Using Forgetful Routing to Control BGP Table Size

Elliott Karpilovsky, Jennifer Rexford Computer Science Department, Princeton University

The Internet: A Router Level View

WorldCom suffers widespread Internet outage

USA Today, 2005

Comcast Internet outages lead to nationwide frustration among customers

Denver Post, 2005

Tier1 ISPs Dying

Slashdot, 2005

U.S. unprepared for Net meltdown

News.com, 2006

The Internet: A Router Level View

Source of Routing Failures

- Memory
- Memory
- •Memory

Overview

- Internet Routing (and its Memory Issues)
- Current Solutions (and Their Problems)
- Forgetful Routing (the Theory and Application)
- Future Directions (and Conclusion)

Internet Routing

Prefix based

Path vector protocol

Only best route is propagated

Router Memory Problems

- Many, many prefixes
 - Approximately 170,000 prefixes currently in use
- Path diversity
 - Many routes may be learned per prefix
- Path vector protocol
 - Stores entire path for each route
- Incremental protocol
 - Once a route is learned, it is not re-advertised

Router Memory

- Routing Information Base (RIB)
 - Maps prefixes to lists of possible routes
 - Stored in memory on the router
 - Can grow very large in size
 - Focus of our research is RIB reduction
- Forwarding Information Base (FIB)
 - Maps prefixes to their next-hop
 - Stored in line cards
 - Optimal memory reduction techniques exist

Current Solutions

Memory, a big deal?

Memory, a big deal

Toll-Free: 1 Internation Fax: 1-408		PC Wholesale
	512mb DRAM I Approved (PN:	Memory Kit for Cisco 12000 Series GRP : MEM-GRP-512)
Luna	Price	\$1,199.99

Memory, a big deal...

• Cost

• Quantity

Memory, a big deal!

• Cost

 Toll Free: 1877 623 2373
 PC Wholesale

 Fax: 1400 217 883
 512mb DRAM Memory Kit for Cisco 12000 Series GRP :

 Approved (PN: MEM-GRP-512)
 Price

 \$1,199.99

• Quantity

• Installation (image courtesy

of NASA)

Operator Solutions

- Filter unexpected prefixes
 - But is everything known ahead of time?
- Prefix limits
 - But what about connectivity?
- Guidelines to filter small address blocks
 - But what about ISPs that don't follow guidelines?

BGP is the problem... so change BGP!

- New architectures proposed to replace BGP
 - Tunneling to core routers, aggressive aggregation, etc.
- Big problem: not incrementally deployable
 - No "flag day" for the Internet to switch over to a new protocol

What to do?

Forgetful Routing

Key Insight

Every secondary route is some other router's primary route

If every router always remembers its primary, all routing information can be reconstructed

RFC 2918 – Route Refresh

- Allows a BGP speaker to send a "refresh" message to neighbor
- Neighbors receiving this message re-advertise their outbound routes
- Supported on all modern CISCO and Juniper routers

A "Cache Replacement" Problem

 Exchange possible bandwidth usage for memory savings

- When low on memory, what do we evict?
 - Will affect the number of refreshes needed later

Theoretical Limits

- Using foresight, look into the future
- Identify alternate routes that are never needed
- Identify alternate routes that are needed furtherest in the future
- For simplicity, treat RIB entries as fixed length

Evaluation

 Used RouteViews data from 2005/01/01 to 2005/07/01, sampled at 1%

- Approximately 2000 prefixes

 Created an optimal, offline algorithm to establish a lower bound

Optimal Trade-off Curve

Optimal Trade-off Curve

Evaluation

- Used RouteViews data from 2005/01/01 to 2005/07/01, sampled at 1%
 - Approximately 2000 prefixes
- Created several different online algorithms and compared their results
 - Constraints: O(1) time overhead, minimal space overhead

Algorithm: Least Recently Used

- Routes are ordered by time since they were last used as a primary route
- Maintain a doubly-linked list in memory for O(1) time overhead

Algorithm: Least Recently Used

Algorithm: Least Recently Used

- Good performance
- Potentially bad memory overhead
 - An additional 8 bytes per route
 - Will consume anywhere from 1.4 megabytes to 40 megabytes of memory in practice

Algorithm: Least Recently Refreshed

- Prefixes are ordered by time since they last needed a refresh
 - The least preferred route from the most stable prefix is evicted
- Maintain a doubly-linked list in memory for O(1) time overhead
- Memory overhead is now 8 bytes per prefix
 - Will consume about 1.4 megabytes of memory in practice

Algorithm: Least Recently Refreshed

Comparison

Issue – Do we have Alternates?

- Do real routers have alternate routes that can be evicted?
 - Depends on the router

CDF of Avg. Num. Of Routes Per Prefix, Gao Inference on RouteViews, 2005/2/10

CDF of Avg. Num. Of Routes Per Prefix, Gao Inference on RouteViews, 2005/2/10

Future Directions

Future Directions

- Can we create better online algorithms?
- Can we acquire a better data source than RouteViews?
- How would such a system perform connected to a real network?
- Can we reduce the number of prefixes needed without causing "bad" behavior?

Thank you to

- Nick Feamster
- Changhoon Kim
- Anja Feldmann
- Randy Bush
- Wen Xu
- Anonymous reviewers