

Performance Characterization of a Commercial Video Streaming Service

Mojgan Ghasemi, Princeton University

P. Kanuparthy,¹ A. Mansy, ¹ T. Benson, ² J. Rexford ³

¹Yahoo, ²Duke University, ³Princeton University

- First study to measure **both** sides
- Video makes up 70% of the traffic!

• Client receives the manifest

- HTTP requests for chunks share a TCP connection
- Each chunk is 6 seconds

• CDN servers use Apache Traffic Server (ATS), LRU policy

• Chunks pass client's "download" and "rendering" stack

Our Dataset: Yahoo Videos

YAHOO! YAHOO! SPORTS

YAHOO!

Our Dataset

• VoD Dataset:

- Over 18 days, Sept 2015
- 85 CDN servers across the US
- 65 million VoD sessions, 523m chunks
- Users:
 - Non-mobile users, no proxy
 - Predominantly in North America (over 93%)
- Video Streams:
 - Popularity: 66% of requests for 10% of titles
 - Duration: most videos less than 100 sec

Our Goal

Identify performance problems that impact video

Our Goal

Identify performance problems that impact video

Our Goal

Identify performance problems that impact video

A content provider (e.g., Yahoo) controls "both sides"

• End-to-end

• Instrumenting both sides (player, CDN servers)

• Per-chunk

- Unit of decision making (e.g., bitrate, cache hit/miss)
- Sub-chunk is too expensive

• TCP statistics

- Sampled from CDN host's kernel
- Operational at scale

Player OS WAN CDN Backend

Studying QoE Factors Individually

Factors:

- Video startup time
- Rebuffering rate
- Video quality (bitrate, framerate)

We look at individual metrics, because:

- Type of content
- Length of video

- Introduction
- Measurement Dataset
- Server-side Problems
- Network Performance Problems
- Client's Performance Problems
- Take-aways and Conclusions

Server-side Performance Problems

Monitoring CDN Performance

Direct measurement

Monitoring CDN Performance

Direct measurement

Impact of CDN on Startup Time

- Only possible via data from "both ends"
- Startup time vs. server latency in first chunk

- Cache misses increase server latency
 - 40X median, 10X average
- Server latency can be worse than network
 - Caused by cache misses (40% miss rate)

2. Persistent Problems in Unpopular Videos

- Cache misses are **persistent**:
 - Average: 2%
 - After one miss: 60%
- Unpopular titles have significantly higher cache misses

Network Performance Problems

Network Measurement

Challenges:

- Smoothed average of RTT: SRTT
- Infrequent network snapshots
- Packet traces cannot be collected

• Persistent high latency:

- /24 IP prefixes, recurring in 90th percentile
- 25% of prefixes are located in the US, with the majority close to CDN nodes

• High latency variation:

• Enterprise networks have higher latency variation

2. Earlier Packet Losses Cause More Rebuffering

- Packet loss is more common in the first chunk (4.5X)
- Packet loss in the first chunk causes more rebuffering

$$perf_{score} = rac{chunk \ duration}{D_{FB} + D_{LB}}$$

• D_{FB} : measure of latency, D_{LB} : measure of throughput

$$perf_{score} = rac{chunk \ duration}{D_{FB} + D_{LB}}$$

- D_{FB} : measure of latency, D_{LB} : measure of throughput
- $perf_{score} > 1$: More than 1 sec of video delivered per sec
- $perf_{score} < 1$: Less than 1 sec of video per sec

$$perf_{score} = rac{chunk \ duration}{D_{FB} + D_{LB}}$$

- D_{FB} : measure of latency, D_{LB} : measure of throughput
- $perf_{score} > 1$: More than 1 sec of video delivered per sec
- $perf_{score} < 1$: Less than 1 sec of video per sec

D_{LB} has a major contribution (orders of magnitude)

Client's Download Stack Performance Problems

Download Stack Latency

- Cannot observe download stack latency (D_{DS}) directly
- Detecting "outliers"

$$D_{FB_i} > \mu_{D_{FB}} + 2 \cdot \sigma_{D_{FB}}$$

Download Stack Latency

- Cannot observe download stack latency (D_{DS}) directly
- Detecting "outliers"

$$D_{FB_i} > \mu_{D_{FB}} + 2 \cdot \sigma_{D_{FB}}$$

 $TP_{inst_i} > \mu_{TP_{inst}} + 2 \cdot \sigma_{TP_{inst}}$

Download Stack Latency

- Cannot observe download stack latency (D_{DS}) directly
- Detecting "outliers"

$$D_{FB_i} > \mu_{D_{FB}} + 2 \cdot \sigma_{D_{FB}}$$

 $TP_{inst_i} > \mu_{TP_{inst}} + 2 \cdot \sigma_{TP_{inst}}$
Similar network and server performance

Download Stack Latency: Case Study

• Transient:

- Outlier: 1.7M chunks (0.32%)
- First chunks have higher D_{DS}

• Persistent:

• In most cases, D_{DS} is higher than network and server latency

Client's Rendering Stack Performance Problems

- If CPU is busy, rendering quality drops (high frame drops)
- If video tab is not visible, browser drops frames
- Per-chunk data: vis (is player visible?), dropped frames
- Per-session data: OS, browser

1. Good Rendering Requires $1.5\frac{sec}{sec}$ Download Rate

• De-multiplexing, decoding, and rendering takes time.

Paradox:

- Higher bitrates put more load on the CPU
- Showed better rendering framerate

Higher bitrates are often requested in connections:

- Lower RTT variation
- Lower retransmission rate

3. Unpopular Browsers Have Worse Rendering

- Chunks with good performance (rate > 1.5 sec)
- Player is visible (i.e., *vis* = *true*)

3. Unpopular Browsers Have Worse Rendering

- Chunks with good performance ($rate > 1.5 \frac{sec}{sec}$)
- Player is visible (i.e., *vis* = *true*)

Problem	Take-away
Cache miss impact	Cache-eviction policy
Cache miss persistence	Pre-fetch subsequent chunks

Take-aways: Network

Problem	Take-away
Nearby clients with high latency	Avoid over provisioning servers for nearby clients
Prefixes with persistent high latency or variation	Adjust ABR algorithm accordingly (more conservative bitrate, increase buffer size)
Throughput the major bottleneck	Good news for ISPs (e.g., establish more peering points)

Problem	Take-away
Download stack latency	Can cause over-shooting or under-shooting by ABR, incorporate server-side TCP metrics
Rendering is resource- heavy	Use 1.5

- Instrumenting both sides
 - Uncover range of problems for the first time
- Per-chunk and per-session data
 - Uncover "persistent" vs. "transient" problems
- Our findings have been used to enhance performance in Yahoo

Thank You!

Network Problems Impact QoE

- Data from "both sides" show the impact
- Startup time vs. SRTT of first chunk
- Network latency significantly impacts video startup time

