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ABSTRACT commercial interests [9]; suggested solutions have in-
Many problems with today’s Internet routing infrastruc- cluded widespread overlay networks [23, 24] and active

ture—slow BGP convergence times exacerbated by timeflétworking [6, 30]. But less attention has been paid to
based route scanners, the difficulty of evaluating new pro2 SImple, yet fundamental, underlying cause: the lack of
tocols—are not architectural or protocol problems, buteXt€nsible, robust, high-performance router software.

softwareproblems. Router software designers have tack- The router software market is closed: each vendor's

led scaling challenges above all, treating extensibility a _routers W'" run 9”'Y that vendor's software. Th's makes
latency concerns as secondary. At this point in the inJtalmostimpossible for researchers to experimentin real

ternet's evolution, however, further scaling and security"€Works, or to divelop proof-r(])f-c?]ncept COdle that might
issues require tackling latency and extensibility head-onc°"VINce network operators that there are ajternatives to

We present the design and implementation of xORpcurrent practice. A lack of open router APIs additionally

an IP routing software stack with strong emphases on |a(_excludes star_tup companies as a chgnnel for change.
The solution seems simple in principle: router soft-

tency, scaling, and extensibility. XORP is event-driven, _
and aims to respond to routing changes with minimalVare should have open APIs. (This somewhat resembles
delay—an increasingly crucial requirement, given risingaCt'Ve networks, but we believe that a more conservative

expectations for Internet reliability and convergencetim 2PProach is more likely to see real-world deployment.)
The XORP design consists of a composable frameworwnfortunately, extensibility can conflict with the other
of routing processes, each in turn composed of modulafr“_ndamemal goals of performance and rot_)ustness, and
processing stages through which routes flow. Extensibil/Vith the sheer complexity presented by routing protocols
ity and latency concerns have influenced XORP throughliké BGP. Relatively few software systems have robust-

out, from IPC mechanisms to process arrangements {gess and security goals as stringent as those of routers,

intra-process software structure, and leading to novel dewhere localized instability or misconfiguration can rip-

signs. In this paper we discuss XORP's design and imple throughout the Internet [3]. Routers must also juggle

plementation, and evaluate the resulting software again&undr_eds of thousands of rou_tes, which can be mstalle_d
our performance and extensibility goals. and withdrawn en masse as links go up and down. This

limits the time and space available for extensions to run.
1 INTRODUCTION Unsurprisingly, then, existing router software was not

written with third-party extension in mind, so it doesn’t

The Internet has been fabulously successful; previousl enerally include the right hooks, extension mechanisms
unimagined applications frequently arise, and changin nd security boundaries

usage patterns have been accommodated with relative We therefore saw the need for a new suite of router
ease. But underneath this veneer, the low-level proto:

Is that ¢ the Int th | | ified (?oftware: an integrated open-source software router plat-
cois that support the Internet have largely ossilied, angq, ., running on commodity hardware, and viable both in
stresses are beginning to show. Examples include sec

Yesearch and production. The software architecture would
rity and convergence problems with BGP routing [18], b

h tensibilit i I, itti i-
deployment problems with multicast [10], QoS, and IPv6 ave extensibiity as a primary goa, permiting exper

d the lack of effective def hani . td'mental protocol deployment with minimal risk to exist-
andthe lack ot efiective detense mechanisms agains E’fﬁg services. Internet researchers needing access ta route

nial-of-service attacks. _The blamg for this OSSIf'cat'qnsoftware would share a common platform for experimen-
has been placed at various technical and non—techmc%tion, and get an obvious path to deployment for free.

points in the Internet architecture, from limits of lay- ¢ loop between research and realistic real-world ex-

ered protocol design [4] to the natural conservatism Ofperimentation would eventually close, allowing innova-
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work management software, and related user-level prothe best known integrated routing suite, although it began
grams that make up the vast majority of software on aas an implementation of a single routing protocol. GateD
router today. This contrasts with the forwarding plane,is a single process within which all routing protocols
which processes every packet passing through the routamun. Such monolithic designs are fundamentally at odds
Prior work on component-based forwarding planes hasvith the concept of differentiated trust, whereby more
simultaneously achieved extensibility and good perfor-experimental code can be run alongside existing services
mance [16, 26], but these designs, which are based on theithout destabilizing the whole router. MRTD [28] and
flow of packets, don't apply directly to complex protocol BIRD [2], two other open-source IP router stacks, also
processing and route wrangling. XORP’s contributions,use a single-process architecture. In the commercial world
then, consist of the strategies we used to break the contr@isco 10S [7] is also a monolithic architecture; experi-
plane, and individual routing protocols, into componentsence has shown that this significantly inhibits network
that facilitate both extension and good performance.  operators from experimenting with Cisco’s new protocol
For example, we treat both BGP and the RIB as netimplementations.
works of routingstagesthrough which routes flow. Par- Systems that use a multi-process architecture, per-
ticular stages within those networks can combine routesnitting greater robustness, include Juniper’'s JunOS [15]
from different sources using various policies, or notify and Cisco’s most recent operating system 10S XR [8].
other processes when routes change. Router functionalitynfortunately, these vendors do not make their APIs ac-
is separated into many Unix processes for robustness. &essible to third-party developers, so we have no idea if
flexible IPC mechanism lets modules communicate withtheir internal structure is well suited to extensibilithd
each other independent of whether those modules arepen-source Zebra [31] and Quagga [25] stacks use mul-
part of the same process, or even on the same machingple processes as well, but their shared inter-process API
this allows untrusted processes to be run entirely sands limited in capability and may deter innovation.
boxed, or even on different machines from the forward-  Another important distinguishing factor between im-
ing engine. XORP processes are event-driven, avoidinglementations is whether a routereigent-driveror uses
the widely-varying delays characteristic of timer-baseda periodiaoute scanneto resolve dependencies between
designs (such as those deployed in most Cisco routersjoutes. The scanner-based approach is simpler, but has a
Although XORP is still young, these design choices arerather high latency before a route change actually takes
stable enough to have proven their worth, and to demoneffect. Cisco I0S and Zebra both use route scanners, with
strate that extensible, scalable, and robust router softwa (as we demonstrate) a significant latency cost; MRTD
is an achievable goal. and BIRD are event-driven, but this is easier given a sin-
The rest of this paper is organized as follows. Af- gle monolithic process. In XORP, the decision that ev-
ter discussing related work (Section 2), we describe a@rything is event-driven is fundamental and has been re-
generic router control plane (Section 3) and an overviewlected in the design and implementation of all protocols,
of XORP (Section 4). Sections 5 and 6 describe parand of the IPC mechanism.
ticularly relevant parts of the XORP design: the rout-
ing stages used to compose the RIB and routing proto3 CONTROL PLANE FUNCTIONAL OVERVIEW

cols like BGP and our novel inter-process communica-The vast majority of the software on a router is control-
tion mechanism. The remaining sections discuss our S§lane software: routing protocols, the Routing Informa-
curity framework; present a preliminary evaluation, whichjgn Base (RIB), firewall management, command-line in-
shows that XORP’s extensible design does not impact it%rface, and network management_and, on modern rout-
performance on macro-benchmarks; and conclude.  ers, much else, including address management and “mid-
dlebox” functionality. Figure 1 shows a basic functional
breakdown of the most common software on a router.
Previous work discussed XORP’s requirements and highThe diagram’s relationships correspond to those in XORP
level design strategy [13]; this paper presents specifi@and, with small changes, those in any router. The rest of
solutions we developed to achieve those requirementshis section explores those relationships further.
We were inspired by prior work on extensible forward-  The unicast routing protocols (BGP, RIP, OSPF, and
ing planes, and support Click [16], one such forwardinglS-1S) are clearly functionally separate, and most routers
plane, already. only run a subset of these. However, as we will see later,
Individual open-source routing protocols have longthe coupling between routing protocols is fairly complex.
been available, includinguted[29] for RIP,OSPFd20]  The arrows on the diagram illustrate the major flows of
for OSPF, angimd[14] for PIM-SM multicast routing.  routing information, but other flows also exist.
However, interactions between protocols can be prob- The Routing Information Base (RIB) serves as the
lematic unless carefully managdglateD[21] is perhaps plumbing between routing protocols. Protocols such as

2 RELATED WORK



Management unctions PIM contributes routes not to the RIB, but directly via

Lﬁ;}gger cLI SNMP the FEA to the forwarding engine. Thus, the FEA' inter-
face is important for more than just the RIB. However,
PIM does use the RIB’s routing information to decide on
PIM—SM the reverse path back to a multicast source.
\ / The “Router Manager” holds the router configura-
L— RIB tion and starts, configures, and stops protocols and other
/ router functionality. It hides the router’s internal sttuie
(GMPIMLD from the user, providing operators with unified manage-
/ ment interfaces for examination and reconfiguration.
Multicast Routing Our goalis a router control plane that provides all this
functionality, including all the most widely used routing
Unicast Routing I 1 protocols, in a way that encourages extensibility. At this
T P = point, we donot automatically protect operators from
RIB = routing information base malicious extensions or experimental code. Instead, our
FEA = forwarding engine abstraction software architecture aims tminimize extension foot-
FIGURE 1—Typical router control plane functions print, making it feasible for operators to check the code
themselves. This requires a fundamental design shift from
the monolithic, closely-coupled designs currently preva-
RIP and OSPF receive routing information from remotelent. In Section 7 we will discuss in more detail our cur-
routers, process it to discover feasible routes, and sengént and future plans for XORP’s security framework.
these routes to the RIB. As multiple protocols can supply
different routes to the same destination subnet, the RIBt XORP OVERVIEW

must arbitrate between alternatives. The XORP control plane implements this functionality
BGP has a more complex relationship with the RIB. 4i5qram as a set of communicating processes. Each rout-
Incoming IBGP routes normally indicatanaxthoprouter ing protocol and management function is implemented

for a destination, rather than an immediate neighbor. 'fby a separate process, as are the RIB and the FEA. Pro-
there are multiple IBGP routes to the same subnet, BGRogqes communicate with one another using an extensi-
will typically need to know the routing metrics for €ach | |pc mechanism called XORP Resource Locators, o
choice so as to deC|d”e which route has the nearest exég, 5 This blurs the distinction between intra- and inter-
(so-called “hot potato” routing). Thus, BGP must exam-,,cess calls, and will even support transparent commu-
ine the routing information supplied to the RIB by other .:-ation with non-XORP processes. The one important
routing protocols to make its own routing decisions. process not represented on the diagram isFineler

A key instrument of routing policy is the process of \hich acts as a broker for IPC requests; see Section 6.2.

route redistribution, where routes from one routing Pro-(xORP 1.0 supports BGP and RIP; support for OSPF
tocol that match certain policy filters are redistributed ;4 |55 is under development.) ’

into another routing protocol for advertisement to other g multi-process design limits the coupling between

routers. The RIB, as the one part. of the system that Se&Smponents; misbehaving code, such as an experimen-
everyone's routes, is central to this process. tal routing protocol, cannot directly corrupt the mem-
The RIB is thus crucial to the correct functioning of o ot another process. Performance is a potential down-
arouter, and should be extended only with care. Routingjqe que to frequent IPCs: to address it, we implemented
protocols may come and go, but the RIB should ideally, 515 ways to safely cache IPC results such as routes
be general enough to cope with them all; or failing that, 't(Section 5.2.1). The multi-process approach also serves

should support small, targeted extensions that are easily, decouple development for different functions, and en-

checked for correctness. _ __courages the development of stable APIs. Protocols such
The Forwarding Engine Abstraction (FEA) provides gsp and RIP are not special in the XORP design—they

a stable API for communicating with a forwarding en- ,se Ap|s equally available to all. Thus, we have confi-

gine or engines. In principle, its role is syntactic, and jence that those APIs would prove sufficient, or nearly

many single-platform routers leave it out, communicat-g, tor most experimental routing protocols developed in
ing with the forwarding plane directly. the futurel

PIM-SM (Protocol Independent Multicast—Sparse
Mode [12]) and IGMP provide multicast routing func-
tionality, with PIM performing the actual routing and
IGMP informing PIM of the existence of local receivers.

BGP4+

OSPF

RIP

IS-IS FEA

We chose to implement XORP primarily in C++, be-
cause of its object orientation and good performance. Re-
alistic alternatives would have been C and Java. When we
started implementing XORP, the choice was not com-



state machine

pletely clear cut, but we've become increasingly satis- for eightoring
fied; for example, extensive use of C++ templates allowigemngoues [ ™ best
common source code to be used for both IPv4 and IPv6,*" | it aeor |
with the compiler generating efficient implementations —
for both. ——————~{ forneighboring |
Each XORP process adopts a single-threaded event-
driven programming model. An application such as a rout-
ing protocol, where events affecting common data come FIGURE 2—Abstract routing protocol
from many sources simultaneously, would likely have
high locking overhead; but, more importantly, our ex-
perience is that it is very hard for new programmers to® ROUTING TABLE STAGES
understand a multi-threaded design to the point of befFrom the general process structure of the XORP control
ing able to extend it safely. Of course, threaded programplane, we now turn to modularity and extensibiliithin
could integrate with XORP via IPC. single processes, and particularly to the ways we divide
The core of XORP’s event-driven programming modefouting table processing inkiagesn BGP and the RIB.
is a traditionalsel ect -basedevent loopbased on the This modularization makes route dataflow transparent,
SFS toolkit [19]. Events are generated by timers and filesimplifies the implementation of individual stages, clari-
descriptors; callbacks are dispatched whenever an evefies overall organization and protocol interdependencies,
occurs. Callbacks are type-safe C++ functors, and allovand facilitates extension.
for the currying of additional arguments at creation time. At a very high level, the abstract model in Figure 2
When an event occurs, we attempt to process thagan represent routing protocols such as RIP or BGP. (Link-
eventto completion, including figuring out all inter-pr@se state protocols differ slightly since they distribaierout-
dependencies. For example, a RIP route may be useglg information to their neighbors, rather than just the
to resolve the nexthop in a BGP route; so a RIP routebest routes.) Note that packet formats and state machines
change must immediately notify BGP, which must thenare largely separate from route processing, and that all
figure out all the BGP routes that might change as a rethe real magic—route selection, policy filtering, and so
sult. Calculating these dependencies quickly and effisienforth—happens within the table of routes. Thus, from a
is difficult, introducing strong pressure toward a periodicsoftware structuring point of view, the interesting part is
route scanner design. Unfortunately, periodic scanninghe table of routes.
introduces variable latency and can lead to increased load Unfortunately, BGP and other modern routing proto-
bursts, which can affect forwarding performance. Sincecols are big and complicated, with many extensions and
low-delay route convergence is becoming critical to ISPsfeatures, and it is very hard to understand all the interac-
we believe that future routing implementations must betions, timing relationships, locking, and interdependen-
event-driven. cies that they impose on the route table. For instance,
Even in an event-driven router, some tasks cannofs we mentioned, BGP relies on information from intra-
be processed to completion in one step. For examplegomain routing protocols (IGPs) to decide whether the
a router with a full BGP table may receive well over nexthop in a BGP route is actually reachable and what
100,000 routes from a single peer. If that peering goeshe metric is to that nexthop router. Despite these depen-
down, all these routes need to be withdrawn from alldencies, BGP must scale well to large numbers of routes
other peers. This can’t happen instantaneously, but a flagand large numbers of peers. Thus, typical router imple-
ping peer should not prevent or unduly delay the processmentations put all routes in the same memory space as
ing of BGP updates from other peers. Therefore, XORPBGP, so that BGP can directly see all the information
supports background tasks, implemented using our timefelevant to it. BGP then periodically walks this jumbo
handler, which run only when no events are being prorouting table to figure out which routes win, based on
cessed. These background tasks are essentially coopet&P routing information. This structure is illustrated in
tive threads: they divide processing up into small slicesFigure 3. While we don’knowhow Cisco implements
and voluntarily return execution to the process’s mainBGP, we can infer from clues from Cisco’s command line
event loop from time to time until they complete. interface and manuals that it probably works something
We intend for XORP to run on almost any modern like this.
operating system. We initially provide support, including Unfortunately, this structure makes it very hard to
FEA support, for FreeBSD and Linux, and for FreeBSD separate functionality in such a way that future program-
and Linux running Click as a forwarding path. Windows mers can see how the pieces interact or where it is safe to
support is under development. make changes. Without good structure we believe that it
will be impossible for future programmers to extend our
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added to the pipeline without disturbing their neighbors,
and their interactions with the rest of BGP are constrained
by the stage API.

The next issue to resolve is where the routes are ac-
tually stored. When a new route to a destination arrives,
gGP must compare it agairest alternative routes to that
destination (not just the previous winner), which dictates
that all alternative routes need to be stored. The natural
5.1 BGP Stages place might seem to be the Decision Process stage; but

this would complicate the implementation of filter banks:

The mechanism we chose is the clear one of data flowgiyers can be changed by the user, after which we need to
Rather than a single, shared, passive table that stores 'Be-run the filters and re-evaluate which route won. Thus,

formation _and annotations, we |mp_Iement routing tablegNe only store the original versions of routes, in the Peer
as dyn_amlc processes thro‘%gh which routes flow. Ther?n stages. This in turn means that the Decision Process
is no single roqtlng table objec_t, but rathgr a network ofmust be able to look up alternative routes via caits
pluggable routingstages each implementing th.e same streamthrough the pipeline.

interface. Toggther, the network stages combine to im- The basic interface for a stage is therefore:

plement a routing table abstraction. Although unusual—
to our knowledge, XORP is the only router using this e add_route: A preceding stage is sending a new route
design—stages turn out to be a natural model for routing  to this stage. Typically the route will be dropped,
tables. They clarify protocol interactions, simplify the modified, or passed downstream to the next stage un-
movement of large numbers of routes, allow extension, changed.

ease unittesting, and localize complex data structure ma-,
nipulations to a few objects (namely trees and iterators;
see Section 5.3). The cost is a small performance penalty
and slightly greater memory usage, due to some dupli-
cation between stages. To quantify this, a XORP router . ) )
holding a full backbone routing table of about 150,000 ® lookup-route: A later stage is asking this stage to look
routes requires about 120 MB for BGP and 60 MB for ~ UP@ route foradesur_\atlon _subnet. If the stage cannot
the RIB, which is simply not a problem on any recent ~ answer the request |tse_lf, it should pass the request
hardware. The rest of this section develops this stage de- UPStream to the preceding stage.

sign much as we developed it in practice. These messages can pass up and down the pipeline, with
To afirst approximation, BGP can be modeled as thghe constraint that messages must be consistent. There

pipeline architecture, shown in Figure 4. Routes come i”are two consistency rules: (1) Amiglete_route message

from a specific BGP peer and progress through an ing,, correspond to a previoadd_route message; and

coming filter bank into the dec!s_lon Process. The beSt(2) the result of dookup_route should be consistent with
routes then proceed down additional pipelines, one fof e\ sadd route anddelete route messages sent down-
each peering, through an outgoing filter bank and theryy o These rules lessen the stage implementation bur-
on to the relevant peer router. Each stage in the pipelinge, ‘A stage can assume that upstream stages are consis-

receives route_s from up_stream a_nd passes them dowri‘ént, and need onlgreserveconsistency for downstream
stream, sometimes modifying or filtering them along theStages

way. Thus, stages have essen.tlally. the same API, and "t oyirg protection, a BGP pipeline could include
are indifferent to their surroundings: new stages can b%tages thaenforcedconsistency around possibly-erro-

FiGURE 3—Closely-coupled routing architecture

software without compromising its stability.

Our challenge is to implement BGP and the RIB in
a more decoupled manner that clarifies the interaction
between modules.

delete_route: A preceding stage is sending a delete
message for an old route to this stage. The deletion
should be dropped, modified, or passed downstream
to the next stage unchanged.



neous experimental extensions, but so far we have ndRoutes are held in a queue until the relevant nexthop met-
needed to do this. Instead, we have developed an extrgcs are received; this avoids the need for the Decision
consistency checking stage for debugging purposes. ThiBrocess to wait on asynchronous operations.

cache stage, just after the outgoing filter bank in the out-

put pipeline to each peer, has helped us discover man§-1.2 Dynamic Stages

subtle bugs that would otherwise have gone undetectedhe BGP process’s stages atgnamic not static; new
While not intended for normal production use, this stagestages can be added and removed as the router runs. We
could aid with debugging if a consistency error is sus-made use of this capability in a surprising way when we
pected. needed to deal with route deletions due to peer failure.
When a peering goes down, all the routes received by
this peer must be deleted. However, the deletion of more
The Decision Process in this pipeline is rather complexthan 100,000 routes takes too long to be done in a single
in addition to deciding which route wins, it must get event handler. This needs to be divided up into slices of
nexthop resolvability and metric information from the work, and handled as a background task. But this leads
RIB, and fan out routing information to the output peer to a further problem: a peering can come up and go down
pipeline branches and to the RIB. This coupling of func-in rapid succession, before the previous background task
tionality is undesirable both because it complicates théhas completed.

stage, and because there are no obvious extension points To solve this problem, when a peering goes down we
within such a macro-stage. XORP thus further decom-create a new dynamieletion stageand plumb it in di-
poses the Decision Process into Nexthop Resolvers, gectly after the Peer In stage (Figure 6).

simple Decision Process, and a Fanout Queue, as shown
in Figure 5. Before peering goes down:

5.1.1 Decomposing the Decision Process

Peer Filter
Peer Filter Nexthop Filter
Bank esolver Bank

After peering goes down:

Peer *Deletion$ Filter .
In Stage Bank

In ™ Bank [~
Peer Filter Nexthop Decision Fanout Filter Peer
In Bank Resolver Process Queue Bank Out

FIGURE 6—Dynamic deletion stages in BGP

Peer Filter Nexthop Filter
Bank esolver Bank

BeSt routes The route table from the Peer In is handed to the deletion

ORI stage, and a new, empty route table is created in the Peer
_ In. The deletion stage ensures consistency while grad-
IGP routing . . .
information ually deleting all the old routes in the background; si-
o multaneously, the Peer In—and thus BGP as a whole—
FIGURE 5—Revised staged BGP architecture is immediately ready for the peering to come back up.

The Peer In doesn’t know or care if background dele-

The Fanout Queue, which duplicates routes for eachion is taking place downstream. Of course, the deletion
peer and for the RIB, is in practice complicated by thestage must still ensure consistency, so if it receives an
need to send routes to slow peers. Routes can be receivadd_route message from the Peer In that refers to a prefix
from one peer faster than we can transit them via BGRhat it holds but has not yet got around to deleting, then
to other peers. If we queued updates in thBeer Out first it sends alelete_route downstream for the old route,
stages, we could potentially require a large amount ofand then it sends thadd_route for the new route. This
memory for alln queues. Since the outgoing filter banks has the nice side effect of ensuring that if the peering
modify routes in different ways for different peers, the flaps many times in rapid succession, each route is held
best place to queue changes is in the fanout stage, aftér at most one deletion stage. Similarly, routes not yet
the routes have been chosen but before they have beeeleted will still be returned byookup_route until after
specialized. The Fanout Queue module then maintains e deletion stage has serdelete_route message down-
single route change queue, wittreaders (one for each stream. In this way none of the downstream stages even
peer) referencing it. know that a background deletion process is occurring—

The Nexthop Resolver stages talk asynchronously tall they see are consistent messages. Even the deletion
the RIB to discover metrics to the nexthops in BGP’s stage has no knowledge of other deletion stages; if the
routes. As replies arrive, it annotates routeadd_route  peering bounces multiple times, multiple dynamic dele-
andlookup_route messages with the relevant IGP metrics.tion stages will be added, one for each time the peer-



ing goes down. They will unplumb and delete themselvesexample, BGP needs to monitor routing changes that af-
when their tasks are complete. fect IP addresses listed as the nexthop router in BGP
We use the ability to add dynamic stages for manyroutes, and PIM-SM needs to monitor routing changes
background tasks, such as when routing policy filters ar¢hat affect routes to multicast source addresses and PIM
changed by the operator and many routes need to be r&®endezvous-Point routers. We expect the same to be true
filtered and reevaluated. The staged routing table desigof future extensions. This volume of registrations puts
supported late addition of this kind of complex function- pressure on the Register Stage interface used to register

ality with minimal impact on other code. and call callbacks on the RIB. In monolithic or shared-
memory designs centered around a single routing table
5.2 RIB Stages structure, a router could efficiently monitor the structure

Other XORP routing processes also use variants of thi€or changes, but such a design cannot be used by XORP.
staged design. For example, Figure 7 shows the basi¥/e need to share the minimum amount of information
structure of the XORP RIB process. Routes come into thé€tween the RIB and its clients, while simultaneously
RIB from multiple routing protocols, which play a simi- Minimizing the number of requests handled by the RIB.
lar role to BGP'’s peers. When multiple routes are avail- What BGP and PIM want to know about is the rout-
able to the same destination from different protocols, thdnd for specific IP addresses. But this list of addresses
RIB must decide which one to use for forwarding. As may be moderately large, and many addresses may be
with BGP, routes are stored only in the origin stages, andouted as part of the same subnet. Thus when BGP asks
similaradd_route, delete_route andlookup_route messages the RIB about a specific address, the RIB informs BGP
traverse between the stages. about the address range for which the same answer ap-
plies.

Static
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Stage Stage Stage Stage
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FIGURE 7—Staged RIB architecture
FIGURE 8—RIB interest registration

Unlike with BGP, the decision process in the RIB is

distributed as pairwise decisions between Merge Stages, Figure 8illustrates this process. The RIB holds routes
which combine route tables with conflicts based on afOI' 128.16.0.0/16, 128.16.0.0/18, 128.16.128.0/17 and

preference Order’ and an Extint Stage, which Compose%28161920/18 If BGP asks the RIB abput addre-SS 128.
a set of external routes with a set of internal routes. In16.32.1,the RIB tells BGP that the matching route is 128.

BGP, the decision stage needs to see all possible altel6.0.0/18, together with the relevant metric and nexthop
natives to make its ChOiCG; the RIB, in contrast, makeg’outer information. This address also matched 128.16.0.
its decision pure|y on the basis of a Sin@dministra- 0/16, but only the more Specific route is reported. If BGP
tive distancemetric. This Sing|e metric allows more dis- later becomes interested in address 128.16.32.7, it does
tributed decision-making, which we prefer, since it betternot need to ask the RIB because it already knows this
supports future extensions. address is also covered by 128.16.0.0/18.

Dynamic stages are inserted as differentwatchersreg- However, if BGP asks the RIB about address 128.16.
ister themselves with the RIB. These include Redistl60.1, the answer is more complicated. The most spe-
Stages, which contain programmab|e po||Cy filters to re.CiﬁC matching route is 128.16.128.0/17, and indeed the
distribute a route subset to a routing protocol, and RegisRIB tells BGP this. But 128.16.128.0/17 is overlayed
ter Stages, which redistribute routes depending on prefiRy 128.16.192.0/18, so if BGP only knew about 128.16.
matches. This latter process, however, is slightly morel28.0/17 and later became interested in 128.16.192.1, it
complex than it might first appear. would erroneously conclude that this is also covered by
128.16.128.0/17. Instead, the RIB computes the largest
5.2.1 Registering Interestin RIB Routes enclosing subnet that is not overlayed by a more specific
goute (in this case 128.16.128.0/18) and tells BGP that its

A number of core XORP processes need to be able t ) : X
answer is valid for this subset of addresses only. Should

track changes in routing in the RIB as they occur. For



the situation change at any later stage, the RIB will send ae to support asynchronous messaging, as this is a natu-
“cache invalidated” message for the relevant subnet, and ral fit for an event-driven system; and
?GP csn re-query the RIB to update the relevant part of § 5 e portable, unencumbered, and lightweight.
its cache.

Since no largest enclosing subnet ever overlaps any During development we discovered an additional re-
other in the cached data, RIB clients like BGP can usequ|rement,_<;cr|ptab|llty, a_nd ad_ded it as a feature. Being
balanced trees for fast route lookup, with attendant perable to script IPC calls is an invaluable asset during de-

formance advantages. velopment and for regression testing. Existing messaging
frameworks, such as CORBA [22] and DCOM |[5], pro-
5.3 SafeRoutelterators vided the concepts of components, component address-

Each background stage responsible for processing a Iaﬂ@g and location, and varying degrees of support for al-
routing table, such as a BGP deletion stage, must remenf€rnative transports, but fell short elsewhere.
ber its location in the relevant routing table so that it Ve therefore developed our owtORP IPCmecha-
can make forward progress on each rescheduling. ThBISM- TheFinder process locates components and their
XORP library includes route tabliterator data struc- methods; communication proceeds via a naturally script-
tures that implement this functionality (as well as a Pa-2Ple base calledORP Resource Locatgrsr XRLs
tricia Tree implementation for the routing tables therr_1-6.1 XORP Resource L ocator s
selves). Unfortunately, a route change may occur while
a background task is paused, resulting in the tree nod&n XRL is essentially a method supported by a compo-
pointed to by an iterator being deleted. This would causéent. (Because of code reuse and modularity, most pro-
the iterator to hold invalid state. To avoid this problem, cesses contain more than one component, and some com-
we use some spare bits in each route tree node to hol@onents may be common to more than one process; so the
a reference count of the number of iterators currentlyunit of IPC addressing is theomponent instanceather
pointing at this tree node. If the route tree receives @han the process.) Each component implements an XRL
request to delete a node, the node’s data is invalidatedterface or group of related methods. When one com-
but the node itself is not removed immediately unless thedonent wishes to communicate with another, it composes
reference count is zero. It is the responsibility of the lastan XRL anddispatchest. Initially a component knows
iterator leaving a previously-deleted node to actually per only the generic component name, such as “bgp”, with
form the deletion. which it wishes to communicate. The Finder must re-
The internals of the implementation of route trees andsolve such generic XRLs into a form that specifies pre-
iterators are not visible to the programmer using themgisely how communication should occur. The resulting
All the programmer needs to know is that the iteratorresolved XRL specifies the transpqrbtocol familyto
will never become invalid while the background task is be used, such as TCP, and any parameters needed for
paused, reducing the feature interaction problem betwee@ommunication, such as hostname and port.

background tasks and event handling tasks. The canonical form of an XRL is textual and human-
readable, and closely resembles Uniform Resource Lo-
6 INTER-PROCESS COMMUNICATION cators (URLs [1]) from the Web. Internally XRLs are

Using multiple processes provides a solid basis for re£ncoded more efficiently, but the textual form permits
source management and fault isolation, but requires th&RLS to be called from any scripting language via a sim-

use of an inter-process communication (IPC) mechanisnP!€ call-xrl program. This is put to frequent use in all our
Our IPC requirements were: scripts for automated testing. In textual form, a generic

XRL might look like:
e to allow communication both between XORP pro-
cesses and with routing applications not built using

the XORP framework; And after Finder resolution:

* touse multiple transports transparently, including imr§t(:p://192.1.2.3:16878/bgp/1.O/setJocaI_as?as:u32=1777
process calls, host-local IPC, and networked commu-

nication, to allow a range of tradeoffs between flexi- XRL arguments (such asa8” above, which is an Au-
bility and performance; tonomous System number) are restricted to a set of core
e to support component namespaces for extensibilit)}ypes used th_roughoutXORP, |r_10Iud|ng network ad_dresses,
numbers, strings, booleans, binary arrays, and lists of

and component location for flexibility, and to provide h " haps b lication d :
security through per-method access control on comthese primitives. Perhaps because our application domain

ponents; is highly specialized, we have not yet needed support for
' more structured arguments.

finder://bgp/bgp/1.0/setlocal_as?as:u32=1777



As with many other IPC mechanisms, we have anin-7 SECURITY FRAMEWORK

terface definition language (IDL) that supports interfacege ity is a critical aspect of building a viable extensibl
specification, automatic stub code generation, and bas'ﬁlatform. Ideally, an experimental protocol running on a

error checking. XORP router could do no damage to that router, whether
through poor coding or malice. We have not yet reached
this ideal; this section describes how close we are.
When a component is created within a process, it in-  Memory protection is of course the first step, and
stantiates a receiving point for the relevant XRL proto- x ORP’s multi-process architecture provides this. The next
col fam”ies, and then registers this with the Finder. Thestep is to allow processes to be Sandboxed, o) they cannot
registration includes a component class, such as “bgp“access important parts of the router filesystem. XORP
a unique component instance name; and whether or n@fentralizes all configuration information in the Router
the caller eXpeCtS to be the sole instance of a partiCUManager, so no XORP process needs to access thef”esys_
lar component class. Also registered are each interface’sm to load or save its configuration.
supported methods and each method'’s supported proto- Sandboxing has limited use if a process needs to have
col families. This allows for SpeCialization; for example, root access to perform priv"eged network Operations_ To
one protocol family may be particularly optimal for a avoid this need for root access, the FEA is used as a re-
particular method. lay for all network access. For example, rather than send-
When a componentwants to dispatch an XRL, it con-ing UDP packets directly, RIP sends and receives pack-
sults the Finder for the resolved form of the XRL. In re- gtg using XRL calls to the FEA. This adds a small cost to
ply, it receives the resolved method name together withhetworked communication, but as routing protocols are
a list of the available protocol families and argumentsrarely high-bandwidth, this is not a problem in practice.
to bind the prOtOCOl famlly to the receiver. For a net- This leaves XRLs as the remaining vector for dam-
worked protocol family, these would typically include age. If a process could call any other XRL on any other
the hostname, receiving port, and potentially a key. Onceyrocess, this would be a serious problem. By default we
resolved, the dispatcher is able to instantiate a sender fgyon't accept XRLs remotely. To prevent local circumven-
the XRL and request its dispatch. XRL resolution resultstion, at component registration time the Finder includes
are cached, and these caches are updated by the Finden 6-byte random key in the registered method name of
when entries become invalidated. all resolved XRLs. This prevents a process bypassing the
In addition to providing resolution services, the Findelse of the Finder for the initial XRL resolution phase,
also provides a component lifetime notification service.pecause the receiving process will reject XRLs that don’t
Components can requestto be notified when another comatch the registered method name.
ponent class or instance starts or stops. This mechanism \we have several plans for extending XORP's secu-
is used to detect componentfailures and componentrestgfis First, the Router Manager will pass a unique secret
to each processi it starts. The process will then use this se-
cret when it resolves an XRL with the Finder. The Finder
Protocol families are the mechanisms by which XRLs ards configured with a set of XRLs that each process is al-
transported from one component to another. Each prolowed to call, and a set of targets that each process is al-
tocol family is responsible for providing argument mar- lowed to communicate with. Only these permitted XRLs
shaling and unmarshaling facilities as well as the IPCwill be resolved; the random XRL key prevents bypass-
mechanism itself. ing the Finder. Thus, the damage that can be done by an
Protocol family programming interfaces are small anderrant process is limited to what can be done through its
simple to implement. In the present system, there ar@mormal XRL calls. We can envisage taking this approach
three protocol families for communicating between XORRven further, and restricting the range of arguments that
componentsTCP, UDP, andintra-processwhich is for  a process can use for a particular XRL method. This
calls between components in the same process. Themould require an XRL intermediary, but the flexibility
is also a speciaFinder protocol familypermitting the  of our XRL resolution mechanism makes installing such
Finder to be addressable through XRLs, just as any othesn XRL proxy rather simple. Finally, we are investigat-
XORP component. Finally, there existskdl protocol ing the possibility of running different routing processes
family, which is capable of sending just one messagen different virtual machines under the Xen [11] virtual
type—a UNIX signal—to components within a host. We machine monitor, which would provide even better iso-
expect to write further specialized protocol families for lation and allow us to control even the CPU utilization of
communicating with non-XORP components. These willan errant process.
effectively act as proxies between XORP and unmodified
XORP processes.

6.2 Componentsand the Finder

6.3 Protocol Families



In Figure 9 we show the average XRL rate and its
‘ ‘ standard deviation for TCP, UDP and Intra-Process trans-
nra-Process — X port mechanisms when we vary the number of arguments
ubP —o— | to the XRL. These results show that our IPC mechanism
10000 | 1 can easily sustain several thousands of XRLs per sec-
ond on a relatively low-end PC. Not surprisingly, for a
small number of XRL arguments, the Intra-Process per-
formance is best (almost 12000 XRLs/second), but for a
larger number of arguments the difference between Intra-
Process and TCP disappears. Itis clear from these results
that our argument marshalling and unmarshalling is not
0 : : : : terribly optimal, but despite this the results are quite re-
0 > 10 15 20 % spectable. In practice, most commonly used XRLs have
Number of XRL arguments few arguments. This result is very encouraging, because
FIGURE 9—XRL performance results it demonstrates that typically the bottleneck in the system
will be elsewhere.
8 EVALUATION The UDP performance is significantly worse because

As we have discussed, the XORP design is modular, roYPP was _ourl_first prototype XRL impllementation, and
bust and extensible, but these properties will come afl®€S Not pipeline requests. For normal usage, XORP cur-

some cost in performance compared to more tightly cou-rently uses TCP and does pipeline requests. UDP is in-

pled designs. The obvious concem is that XORP mighFI_Udejd_ here primarily to iIIus_trate the effect of request

not perform well enough for real-world use. On previousPIPelining, even when operating locally.

generauons of hardwarg,_thls might have been true, bué2 Event-Driven Design Evaluation

we will show below that it is no longer the case.
The measurements are performed on a relatively lowT0 demonstrate the scaling properties of our event-driven

end PC (AMD Athlon 1100MHz) running FreeBSD 4.10. design, we present some BGP-related measurements. Rout-

At this stage of development we have put very little ef-ing processes not under test such as PIM-SM and RIP

fort into optimizing the code for performance, but we were also running during the measurements, so the mea-

have paid close attention to the computation complexsurements represent a fairly typical real-world configura-

ity of our algorithms. Nevertheless, as we show belowion.

even without optimization the results clearly demonstrate ~ First, we perform some measurements with an empty

good performance, and the advantage of our event-drivefputing table, and then with a routing table containing a

XRL performance for various communication families

Performance (XRLs/sec)

design. full Internet backbone routing feed consisting of 146515
routes. The key metric we care about is how long it takes
8.1 XRL PerformanceEvaluation for a route newly received by BGP to be installed into the

One concern is that the XRL IPC mechanism might be-forwarding engine.

come a bottleneck in the system. To verify that it is not, <ORP contains a simple profiling mechanism which

the metric we are interested in is the throughput we Carpermits the inse.rt.ion of _prqfiling po?nts anywhere in_ t.he
achieve in terms of number of XRL calls per second. code. Each profiling point is associated with a profiling

To measure the XRL rate. we send a transaction Oyariable, and these variables are configured by an exter-
10000 XRLs using a pipeline size of 100 XRLs. Ini- _nal programxorp_profiler using XRLs. Enabling a profil-

tially, the sender sends 100 XRLs back-to-back, and the#{!d POint causes atime stamped record to be stored, such

for every XRL response received it sends a new requesf’.‘S:

The receiver measures thg time between the beginning ie ribin 1097173928 664085 add 10.0.1.0/24

and the end of a transaction. We evaluate three com-

munication transport mechanisms: TCP, UDP and Intrain this example we have recorded the time in seconds and

Process direct calling where the XRL library invokes di- microseconds at which the route “10.0.1.0/24” has been

rect method calls between a sender and receiver insidadded. When this particular profiling variable is enabled,

the same process. all routes that pass this point in the pipeline are logged.
7o allow direct , intrap st TCPUDE If a route received by BGP wins the decision process,

O allow airect comparison or Intra-Frocess agains A . . . .

both sender and receiver are running within the same prodédssn we it will be sent to its peers and to the RI.B (See _Flgure 1)'

run the sender and receiver on two separate processes amibeésst,  When the route reaches the RIB, if it wins against routes

the performance is very slightly worse. from other protocols, then it is sent to the FEA. Finally,




Introduce 255 routes to a BGP with no routes
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FIGURE 10—Route propagation latency (in ms), no initial routes
Introduce 255 routes to a BGP with 146515 routes (same peering)
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FIGURE 11—Route propagation latency (in ms), 146515 initial rewtad same peering

the FEA will unconditionally install the route in the ker- the next hop is resolvable for a route to be used. BGP

nel or the forwarding eng

ine.

discovers if a next hop is resolvable by registering inter-

The following profiling points were used to measure est with the RIB. To avoid unfairly penalizing the empty

the flow of routes:

Entering BGP

Sent to the RIB
Arriving at the RIB

Sent to the FEA
Arriving at the FEA
Entering the kernel

© N o gk~ wbdPRE

One of the goals of this experiment is to demonstrate

Queued for transmission to the RIB

Queued for transmission to the FEA

routing table tests, we keep one route installed during the
test to prevent additional interactions with the RIB that
typically would not happen with the full routing table.

The results are shown in Figures 10-12. In the first
experiment (Figure 10) BGP contained no routes other
than the test route being added and deleted. In the second
experiment (Figure 11) BGP contained 146515 routes
and the test routes were introduced on the same peering
from which the other routes were received. In the third
experiment (Figure 12) BGP contained 146515 routes
and the test routes were introduced on a different peering
from which the other routes were received, which exer-
cises different code-paths from the second experiment.
All the graphs have been cropped to show the most

that routes introduced into a system with an empty routinteresting region. At the tables indicate, one or two reute
ing table perform similarly to a system with a full BGP took as much as 90ms to reach the kernel. This appears
backbone feed of 146515 routes. In each test we introto be due to scheduling artifacts, as FreeBSD is not a re-
duce a new route every two seconds, wait a second, angltime operating system.

then remove the route. The BGP protocol requires that

The conclusion to be drawn from these graphs is that



Introduce 255 routes to a BGP with 146515 routes (different peering)
o .o : : . | Profile Point | Alg | SD | Min | Max
e N -7 Er;'tfr.ing Kemel o ] Entering BGP - - - -
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i - Arriving at FEA 3.822 | 5.964 | 3.037 | 93.179
ueued Tor + n
0§ %5 15 5 555 555 00 Entering kernel 4.417 | 6.278 | 3.494 | 93.662
Route
FIGURE 12—Route propagation latency (in ms), 146515 initial rewtad different peering
routing events progress to the kernel very quickly (typi- 0 BGP route latency induced by a router
cally within 4ms of receipt by BGP). Perhaps as impor- ‘ ‘ ‘ XORP -
tantly, the data structures we use have good performangg3s oo
under heavy load, therefore the latency does not signifg 5|, .. . . . Quagga e
icantly degrade when the router has a full routing tableg | o> %% &, % e
The latency is mostly dominated by the delays inhereng #| 5 C
in the context switch that is necessitated by inter-process 2o

communication. We should emphasize that the XRL in-2

terface is pipelined, so performance is still good wheré

many routes change in a short time interval. S 107

We have argued that an event driven route procesg .

ing model leads to faster convergence than the traditional SN T
route scanning approach. To verify this assertion we per- ° 0 T00 150 200
formed a simple experiment, shown in Figure 13. We in-

troduced 255 routes from one BGP peer at one second

intervals and recorded the time that the route appeared

Do+
0

300
Route arrival time (s)
FIGURE 13—BGP route flow
at another BGP peer. The experiment was performed otfansient forwarding loops can exist, or traffic may be
XORP, Cisco-4500 (I0S Version 12.1), Quagga-0.96.5plackholed, both of which may have significant impact
and MRTD-2.2.2a routers. It should be noted that theon customers. Thus fast convergence is clearly of high
granularity of the measurement timer was one second. importance to providers, and can only become more so
This experiment clearly shows the consistent behavwith the increase in prominence of real-time traffic.

ior achieved by XORP, where the delay never exceeds o )

one second. MRTD's behavior is very similar, which is 8-3 Extensibility Evaluation

important because it illustrates that the multi-process arThe hardest part of our design to properly evaluate is
chitecture used by XORP delivers similar performance tdts extensibility. Only time will tell if we really have the
a closely-coupled single-process architecture. The Ciscéight modularity, flexibility, and APls. However, we can
and Quagga routers exhibit the obvious symptoms of affer a number of examples to date where extensibility
30-second route scanner, where all the routes received iflas been tested.

the previous 30 seconds are processed in one batch. Fast

convergence is simply not possible with such a scannerAdding Policy to BGP

based approach.

ar We implemented the core BGP and RIB functionality
_ Telxe|ra et al demonstrate [27] that even route chan_gqﬁ.st, and only then thought about how to configure pol-
within an AS can be adversely affected by the delay in-icy \hich is a large part of any router functionality. Our
troduced by BGP route scanners. In real ISP networksygjicy framework consists of three new BGP stages and
the found delays of one to twminuteswere common

k two new RIB stages, each of which supports a common
between an IGP route to a domain border router changgjmple stack language for operating on routes. The de-
ing, and the inter-domain traffic flowing out of a domain 415 are too lengthy for this paper, but we believe this
changing its exit router. During this delay, they show that



framework allows us to implement almost the full range around the sandboxing of untrusted components. We also
of policies available on commercial routers. presented preliminary evaluation results that confirm that
The only change required to pre-existing code wasour design scales well to large routing tables while main-
the addition of a tag list to routes passed from BGP totaining low routing latency.
the RIB and vice versa. Thus, our staged architecture ap- In the next phase we need to involve the academic
pears to have greatly eased the addition of code that isommunity, both as early adopters, and to flesh out the
notoriously complex in commercial vendors’ products. long list of desirable functionality that we do not yet
What we got wrong was the syntax of the commandsupport. If we are successful, XORP will become a true
line interface (CLI) template files, described in [13], usedproduction-qualityplatform. The road ahead will not be
to dynamically extend the CLI configuration language.easy, but unless this or some other approach to enable In-
Our original syntax was not flexible enough to allow user-ternet innovation is successful, the long-run consequgence
friendly specification of the range of policies that we of ossification will be serious indeed.

need to support. This is currently being extended.
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