Link-State Routing Can Achieve Optimal Traffic Engineering: From Entropy To IP

Dahai Xu, Ph.D.

Florham Park AT&T Labs - Research

Joint work with Mung Chiang and Jennifer Rexford (Princeton University)

INFOCOM 2008 Apr. 16, 2008

Outline

2 Optimal TE with Link-state Routing

3 Performance Evaluation

Outline

1 Background

2 Optimal TE with Link-state Routing

3 Performance Evaluation

Minimum-cost Multicommodity Flow

- Minimum-cost Multicommodity Flow Problem
 - Classical Convex Optimization problem
 - Aliases
 - * Optimal Routing: Data Networks [Bertsekas-Gallager]
 - * Optimal Traffic Engineering: IP congestion control
 - * ...

• Question: can we realize Optimal Routing with link-state routing?

- Big cities suffer from traffic congestion during rush hours
- The traffic to a same destination is a commodity

- Big cities suffer from traffic congestion during rush hours
- The traffic to a same destination is a commodity
- Traffic control to realize optimal commodity solution:
 - Explicit Routing
 - Road Price

Traffic Control with Explicit Routing

- Before leaving home, every driver signs in a web-site to get an assigned route to the destination
- Could be optimal but with high overhead

Traffic Control with Road Price

- Balance traffic by setting price for each road segment
- More feasible than Explicit Routing

Traffic Control with Road Price

- Balance traffic by setting price for each road segment
- More feasible than Explicit Routing
- Assumption I: all drivers choose the "cheapest" path (even splitting if multiple cheapest paths)
 ⇒ Impossible to achieve optimal routing and NP-hard to find road prices [Fortz-Thorup, Infocom-00]

Traffic Control with Road Price

- Balance traffic by setting price for each road segment
- More feasible than Explicit Routing
- Assumption I: all drivers choose the "cheapest" path (even splitting if multiple cheapest paths)
 ⇒ Impossible to achieve optimal routing and NP-hard to find road prices [Fortz-Thorup, Infocom-00]
- Assumption II:
 - More drivers choose the "cheapest" path
 - Fewer drivers choose more "expensive" path expecting less congestion (delay)

 \Rightarrow Always achieve optimal routing and Convex Optimization to find road prices [Xu-Chiang-Rexford, Infocom-08]

Link-State Routing

- Routers
 - Exchange link weights (states) with Interior Gateway Protocols (IGPs):
 e.g. OSPF (Open Shortest Path First)
 - Distributively determine "next hop" to forward a packet/split traffic
- Network operator configures link weights to guide routing ⇒ Traffic Engineering

Tuning Link Weights

• Traffic Engineering (TE): based on the offered traffic matrix

- Traffic matrix: rate of traffic between each node pair from measurement
- Centralized and off-line
- Network-wide convex optimization objective: minimizes key metrics like max link utilization, sum of M/M/1 delay at each link, etc.

Why Link Weights?

- Low overhead: one parameter for each unidirectional link
- Hop-by-hop forwarding: no tunneling, no history, no per-flow statistics.
- Robust: routers automatically recompute new routes in case of topology changes
- Effective: changing a few link weights is sufficient to alleviate network congestion

Numerous Attempts to Realize Optimal TE with Link-state Routing Protocol

- Wang-Wang-Zhang-INFOCOM-01: "Internet traffic engineering without full mesh overlaying"
- Sridharan-Guérin-Diot-INFOCOM-03: "Achieving Near Optimal Traffic Engineering Solutions in Current OSPF/ISIS Networks"
- Fong-Gilbert-Kannan-Strauss-Algorithmica-05: *"Better Alternatives to OSPF Routing"*
- Xu-Chiang-Rexford-INFOCOM-07: "DEFT: Distributed Exponentially-weighted Flow Splitting"

Open Questions

Open Questions

NEM/PEFT [Xu-Chiang-Rexford, Infocom-08]

Outline

2 Optimal TE with Link-state Routing

3 Performance Evaluation

Notation

• Directed graph: N nodes and E links

Inputs

D(s,t)	Traffic demand from s to t
C _{U,V}	Capacity of link (u, v)

Variables

 $\begin{array}{ll} w_{u,v} & \text{Weight for link } (u,v) \\ f_{u,v}^t & \text{Commodity flow on link } (u,v) \text{ destined to } t \\ f_{u,v} & \triangleq \sum_t f_{u,v}^t, \text{ Total flow on link } (u,v) \end{array}$

Optimal TE Via Multicommodity-Flow

COMMODITY Problem:

minimize	$\Phi(\{f_{u,v},c_{u,v}\})$	convex objective
subject to	$\sum_{v:(s,v)\in\mathbb{E}}f_{s,v}^t-\sum_{u:(u,s)\in\mathbb{E}}f_{u,s}^t=D(s,t)$	flow conservation
	$f_{u,v} \triangleq \sum_{t \in \mathbb{V}} f_{u,v}^t \leq c_{u,v}$	capacity constraint
variables	$f_{u,v}\geq f_{u,v}^t\geq 0.$	link flow, commodity flow
input	$D(s,t), c_{u,v}$	demand, capacity

Optimal TE Via Multicommodity-Flow

COMMODITY Problem:

minimize	$\Phi(\{f_{u,v},c_{u,v}\})$	convex objective
subject to	$\sum_{v:(s,v)\in\mathbb{E}}f_{s,v}^t-\sum_{u:(u,s)\in\mathbb{E}}f_{u,s}^t=D(s,t)$	flow conservation
	$f_{u,v} \triangleq \sum_{t \in \mathbb{V}} f_{u,v}^t \leq c_{u,v}$	capacity constraint
variables	$f_{u,v}\geq f_{u,v}^t\geq 0.$	link flow, commodity flow
input	$D(s,t), c_{u,v}$	demand, capacity

- Convex optimization (efficiently solvable).
- Can be realized with explicit routing: set up $N^2 E$ tunnels
- Link-state routing: *E* parameters

Necessary Capacity

- Necessary Capacity
 - ► $\tilde{c}_{u,v} \triangleq f_{u,v}$: Total traffic on each link in optimal solution of COMMODITY
 - Minimal set of link capacities to realize optimal TE
- Set link weights with only necessary capacities

Intuition Behind the Theory

- Numerous ways of flow-level routing to realize optimal TE (different traffic distribution on the paths)
- Choose the flow-level routing which can be realized with link-state routing.
- How? Pick an additional objective function for these optimal flow-level routings

D. Xu (AT&T Labs)

Network Entropy Maximization

- Assume we can enumerate all the paths from s to t, $P_{s,t}^i$. (only for analysis purpose)
- $x_{s,t}^{i}$: probability (fraction) of forwarding a packet of demand D(s,t) to the *i*-th path $(P_{s,t}^{i})$

subject to
$$\sum_{s,t,i:(u,v)\in P_{s,t}^{i}} D(s,t)x_{s,t}^{i} \leq \tilde{c}_{u,v}$$
capacity constraint $\sum_{i} x_{s,t}^{i} = 1$ flow conservationvariables $0 \leq x_{s,t}^{i} \leq 1.$ forwarding probabilityD. Xu (AT&T Labs)From Entropy To IPApr. 16, 200818 / 31

Network Entropy Maximization

- Assume we can enumerate all the paths from s to t, $P_{s,t}^i$. (only for analysis purpose)
- $x_{s,t}^{i}$: probability (fraction) of forwarding a packet of demand D(s,t) to the *i*-th path $(P_{s,t}^{i})$
- $z(x) = -x \log x$: Entropy function

Network Entropy Maximization (NEM)

$$\begin{array}{ll} \text{maximize} & \sum_{s,t} D(s,t) \left(\sum_{P_{s,t}^{i}} z(x_{s,t}^{i}) \right) & \text{total entropy} \\ \text{subject to} & \sum_{s,t,i:(u,v)\in P_{s,t}^{i}} D(s,t) x_{s,t}^{i} \leq \widetilde{c}_{u,v} & \text{capacity constraint} \\ & \sum_{i} x_{s,t}^{i} = 1 & \text{flow conservation} \\ \text{variables} & 0 \leq x_{s,t}^{i} \leq 1. & \text{forwarding probability} \\ \end{array}$$

NEM features

- NEM problem always has a global optimal solution.
 - Feasible solution: any optimal solution of COMMODITY problem
 - z(x) is a concave function
 - Convex Optimization
- Solving directly is not efficient (Infinite path enumeration with cycles)

NEM features

- NEM problem always has a global optimal solution.
 - Feasible solution: any optimal solution of COMMODITY problem
 - z(x) is a concave function
 - Convex Optimization
- Solving directly is not efficient (Infinite path enumeration with cycles)
- Solve dual problem (with *E* dual variables)

Optimal Solution of NEM

• Necessary Condition

$$\frac{x_{s,t}^{i}}{x_{s,t}^{j}} = \frac{e^{-\sum_{(u,v)} K_{P_{s,t}^{i}}^{(u,v)} \lambda_{u,v}}}{e^{-\sum_{(u,v)} K_{P_{s,t}^{j}}^{(u,v)} \lambda_{u,v}}}.$$

- $\lambda_{u,v}$: dual variable for necessary capacity constraint
- $K_{P_{s,t}^{i}}^{(u,v)}$: number of times $P_{s,t}^{i}$ passes through link (u, v)

Optimal Solution of NEM

• Necessary Condition

$$\frac{x_{s,t}^{i}}{x_{s,t}^{j}} = \frac{e^{-\sum_{(u,v)} K_{P_{s,t}^{i}}^{(u,v)} \lambda_{u,v}}}{e^{-\sum_{(u,v)} K_{P_{s,t}^{j}}^{(u,v)} \lambda_{u,v}}}.$$

• $\lambda_{u,v}$: dual variable for necessary capacity constraint

• $K_{P_{s,t}^{i}}^{(u,v)}$: number of times $P_{s,t}^{i}$ passes through link (u, v)

Penalizing Exponential Flow-spliTting (PEFT)

PEFT:
$$x_{u,t}^{i} = \frac{e^{-p_{u,t}^{i}}}{\sum_{j} e^{-p_{u,t}^{j}}}$$

• $p_{u,t}^i$: sum of $\lambda_{u,v}$ along the *i*th path

D. Xu (AT&T Labs)

Algorithm for Optimizing Link Weights

Optimize Over Link Weights

- 1: Compute necessary capacities $\widetilde{\textbf{c}}$ by solving COMMODITY problem
- 2: $\mathbf{w} \leftarrow Any \text{ set of link weights}$
- 3: $\mathbf{f} \leftarrow \mathsf{Traffic}_\mathsf{Distribution}(\mathbf{w})$
- 4: while $\mathbf{f} \neq \widetilde{\mathbf{c}} \ \mathbf{do}$
- 5: $\mathbf{w} \leftarrow \text{Link_Weight_Update}(\mathbf{f})$
- 6: $\mathbf{f} \leftarrow \text{Traffic_Distribution}(\mathbf{w})$
- 7: end while

Algorithm for Optimizing Link Weights

Optimize Over Link Weights

- 1: Compute necessary capacities $\widetilde{\textbf{c}}$ by solving COMMODITY problem
- 2: $\mathbf{w} \leftarrow \text{Any set of link weights}$
- 3: $\mathbf{f} \leftarrow \mathsf{Traffic}_\mathsf{Distribution}(\mathbf{w})$
- 4: while $\mathbf{f} \neq \widetilde{\mathbf{c}} \ \mathbf{do}$
- 5: $\mathbf{w} \leftarrow \text{Link}_Weight}_Update(\mathbf{f})$
- 6: $\mathbf{f} \leftarrow \text{Traffic_Distribution}(\mathbf{w})$
- 7: end while

Link-Weight_Update(f)

1: for each link (u, v) do

2:
$$w_{u,v} \leftarrow w_{u,v} - \alpha \left(\widetilde{c}_{u,v} - f_{u,v} \right)$$

- 3: end for
- 4: Return new link weights **w**

Outline

Background

2 Optimal TE with Link-state Routing

3 Performance Evaluation

4 Summary

Traffic Engineering Schemes

- Optimal TE: Solve COMMODITY problem as a Linear Program (Tunnel-based)
- PEFT TE: Our algorithm (Link-weight-based)
- OSPF TE: Local search [Fortz-Thorup-2000] (Link-weight-based)

Network Topologies

NI	T 1			
Name	lopology	Node $\#$	Link #	Link Capacity
abilene	Backbone	11	28	10Gbps
hier50a	2-level	50	148	local access(200), long-haul (1000)
hier50b	2-level	50	212	local access(200), long-haul (1000)
rand50	Random	50	228	1000
rand50a	Random	50	245	1000
rand100	Random	100	403	1000

D. Xu (AT&T Labs)

Traffic Matrices

- Abilene Network: measured data on Nov. 15th, 2005
- Other networks: same as [Fortz-Thorup-2000]
- 7 test cases for each network: uniformly decrease link capacity/increase demand

Minimize Maximum Link Utilization

- Efficiency of capacity utilization: Percentage of traffic demand satisfied when a link utilization reaches 100%.
- PEFT achieves optimal TE, and increases Internet capacity over OSPF by 15% for Abilene and 24% for Hier50b

Minimize Total Link Congestion Cost

• Optimality gap (compared against optimal TE)

Running Time

- TE with PEFT requires at most 2 minutes even for the largest network tested.
- The algorithm to find link weights for PEFT routing is 2000 times faster than local search algorithms (public version in TOTEM) for OSPF routing.

Outline

Background

2 Optimal TE with Link-state Routing

3 Performance Evaluation

Conclusion

• Until now, Minimum-cost multicommodity flow can be realized by a link-state routing protocol (PEFT) from solving NEM.

Conclusion

- Until now, Minimum-cost multicommodity flow can be realized by a link-state routing protocol (PEFT) from solving NEM.
- Open Problems
 - Computational Complexity of NEM/PEFT: Polynomial?
 - Solve NEM/PEFT + COMMODITY problem altogether?
 - Whether DEFT [Xu-Chiang-Rexford, Infocom-07] can achieve optimal traffic engineering as well?
- More Information

http://www.research.att.com/~dahaixu

Backup: Calculate Traffic Distribution for PEFT

- Random walk: A trajectory taking successive steps in random directions: Markov process
- Exponential Penalty on using cycles, e.g. $e^{-30} \approx 10^{-13}$