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P4 code is not reusable
Data structures (e.g., hash tables, count-min 
sketch) are valid for a range of sizes 


P4 requires explicit definition of size (e.g., 
amount of memory used)


Switches have very limited resources that are 
shared across all program elements


Commonly used data structures are rewritten 
often

P4 makes it possible to program the 
network, but it does not make it easy.
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P4All mitigates circularity

P4All streamlines development by allowing for reusable 
elastic data structures


Elastic data structures are defined by symbolic values that 
stretch or shrink as needed


A single P4All program can compile to different targets 
without rewriting
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P4All mitigates circularity

P4All streamlines development by allowing for reusable 
elastic data structures


Elastic data structures are defined by symbolic values that 
stretch or shrink as needed


P4All automatically sizes programs to make optimal use of 
available switch resources 
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The shapes of data structures change 
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symbolic cols; 
register<bit<32>>(cols)[rows] cms_rows; 
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cols

f(cols) = CMS error

objective cms_error { f(cols) } 
minimize cms_error;
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f(cols) = CMS error

objective cms_error { f(cols) } 
minimize cms_error;
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Application Compile Time (s)
CMS 01.8
Key-value store 15.4
Key-value store + CMS 27.9
Switch.p4 00.2
IP forwarding + stateful firewall 00.4
Beaucoup 00.1
Precision 25.7
NetChain 27.9
SketchLearn 02.4
Conquest 05.8
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