
P4All: Modular Switch
Programming Under

Resource Constraints

�1

Mary Hogan*, Shir Landau-Feibish^, Mina Tahmasbi
Arashloo+, Jennifer Rexford*, David Walker*

*Princeton University, ^The Open University of Israel, +Cornell University

!2

Fixed-function switch

Fixed
Configuration

Traditional switches hinder
innovation

Protocol Independent
Switch Architecture

!3

PISA switch

Programmable
Configuration

Protocol Independent
Switch Architecture

!4

PISA switch

Programmable
Configuration

Programming Protocol
Independent Packet Processors

!5

P4 Program

PISA switch

Programmable
Configuration

Programming Protocol
Independent Packet Processors

!6

P4 Program

-Measure
heavy hitters

-Rate limiting

PISA switch-Identify and
mitigate attacks

Programmable
Configuration

P4 code should be reusable

!7

P4 Program

!8

P4 Compiler

P4 Program

P4 code should be reusable

!9

P4 Compiler

P4 Program

Target 1 Target 2 Target 3

P4 code should be reusable

!10

P4 code is not reusable
Data structures (e.g., hash tables) are valid for a
range of sizes

P4 requires explicit definition of size (e.g.,
amount of memory used)

Switches have very limited resources that are
shared across all program elements

Commonly used data structures are rewritten
often

!11

P4 code is not reusable
Data structures (e.g., hash tables, count-min
sketch) are valid for a range of sizes

P4 requires explicit definition of size (e.g.,
amount of memory used)

Switches have very limited resources that are
shared across all program elements

Commonly used data structures are rewritten
often

!12

P4 code is not reusable
Data structures (e.g., hash tables, count-min
sketch) are valid for a range of sizes

P4 requires explicit definition of size (e.g.,
amount of memory used)

Switches have very limited resources that are
shared across all program elements

Commonly used data structures are rewritten
often

!13

P4 code is not reusable
Data structures (e.g., hash tables, count-min
sketch) are valid for a range of sizes

P4 requires explicit definition of size (e.g.,
amount of memory used)

Switches have very limited resources that are
shared across all program elements

Commonly used data structures are rewritten
often

!14

P4 code is not reusable
Data structures (e.g., hash tables, count-min
sketch) are valid for a range of sizes

P4 requires explicit definition of size (e.g.,
amount of memory used)

Switches have very limited resources that are
shared across all program elements

Commonly used data structures are rewritten
often

!15

P4 code is not reusable
Data structures (e.g., hash tables, count-min
sketch) are valid for a range of sizes

P4 requires explicit definition of size (e.g.,
amount of memory used)

Switches have very limited resources that are
shared across all program elements

Commonly used data structures are rewritten
often

P4 makes it possible to program the
network, but it does not make it easy.

Circular Development

!16!16

P4 Program

Circular Development

!17

P4 Compiler

!17

P4 Program

Circular Development

!18

P4 Compiler

!18

Program doesn’t fit

P4 Program

Circular Development

!19

P4 Compiler

!19

Program doesn’t fit

Program fits

P4 Program

Target

P4All mitigates circularity

P4All streamlines development by allowing for reusable
elastic data structures

Elastic data structures are defined by symbolic values that
stretch or shrink as needed

A single P4All program can compile to different targets
without rewriting

!20

P4All mitigates circularity

P4All streamlines development by allowing for reusable
elastic data structures

Elastic data structures are defined by symbolic values that
stretch or shrink as needed

A single P4All program can compile to different targets
without rewriting

!21

P4All mitigates circularity

P4All streamlines development by allowing for reusable
elastic data structures

Elastic data structures are defined by symbolic values that
stretch or shrink as needed

A single P4All program can compile to different targets
without rewriting

!22

P4All mitigates circularity

P4All streamlines development by allowing for reusable
elastic data structures

Elastic data structures are defined by symbolic values that
stretch or shrink as needed

P4All automatically sizes programs to make optimal use of
available switch resources

!23

Outline
Elastic Structures

P4All

 Language

 Compiler

 Evaluation

Conclusion

!24

Outline
Elastic Structures

P4All

 Language

 Compiler

 Evaluation

Conclusion

!25

 26

Protocol-Independent
Switch Architecture

 27

PISA
Programmable

Parser

 28

PISA
Programmable

Parser
Pa

ck
et

 H
ea

de
r

Ve
ct

or

 29

PISA
Programmable

Parser
Pa

ck
et

 H
ea

de
r

Ve
ct

or

Pipeline Stages

 30

PISA
Programmable

Parser
Pa

ck
et

 H
ea

de
r

Ve
ct

or

Pipeline Stages

ALU

 31

PISA
Programmable

Parser
Pa

ck
et

 H
ea

de
r

Ve
ct

or

Pipeline Stages

ALU

 32

PISA
Programmable

Parser
Pa

ck
et

 H
ea

de
r

Ve
ct

or

Pipeline Stages

Persistent
State

ALU

 33

PISA
Programmable

Parser
Pa

ck
et

 H
ea

de
r

Ve
ct

or

Pipeline Stages

Programmable
Deparser

Persistent
State

ALU

 34

PISA

Pa
ck

et
 H

ea
de

r
Ve

ct
or

Pipeline Stages

Persistent
State

ALU

 35

PISA

Data
structure

 36

PISA

 37

PISA

Data
structure

 38

PISA

 39

PISA

The shapes of data structures change
based on the application.

Count-Min Sketch

!40

0 0 0 0

0 0 0 0

0 0 0 0

Count-Min Sketch

!41

x

0 0 0 0

0 0 0 0

0 0 0 0

Count-Min Sketch

!42

1 0 0 0

0 1 0 0

1 0 0 0

x

h1(x)

h2(x)

h3(x)

Count-Min Sketch

!43

2 0 0 0

0 1 1 0

1 0 0 1

y

h1(y)

h2(y)

h3(y)

Count-Min Sketch

!44

x

Count(x) = 1

2 0 0 0

0 1 1 0

1 0 0 1

Data Plane Caching

!45

NetCache, Jin et al. [SOSP’17]

Data Plane Caching

!46

Cache of
popular keys

NetCache, Jin et al. [SOSP’17]

Key-value store

Data Plane Caching

!47

Cache of
popular keys

Key-value store

Key
1

NetCache, Jin et al. [SOSP’17]

Data Plane Caching

!48

Cache of
popular keys

Key
1

Key-value store

NetCache, Jin et al. [SOSP’17]

Data Plane Caching

!49

Cache of
popular keys

Value

Key-value store

NetCache, Jin et al. [SOSP’17]

Data Plane Caching

!50

1 A

2 B

3 C

4 D

Key Value

Cache of
popular keys

Tracking Key Popularity

!51

100

150

120

CMS

1 A

2 B

3 C

4 D

Key Value

Cache of
popular keys

Key
5

Tracking Key Popularity

!52

100

150

120

CMS

1 A

2 B

3 C

4 D

Key Value

Cache of
popular keys

Key
5

If requests for key > 80, insert into
cache

 53

PISA

Cache Cache CMS CMS

 54

PISA

Cache Cache CMSCache

 55

PISA

Cache Cache CMSCache
How to size the data structures?

Resources vs Accuracy

!56

100

80

90

Actual
count(x) =

50

Estimated
count(x) =

80

!57

80

60

70

Resources vs Accuracy

100

80

90

Actual
count(x) =

50

Estimated
count(x) =

60

70

Outline
Elastic Structures

P4All

 Language

 Compiler

 Evaluation

Conclusion

!58

Elastic Structures

!59

rows = 3

cols = 4

!60

rows = 3

cols = 4

register<bit<32>>(4) row1;
register<bit<32>>(4) row2;
register<bit<32>>(4) row3;

Elastic Structures

!61

rows = ?
.
.
.

. . .

. . .

cols = ?

Elastic Structures

!62

rows = ?
.
.
.

. . .

. . .

cols = ?

symbolic rows;
symbolic cols;
register<bit<32>>(cols)[rows] cms_rows;

Elastic Structures

!63

1

1

.

.

.

. . .

. . .

x

h1(x)

hrows(x)

Elastic Operations

!64

for (i < rows) {
 increment_row()[i];
}

1

1

.

.

.

. . .

. . .

x

h1(x)

hrows(x)

Elastic Operations

Objective Functions

!65

.

.

.

. . .

. . .

cols

f(cols) = CMS error

Objective Functions

!66

.

.

.

. . .

. . .

cols

f(cols) = CMS error

objective cms_error { f(cols) }
minimize cms_error;

Outline
Elastic Structures

P4All

 Language

 Compiler

 Evaluation

Conclusion

!67

P4All Compiler

P4All
Program

Target Specification
(resource constraints, etc.)

+

Concrete values
for symbolic values

(P4 Program)
+

Mapping from
program elements to

pipeline stages

!68

P4All Compiler

!69

CMS row
1

CMS row
2

CMS row
3

CMS row
5

CMS row
6

CMS row
7

CMS row
4

CMS row
8

P4All Compiler

!70

CMS row
1

CMS row
2

CMS row
3

CMS row
5

CMS row
6CMS row

7

CMS row
4

CMS row
8

symbolic rows = 6

P4All Compiler

Generate and Solve Integer-
Linear Program (ILP)

P4All
Program

Target Specification
(resource constraints, etc.)

+

Concrete values
for symbolic values

(P4 Program)
+

Mapping from
program elements to

pipeline stages

!71

 72

Pa
ck

et
 H

ea
de

r
Ve

ct
or

Pipeline Stages

Persistent
State

ALU

ILP Constraints

 73

ILP Objective

.

.

.

. . .

. . .
f(cols) = CMS error

objective cms_error { f(cols) }
minimize cms_error;

Outline
Elastic Structures

P4All

 Language

 Compiler

 Evaluation

Conclusion

!74

P4All Applications

!75

Application Compile Time (s)
CMS 01.8
Key-value store 15.4
Key-value store + CMS 27.9
Switch.p4 00.2
IP forwarding + stateful firewall 00.4
Beaucoup 00.1
Precision 25.7
NetChain 27.9
SketchLearn 02.4
Conquest 05.8

ILP Overhead

!76

!77
7RILnR VtD

geV

1.25x7RILnR Vtg
V

1.67x7RILnR Vtg
V

2x7RILnR Vtg
V

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

IL
P

CR
P

pR
ne

nt
V

Dependency CRnVtrDLntV
2ther CRnVtrDLntV
5eVRurce CRnVtrDLntV
VDrLDbOeV

ILP Overhead

!78
7RILnR VtD

geV

1.25x7RILnR Vtg
V

1.67x7RILnR Vtg
V

2x7RILnR Vtg
V

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

IL
P

CR
P

pR
ne

nt
V

Dependency CRnVtrDLntV
2ther CRnVtrDLntV
5eVRurce CRnVtrDLntV
VDrLDbOeV

1.8s
4.5s

53s

216s

ILP Overhead

Outline
Elastic Structures

P4All

 Language

 Compiler

 Evaluation

Conclusion

!79

Conclusion

!80

Elastic data structures expand to use the available resources

The P4All compiler finds the optimal structure size for specific
applications

Reusable modules in P4All make it easier to implement and
deploy data-plane applications

!81

Conclusion
Elastic data structures expand to use the available resources

The P4All compiler finds the optimal structure size for specific
applications

Reusable modules in P4All make it easier to implement and
deploy data-plane applications

!82

Conclusion
Elastic data structures expand to use the available resources

The P4All compiler finds the optimal structure size for specific
applications

Reusable modules in P4All make it easier to implement and
deploy data-plane applications

P4All: Modular Switch
Programming Under

Resource Constraints

�83

Mary Hogan, Shir Landau-Feibish, Mina Tahmasbi
Arashloo, Jennifer Rexford, David Walker

mh43@cs.princeton.edu

