), and recaling, we have that;

Rm(A) ≤ B
√

log d
m

.
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As a corollary, w.p 1− δ over a sample S = ({x(i), yi}) drawn IID, we have for every w ∈ H:

LD(w) ≤ LS(w) +O

(
LB

√
log d/δ
m

)
.

In particular for wS , since LS(wS) ≤ LS(w∗) +O(LB
√

log d
δ

m ):

LD(w) ≤ LS(w∗) +O

LB
√

log d
δ

m

 .

Again using standard concentration bound for LS(w∗) we obtain the desried result.

13.2 Stochastic Gradient Descent

In the previous section we devloped tools to analyse the sample complexity for certain learning problems of
the form (X ,H, `) where ` is Lipschitz and convex. We next address the issue of computation complexity.
The subject of Convex Optimization is vast and has seen alot of research, in particular in the context of
Machine Learning. Here we will analyse the Stochastic Gradient Descent algorithm, which is perhaps the
most studied algorithm in stochastic optimization, and is quite general.

13.2.1 Problem Setup

In stochastic optimizatoin, the optimizer attempts to minimize a convex (Lipschitz) function f over a convex
domain K of diameter D i.e.:

D = max
x,y∈K

‖x− y‖

The key algorithmic assumption is that the optimizer has access to noisy gradient oracle, defined by:

O(x) = ∇̂x, E
[
∇̂x

]
= ∇f(x), E

[
‖∇̂x‖2

]
≤ G2

We also assume that we can efficiently project a point onto K. i.e. given a point y we can compute

ΠK(y) = min
x∈K
‖x− y‖

The following fact is left as an exercise:

Fact 13.1. Let K ⊆ Rd be a convex set, y ∈ Rd and x = ΠK(y). Then for any z ∈ K we have that:

‖y− z‖ ≥ ‖x− z‖
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13.2.2 The SGD Algorithm

Algorithm 1 Stochastic Gradient Descent
0: Input: A convex function f , a convex domain K and a sequence of learning rates {ηt}.

for t = 1, 2 . . . T do
Let ∇̂t = O(x) and set ft(x) = 〈∇̂t,x〉.
Update and project:

yt+1 = xt − ηt∇̂t
xt = ΠK(yt+1)

end for
return x̄T = 1

T

∑T
t=1 xt.

Theorem 13.3. Run Algorithm 1 with step sizes ηt = D
G
√
t

then

E [f(x̄T )] ≤ 1
T

T∑
t=1

E [f(xt)] ≤ min
x∗∈K

f(x∗) + 3GD
2
√
T

13.2.3 Application to Learning Linear Classes

Before we dwell into the proof of Thm. 13.3, let us discuss its implication to learning convex problems. For
concretness, let us focus on learning `2-norm constraint linear classifier:

Given a distribution over labeled examples and points from the unit ball (x, y) ∼ D, and a convex Lipschitz
function, recall that we wish to solve the problem

minimize LD(w) = E (`(w · x, y))
s.t. ‖w‖ ≤ B

By linearity of the defivative we have that

∇LD(w) = ∇E [`(w · x, y)] = E [∇`(w · x, y)] = E [`′(w · x, y)x]

In other word, by sampling IID examples (x, y) from D we can implement an oracle for a stochastic gradient
thorugh

O(x) = `′(w · x, y)x

We can thus obtain the following application of SGD to learn linear classifiers:

Corollary 13.4. Consider the convex problem (X ,F , `) where ` is L-Lipschitz convex loss X = {x : ‖x‖ ≤ 1}
and F = {w : w : x → w · x, ‖w‖ ≤ B}. Given a access to (x, y) ∼ D pairs distributed according to D,
applying the stochastic graident oracle O(w) = ∇̂w = `′(w · x, y)x with Alg. 1. After T = O

((
LB
ε

)2
)

iterations we obtain in expectation:

E [LD (w̄T )] ≤ 1
T

T∑
t=1

E [`(wt · xt, y)] ≤ min
w∗∈K

LD(w∗) + ε
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Proof. Observing our estimator for the gradient ∇̂w, we can bound its second moment the Lipschitz constant,
namely if |`′(w · x, y)| ≤ L we have that for ∇̂w = `′(w · x, y)x:

‖∇̂w‖2 ≤ L2.

Thus: Given a sequence IID of labeled pairs {xi, y}Ti=1 ∼ D, applying Alg. 1 to the sequence sequentially:
We obtain an output w̄T such that by Thm. 13.3:

E [LD (w̄T )] ≤ 1
T

T∑
t=1
LD(wt) ≤ min

w∗∈K
LD(w∗) + 3LB

2
√
T

If T ≥ 4(LB)2

9ε2 we obtain:

E [LD (w̄T )] ≤ min
w∗∈K

LD(w∗) + ε

13.2.4 High Probability Rates

For PAC learning, we wish need to show that if we apply SGD w.p 1− δ we obtain

LD (w̄T ) ≤ min
w∗∈K

LD(w∗) + ε

We will assume for simplicity that |`(0, y)| ≤ LB. We again use a concentration bound to pass from a bound
in expectation to a bound w.h.p. Here we use Azuma’s inequality for martinagles. Namely

Azuma’s inequality Let Z1, . . . , Zm be a sequence of martinagles i.e. E [Zi|Z1, . . . , Zi−1] = 0, bounded
by B, then for all ε > 0 we have that

P(
∑

Zi ≥ ε) ≤ e−
ε2

2B2m

Note that the sequence `(wt ·xt, y)−LD(wt) is indeed a martinagle (as wt is deterministic given the past and
(xt, yt) is independent of the past). Further, |w ·x| ≤ B hence by Lipschitzness `(xt, yt) ≤ LB+ `(w ·x, y) ≤
2LB. We can thus obtain that

P

(
1
T

T∑
t=1

`(wt · xt, y)− LD(wt) ≥ ε
)
≤ e−

ε2
8(LB)2m

Thus we obtain that if m > O((LB)2 log 1/δ
ε2 ) then with probability 1− δ over the sequence w1, . . . ,wT :

LD(w̄T ) ≤ 1
T

T∑
t=1

`(wt · xt, yt) ≤
1
T

T∑
t=1
LD(wt) + ε ≤ 2ε

13.2.5 Do we need Rademacher Complexity???

A striking fact is that we obtained generalization bounds for SGD without having to invoke a Rademacher
bound!!! SGD indeed comes with its own generalization guarantee which is comparable (up to constant
factors) to the bound obtained using Rademahcer complexity.
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There are two main differences between the two generalization bound we obtain: Rademacher Complexity
guarantee that no matter what algorithm we use and no matter which target function we get: The empirical
loss is close to the expected loss – i.e. uniform convergence!!! The bound from SGD, in contrast, does
not guarantee uniform convergence and is applicable only for SGD algorithm: Meaning if we use the SGD
algorithm we will learn.

Both bounds have different applications. In practice, sometimes, one uses SGD with repetition over the
sample point (i.e. we generate a sequence of examples (x1, y1), . . . , (xm, ym) and then draw random examples
from the empirical data. Rademacher bound will apply for this setting also, while the bound for SGD holds
w.r.t to the empirical distribution and is inapplicable for the expected loss.

On the other hand, the SGD bound is true even in some cases where there is no uniform convergence hence
Rademahcer bounds are inapplicable. In [1], the authros showed a learning problem where, via stochastic
optimization one can learn the problem, yet there is no uniform convergence.
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