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Distributed adaptive routing has proven to be useful in
packet switching networks. However, the storage and updat-
ing cost of this routing procedure becomes prohibitive as the
number of nodes in the network gets large. This paper deals
with the specification, analysis and evaluation of some hier-
archical routing procedures which are effective for large
store-and-forward packetswitched computer networks. The
procedures studied are an extension of present techniques
and rely on a hierarchical clustering of the network nodes.
In particular, optimal clustering structures are determined so
as to minimize the length of the routing tabies required. A
price for reducing the table length is the increase in the aver-
age message path length in the network. Bounds are derived
to evaluate the maximum increase in path length for a given
table length. From this we obtain our key result, namely,
that in the limit of a very large network, enormous table
reduction may be achieved with essentially no increase in
network path length.
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1. Introduction

Computer networks offer large economies through
resource sharing. Among such resources we include
specialized hardware, specialized software and data
banks. These distributed computer communication
systems made their first appearance in the form of
packet switching with the ARPANET [2,5,12,17,
27]. The first commercial data carrier, TELENET
[29], is already operational. The basis of this demand
for computer networks is the ever increasing need
for computer and data communication power.

Communication among the network resources is
accomplished by the communication subnetwork.
This includes the hardware and software specifically
dedicated to the transfer of data from node to node.
Many alternative communication schemes can be
implemented at the subnet level. Among these are:
circuit switching [26], packet switching (a form of
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store-and-forward communication) [16,18] radio
broadcasting [1], satellite communication [20], or
any combination of the above, etc.

The selection of the best switching scheme is a
difficult problem and depends very much on the
nature of the traffic to be handled by the network
[3,4,24]. The bursty nature of computer traffic, as
well as the continuously decreasing cost of computer
hardware [28], very much favor packet switching as
the technology to employ.

The basic concepts for and the first implementa-
tion of a packet switching computer network were
developed by the United States Department of
Defense Advanced Research Projects Agency (ARPA).
This network (the ARPANET), in operation since
1969, has been an enormously successful demonstra-
tion of the packet switching technique. It has result-
ed in the development of a multitude of other net-
works throughout the world (EPSS in England,
CYCLADES and TRANSPAC in France, DATAPAC
in Canada, EIN in Europ, TELENET and AUTODIN
I in the USA, etc.)

Present computer networks may be characterized
as small to moderate in size (57 nodes for the ARPA-
NET as of December 1975). Predictions indicate that,
in fact, large networks of the order of hundreds (or
even possibly thousands) of nodes are soon to come.

In the course of developing the ARPANET, a
design methodology has evolved which is quite suit-
able for the efficient design of small and moderate
sized networks {68,18]. Unfortunately the cost of
conducting the design is prohibitive if these same
techniques are extrapolated to the case of large net-
works [14]. Indeed, not only does the cost of design
grow exponentially with the network size, but also
the cost of a straightforward adaptive routing proce-
dure becomes prohibitive. Other design and opera-
tional procedures (routing techniques) must be found
which handle the large network case. Our main objec-
tive in this paper is to specify and evaluate routing
policies for LARGE networks.

Routing for packet switching networks

In a packet switching network, messages are par-
titioned into a number of smail segments called pack-
ets which then are transmitted through the network
using store-and-forward switching. That is, a packet
traveling from source S to destination D is received
and “stored” in queue at any intermediate node K
while awaiting transmission, and is then sent *“for-
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ward” to node P, the next node on the route from S
to D, when channel (K,P) permits.

The selection of the next node P is made by a well-
defined decision rule referred to as the routing policy.
Several classification schemes have been devised to
characterize routing policies [16,7,9,21,22]. Gener-
ally speaking, routing policies may be divided into two
main classes: deterministic and adaptive. While deter-
ministic routing is more attractive to use at the design
phase, adaptive policies are essential for the successful
operation of real networks.

The major goal of an adaptive routing procedure is
to sense changes in the traffic distribution and net-
work status and then to route messages such that the
congested or damaged areas of the network are avoid-
ed. It is very important for those procedures to adapt
to line and node failures in order to maintain a good
grade of service for the network. Such policies base
their decisions on measured values, at given times, of
a set of time varying quantities (number of messages
enqueued, number of hops, etc.) which describe the
salient features of the state of the network (traffic,
topology, etc.). Such information is referred to as
routing information. A central node could provide
the routing information (yielding centralized control)
and distribute it to all nodes in the network, or the
nodes could collaborate in computing the routing
information directly (yielding distributed control)
[16,7,13].

In any case, routing information must be stored in
tables at each node and is used to identify the output
line for each destination. ! More detailed classifica-
tions of the routing policies can be found in [7,10,
22]. In this study, we limit our considerations to the
most commonly used adaptive routing policies, name-
ly, distributed routing policies. These policies base
their decisions on routing information contained in
routing tables individually maintained at each node.
The tables are updated periodically or asynchronous-
ly or a combination of both [7] using routing infor-
mation collected internally and provided from neigh-
boring nodes. Such a scheme is used to operate the
ARPANET [22].

Typically, in a network with V nodes, each node
(“IMP” in the ARPANET terminology) i (i =1, 2,
..., N) has a Routing Table (to be denoted by RT)
which is composed of N entries. Each entry, say &,
is subdivided into three (or more) fields. The “delay”

! We do not consider the case where packets carry their own
routing information.
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field indicates the estimated minimal delay from node
i to destination node k. The “next-node” field indi-
cates the next node a message must be forwarded to
on its way to node k, along the estimated minimal
delay path. The “hop” field represents the minimum
number of line hops to node k. The purpose of the
hop-field is to allow the detection of node failures in
the network. _

Each node periodically (for example every 0.64
sec in the ARPANET, for a heavily loaded 50 kilobit
per sec line) sends and receives update messages from
neighboring nodes; these updates need not be syn-
chronized among nodes. Upon reception of an up-
date, a node updates its own routing table, using the
delays measured on its output lines and the delay
information found in the update message. An exam-
ple of an updating rule is provided in Section 4.2.

To summarize, we see that, fundamental to the
operation of the distributed adaptive routing schemes
is the storage, maintenance, propagation and updat-
ing of routing tables. Also, it is important to note
that in such schemes, the routing tables apparently
must contain a number of entries equal to the num-
ber of nodes in the network.

Since the length of the routing table (which
directs the traffic through each node) will grow lin-
early (one entry per node) with the number of nodes,
we see that for large computer networks (on the order
of many thousands of nodes) the storage required
to contain this list in each node will be extremely
costly. Also, as a direct consequence of these large
table lengths, the cost of interchanging routing infor-
mation among the network nodes will also grow and
will represent a significant burden on the communica-
tion lines themselves. All these considerations suggest
that some form of reduction of the routing table
length is called for. Below we present and study some
schemes which achieve this goal. Fultz [7] and
McQuillan [22] proposed similar schemes but did not
evaluate their performance as we do here.

2. Hierarchical routing schemes

The main idea for reducing the routing table
length is to keep, at any node, complete routing
information about nodes which are close to it (in
terms of a hop distance or some other nearness mea-
sure), and lesser information about nodes located fur-
ther away from it. This can be realized by providing
one entry per destination for the closer nodes, and
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one entry per ser of destinations for the remote
nodes. The size of this set may increase with the dis-
tance.

For routing in large networks the reduction of
routing information is realized through a hierarchical
clustering of the network nodes.

In what follows we first introduce and specify
hierarchical routing schemes and their underlying
clustering structures. We then observe that non-
optimally selected clustering structures may lead to
very little table reduction. As a result, it is important
to find optimal structures. This we do by solving an
optimization problem whose objective is to minimize
the table length. The optimal solution is found to
achieve significant table reductions. The ratio UN, of
the new table length /, to the one obtained with no
clustering NV, constitutes, in this paper, the unique
performance measure by which we characterize the
gains obtained from the hierarchical routing. In reali-
ty, one needs to express those gains in terms of
recovered nodal storage, line capacity, CPU process-
ing, and ultimately in terms of network throughput
and delay [14]. These last we defer to a forthcoming
paper [15].

Unfortunately, the gains in table length are accom-
panied with an increase of the message path length in
the network. This results in a degradation of network
performance (delay-throughput) duc to the excess
internal traffic caused by longer path lengths. Again
we defer throughput-delay considerations [14] to a
later paper, and restrict our study here to the evalua-
tion of the increase in network path length. After
further specifications and characterization of the
hierarchical schemes, bounds are derived to evaluate
the maximum increase in path length for a given table
reduction. The bounds demonstrate a key result,
namely, that in the limit of very large networks,
enormous table reduction may be achieved with no
significant increase in network path length. In other
words, in the limit, hierarchical routing schemes
achieve a performance similar to present schemes
with very substantial savings in storage and capacity.
Finally, we examine the behavior of these bounds
with respect to the relative table length //V.

We now proceed with the description of the hier-

2 A similar concept underlies the mechanisms of large infor-
mation systems with pyramidal structures in which infor-
tion is more and more aggregated as we move up to the
higher levels in the hierarchical organization. Aggregation
of information or variables is commonly introduced when
dealing with large systems [23,30].
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archical routing schemes. Recall that the main objec-
tive of such schemes is to operate with smailer table
lengths. The reduction of routing table length is
achieved through a hierarchical partitioning of the
network. Basically, an m-level Hierachical Clustering
(mHC) of a set of nodes consists of grouping the
nodes (which we shall define as Oth level clusters) into
15t level clusters, which in turn are grouped into 2nd
level clusters, etc. This operation continues in a bot-
tom up fashion, finally grouping the m — 2™ level
clusters into m — 1% level clusters whose union consti-
tutes the mth level cluster. The mth level cluster is
the highest level cluster and as such it includes all the
nodes of the network. The mHC will be described
more formally below.

Since hierarchical routing schemes are based on an
m-evel hierarchical clustering, they will be denoted
as mHR schemes. With the mHR schemes, only one
entry in the routing table, at any node, say i, is provided
for each node in the same 1% level cluster as i, and for
each 1% level cluster (a set of nodes) in the same 2™
level cluster as i, and in general for each k — 1% level
cluster in the same k™ level clusterasi(k = 1,2, ..., m).
The structure of this scheme can best be understood
by an example. Fig. 1 shows a 3devel hierarchical
clustering imposed on a 24 node network. The cluster-
ing leads to the tree representation shown in Fig. 2,
where nodes are identified using the Dewey notation
[19]. To each node we now associate areduced routing
table. Fig. 3 shows the layout of node 1.1.1°s routing
table; the number of entries is now 10 (instead of 24
without clustering). As an example, the routing of a
packet from node 1.1.1 to node 3.2.2 may proceed as
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Fig. 1. A 3-level clustered 24-node network.
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Fig. 2. A tree representation of a 3-level clustered net.

follows: Node 1.1.1 recognizes, from the address of
the destination node 3.2.2, that it has to use entry 3,
of the 2 level cluster entries, to decide upon the
next node to which the packet must be forwarded.
When the packet reaches a node, say 3.1.1, in the
2" level cluster 3, then that node will in turn use
the second entry (3.2.2) among the 1% level cluster
entries. Finally, when the packet enters the destina-
tion cluster, 3.2, the routing will be done using Oth
level cluster entry, number 2 (32.2). (Note that it
was assumed that the mHC results in connected sub-
graphs.)

Two remarks emerge from the above considera-
tions.

1. The length of the RT at any node is strictly a
function of the clustering structure, i.e., it is a func-
tion of the number of nodes per cluster, number of
clusters per supercluster, etc., and the number of
levels. In what follows, in order to simplify the
manipulation and implementation of the RT’s in the
network, we assume that equal length tables are pro-
vided at all nodes. Consequently, if / is that length,
it must accommodate the number of entries in the
RT of any node. As a result, the clustering structure
of Fig. | leads to / = 10.If in that same example, we
merge clusters 1.1 and 1.2, then ! becomes equal to

>
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DESTINATION \NODE Q _[NUMBER

NODZTS IN
SAME CLUSTER

113
114

CLUSTERS { 1. .

111 .
112
o LEVEL CLUSTER ENTRIES

IN SAME 12 1" LEVEL CLUSTER ENTRIES
SUPERCLUSTER| ;3
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* = SELF ENTRY

Fig. 3. Routing table of node 1.1.1.
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12 (we eliminated one cluster, but increased the size
of the largest cluster by 3). Moreover, it is easy to
construct clustering structures which lead to values of
1 close to N (e.g., 2 clusters, one containing 21 nodes
and the other 3, thus / = 23),

Since the routing cost (capacity, storage) is direct-
ly related to the table length, then it is important to
determine those clustering structures which lead to a
minimal table length, i.e., a minimal routing cost.

2. As we stated earlier, the reduction of routing
information generally leads to an increase in network
path length. To illustrate this fact, let us consider the
case where messages must be sent from node 3.2.1
considers cluster 3.1 as a single node. As a resuit,
messages destined to any node in 3.1 will enter that
cluster from the same node (exchange node). Assume
that the entry node is 3.1.1; then messages destined
to 3.1.3 and 3.1.4 will incur longer path lengths (the
increases are respectively by 1 and 2 hops). On the
other hand, if we merge clusters 3.1 and 3.2, we elim-
inate the above increase in path length but this will
increase the table length (only by one entry in this
example). Consequently, in general, there will be a
tradeoff between gains in table length and loss in path
length. Moreover, given an appropriate clustering
structure, the assignment of nodes to clusters, clusters
to superclusters, etc., should take advantage of the
natural grouping of nodes which exist in a particular
application; the latter issue, however, is not examined
in this paper (see [14]).

Note that the hierarchical routing procedure we
propose need not imply a hierarchical topological
structure; indeed this routing procedure provides very
significant improvements when applied to a distribut-
ed network topology. On the other hand, the net-
work topology itself could include a hierarchical
structure as well.

In summary, in this paper we address the follow-
ing two issues:

i. The determination of an appropriate clustering
structure, i.e., the size of the clusters at all levels and
the number of levels so as to minimize the length of
the routing table (routing cost).

ii. The performance evaluation of the mHR
schemes (in terms of path length) and their compari-
son with the present non-clustered policies.

3. Minimum routing information

In this section, we introduce some further nota-
tion and formally pose the problem of finding an
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optimal clustering structure. We then proceed with
the derivation of the optimal solution and the study
of its characteristics.

Any hierarchical classification scheme lends itself
to a tree representation [19]. The tree structure has
already been introduced in Fig. 2, to represent the
3-evel hierarchical clustering of the 24-node network
in Fig. 1, and it can easily be extended to represent a
general mevel hierarchical partitioning.

A Kkt level cluster, C,, is defined recursively as a
set of k — 1% level clusters. It corresponds to a node at
level & in a tree representation.

A Kkth level cluster is identified, similar to the
Dewey notation, by a vector of predecessors, i K+l =
(ipms fp—15 --es i41) Which can subsequently serve as an
address of Cy,.. The index, i,,,, indicates the m — 1% level
cluster, say C,,_,(i,,), to which C\ belongs; i,,_,
indicates the m — 2" level cluster in Cm—i(im) to
which C belongs, etc. The notation Ci(ipm, Epp s eoe
ite+1) of Cilik+1), will be used when there is a need to
identify C,.

Notice that a leaf in the tree representation corre-
sponds to a node (Oth level cluster) in the network,
and to any node is associated an address vector i,
which will be used for the routing of messages. As
an example, node (1,3,1) is the O'" level cluster
Co(1,3,1); it belongs to the 1t level cluster c,(13)
which in turn belongs to the 24 level cluster C,(1),
and finally all 274 level clusters belong to the unique
3rd level cluster C,.

The degree of a k*" level cluster, Cy, is defined as
the number of k — 1* level clusters included in Cy. It
also indicates the downward degree of the corre-
sponding node in the tree. We denote by nx(ix+) the
degree of Cilik+y), we also define ng = {ng(ixer)} ixet
as the vector of degrees of all the kth level clusters.
Moreover, we let n=(n,,n,, ..., n,) be the degree
vector. Finally, S will denote the set of nodes and NV
its size. v

We are now ready to derive expressions for the
length of the routing table (RT) and the size con-
straint,

The summation of the degrees of all the 15t level
clusters gives the total number of nodes in the net-
work (ie., the total number of leaves in the tree
structure). Hence,

nm nglimyeeniige)) 120ng..0i3)

N= 23 .. > 20 iy ia) -

im=1 ig=1 ir=1 (1)

Eq. (1) will generally serve as a constraint over the
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choice of the optimal degree vector #, and it will be
referred to as the size constraint.

As an example, consider a 2devel hierarchical .

clustering composed of n, 1%t level clusters. Let i,
(i, = 1, 2, ..., ny) denote an arbitrary 15* level cluster,
and n,(i;) be the corresponding number of nodes,
then

n2

N= 20 nGy). @)

iz=1

Let /[Co(i;)] be the length of the RT at node
Co(iy); length is defined as the number of entries in
that table. Then

m

HColi)] = 20 Nklims o iksy) -

k=1

The assumption is: each node of the network, Co(fy),
contains an RT with an entry for each k-15¢ level
cluster in the same k'" level cluster as Co(i;) (there
are M(i, ..., ixsy) such entries), and this for k =
1,2,..,m.

Recall that we assume that the RT’s are of equal
length /, which must acconimodate the number of
entries at any node’s RT. Hence,

n

(m,n) S max {2 Aglimsim— 1o o iker)} . )

over ally k=1
{ nodes.}

In the example above,

A
2,n)= rr}ax {ny +n,(i)} .
2
Finally, we have the following:
Problem statement
given : N
minimize : I(m, n)
over:mandn
subject to : size constraint (see eq. (1))
m a positive integer variable
n a vector of positive integer variables

(see eq. (3))
4)

In Section 3.2 we give the real-valued and in Section
3.3 the integer solution to this problem.

3.2. Real-valued solution of the optimization problem

We first proceed to solve this problem with the
assumption that n may be a real valued vector. We do
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this in order to obtain an explicit analytical expres-
sion for the optimal solution. As a consequence of
this assumption, a summation as in Eq. (2) becomes
meaningful only if n, is an integer, or if all the
n,(i,)’s are equal, say to n,, in which case the summa-
tion becomes n,n,. In fact, the solution of the opti-
mization problem will show that clusters at the same
level must be of the same degree; hence, all the sum-
mations in Eq. (1) will become meaningful a pos-
teriori.

Optimality for a fixed m

Proposition 1. Given m, the number of levels in the
hierarchy and assuming that n is a real valued vector,
the solution of our problem is such that:

(a) all clusters at all levels, k =1, ..., m, are com-
posed of the same number of lower level clusters,
that is,
=Nim | Viker, k=1, .,m;

&)

(b) with this optimal assignment, the minimum
table length is

T=mN'm (6)

Proof. The proof proceeds by induction on the num-
ber of levels, m. First, we start by showing that Prop-
osition 1 is true for m = 2. For m = 2, the problem
becomes:

Ni(ixer) = nge

min:/=max {n,(i;)+ny},

over i
1<i3 < ny

over : ny = {n,(i3)};, and n, , @)
ny
s.t.: E ny(i) =N and n,, n, positive .
=1

From the above, we note that | > n,(i;) + n,,

. Viy =1, .., n,. Let n, be fixed. Then, summing this

last relation over i), we get for a feasible vector n:
>N +n.

This equation provides a lower bound on the optimal
solution for a fixed n,. Consequently, if a feasible
solution achieves that lower bound, then it must be
optimal. Such a solution is

, N ,
nl(lz)=a, Iy = 1,2, ey Ny . (8)

W oo G S — S — |
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If we now let n, be a variable, the problem reduces
to minimizing ! = N/n, + n, over.n,. The optimum
is achieved for n, = N*% which, combined with Eq.
(8), proves that Proposition 1 is true for m = 2.

Assuming that Proposition | is true for uptom — |
levels, let us show that this implies it is true for
m levels. The tree structure which corresponds to this
general case, is then composed of n,(m — 1) level
subtrees. Each subtree, say Iy Gy = 1, 2, ..., n,.),
contains a certain number of network nodes (leaves)
which we denote by p(i,,). As a result the same con-
straint, Eq. (1), is equivalent to the following set of
constraints:

Ry 1 (i) nz(l'm,....i3)
2 T G, s 2) = Plim) |
im—1=1 2=1
im =1,y Ry ©)
Ny
23 plim)=N. (10)
=1

Let us fix the variables Ry, and p(iy,), i, = 1, ...,
M, such that Eq. (10) is satisfied. Our problem
becomes decomposable into n,, subproblems, each
corresponding to a given value of the index i,,. More-
over, such subproblems satisfy the induction hypoth-

esis; hence, for a given im, the optimal solution is
Al 1) = [p(im)] =)

Vik*"l (im ﬁxed) , k= l, 2, e — 1. (ll)

With such an assignment the problem becomes

min : /= max {(n — 1)[p(im)] + 1t}

over : p(iy,) im =1, ..,ny and n,,

s.t. : Eq. (10) holds.

The above problem can be solved similar-to Problem
7 (m = 2). Then using Eq. (11) we arrive at Egs. (5)
and (6). A more complete proof can be found in
(14].

We now intend to let m vary and solve for the
global optimum.

Proposition 2. The global optimal clustering is achieved
when the number of levels is

m,=InN, (12)

.m, =

161
and when the degree vector n’ is such that all compo-
nents have equal values:
k=1,2,.,m,. (13)
The corresponding minimum table length is
l,=elnNV. (14)

ng=n"=e=2718 ..,

The proof follows simply from the results obtained in
Proposition 1.

Dualiry

It is of interest to consider the dual formulation of
our Problem (4). The new objective is to find the
maximum number of nodes N such that there exists
an mHC whose application results in a routing table
of a given length. The dual propositions to 1 and 2
are respectively,

Proposition 3. For a fixed m and l, the real valued
solution of the dual problem is such that

ng =—, k=1,2,...m.

m

With this assignment
m
N= (i) .
m

Proposition 4. The real valued global optimum of the
dual problem is such that

!
z,
»
ng=e, k=1,.,m,,
N* =elle,
We now present some numerical examples.

Examples. Recall that the ratio of table length with
clustering to the one without clustering, J/NV (relative
table length), represents the performance measure by
which we characterize the gains obtained from the
hierarchical routing. It is the behavior of the optimal
solution of the primal problem (4) that we display.
Figures 4 and 5, respectively, illustrate the behavior
of I/N and U1, (see Egs. (6) and (14)) with respect
to m and for several values of V. These figures show
that very significant savings can be achieved.

Note that T/N =1 for m = 1; this corresponds to
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= LOCUS OF MINIMA

10 100

Fig. 4. Minimum relative table length, //N, given m.

the degenerate llevel hierarchical routing which is
simply our original non-clustered scheme. For m
varying from 1 to In N, I/N decreases to values quite
a bit smaller than 1. For m greater than In N, IN is
an increasing function of m, and as m goes to infinity
it is asymptotic to 1/N(m + In N). However, values of
m which lead to //N > 1 are certainly of no interest;
furthermore as we will see later, it is more advanta-
geous to operate with as small a number of levels as
possible. As a result, in what follows we restrict the
range of m to {1, ..., In N'}. Note also that for m =
N, I[N = NYN whose limit is 1 when N goes to
infinity.

The plots exhibit a very flat region around the
minimum. They also show an initial fast decrease of
7 toward a value close to the minimum. This last
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Fig. 5. Ratio of table lengths at optimality given m, and at
global optimatity, //!..
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Fig. 6. Minimum relative table length /N versus the number
of nodes.

property is better illustrated in Fig. 6 where 7/ is
plotted with respect to N for me {1,2,...In N}
this indicates that most of the table reduction can be
obtained with hierarchical clustering whose number
of levels is quite a bit smaller than m. (Eq. (12)).
This is an important property which proves to be
very valuable below.

3.3. Integer solution

In this section we intend to solve the integer
optimization problem as formulated in Eq. (4)
except now we assume that all degrees at the same
level are equal, and we also change the size constraint
to an inequality. The problem becomes

m
min: /= Enk,
k=1

over : n,m integer valued , (15)

m
s.t.: H ng2N.
k=1

The latter modification is introduced to avoid dealing
with empty feasible sets of vectors n, for some values
of m and N. A solution n, such that L, n, > N,
practically means that there will be unused entries in
some of the routing tables.

Recall that the global optimum real-valued solution
is such that all the component n s are equal to e, and
therefore since 2 < e <3, we are not surprised in the
integer case that the following proposition holds true.
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Table 1

Original Transfor-  Sum Original New
numbers mation product product
4 2,2 4 4 4

5 2,3 N 5 6

6 3,3 6 6 9

7 2,2,3 7 7 12
2,2,2 3,3 6 - 8 9

Proposition 5. There exists a global optimum vector
n. which is composed of at most two components
equal to 2, with all the others equal to 3.

Proof. The idea 3 is that any number (component of
n) or set of numbers can be replaced by a set of 2’s or
3’s which results in the same sum but a higher prod-
uct. Hence the new set is at least as good as the
original. As an example, we list in Table 1 some typi-
cal transformations.

The proof consists of showing that through such
transformations as listed above we can always derive
from an optimal solution which does not satisfy
Proposition 5, one which does. A complete proof is
available in [14].

As a consequence of Proposition S the search for
the optimal number of levels is reduced to three pos-
sibilities. From Problem 15, the optimal 7 must be
such that

3MTX2*SN  wherex€{0, 1,2} .

Hence the three possible values of m are:

l.x=0=m°= %:"13!]’

[n N/2-|+ 1
In3 ’

2x=1=>m =

[In N/4-| .2

3.x=2=’m2= In3

Finally the optimal m, m., is the solution of
min:/=3m-x,

over : (m, x) € {(my, 0), (m,, 1), (m,, 2)} .

3 Private communication with Dr. D. Cantor, Mathematics
Department, UCLA.
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Note that the optimal pair (m, x) gives the composi-
tion of the optimal vector n,.

Proposition 6. Given m, there exists an optimal vec-
tor n which is such that no two components differ by
more than 1,and which is given by

nm = rjvl/m.] H]

g = (VI er ) V]

or any permutation of the above solution.

k=2,3,.,m, (16)

Proof. We can easily show [14] that, given any two
numbers which differ by more than 1, we can replace
them by exactly two numbers which do not differ by
more than | and which result in the same sum but in
a better (i.e., larger) product.

From the above property, we conclude that any
ny, k=1, .., m,is either equal to a given number,a
ora+ 1.1If we let x represent the number of compo-
nents equal to ¢ + 1, then the problem reduces to

min:/=(m-x}a+x(@+1)y=ma+x.

over : (g, x),

st.:dm " Fa-1*2N,
a, positive integer; x < m, positive integer .

Let us show that there exists .t least one component,
say n,,, equal to [N'™]. From the constraint above,

the optimal a is such that
Lx=0=d">2N=4=[NVm]
ix#0=@+1)"2@+1)d" *>N=a+1

=[NYm]

Knowing that n,,=[NY™] Problem 15 can be
reduced to m — 1 variables, with N replaced by
N/n,,. Then repeating the same procedure m — 1
times we arrive at Eq. (16).

Numerical examples [14] show that the integer
solution exhibits properties similar to the real-valued
one, namely the enormous table reduction obtained
for small values of m, and that it is extremely close to
the real-valued solution. Consequently we will limit
our further considerations to the simple real-valued
solution.
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3.4. Optimality with no “self-entries” in the routing
table

In the previous model, at each routing table, one
entry (called a seif-entry) is reserved for the node
which contains that table, and one for each of the
kth level clusters, k = 1,2, ...,m — 1, to which that
node belongs. For some mHR schemes (e.g., those
defined in Section 4) and/or with some extra CPU
overhead, the updating algorithm can operate without
those self-entries. Consequently, the new length !’ of
the RT’s is

I'=l-m, oY)

where [ is given by Eq. (3).
The optimal clustering structure for this case is the
solution of Problem 4 where [ is replaced by /’.

Real-valued solution
For a fixed m, Eq. (5) still holds true. Hence the
minimum length is

F=mNim _
Also, the global optimum [14] is such that

m"=+m

I,=InN,
ng=1, k=1.

The above result is to be compared with Eq. (14) in
which /. = e /. which indicates that, theoretically,
an improvement of a fraction, l/e, of the global mini-
mum length can be obtained. These limiting resuits
are, however, meaningless in the integer case.

Integer-valued solution

Similar to the above, for a fixed m Proposition 6
still holds true. As for the global optimum, let us first
note that the real-valued solution is such that

ng = limit Y™ = 1+

m—soo
where we define 1* as the limit 1 approached from
above. Therefore we are not surprised that the follow-
ing proposition holds true {14].

Proposition 7. There exists a non-degenerate (i.e., no
one component is equal to 1) global optimum vector

L. Kleinrock, F. Kamoun

n. which is such that

ng=2, k=1,2,...m,, (18)
m.=[22]

* In2{°
3.5. The catch

So far we have been primarily concerned with the
introduction of the mHR schemes and their underly-
ing hierarchical clustering structure as solutions to the
reduction of the routing table and its associated over-
head. Indeed, we found that enormous gains can be
obtained whereby the length of the routing tables
may be reduced from N entries to the order of
e-InN entries. However, a shortcoming of these
gains is the increase in the path length of a message in
the network. This comes about from the fact that a
given node must send all its traffic to a given cluster,
on the same path to that cluster. This path will, in
general, be optimal only for a subset of the nodes in
the destination cluster. Consequently, some messages
will follow longer paths than they should. This issue
is addressed next.

It is also possible that less routing adaptability
could result from the mHR scheries because of the
aggregation of the routing information. This fact
may, however, be beneficial in our context of large
networks where the routing policy need not adjust
to very remote and probably short lived fluctuations.

4. Path characteristics for hierarchical and non-
hierarchical adaptive routing policies

The purpose of this section is to characterize the
actual or virtual routes obtained from the routing
tables under certain equilibrium conditions as defined
below. The routing schemes are assumed to belong to
the class of hierarchical or non-hierarchical adaptive
policies previously introduced. Such policies basically
propagate routing information describing the length
of the paths to reach any destination node or a set of
nodes. The path length is defined as the sum of the
lengths of all the channels which constitute that path.
Moreover, the length of a given channel is often taken
to be a random variable which may reflect the utiliza-
tion and/or the excess capacity and/or any other
information which partly or entirely describes the
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stochastic state of that channel. The transient nature
of adaptive routing renders the analysis of the above
problem extremely complicated. In order to make
any progress we will assume that all channels are of
constant length. This is a simplifying assumption
which will, however, allow us to capture the effect of
clustering on the network path length; this is the
main objective of this section. Moreover the above
assumption is an accurate description of routing
policies which are only sensitive to changes in the net-
work topology, and of more general policies operat-
ing under light traffic conditions [16]. Furthermore
if all the channels are considered to be of equal length
(say 1), then the routing information is simply what
we defined earlier as the hop distance. Such routing
information is, in general, utilized by routing policies,
at least to detect changes in the network topology.

In summary, we will restrict our considerations to
hierarchical or non-hierarchical routing schemes (also
referred to as clustered and non<clustered routing
schemes) which use as routing information the path
length only. Also we consider that all channels are of
constant length. In what follows we first assume that
all channels are of equal length (one hop) and then
we generalize to arbitrary (constant) length channels.
The arbitrary but fixed (time-invariant) channel
lengths do not explicitly account for estimates of
message delay, but rather they constitute a distance
measure which relates to the network topology (chan-
nel layout, capacities, etc.)

4.1, Further specifications of the routing schemes

Below we show that the Non-Clustered Routing
(NCR) scheme, to be defined here, is equivalent to a
degenerate 1-evel hierarchical routing. As a result the
hierarchical routing schemes (mHR) specified below
will also do for the NCR scheme.

Built into the mHR schemes is the reduction of
the routing information whereby one entry in a rout-
ing table may be reserved for more than one destina-
tion node. Routing information is aggregated when-
ever it is exchanged between special nodes in differ-
ent clusters at any level. Such special nodes will be
referred to as exchange nodes. Two mHR schemes
will be presented below. They differ only in the
definition and subsequently the computation of the
aggregate routing information. The two schemes will
be referred to as the Closest Entry Routing (CER)
and the Overall Best Routing (OBR) schemes. In
order to proceed with their description, we must first
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specify the underlying m-level hierarchical partition-
ing of the set of nodes of the network.

Assumption 1. The underlying mHC structure of the
set of network nodes is such that all clusters at the
same level k are of equal degree, n,k=1,..,m. Also
the subset of nodes composing a cluster at any level
and: their incident channels constitute a 1-connected
cluster subnetwork (at least one path exists between
any jpair of nodes).

The former property of the above assumption
partly satisfies Proposition | which defines the opti-
mal clustering structure that we will eventually use.
The . latter property is necessary, since the traffic
exchanged between nodes in the same cluster must
follow paths included in that cluster’s subnet.

Because of the above assumption the previous
notation can be greatly simplified. In particular the
degree vector is reduced to n = (n,, n,, ..., n,,).
Moreover, if there is no need to identify a cluster
with its entire address vector, then the simpler nota-
tion below may be used:

’

Ci(s) 2 k" level cluster containing an arbitrary node s.

As a consequence of Assumption 1, the routing
tables at any node will contain [ = n, +n,= ... +n,,
entries. Note that self entries are included in the rout-
ing table. The self entries of the RT at an exchange
node may be assigned to carry the aggregate routing
information from one cluster to another. The content
of the self entries in tables at other nodes (non-
exchange nodes) need not be specified in this study.
Two aggregation procedures, each for a particular
mHR scheme (OBR or CER), are presented below.

CER and OBR hierarchical routing schemes. For
the CER (Closest Entry Routing) scheme, no routing
information describing the internal behavior of a
cluster is propagated outside the cluster. With this
rule, a cluster is regarded trom the outside as a single
(super-)node whose distance to itself is equal to zero.
In other words the distance from an exchange node
to the clusters at all levels to which it belongs is con-
sidered to be equal to zero.

For the OBR (Overall Best Routing) scheme, the
average estimated distance from an exchange node to
all the nodes in its cluster (including itself) will be
propagated as the routing information for that clus-
ter.
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Update rule. Let s and ¢ be two neighbor nodes
(ie., they are connected by a channel (s, 1)) which
belong to the same &t level cluster Cy and nat to any
lower level cluster, (k=1,2,..m).Let Ci_i(s) and
Cie—y(¢) respectively denote the £ — 1% level clusters to
which s and ¢ belong. As a consequence the routing
tables at s and ¢ are such that all the pdevel cluster
entries for p =0, ... k - 2 refer to different cluster
destinations; whereas all the other entries refer to the
same cluster destinations,

The object of the updating procedure is to com-
pare the estimated lengths of the paths from s or ¢
to any common destination, Then, the routing tables
are updated to show the better paths. Let

& () i=I,2,...,n,~+|; ISk—=1,..m=1

denote a jth Jeye cluster destination which is com-
mon to s and ¢. To that cluster is associated an entry
{ (in both tables) amongst the /" level cluster entries;
that entry will also be denoted by Ci). Also let
HF(u, G (D) represent the content of the hop field of
entry Cy(i) at node u (u=so0ry). Finally, whenever
node ¢ receives an update message from node s, then
for each common destination entry C; (i) the follow-
ing updating algorithm is performed.

IF HF(:, i) > 1 + HF(s, C;(3))
THEN HF(r, C®)) « 1 + HF(s, C/(i))
NEXT NODE FIELD OF Cji) s END | (19)

Initially all the entries are set to a large value (=°);
except for the self entries. [f a CER is used then al]
the self entries are set to zero, and if an OBR is used
then only the gth level cluster self entries are set to
Zéro, e g., at node s

HF(s, Cy(s)) £ HE((s, 5) = 0

HEG,Cuo)=( Ry o

all other entries = oo .

Note that in the algorithm above, it is assumed that

all the routing information contained in the non.
common destination entries in the routing table in
node s is aggregated, as specified before, to represent
HF(s, C,_,(s)). When required (for OBR), the com-
putation of the averages must proceed sequentially
starting from level | to level k — 2. Moreover the con.
tent of the common seif entries is not relevant.

A few more remarks can be stated about the above
updating rule.

—

L. Kleinrock, F. Kamoun

i.If s and ¢ belong to the same 15t Jeve] cluster,
then their RT’s contain only common destination

entries. As a result, Algorithm 19 will be performed
for all the entries in the table.

ii. A unique *“degenerate” mHR routing scheme
(NCR) corresponds to either the OBR or the CER
schemes with only hierarchical level. Moreover, for
such a degenerate case all the network nodes belong
to the same unique 3t Jeve}] cluster; hence, as expect-
ed, the updating algorithm will be performed for all
the entries in the RT"s.

iii. For any pair of nodes s, t the common region
in the routing tables can be determined by inspecting
the address vectors of s and t.

With the above specifications of the mHR and
NCR schemes, we are now ready to address the ques-
tion as to what is the content of the hop fields at any
RT, under some defined equilibrium conditions.

4.2. Path characteristics

If no changes occur in_the topology of the net-
work, after a certain number of updates, the contents
of the hop fields in the routing table will reach
“minimal” constant values. In what follows, this
situation will be referred to as equilibrium condition.
Similar to the dynamic programming approach, the
above property is due to the fact that improvements
are made sequentially at each update over the dis-
tance from one node to any cluster (see Algorithm
19). The question arises as to what is the meaning of
the routing information at equilibrium, or in other
words, what are the characteristics of the paths indi-
cated by the routing tables. We can already note that
for the degenerate one-level hierarchical clustering,
i.e., when no clustering is used, those paths corre-
spond to the shortest paths in the current topology.
Before we proceed, a few more definitions and nota-
tions are necessary,

Ay = Length of the estimated minimum path from
node s to node ¢ as derived from the routing informa.
tion at node s. (The superscript ¢ stands for clustered
routing.)

Internal path = 3 path is defined to be internal
(included) in a cluster Cy if all the nodes in that path
belong to that cluster.

h;, = Length of the shortest path from node s to
node ¢ included in the lowest level cluster to which
both s and ¢ belong (the superscript i stands for an
internal path).

Exchange node = (defined previously) an exchange
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node (to be denoted by e or e;) of a given clusteris a
node of that cluster which is connected to one or
more nodes external to that cluster.
Aiix+1) 2 Subset of all the exchange nodes which
connect cluster Cy(ix+;) with any kth level cluster
~which belongs to the same k + Ist level cluster as
Cilik+1)-
WeC, 2 Entry in RT giving internal distance mea-
sure for C, (an aggregate variable) as computed from
the routing information contained at the exchange
node e of C,.
From the above definitions and previous specifica-
tions we note first that a network node (Oth level
cluster) is its own exchange node. Second we have

E h for the OBR scheme
le fECK
Wec =
y 0 for the CER scheme
Wecy = 0 ‘ (20)

where |C,| represents the number of nodes in clustér
Cy and £ is an arbitrary node of Cy. The above con-
siderations allow us to characterize the path lengths
under the mHR schemes.

Proposition 8. Let s and t be two arbitrary nodes
which belong to the same k*" level cluster C,, but not
to any lower level cluster; then the length of the path
from node s to node t as derived at equilibrium from
the routing information contained at node s, satisfies
the recursive equation below,

h$, = hs,0 +heoe @n

where e is an exchange node of Ci_,(t) which is

such that

{hsej + Weich_ 10} »
(22)

where Cy_ (1) is the k — 1% level cluster which con-

tains node t, and A, _,(t) is its corresponding subset
of exchange nodes as defined above.

h;z +w, C @) = min
0 0Ck—1 ¢jEAk—|(')

Proof. The proof proceeds by induction on the level
k of the lowest level common cluster. In what follows
Cy(s) and C; i(1),7 =1, ..., m, will always respectively
denote the /"‘ level clusters to which s and ¢ belong.

k=1 case. s, t _belong to the same 1% level cluster
C,, then

CO(S) =AQ(S) =5,
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Co(t)=Ao()=1.

Also, since the distance of a node to itself is zero,
then

Hege =he=0.
In order to prove Eq. (21) there remains to show that
hS =hi, .

i.e., that 45, is the length of the shortest path from s
to ¢ included in C,. This is true since the RT of any
node in C, contains an entry for node ¢; hence at
equilibrium we obtain the minimal internal path from
s to f. Note that if m = 1, ie., the degenerate case, -
all nodes belong to the same cluster C, which corre-
sponds to the entire set of nodes, hence hg, = 4y,.In
other words, when no clustering is used, i.e., NCR,
the routing information indicates, at equilibrium, the
shortest (hop) path.

Assuming that Proposition 8 is true up to k — 1,
let us show that it is true for .

Proof for k. Let C, be the kth level cluster com-
mon to s and ¢. All the nodes in C, contain in their
RT’s one entry for cluster C,_,(¢). The propagation
and the subsequent updating of the RT’s among the
nodes of Cy, is equivalent to finding the minimum
path, internal to C,, from any node in {C, — C, k_.(t)}
to the fictitious supernode SC,_,(¢) shown in Fig. 7
In other words, seen from any node in {Cy — Ck_.(t)}
cluster Ciy(2) is equivalent, in terms of distance, to a
center node SC,_,(¢) connected to all the exchange
nodes in A,_,(¢). If ejed,_;(¢) then the length of
the equivalent edge, from e; to the center node, is
equal to the aggregate information representing clus-
ter C;,_,(¢) as seen from ¢, i e.,

Kep, SCie— (1) = Werc, ) - (23)
where the distance from e; to any other node in
Cy_,(2) is defined from the induction hypothesis.

If ey is the exchange node in A4,_,(f) which
belongs to the minimal path from s to SC,_,(?)

4 € Agalt)

Fig. 7. Equivalent representation of cluster C;_,(1).
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obtained at equilibrium, then €y satisfies Eq. (22)
which represents the length of that minimal path.
Due to the routing function previously specified all
messages to be forwarded or sent from node s to node
t will follow the same minimal path up to the ex-
change node e,. At that point ¢, and ¢ belong to the
same k — 1% level cluster, hence, h¢ . is known from
the induction hypothesis. Consequently Eq. @n
holds true.

Remarks. (1) If CER is used, e, represents the closest
exchange node of Ci—-1(¢) to node s (for paths includ-
ed in C}), which explains the nomenclature: Closest
Entry Routing.

(2) If we let the channels have variable lengths
and change the previous definitions of path lengths
accordingly, we can show [14] that Proposition 8 still
holds true.

4.3. Bounds on the increase in path length

The effect of the clustering (reduction of routing
information) is an increase in the path length between
any pair of nodes, s, ¢, of an amount hgp — hg,. A
measure of performance of the mHR schemes is the
relative increase of the average path length, j.e.,

he

=1, 24)
where 4 and 4 denote the average path length in the
network respectively with and without clustering
(with a uniform traffic assumption)

o

h oL e o
o :

h°—N(N—-1)§e§h“'

Proposition 8 provides a means for computing the
values of 4, for any pair of nodes s, t for a given out-
come of the m-level hierarchical clustering of the set
of nodes S. Consequently, for that particular situa-
tion, it is numerically possible to evaluate the relative
increase D from Eq. (24) and then compare the chus-
tered with the non-clustered schemes. Moreover, with
further assumptions on the structure of the hierarchi-
cal partitioning of the nodes, we can obtain analytic
bounds on the increase in the path length.

Assumption 2. The diameter 4 of any kth level cluster

4 Recall that the diameter of a network is the maximum
shortest path between pairs of nodes [11].
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subnet (see assumption 1) is less than or equal to a
quantity d,, k=], ey,

Note that d,, represents the diameter of the entire
network and thatd, >4 k-1 > 0 forall k.

Assumption 3, Any cluster at any level k = L2, ..,
m contains the shortest path (if it is not unique, then
at least one is contained) between any given pair of
nodes which belong to that cluster.

Assumption 2 is simply the specification of the
outcome of the clustering of the nodes, since the
dy’s can be of any value, whereas Assumption 3 is a
natural property that any clustering scheme should
seek. The reason for this is that traffic between nodes
in the same cluster must (because of the routing func-
tion above) follow paths internal to that cluster.

The above assumptions lead to the derivation of
some simple bounds. These bounds on the increasc in
path length apply to the routing schemes (OBR,
CER) described above. All the properties listed below
rely on Assumptions 1 and 2. If Assumption 3 is
used, it will be so specified.

Lemma 1. Under the above conditions, the value of
h, for any pair of nodes s, t which belong to the
same k*h level cluster is such that

k
he< D,
=1

(26)

Vs, t € same k' eye; cluster, vk=1,2,..m .
]

A very simple proof can be found in [14].
Lemma 1 leads to the following bound on the
increase in the average path length.

Proposition 9. {nger the conditions above and
Assumption 3, the increase in the average path length
in the network due to the reduction of routing infor-
mation is such thgt

m—| )
nmny ong — 1
hc-h<2[1- 12 Tk ]d,,. @7)
k=1

N-1

Proof. Let C,(s) denote the kth level cluster (k = 0,
-y w3 M) tO Which s belongs. Then from Eq.(25)

1 m
he—h=em—— 2220 5 kS _hny.
¢ NN - 1),e5 o4 1€ Ch(s) (hsz = o)
1€ Ci_ 1) (28)

Let Ci_1(f) be a k — 1%t leve] cluster included in
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C{s); there are n, such clusters, then

2 (he-hg)=
tECx(s)
I‘ka._l(S)
ny
2z 2 (S -hg). (29)
=1 t€CK_ 1)

Cr1(NNCi_1(5)=»

Since Cy_ (/) N Cp-,(s) = ¢ and since both are
included in Cy’s, Eq. (21) holds true for s and any
node 7 in C;_,(/); after some algebra using Egs. (20),
(21) and (22) we arrive at

E hsr ICI:— l(j)' min {h;?[ + we,'C'k_ IU)} '

t€CK_1 () e €Ax_1()
£ o (30)
Let us define e, to be the closest (inside Ci(s)) ex-
change node of 4, _ (/) tonodes, i.e.,
ki, = min {ni}. (31
L) EieAk..l([') { ‘”f}

From Eq. (30) and for any exchange node e;, particu-
larly e,, the relation below is true.

2 K< ICe_ (Vg + 2 S G

tE€Ck_1() t€CK_y

Note that in the equation above w was replaced by
its value as defined by Eq. (20).

Moreover from Assumption 3 and the definition
of eg,

ho=hy>hly VIECi_ (), (33)
thus

2 g ICe_ (k. (34)
1€Ck_1())

Substituting Eq. (34) into Eq. (32), we arrive at
Y (e-hp< L kS, (35)
1€Ck_1 (N tECK_1()
Note that ey, t € Cj_,(f), then from Lemma 1,
hey< L d;,  WIEC,_,(). (36)
=1
From Assumption 1

ICe— 1 (D)1= nyny e Mgy vk,J . 37)
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Substituting Eq. (35), (36) and (36) into Eq. (29), we
find

2 (K - hyy) < (1 = gy ..

tECi(s)
tﬁCk_l(S)
k-1
Y 2 df . (38)

Note that thls last equation is true for any level k,
and 'for any node s, hence by substituting it into Eq.
(28), we obtain Eq. (27), after some algebra.

Remark. For a CER scheme the relation in Eq. (32) is
tight (i.e., the equality holds true). This indicates that
the summation of path lengths obtained with the
OBR scheme is smaller than or equal to the one
obtained with the CER scheme. Hence the average
path with an OBR is smaller than or equal to the
average path length with a CER.

The above proposition deals with averages; we now
place a bound on the increase of the path length
between an arbitrary pair of nodesss, ¢.

Lemma 2. Under the previous conditions and As-
sumption 3, and for the CER scheme

k-1

hS, - hg <Ed
7=1

Vs, t € same k™ level cluster Cy, Vk=1,2,...m
(39)

This is due to the fact that with CER the closest
exchange node is used to enter a cluster (see [14])
which is not always true with OBR.

We observed previously that Assumption 3 is a
realistic one, but if it is not specifically built into the
clustering algorithm, there is no guarantee that the
outcome of the clustering always satisfies that as-
sumption. This remark leads us to the following
proposition.

Proposition 10. Under the conditions of Proposition
9 and with Assumption 3 removed,

m-1
he —h< 20 dp. (40)
k=1

The proof [14] relies on the fact that Assumption 3
is always true for the highest level cluster C,, (ie.,
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for the entire network hir =h_). Hence Eq. (38) is
true for X = m, and the proof follows from there.

Note that all the bounds derived aboye are tight
for the degenerate case of 1-level hierarchical routing
(NCR). To prove this fact, form = | Egs. (27) and
(40) lead to he - h < 0; but since he — h >0 then
he = h. Similarly for m = 1, Eq. (39) gives hg, =h,.

In summary, severa fairly general bounds have
been derived, depending on the assumptions and/or
the routing schemes selected. In the next section we

will study the behavior of some of those bounds for
a class of networks.

5. Static performance evaluation of the mHR schemes
for a family of networks

Recall from Section 2 that in this paper we do not
explicitly account for the very significant gains
obtained in reducing the CPU, storage and line utiliza-
tion required by the routing procedures from the
reduction in I/N; as a result the application of the
mHR schemes will appear to result in a degradation
of the performance of the network, as compared to
the utilization of 2 non-clustered scheme. This loss in
performance (delay, throughput) s closely related to
the average path length a message follows in the net-
work. The evaluation of the increase in path length
provides us with a first cut modeling of the loss in
network performance. Moreover, the study of the
bounds, derived previously, represents a worst case
evaluation of the mHR schemes. Since the evaluation
is in terms of path length, we will refer to it as szaric
performance evaluation, On the other hand, the gains
we obtain are still modeled by the single variable N
which represents the reduction of routing informa-
tion. We defer the throughput.delay evaluation to a
later paper [15]. In that Paper we find that the table
reduction provides savings in capacity, storage,
throughput and delay which more than compensate

for the vanishing increase in path length.
The static performance evaluation is perforqu
over a class of computer networks.

S.1. A family of large distributed networks

The networks to be considered are all the connect.-
ed graphs upon which it is possible to fit an m-level
hierarchical clustering whose outcome satisfies
Assumptions 1-3, Also the resulting cluster subnets
at any level are of diameters bounded by a power law

L. Kleinrock, F. k, amoun

function of the number of nodes in that cluster; ie.,
if n is the size of a cluster and 4 the diameter of that
cluster’s subnet then

d<bn’+c, 41)

where b, ¢, v.are Positive parameters and Q Sug |
(see below). :

If NV is the size of such a network, then the average
path length (hop distance) of that network 4 must be
a power law function of V,

h=aN" 42)

where 4 is a positive parameter.

Grid type networks, hexagonal networks, etc., fali
into that category when the mHC results in subnet-
works of a similar structure as the original and when
the path lengths are expressed in hops. Expressions
for the average path length (with a uniform traffic
matrix) and for the diameter of the grid and the torus
networks have been derived in [14]. Some of the
results obtained are:

h=3VN,
Square grid of size N { 43)
d=2N-2,

h=1N,

uare torus of size
", { (44)

(with \/N an odd integer) d=yN-1|,

Furthermore, if the partitioning of eijther the
square grid or torus networks results in grid cluster
subnets at 3] levels, then for any cluster subnet of
size n its diameter 4 is such that

d<2</n-2. 45)

As a consequence the grid and torus networks fit the
above descriptions. Note also that for those networks
the exponent v (Eqgs. (41) and (42)) is equal to %

In general, the €xponent v reflects the connectivity
of the network considered. For very highly connected
networks v is in the neighborhood of zero;e.g., for a
fully connected networkv =0(h=1,4= 1). Whereas
for very low connected networks v is in the neighbor-
hood of one; e.g., for loop or chain type networks, v
=1.

Computer communication networks fall into the
class of distributed networks. This class includes net-
WOrks such as the ARPANET, AUTODIN II, CY-
CLADES, TRANSPAC, EPSS, EIN, DATAPAC,
TELENET, etc. The main characteristic of those dis-
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tributed networks is their low connectivity. In gen-
eral, a connectivity 2 (or 3) is imposed on their
design. For large distributed networks a connectivity
of 3 to 4 seems more appropriate [25]. The torus net-
works considered above are of connectivity 4 and
with an exponent v = %, hence they appear to be good
representatives of large distributed networks, More-
over, their topological structure leads to a simple
partition such as square subgrid clusters. In the
sequel, we will first derive a limiting result valid for
the entire class of networks, then we will restrict our
numerical applications to values of a, b c y as

obtained for the torus net,ie.,
a=3, b=2, c=-2, v=1. (50)

5.2. Asymptotic performance evaluation of the mHR
schemes

The family of networks considered here satisfies

Assumptions 1-3, hence Proposition 9 holds true, -
" Let £ be defined as the bound on the relative increase

in path length D (see Eq. (24)). It is the behavior of £
versus the relative table length I/NV in which we are
interested.

For an optimal clustering structure we know from
Proposition 1 that the degree vector n must satisfy
Eq. (5). Then from Eqs. (27), (41) and (42) and after
some algebra we obtain

h _
0<S-1<pg | [N[bw

a(N — 1)\ N
N"“ _N(v+l)/m N - Nl/m
+c(m — 1)] -b - :,
N(uﬂ)/m -1 Nl/m -1
1)

where v is assumed to be different from zero. Note
again that for m = 1, £ = 0. Also from Eq. (6) the
relative table length is

mNm

yv="22

v (52)

The above considerations lead to the general limiting
result below, which is a key theorem.

Proposition 11. (Limiting Performance). Consider the
above family of networks and the above mHR
schemes (OBR, CER) with q fixed number of levels
m and an optimal clustering structure, Then as N, the
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number of nodes, goes to infinity, the “static”’ per-
Sformance of the mHR schemes approaches that of a
non-clustered routing scheme, while the relative table
length approaches zero; i. e.,

hef/h 1,
N>
IIN-0.

Thus we claim that in the limit, hierarchical routing
leads to enormous table reduction with relatively no
significant increase in path length. In other words,
hierarchical routing will achieve similar throughput-
delay performance as the NCR, while requiring sig-
nificantly less nodal storage and channel capacity.
This is a fundamental result which greatly satisfies
our initial objective of reducing the operating cost of
adaptive routing in large networks. This cost vanishes
in the limit!

Proof. It is enough to prove that the limit of E is
zero. Expanding Eq. (51) around N-!, we find

E=2 y-um + o™y | (53)
a

hence

limit £=0 .

N—=>a

Also, the second limit is obvious, Q.ED.

Note that the closer v is to one (v# 0), the faster
is the convergence of £ to zero. In other words, as
could be expected, the more distributed (and less
connected) the networks are, the better the mHR’s
perform.

The above results hold true if we relax Assumption
3; in this case we use the bound derived in Proposi-
tion 10 (Eq. (40)) [14].

The result of Proposition 11 was derived for a
fixed m; let us now examine the situation where m
is variable. Of interest is the value of m which corre-
sponds to the global optimum clustering structure.
That value is, from Eq. (12), ma = In N,

Substituting Eq. (12) into Eq. (51), we arrive at
E, whose limit is

limit £, =2[—1— —\l]

N-oo a eU -1 el+v -1 (54)

As a consequence the result of Proposition 11 is not
necessarily true anymore when m is variable. If we
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consider the coefficients of Eq. (50) then the above
limit is equal to 5.01. This shows that the cost of
operating at the (global) minimum table length may
be quite high (up to 6 times the increase in path
length). Fortunately, as noticed in Section 3.2, most
of the table reduction, for practical purposes, may be
obtained with m quite a bit smaller than the global
number of levels m., and the cost at a small m is
quite minimal. In other words, choosing m smaller
than m. results in giving back very little gains in table
length for a tremendous improvement in perfor-
mance. This fact is illustrated in Fig. 8, where we
note a very sharp increase of £ as /N gets close to its
global minimum value. It i that sharp region of the
curve that we need to avoid in order to keep the
increase in path length significantly low., Fig. 8 also
shows the behavior of £, versus N,

5.3. Static performance evaluation of the mHR -
numerical applications

In the previous section we observed that at the -
. limit (VW > <o) considerable table reduction can be

achieved with no loss in performance. Now, we
intend to look at the more general case of a finite /.
The purpose is again to correlate the degradation in
performance with the table reduction. We evaluate a
maximum performance degradation in terms of the
gains in table length. Also this evaluation will be
carried out with an mHC which results in a minimal
table length.

Recall that the numerical study below is restricted
to values of g, b, ¢, v, as obtained for torus networks

s
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Fig. 8. Bound on the relative increase in path length £, versus

the relative table length I/N.
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Fig.9. Lower bound on the ratio of path length without and
with clustering versus I/N. :

(Eq. 50), although such a study could easily be
repeated for other networks which belong to the
family considered here.

Egs. (51) and (52) provide us with a parametric
Tépresentation of £ as a function of UN. m acts as
the coupling variable in that representation. By let-
ting m vary from 1 to In N we obtain all the possible
values of I/N; and subsequently for each value of
/N we obtain the corresponding value of £, The
above range of m is chosen in accordance with the
results obtained in Section 3.2 (refer to Proposition
2 and Fig. 5); and also in accordance with the fact
that £ is an increasing function of m (this fact is
obvious from the proof of Proposition 9).

Numerical resuits are presented in a set of figures

sl

104 108 108 107
N

| 1
102 103

Fig. 10. Decrease in table length for a given maximum
increase in path length.
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as follows: Fig. 8 illustrates the behavior of £ with
respect to //N and for several values of V. We observe
that an original substantial table reduction can be
achieved for small values of £, i.e., for a small drop in
performance. However if we try to reduce IN to
values close to its global minimum, Eq. (14), then £
increases sharply. Fig. 8 also illustrates the limiting
behavior of the mHR schemes (see Proposition 11)
whereby as N becomes larger, more reduction in IIN
can be obtained for a lesser loss in performance. This
property is shown by the fact that the curves for £
versus /N remain flat on the I//N axis for larger
intervals,

Fig. 9 shows the behavior of 1/(1 + £) with respect
to !/N. That is, from Eq. (51) we see that hih, >
U(1 + E) & LB(h/h,). These figures exhibit proper-
ties similar to the previous ones.

Finally, Fig. 10 shows how much table reduction
can be obtained for a given ““tolerance” £ as a func-
tion of the size N. The concentration of the curves
for | < £ <5 (recall from Eq. (54) that £ = 5.01 is
the maximum error) again shows that beyond a cer-
tain point the gains in table length can only be achieved
at the expense of large losses (large £). However
in the range O to 1 for £ considerable gains can yet
be obtained. For that range of £ the corresponding
range of the number of levels m is limited to fairly
small values, m < 4 [14]. Moreover, in Section 3.2,
as noticed earlier, most of the table reduction is
obtained for small values of m. We conclude that the

.mHR schemes operating with a small number of

levels 2 < m < 4 yield substantial table reduction for
a relatively small increase in path length.

6. Summary

In this paper, we have examined the tradeoffs
which come about due to hierarchical routing in large
networks. The obvious gain is that the length of the
routing tables in each node can be reduced signifi-
cantly. With smaller routing tables, we require less
storage and processing in the nodes as well as less
communications overhead. The loss is that smaller
(ie., clustered) routing tables give less precise routing
information which then results in longer path lengths
for the message traffic.

The investigations in this paper have led to an
evaluation of these two opposing variables, i.e., the
routing table length and network path length. We
have shown that hierarchical routing schemes and

P
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their underlying hierarchical clustering structure lead
to significant reductions of the routing table length.
The optimal hierarchical clustering structure was
found which minimized the length of the routing
table and consequently resulted in a minimum cost
routing scheme. Enormous gains were achieved
whereby the table length was reduced from N W=
number of nodes) to e In V.

As regards the network path length, we were able
to place an upper bound on its increase due to the
introduction of hierarchical routing as a function of
the routing table reduction. These bounds allowed us
to establish our major resuit, namely, that in the limit
of very large networks, enormous table reductions
may be achieved with essentially no increase in net-
work path lengths (an intuitively pleasing, and possi-
bly obvious, result).

However, routing table length and network path
length are not the qualities by which one ordinarily
evaluates network performance. Rather, we are usu-
ally interested in the throughput-delay tradeoff. Clear-
ly, these four quantities are related through the stor-
age, processing and updating requirements they
create. In a forthcoming paper [15] we evaluate the
performance of hierarchical routing directly in terms
of delay and throughput. Indeed, we show that for
large distributed networks, present (full table length)
routing procedures very quickly become infeasible.
More importantly, we establish that hierarchical
routing procedures are capable of operating very
efficiently in the environment of large networks.
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