P4All: Modular Switch Programming Under Resource Constraints

Mary Hogan*, Shir Landau-Feibish^, Mina Tahmasbi Arashloo+, Jennifer Rexford*, David Walker*

*Princeton University, ^The Open University of Israel, +Cornell University

Traditional switches hinder innovation

Fixed-function switch

Protocol Independent Switch Architecture

Protocol Independent Switch Architecture

Programming Protocol Independent Packet Processors

P4 Program

Programming Protocol Independent Packet Processors

P4 Program

-Measure heavy hitters

-Rate limiting

-Identify and mitigate attacks

P4 code should be reusable

P4 code should be reusable

P4 Program

P4 Compiler

P4 code should be reusable P4 Program P4 Compiler Target 1 **Target 3**

Target 2

Data structures (e.g., hash tables, count-min sketch) are valid for a range of sizes

sketch) are valid for a range of sizes

amount of memory used)

- Data structures (e.g., hash tables, count-min
- P4 requires explicit definition of size (e.g.,

sketch) are valid for a range of sizes

amount of memory used)

shared across all program elements

- Data structures (e.g., hash tables, count-min
- P4 requires explicit definition of size (e.g.,
- Switches have very limited resources that are

sketch) are valid for a range of sizes

amount of memory used)

shared across all program elements

often

- Data structures (e.g., hash tables, count-min
- P4 requires explicit definition of size (e.g.,
- Switches have very limited resources that are
- Commonly used data structures are rewritten

Data structures (e.g., hash tables, count-min

P4 makes it possible to program the network, but it does not make it easy.

Commonly used data structures are rewritten often

Program doesn't fit

Program doesn't fit

Target

P4All streamlines development by allowing for reusable elastic data structures

P4All streamlines development by allowing for reusable **elastic** data structures

Elastic data structures are defined by symbolic values that stretch or shrink as needed

elastic data structures

stretch or shrink as needed

available switch resources

P4All streamlines development by allowing for reusable

- Elastic data structures are defined by symbolic values that
- P4All automatically sizes programs to make optimal use of

Outline

Elastic Structures

P4All

Language

Compiler

Evaluation

Conclusion

Outline

Elastic Structures

P4AII Language Compiler Evaluation

Conclusion

Protocol-Independent Switch Architecture

PISA

Packet Header Vector

PISA

PISA

PISA

The shapes of data structures change based on the application.

PISA

Count-Min Sketch

0	0	0	0
0	0	0	0
0	0	0	0

Count-Min Sketch

0	0	0	0
0	0	0	0
0	0	0	0

Count-Min Sketch

Count(x) = 1

2	0	0	0
0	1	1	0
1	0	0	1

Cache of popular keys

Key-value store

Cache of popular keys

Key-value store

NetCache, *Jin et al.* [SOSP'17]

Key-value store

Cache of popular keys

Key-value store

Value Key Α 1 2 Β 3 С 4 D

Cache of popular keys

Tracking Key Popularity Value Key A 100 2 В Key 150 5 З С 120 4 D

Cache of popular keys

Cache of popular keys

CMS

How to size the data structures?

Resources vs Accuracy

Resources vs Accuracy

Outline

Elastic Structures

P4AII Language Compiler Evaluation

Conclusion

Elastic Structures

rows = 3

Elastic Structures

- register<bit<32>>(4) row1;
- register<bit<32>>(4) row2;
- register<bit<32>>(4) row3;

rows = 3

symbolic rows; symbolic cols; register<bit<32>>(cols)[rows] cms_rows;

for (i < rows) {</pre> increment_row()[i]; }

f(cols) = CMS error

objective cms_error { f(cols) } minimize cms_error;

f(cols) = CMS error

Outline

Elastic Structures

<section-header><section-header><section-header>

Conclusion

P4AII Program

Mapping from **Concrete values** program elements to for symbolic values ╋ (P4 Program) pipeline stages

Target Specification (resource constraints, etc.)

P4All Compiler

P4All Compiler

CMS row	CMS row
1	5
CMS row	CMS row
2	6
CMS row	CMS row
3	7
CMS row	CMS row
4	8

P4All Compiler

P4All Program	
 	P4/
	Generate Linea

Concrete values for symbolic values (P4 Program)

Pipeline Stages
ILP Objective

objective cms_error { f(cols) }

minimize cms_error;

f(cols) = CMS error

Outline

Elastic Structures

P4AII

Language Compiler

Evaluation

Conclusion

P4All Applications

Application

CMS

Key-value store

Key-value store + CMS

Switch.p4

IP forwarding + stateful fire

Beaucoup

Precision

NetChain

SketchLearn

Conquest

	Compile Time (s)
	1.8
	15.4
	27.9
	0.2
wall	0.4
	0.1
	25.7
	27.9
	2.4
	5.8

ILP Overhead

Outline

Elastic Structures P4All Language Compiler Evaluation

Conclusion

Conclusion

Elastic data structures expand to use the available resources

Conclusion

The P4All compiler finds the optimal structure size for specific applications

Elastic data structures expand to use the available resources

Conclusion

applications

deploy data-plane applications

- Elastic data structures expand to use the available resources
- The P4All compiler finds the optimal structure size for specific

Reusable modules in P4All make it easier to implement and

P4AII: Modular Switch Programming Under **Resource Constraints**

- Mary Hogan, Shir Landau-Feibish, Mina Tahmasbi Arashloo, Jennifer Rexford, David Walker
 - mh43@cs.princeton.edu