
COS-511: Learning Theory Spring 2017

Lecture 10: Surrogate Loss functions & Rademacher Complexity
Lecturer: Roi Livni

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

10.1 Surrogate Loss Functions

Definition 10.1. A loss function ` is called a surrogate loss function (speicificially surrogate loss for the
0− 1 loss) if

1. ` ≥ `0,1.

2. ` is convex.

Fact 10.1. Let ` be a convex loss function then for any target function h and any distribution D:

err(h) ≤ E [`(h(x), y)]

It is not hard to see that fact 10.1 is true. The implication of this fact is that if we can minimize a surrogate
loss function and achieve small loss – then we obtain a target function with small zero one error. Of course,
if we fail to find a target function with small loss, there is no guarantee there is no solution with small zero
one error.

Example 10.1 (SVM). The support vector machine algorithm is concerened with finding the linear classifier
with largest margin, as we will see this can be formulized as minimizing a surrogate loss function.

For the realizable case, the objective of Hard-SVM may be written as

minimize ‖w‖2

subject to yiw · xi ≥ 1.∀i = 1, . . .m.

By choosing sufficiently small λ this can be written as

minimize λ‖w‖2 + 1
m

∑
ξi

subject to ξi ≥ 0
ξi ≥ 1− yiw · x(i)

Which we can re-write as

minimize λ‖w‖2 + 1
m

∑
max(0, 1− yiw · x(i))

Let us denote `hinge(a, y) = max(0, 1− y · a) Then we obtain the regulerized SVM formulation
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(a) The Hard-SVM setup when points are sepearable.
The Hard SVM algorithm aims at finding a classifier
that separates the norm with at least w · x ≥ 1. The
dashed line represent that domain where w · x = 1

(b) The Soft-SVM aims at finding a solution that mini-
mizes the hinge loss with additional norm regulerization.
The solution may include points inside the margin (where
the hinge loss penalizes even correctly classified points) for
minimizing the loss on misclassified points.

minimize λ‖w‖2 + 1
m

m∑
i=1

`hinge(w · x(i), yi)

Note that the above problem, is well defined even for large λ (even though it will not necessarily converge
to a realizable solution, even if one exists). Also note that `hinge is a surrogate loss function. We may also
want to consider the constrained version.

10.2 Rademacher Complexity

So far we have developed a tool to analyze the sample complexity of binary classifiers (VC–dimension). This
however does not fit our model of learning convex problems. We thus, need to develop a new mechanism to
analyse the sample complexity of convex learning problems. The Rademacher complexity is a tool to analyse
how well we can approximate the mean of a class of target functions through an empirical sample. Namely,
given a distribution D and a sample S = {z(1), . . . , z(m)} denote:

LD(f) = Ez∼D [f(z)] , LS = 1
m

m∑
i=1

f(z(i))

Given a class of target functions F we want to have a bound w.h.p w.r.t S over

sup
f∈F
|LD(f)− LS(f)|

Such a bound will entail the uniform convergence property. We will then apply this bound to class of target
functions of the form F = {f : f = `(h(xi), yi), h ∈ C}, to achieve guarantees for learning problems.

Our key tool for obtaining the uniform convergence property is through the Rademacher complexity which
we next define. The idea behind the Rademacher complexity is as follows: Suppose we are given a sample
S and we divide it randomly to a train set of points Strain, and test set Stest: What could go wrong, if we



Lecture 10: Surrogate Loss functions & Rademacher Complexity 10-3

train an algorithm by observing Strain and then testing it on Stest? Roughly, thing might go wrong, if for
some function, the discrepency: ∑

z∈Strain

f(z)−
∑

z∈Stest

f(z)

is large.

This is exactly what the Rademacher complexity measures: We consider a random partition of a set into two
distinct sets and we evaluate the discrepency w.r.t to the worst case function in F . To define the Rademacher
Complexity we begin with a simple definition of a Rademacher random variable:

Definition 10.2 (Rademacher random variables). Let σ be a vector whose elements are chosen independently
and uniformly from {−1,+1}. That is, with probability 1/2 a given element is either −1 or 1.

Definition 10.3 (Empirical Rademacher complexity). Given a sample S = {x1, . . . , xm} chosen from Dm,
define the empirical Rademacher complexity R̂S(F) as

R̂S(F) = E
σ

[
sup
f∈F

∣∣∣∣∣ 1
m

m∑
i=1

σif(z(i))

∣∣∣∣∣
]

Definition 10.4 (Rademacher complexity). For some m ≥ 1, let the Rademacher complexity of F be the
expectation of the empirical Rademacher over all samples S of size m drawn from some distribution D.

Rm(F) = E
S∼Dm

[
R̂S(F)

]
Theorem 10.5. Let F be a class of functions bounded by c and S = {z(i)}mi=1 a sample drawn IID then with
probability 1− δ

sup
f∈F
LD(f)− LS(f) ≤ 2Rm(F) +O

(
c

√
ln 1/δ
m

)

Proof. Let us write Φ(S) = supf∈F LD(f)− LS(f). We will first bound the expectation of Φ(S) then using
a concentration inequality we will bound Φ(S) w.h.p:

E[Φ(S)] = E
S

[sup
f∈F
{LD(f)− LS(h)}] by definition

= E
S

[
sup
h∈H

{[
E
S′
LS′(f)− LS(h)

]}]
expectation of i.i.d. sample error

≤ E
S,S′

[
sup
h∈H
{LS′(f)− LS(f)}

]
Jensen’s and convexity of supremum

= E
S,S′

[
sup
f∈F

{
1
m

m∑
i=1

[
f(z′(i))− f(z(i))

]}]
by definition

Now suppose we generate the sample S, S′ as follows, after generating S, S′ for every i with probaiblity 1/2
we set z′(i) ∈ S′ and z(i) ∈ S, but with probability 1/2 we alternate and let z(i) ∈ S′ then clearly the sample
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S, S′ are still generated by the same distribution. Therefore we have:

= E
S,S′,σ

[
sup
f∈F

{
1
m

m∑
i=1

σi

[
f(z′(i))− f(z(i))

]}]
σ doesn’t change E

≤ E
S′,σ

[
sup
f∈F

{∣∣∣∣∣ 1
m

m∑
i=1

σi

[
f(z′(i))

]∣∣∣∣∣
}]

+ E
S,σ

[
sup
f∈F

{∣∣∣∣∣ 1
m

m∑
i=1

σi

[
f(z(i)

]∣∣∣∣∣
}]

sub-additivity of supremum

= 2 E
S,σ

[
sup
f∈F

{∣∣∣∣∣ 1
m

m∑
i=1

σi

[
f(z(i)

]∣∣∣∣∣
}]

σi and −σi distributed same way

= 2Rm(F) �

So far we’ve bounded the generalization error in expectation, to derive high probability bounds we rely on
the following inequality

Lemma 10.6 (Mcdiarmid Inequality). : Let X be some set and f : Xm → R. be a function of m
variables such that for some a > 0, for all i ∈ [m] and for all x1, . . . , xm, x

′
i ∈ X we have

|f(x1, . . . , xi, . . . , xm)− f(x1, . . . , x
′
i, . . . , xm)| ≤ a.

Let X1, . . . , Xm be IID random varaibles taking value at X then w.p at least 1− δ:

|f(X1, . . . , Xm)− E [f(X1, . . . , Xm)] | ≤ a
√

ln(2/δ)m/2

To apply Mcdiarmind’s inequality note that Φ(S)− Φ(S′) ≤ 2c
m , hence we obtain the w.p at least 1− δ

sup
f∈F
LD(f)− LS(f) ≤ E [Φ(S)] +O

(
c

√
ln 1/δ
m

)
≤ 2Rm(F) +O

(
c

√
ln 1/δ
m

)


