
A Model of BGP Routing for Network Engineering

Nick Feamster Jared Winick Jennifer Rexford
MIT Computer Science & AI Lab Lockheed Martin AT&T Labs–Research

feamster@csail.mit.edu jared.winick@lmco.com jrex@research.att.com

ABSTRACT
The performance of IP networks depends on a wide variety of dy-
namic conditions. Traffic shifts, equipment failures, planned main-
tenance, and topology changes in other parts of the Internet can
all degrade performance. To maintain good performance, network
operators must continually reconfigure the routing protocols. Op-
erators configure BGP to control how traffic flows to neighboring
Autonomous Systems (ASes), as well as how traffic traverses their
networks. However, because BGP route selection is distributed,
indirectly controlled by configurable policies, and influenced by
complex interactions with intradomain routing protocols, operators
cannot predict how a particular BGP configuration would behave in
practice. To avoid inadvertently degrading network performance,
operators need to evaluate the effects of configuration changes be-
fore deploying them on a live network. We propose an algorithm
that computes the outcome of the BGP route selection process for
each router in a single AS, given only a static snapshot of the net-
work state, without simulating the complex details of BGP message
passing. We describe a BGP emulator based on this algorithm;
the emulator exploits the unique characteristics of routing data to
reduce computational overhead. Using data from a large ISP, we
show that the emulator correctly computes BGP routing decisions
and has a running time that is acceptable for many tasks, such as
traffic engineering and capacity planning.

Categories and Subject Descriptors
C.2.2 [Network Protocols]: Routing Protocols; C.2.6 [Computer-
Communication Networks]: Internetworking

General Terms
Algorithms, Management, Performance, Measurement

Keywords
BGP, traffic engineering, modeling, routing

1. INTRODUCTION
The delivery of IP packets through the Internet depends on a

large collection of routers that compute end-to-end paths in a dis-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMETRICS/Performance’04, June 12–16, 2004, New York, NY, USA.
Copyright 2004 ACM 1-58113-664-1/04/0006 ...$5.00.

tributed fashion, using standardized routing protocols. Providing
low latency, high throughput, and high reliability requires network
operators to adjust routing protocol configuration when performance
problems arise or network conditions change. For example, an op-
erator might adjust the configuration to respond to network conges-
tion or equipment failures or to prepare for planned maintenance.
However, the complexity of the protocols, the large number of tun-
able parameters, and the size of the network make it extremely
difficult for operators to reason about the effects of their actions.
The common approach of “tweak and pray” is no longer accept-
able in an environment where users have high expectations for per-
formance and reliability [1]. To avoid costly debugging time and
catastrophic mistakes, operators must be able to make predictions
quickly based on an accurate model of the routing protocols.

Previous work in this area has focused on Interior Gateway Pro-
tocols (IGPs), such as Open Shortest Path First (OSPF) and Inter-
mediate System-Intermediate System (IS-IS), that operate within a
single Autonomous System (AS). In these protocols, each link has a
configurable integer “cost” that is used to compute the shortest path
(smallest cost path) through the network. Tuning these link weights
gives operators a way to modify the paths inside the AS to satisfy
network and user performance goals [2]. Several existing tools [3,
4, 5] capture how changes to the link weights would affect the flow
of the offered traffic over the new paths and also propose good can-
didate settings of the link weights. Although these tools are ex-
tremely valuable to network operators, the flow of traffic in large
service provider backbones ultimately depends on the interdomain
routing protocol as well. A provider uses the Border Gateway Pro-
tocol (BGP) to exchange reachability information with neighboring
domains and to propagate these routes within its own network. Un-
fortunately, several subtleties make modeling BGP route selection
in an AS much more challenging than emulating IGP:

� BGP’s distributed, path vector operation means that every
router may have a different view of network state. In contrast to
link state protocols that flood complete information throughout the
network, a BGP-speaking router sends incremental reachability in-
formation only to its immediate neighbors. In BGP, a router sends
an advertisement to notify its neighbor of a new route to a desti-
nation prefix and a withdrawal to revoke the route when it is no
longer available. Each BGP-speaking router locally computes its
own best BGP route from the best routes announced by its neigh-
bors. A change in the best path at one router can affect the selection
of the best route at another router, and no single router has a com-
plete view of the available BGP routes in the AS.� BGP route selection is a complex process that depends on a
combination of route attributes. While most IGPs advertise a sin-
gle integer metric for each link and select routes based on shortest

A B

R

a b
routers

Neighboring AS

routes
eBGP
routes

eBGP

router
ingress

egress

Figure 1: Network engineering terminology.

paths, BGP route advertisements include various attributes, such as
the list of the ASes in the path (the AS path) and the IP address of
the router responsible for the route (the next hop). BGP route selec-
tion is based on a complex, multi-stage decision process [6]. BGP
allows operators to specify complex policies that have an indirect
effect on the selection of the best path.� BGP route selection depends on interactions with intradomain
routing protocols. Whereas the IGP can be modeled in isolation,
the selection of the best BGP route at each router also depends on
the IGP path cost to the BGP next hop announcing the route. “Hot
potato” routing, where a router prefers the route with the shortest
IGP path (the closest exit point), introduces a complex coupling
between BGP and the underlying IGP.� Hierarchical iBGP configuration affects the routing choices
that are available at each router. Internal BGP (iBGP) is used
to distribute BGP-learned routes throughout an AS. Rather than
having an iBGP session between each pair of routers (“full mesh
iBGP”), large provider networks typically distribute routes in a hi-
erarchical fashion. This makes the choices available at one router
dependent on the decisions made at other routers and may prevent
the protocol from converging.

In this paper, we present a model that accurately determines how
the network configuration and the routes learned via external BGP
(eBGP) affect the flow of traffic through an AS. While some ex-
isting tools simulate BGP’s behavior [7], this is the first paper to
develop a model that determines the outcome of the BGP path se-
lection process at each router in an AS without simulating the dy-
namics of the protocol. This type of model is important for sev-
eral reasons. First, network operators need to know the paths that
routers ultimately select to perform engineering tasks (e.g., traffic
engineering and maintenance), but they have no need for a com-
putationally expensive simulation of routing dynamics. We present
an emulator based on our model that facilitates these tasks by pro-
viding fast, accurate answers to “what if” questions about the ef-
fects of changes to the network. Second, an accurate model of BGP
route selection can be used to improve and validate existing simula-
tors by highlighting subtleties of the protocol and situations where
BGP might not converge to a unique solution. A simulator may
only compute one possible outcome, which may not accurately re-
flect the outcome in a real network. The modeling framework we
present can determine whether a BGP configuration would con-
verge to a unique outcome.

Predicting how a configuration change would affect the flow of
traffic first requires a way to determine which route each ingress
router in the AS would select for each destination prefix, given a
network configuration and the eBGP routes learned at the egress
routers (as shown in Figure 1). This paper solves precisely this
problem. The model of BGP routing that we present is essentially
an abstraction that conceals protocol details that are irrelevant to
the outcome of the BGP decision process. The model computes

BGP routing decisions when the network is configured “correctly”,
which can be checked separately by testing certain sufficient con-
ditions. Our model can also be combined with prefix-level traffic
measurements to form the basis of a traffic engineering tool.

The rest of the paper is organized as follows. In Section 2, we
present several examples of network engineering tasks that moti-
vate the need for an accurate, predictive model of BGP path se-
lection in an AS. Section 3 describes the practical constraints that
the network configuration and routing advertisements must satisfy
to make modeling BGP route selection possible and applies these
constraints in a novel way to decompose the route prediction prob-
lem into three distinct phases. In Section 4, we describe each phase
of the route prediction algorithm in detail. Section 5 describes a
prototype implementation of a BGP emulator. In Sections 6 and 7,
we present an evaluation and validation of our prototype on routing
and configuration data from a large tier-1 ISP. These experiments
show that the route prediction algorithm accurately predicts BGP
routing decisions and that it is efficient enough to be practical for
many network engineering tasks. Section 8 provides an overview
of related work. We conclude in Section 9.

2. NETWORK ENGINEERING
In this section, we discuss network engineering problems that

operators commonly face. These examples demonstrate the need
to systematically model BGP’s route selection process and move
beyond today’s “tweak and pray” techniques. We then discuss why
a practical model of BGP is useful; in particular, we discuss the
advantages a model has over simulation and live testing.

2.1 Network Engineering Problems
Network operators must adjust routing protocol configuration to

respond to the following common changes in network conditions:� Changes in traffic load. Because traffic is dynamic, the amount
of traffic to any destination may suddenly change, causing changes
in traffic distribution across network links. For example, a Web site
sometimes experiences a traffic surge due to a flash crowd (i.e., the
“Slashdot effect”); a network that was routing traffic to that desti-
nation through a neighboring AS could experience congestion on
an outbound link to that destination. A network operator must re-
configure routing policy to alleviate congestion.� Changes in link capacity. Network links are frequently up-
graded to higher capacity. In response, network operators may wish
to adjust configuration to route additional traffic through recently
upgraded links. For example, if link � in Figure 1 were upgraded
from an OC12 to an OC48, a network operator would want to shift
traffic from

�
to � .� Long-term connectivity changes. On longer timescales, the

points where a network connects to neighboring ASes, as well as
the ASes that it connects to, change. As links to other ASes appear
and disappear, network operators must move large amounts of traf-
fic. If the AS shown in Figure 1 added a third link to its neighboring
AS, an operator would shift a portion of traffic to that AS from �
and

�
to the new link.� Changes in available routes. Due to protocol dynamics and

changing commercial agreements, an AS might suddenly receive
an alternate route to a destination that could cause traffic flow to
shift dramatically; alternatively, an existing route could suddenly
disappear. These events may require a network operator to rebal-
ance the flow of traffic.� Planned maintenance. Network operators commonly perform
routine maintenance on portions of their network, adjusting inte-

rior routing link weights to divert traffic away from the part of the
network that is undergoing maintenance. If router � were under-
going an upgrade, the network operator could adjust both the IGP
link weights and the BGP configuration to divert traffic away from� without overloading links that border neighboring domains.� Failure and disaster planning. An operator may wish to
evaluate the robustness of the network by examining the effects
of failures on routing and traffic flow. Studying the effects of a
component or link failure or even a more serious catastrophe (e.g.,
fiber cut, tunnel fire, or terrorist attack) helps network operators and
planners make design decisions.

Tools exist to help network operators adjust interior routing pro-
tocol parameters to rebalance traffic within an AS [3, 4, 5], but op-
erators must also rebalance traffic across its external links to other
networks by reconfiguring BGP. A network operator who wants to
shift traffic from link � to

�
in Figure 1 typically would adjust the

import policy for a set of routes at router � , commonly by decreas-
ing the “local preference” attribute that router � assigns to these
routes [8]. This would cause the routes learned at router � for these
destinations to appear more attractive than those at � , causing the
traffic to those destinations to exit the AS via � .

2.2 Network Engineering Requirements
Motivated by these practical network engineering examples, we

now present several requirements for a network engineering tool
that predicts the outcome of BGP route selection. (Throughout the
paper, we use the term “prediction” to describe the process of de-
termining the outcome of BGP route selection offline.)� Operators need to be able to predict the effects of a configura-
tion change before deployment in the live network. Operators typi-
cally handle network engineering tasks by tuning the existing con-
figuration of the live network, witnessing the effects of the change,
and reverting to the previous configuration if the desired effects
are not achieved. This method is time consuming and can lead to
unnecessary performance degradation. The complexity of interdo-
main routing makes it essentially impossible to compute back-of-
the-envelope estimates of the effects of configuration changes.� Because network engineering involves exploring a large search
space, operators need to predict the effects of each candidate con-
figuration change as quickly as possible. Operators usually need to
experiment with many possible configuration changes before arriv-
ing at an acceptable solution. This requires techniques for quickly
evaluating the effects of a proposed configuration change. In prac-
tice, the candidate configuration changes typically are just small
modifications to the existing configuration, which are less likely to
cause significant unexpected changes in routes or the offered traffic
load. To be useful, a route prediction tool should be fast at evaluat-
ing incremental changes.� Network engineering tasks require an accurate prediction of
the outcome of the BGP path selection process but do not require a
detailed simulation of the protocol dynamics. Network simulators
(e.g., SSFNet [7]) help operators understand dynamic routing pro-
tocol behavior, but simulation represents network behavior in terms
of message passing and protocol dynamics over a certain period of
time. In contrast, network engineers usually just need to know the
outcome of the path-selection process and not the low-level timing
details. Furthermore, existing simulators do not capture some of
the relevant protocol interactions that can affect the outcome of the
decision process. Simulating every detailed interaction is hard to
do without a higher level model of BGP in the first place.

In summary, BGP path selection is a massive, highly tunable,
distributed computation. To maintain good end-to-end performance,

operators need a way to predict the outcome of this computation
under various configurations (1) efficiently, (2) in a way that facil-
itates evaluating incremental changes, and (3) without deploying
configuration changes on a live network. In the following sections,
we describe a way to model the BGP decision process across every
router in an AS; our algorithm correctly and efficiently computes
the outcome of the BGP decision process at each router.

3. MODELING FRAMEWORK
At a glance, modeling the routing decisions in an AS seems as

simple as applying the BGP decision process at each router. How-
ever, the BGP routing system inside an AS is not guaranteed to
converge to a unique solution where routers make consistent deci-
sions. Even when the system converges, the decision made at one
router can affect the options available to other routers. Applying
theoretical results from previous work, we impose three practical
constraints on the routing system that make modeling BGP route
selection possible. We then show that route selection can be mod-
eled in three distinct phases when these constraints are satisfied.

3.1 Constraints on the Routing System
Given the eBGP-learned routes to a destination prefix, we would

like to determine which route each router would ultimately select.
Unfortunately, certain network configurations do not lend them-
selves to efficient route prediction. This is a fundamental problem
underlying BGP—some configurations do not converge, and deter-
mining whether a system converges to a unique solution is compu-
tationally intractable [9]. To make modeling BGP route selection
feasible, we impose three constraints and explain why these con-
straints are reasonable to assume in practice.

If the eBGP-learned routes change frequently, the internal rout-
ing system does not have time to propagate the effects of one eBGP
advertisement before the next one arrives. As such, we assume:

CONSTRAINT 1. The eBGP-learned routes change slowly with
respect to the timescale of network engineering decisions.

In practice, most BGP routes are stable for days or weeks at a
time [10], and the vast majority of traffic is associated with these
stable routes [11]. This allows emulation to operate on a static
snapshot of the eBGP routes. Any eBGP routing change can be
treated as a separate problem instance.

Network operators have significant flexibility in deciding how
to propagate the eBGP-learned routes throughout the AS. In the
simplest case, the routers are configured in a full mesh of iBGP ses-
sions. In general, though, the routers may form a more complicated
signaling graph of iBGP sessions, as shown in Figure 2. Each edge
corresponds to an iBGP session between a pair of routers. A router
does not normally forward iBGP-learned routes to its other iBGP
neighbors. However, a router can be configured as a route reflector
(RR), which forwards routes learned from one of its route-reflector
clients to its other clients. Following terminology from previous
work [12], we use the term up for the iBGP session from a router to
its RR, over for a conventional iBGP session between two routers,
and down for the iBGP session from an RR to a client. A valid
signaling path consists of zero or more up edges, followed by at
most one over edge, followed by zero or more down edges. Alter-
natively, routers within an AS can also be grouped into one or more
“confederations”. Because confederations are used much less fre-
quently than route reflectors, we focus on modeling route reflectors
and do not model the effects of confederations.

Every eBGP-learned route should propagate through the signal-
ing graph to every other router in the AS. For example, consider

RR2RR1
over

over

W X Y Z

updown

Figure 2: Example iBGP signaling graph

Figure 2. The edge between ����� and �	��
 is an over session,
whereas the edge from � to �	�	
 is an up session. An eBGP route
learned at � can reach
 via ����
 and ����� . An AS’s signaling
graph can violate this property even if all routers are connected via
IGP. For example, if the session between
 and ����� were an over
session instead of an up session,
 would have no way to receive
an eBGP route learned at � . These types of partitions can make
modeling difficult; therefore, we assume:

CONSTRAINT 2. Each router has a valid iBGP signaling path
to every other router1.

An operational network should not violate this constraint, since this
could create a network partition, even though the AS is connected at
the IP level. An AS with a full mesh of iBGP sessions satisfies this
constraint; so does a full iBGP mesh among the top-level RRs who,
in turn, each have iBGP sessions to their RR clients (a common
configuration scenario).

Ensuring that each eBGP-learned route has an iBGP path to ev-
ery other router still does not guarantee that each router converges
to a unique solution. A router only learns about the routes adver-
tised by its immediate iBGP and eBGP neighbors. For example, in
Figure 2, if � and � have eBGP-learned routes, router
 learns a
single route from its route reflector RR1. Suppose that RR1 selects
the eBGP route advertised by � . Then,
 would pick � ’s route
as well, even if
 would have preferred � ’s route over � ’s route.
Note that
 makes a different routing decision than it would if it
could select its best route from all the eBGP routes (i.e., from both� and �). In some situations, differences in the routers’ local
rankings of the BGP routes can cause persistent oscillations and
even forwarding loops, which make it difficult to model the out-
come of the BGP decision process. Fortunately, these problems
can be avoided if the network configuration satisfies the following
sufficient condition [12]:

CONSTRAINT 3. (a) A router prefers routes learned from down
neighbors over routes learned from other neighbors, (b) the signal-
ing graph does not have any cycle of up edges, and (c) the shortest
IGP path between each pair of routers is a valid signaling path.

Part (a) is satisfied when routers do not change the attributes of
iBGP-learned routes and each router has a lower IGP path cost to
its clients than to other routers. The common practices of applying
import policies only on eBGP sessions and placing RRs and their
clients in the same point-of-presence (i.e., “PoP”) ensure that these
conditions hold. Part (b) states that if � is an RR for

�
, and

�
is an

RR for � , then � is not an RR for � , consistent with the common
practice of constructing a route-reflector hierarchy, rather than an
arbitrary signaling graph. Part (c) ensures that all routers along a
shortest path to an egress point have selected the same egress point,�

This property can be checked by a breadth-first walk through the edges in
the signaling graph and marking the nodes as they are visited; in the graph
walk, an over or down edge can only be followed by a down edge.

1. Highest local preference
2. Lowest AS path length
3. Lowest origin type
4. Lowest MED (with same next-hop AS)
5. eBGP-learned over iBGP-learned
6. Lowest IGP path cost to exit point
7. Lowest router ID of BGP speaker2

Table 1: Steps in the BGP decision process

which prevents “deflections”. Part (c) is more difficult to ensure in
practice but is consistent with the approach of assigning clients to
RRs that are along the shortest path to each egress point.

Imposing these three constraints make modeling BGP route se-
lection possible. Each router applies a multi-stage decision pro-
cess [6] to select a single best route, as summarized in Table 1. The
decision process considers the set of available routes to a destina-
tion and proceeds step-by-step to eliminate candidate routes. For
example, the decision process first eliminates all routes that do not
have the highest local preference value, and so forth, until a single
best route remains. Since the route selected at one router can affect
the routes available at another router, we cannot simply apply the
BGP decision process independently at each router. Although we
must model the distribution of routes within an AS, Constraints 1
and 3 ensure that the system converges to a unique solution, which
allows us to apply the following intuitive result:

THEOREM 1. If a routing system is guaranteed to converge to
a unique solution, the solution is independent of the order that
routers exchange routes and apply the decision process.

We proved a slightly different version of this theorem in our pre-
vious work (Theorem 4.1, [13]). In practice, a router may receive
numerous route advertisements and select (and propagate) a best
route multiple times before settling on a final choice. Fortunately,
with careful selection of a particular ordering of these events, a
prediction algorithm can predict the outcome without simulating
the protocol dynamics.

3.2 Phases of the Route Prediction Algorithm
Although some of the constraints we discussed have previously

been presented as conditions for stable routing, these constraints
are also necessary to model BGP route selection; we now construc-
tively apply these constraints to propose a novel way of decompos-
ing route prediction. Theorem 1 gives us the flexibility to define
a message ordering without affecting correctness. Specifically, the
algorithm selects a message ordering that decomposes the problem
into three distinct phases, as shown in Figure 3. The rest of the sec-
tion explains this decomposition, deferring the detailed discussion
of each phase to Section 4.

Receiving the eBGP routes and applying import policy: The
first phase assumes that each router receives all of its eBGP-learned
routes and applies the import policies, before exchanging any iBGP
update messages. Each eBGP-learned route has attributes (such as
the destination prefix and the AS path) and is associated with an
eBGP session. The import policy may filter the route or set certain
attributes such as local preference, origin type, and multiple-exit
discriminator (MED), according to attributes in the advertised route
(e.g., based on ASes in the AS path). Because applying the im-
port policy is a local operation for each eBGP-learned route at each�
Some router vendors allow tiebreaking based on the “oldest” route (i.e.,

the route that was learned first). This feature is often disabled to avoid
introducing non-determinism into the BGP path-selection process.

eBGP
modified

eBGP
routesroutes

routes
(per prefix)

eBGP
routes

(per prefix)

iBGP signaling graph

(per prefix & ingress)

best egress point
best BGP

route

best

best eBGP

IGP path costs
(per ingress−egress pair)

ComputeCompute

import policies
(per eBGP session)

router ID
(per session)

Apply
import
policy

(per prefix)

Figure 3: Decomposing network-wide BGP route selection into three independent phases

router, the first phase emulates exactly the operations a real router
would perform upon receiving each of the eBGP routes. These
routes, with modified attributes, form the input to the second phase.

Computing the best eBGP-learned routes: Many routes from
the first phase would never be selected by any router as the best
BGP route. For example, an eBGP-learned route with a local pref-
erence of 90 would never be selected over another route with a
local preference of 100. As long as every eBGP-learned route can
reach every router (Constraint 2), no router would ever make a less
attractive decision than any other router in the AS. In other words,

COROLLARY 1. Constraint 2 implies that every router in the
AS selects a best BGP route that is equally good through the first
four steps in the decision process.

For example, a router on the east coast of the United States might
select a route learned in New York, whereas a router on the west
coast might select a route learned in San Francisco. Still, these
two routes would have the same local preference, AS path length,
and origin type; if the two routes have the same next-hop AS, they
would also have the same MED value. This property allows the
second phase of the algorithm to focus on the selection of the “best”
eBGP routes across the eBGP-speaking routers, without modeling
the details of distributing these routes throughout the AS.

Modeling the influence of iBGP and IGP within the AS: In
the third phase, each router selects a single route from the set of
best eBGP routes. Each border router that contributes to the set of
best routes selects its own best eBGP-learned route. Every other
router selects one of these routes after they have propagated via
iBGP; this behavior is consistent with step 5 of the BGP decision
process. The decision at each router depends on the routes selected
by its iBGP neighbors, the costs of the IGP paths to the exit points
where these routes were learned, and the router IDs of the iBGP
sessions. This introduces a dependency between iBGP and IGP.
Fortunately, the algorithm only needs to consider the total IGP path
cost of the shortest IGP path(s) between each pair of routers, rather
than hop-by-hop costs. We can make this simplification because
Constraint 3(c) implies that all of the routers along the IGP path
from a router to its chosen egress point have selected the same best
BGP route. That is, no router along the path to the egress point
would deflect a data packet toward a different egress point than the
ingress router had selected.

Although the diagram in Figure 3 shows only three phases, we
envision that network operators could incorporate other modules
for additional functionality. For example, a module could combine
the predicted BGP routes with traffic data to predict the load on
each link in the network. Using the emulator for traffic engineer-
ing assumes that traffic volumes are relatively stable, and that they
remain stable in response to configuration changes. In previous
work, we found that prefixes responsible for large amounts of traf-
fic have relatively stable traffic volumes over long timescales [8].
Operators could use the emulator to test configuration changes on
reasonably slow timescales that affect prefixes with stable traffic

volumes. A network operator could also combine measurements or
estimates of the traffic arriving at each ingress point for each des-
tination prefix [14] with the link-level paths to predict the load on
each link in the network. Another module might evaluate the op-
timality of the these link-level paths in terms of propagation delay
or link utilization and could search for good configuration changes
before applying them on a live network.

4. ROUTE PREDICTION ALGORITHM
Drawing on the modeling framework from Section 3, this section

proposes an algorithm that computes the best route at each router
in an AS. Since the path selection process is independent for each
prefix, we focus on the prediction problem for a single destination
prefix. To ensure that the algorithm is efficient, the best route that
the algorithm predicts for each router should not change the pre-
dictions made earlier for other routers. In other words, we design
the algorithm to emulate a BGP message ordering that does not re-
quire any backtracking. Satisfying this constraint for the first phase
of the algorithm is straightforward because applying the import pol-
icy is a purely local operation at each router. However, the second
and third phases of the algorithm are more complicated because of
subtle interactions in the BGP decision process:

� The interaction between MED and router ID prevents the
second phase of the algorithm from simply selecting the locally-
best route at each router. This complication arises because
the BGP decision process only compares MED values for
routes with the same next-hop AS. As such, the MED value
of an eBGP route learned at one router may affect the local
ranking of eBGP-learned routes at another router.

� The interaction between iBGP and the IGP prevents the third
phase of the algorithm from visiting each router in the AS
in an arbitrary order. This complication arises because the
best BGP route at one router (chosen based on the IGP path
costs and router IDs from its vantage point) affects the op-
tions available to its iBGP neighbors.

The remainder of this section describes how the second and third
phases of the algorithm arrive at the correct prediction without
backtracking.

4.1 Computing the Set of Best eBGP Routes
The second phase of the algorithm begins with a complete set

of eBGP routes (after modification by the import policies) and pro-
duces the set of candidate best eBGP routes; the best route that each
router selects is an element from this set. Thus, the second phase
of the algorithm must have the following properties:

� It must eliminate any eBGP-learned routes that could not be
the best route at any router in the AS. We impose this con-
straint to simplify later stages of the algorithm.

� �

����� �����

� � � �
�� �"!$#&%

'
� �(!)#+* ,� �(!)#-%/. 0

���(!)#+*1.
2 3-4+5�6��7

Figure 4: Interaction between MED and router ID in the BGP
decision process. Small numbers are router IDs.

� At the completion of the second phase, each eBGP-speaking
router must contribute at most one candidate route. This
property must hold because the BGP protocol specification
requires each router to select and propagate a single best
route.

The second phase of the algorithm determines the best route to
a destination at every eBGP-speaking router by starting with the
complete set of eBGP-learned routes and systematically eliminat-
ing routes from this set of candidate routes.

First, the algorithm eliminates every route from this set that would
be eliminated based on the first three steps of the BGP decision pro-
cess (i.e., local preference value, AS path length, and origin type).
The algorithm effectively applies the first three steps of the BGP de-
cision process globally across the set of all candidate eBGP routes.
It might seem appealing either to continue applying steps of the
BGP decision process globally or to apply the remaining steps of
the decision process locally at each router (i.e., eliminate all routes
from the set of candidate routes based on MED, router ID, etc.).
However, the interaction of the MED and router ID attributes pre-
cludes having a consistent ranking of routes at each router. Figure 4
presents a simple example that illustrates why these two approaches
are incorrect.

Global route elimination is not correct. Consider the example
in Figure 4 and assume that AS 3 learns eBGP routes 8&�:9 � 9;�<9>=@?
that are equally good through step 3 in the BGP decision process.
Routes � and

�
are learned from AS 1, and routes � and = are

learned from AS 2. In a global comparison of the routes, � and� are first eliminated based on MED, and then router A picks route= (since = is preferred to
�

based on the router ID comparison ap-
plied at router
). However, this conclusion is incorrect, becauseA would always prefer route � over route = , since � is learned
via eBGP (step 5) and � and = are equally good up through step
4 (recall that a router does not compare the MEDs of routes with
different next-hop ASes).

Local route elimination is not correct. It might also seem natural
to simply select a best route locally at each router and subsequently
eliminate routes from this set by comparing routes within this set
of locally best routes. This does not work either. Consider Figure 4
again. Applying the decision process locally at each router, routerA selects route � because its router ID is lower than that of � ; sim-
ilarly, router
 selects route = . This suggests that router A would
ultimately select = as its best route, since = is better than � due
to MED comparison. However, this conclusion is also incorrect,
because A will always prefer route � over route = .

To correctly handle the interaction between the MED and router
ID attributes, the algorithm determines the effects of steps 4–8 of
the BGP decision process by emulating the effects of a particular
message ordering that correctly propagates the effects of MED on
each router’s best route without backtracking. Figure 5 summarizes

While there are eBGP-speaking routers with candidate eBGP-learned
routes that have not either been eliminated or marked as a best route:

1. Select any eBGP-speaking router that has at least one candidate
route and consider the route that is best locally at that router among
the remaining candidate routes.

2. Eliminate this route if it has a higher MED value and the same
next-hop AS as the locally-best route at another router.
Otherwise, eliminate all other routes at this router, as well as all
other routes with the same next-hop AS and a larger MED value.
Mark the remaining route at this router as the best route.

Figure 5: Applying steps 4–8 of the BGP decision process to
determine the set of best eBGP routes.

this part of the algorithm. The network in Figure 4 starts with �
and = as the locally-best routes at A and
 , respectively, based on
router ID. The algorithm applies the following steps:

1. Consider A : The locally-best route is � , which has a higher
MED value and the same next-hop AS as = , so eliminate �
from the candidates at router A .

2. Consider
 : The locally-best route is = . No other router has
a locally-best route with smaller MED value and the same
next-hop AS, so mark = as the best route and eliminate

�
.

3. Consider A : The locally-best route among the remaining
candidates is � , and no other routers have routes left, so mark� as a best route.

This algorithm computes the correct routing decision for each router:� at router A and = at router
 . At router
 , = is better than � (step
5),
�

(step 7) and � (step 4). At router A , � is better than = (step
5); � is not better than

�
, but this does not matter because router

does not select
�
, and � is not better than � , but this does not matter

since � is always worse than = (step 4).

THEOREM 2. For each eBGP-speaking router in the network,
the second phase of the route prediction algorithm selects the best
route for that router if the best route for that router is an eBGP-
learned route. If the best route is an iBGP-learned route, the second
phase eliminates all routes at that router.

The proof of this theorem follows from two proofs in our previous
work [13]. In this work, we first show that the second phase of
the route prediction algorithm never eliminates a candidate route
that an eBGP-speaking router would have selected as its best route
(Theorem A.4) and the algorithm always eliminates every candi-
date route that BGP eliminates (Theorem A.4). Additionally, the
second phase of the algorithm correctly predicts the set of best
eBGP routes without backtracking.

4.2 Computing the Best Route at Each Router
The third phase of the algorithm determines the best BGP route

at each router, given the IGP path costs to each eBGP speaking
router and the iBGP signaling graph. On the surface, this problem
has a relatively simple solution: for each router, take the set of best
eBGP-learned routes and select the closest egress point, breaking
ties based on router ID. This approach would work if the eBGP-
speaking routers readvertised every eBGP-learned route to every
router in the AS, as in a full-mesh iBGP configuration. However,
the use of route reflectors (RRs) typically violates this assumption.
The routing alternatives available to a particular router depends on
its position in the route reflector hierarchy. For example, consider

RR2RR1

1 2 1

ba

2

3

3

eBGP

W X Y Z

Figure 6: Interaction between iBGP and IGP in the decision
process, where small numbers are IGP path costs, solid lines
are iBGP sessions, and the dashed line is an IGP path.

1. Consider the routers in a partial order defined by the up edges
in the signaling graph, starting with a router that has no down
neighbors. For each router, select the best route among avail-
able candidate routes from the down neighbors that have al-
ready selected a route. If no candidate routes exist, do not
assign a best route yet.

2. Consider the routers in a partial order defined by the down
edges in the signaling graph, starting with a router that has
no up neighbors. For each router that did not select a route in
previous step, select the best route among the routes selected
by the immediate up and over neighbors.

Figure 7: Efficiently computing the best route at each router

the network shown in Figure 6. Routers A and
 have eBGP routes� and
�
, respectively, that are equally good through the first four

steps of the decision process. In this network, ����� prefers route� because it has a smaller IGP path cost to A than to
 ; however,����
 would prefer
�

over � , because its shortest IGP path to
 has
cost B (via router �), but its shortest path to A has cost C . However,����� only advertises its best route, � , to �	�	
 ; as such, �	��
 never
learns about route

�
.

To account for these dependencies, the algorithm emulates a par-
ticular iBGP message ordering, making decisions at each router and
propagating the effects of these decisions to other routers, visiting
each router without backtracking. (Theorem 1 allows the algorithm
to select any iBGP message ordering.) If Constraint 3 is satisfied,
the algorithm can consider the routing decisions at each router in
the AS in the order specified in Figure 7. Applying this algorithm
to the example in Figure 6, the shaded routers select best routes in
the first step, since each of those routers has a direct path down the
iBGP hierarchy to an eBGP-speaking router. First, A and
 select
best eBGP routes � and

�
, respectively; since the routers are at the

same level in the hierarchy, the algorithm can visit them in any or-
der. Then, �	��� applies the BGP decision process to � and

�
, and

selects � because it has a smaller IGP path cost. The BGP decision
process is applied to the rest of the routers by starting from the top
of the hierarchy and proceeding downward. ����
 receives � , which
is its best (and only) route to the destination; similarly for � , which
receives � from �	��
 , and � , which receives � from �	��� .

The algorithm operates by defining two partial orderings of the
routers, based on the up edge and the down edges, respectively.
This is possible because Constraint 3(b) requires that the signal-
ing graph does not have any cycles of these edges. Visiting the
routers in the up direction ensures that each router selects a down
route, where possible, as required by Constraint 3(a). Visiting the
remaining routers in the down direction ensures that each router
has all of the up and over routes available when making a deci-
sion. Considering the routers in this particular ordering guarantees

that no router makes a decision that should change later, after some
other router makes a decision. As a result, we know:

THEOREM 3. If Constraints 2 and 3 are satisfied, the third phase
of the algorithm correctly predicts the egress router that each ingress
router would choose using BGP without backtracking.

This theorem is a restatement of a theorem from earlier work [15]
on sufficient conditions for stable BGP routing at the AS level. The
previous result uses a constructive proof to show that a specific set
of export policy and preference relations between ASes can guar-
antee that BGP will arrive at a stable path assignment: the proof
shows the existence of a stable routing first by assigning paths to
up AS neighbors, then to over and down neighbors. Other previ-
ous work observed that the conditions for BGP stability at the AS-
level are the same as those for iBGP with route reflection within an
AS [12]. Theorem 3 follows directly from applying the construc-
tive proof for stable global routing to iBGP with route reflection,
and the proof is the same.

5. EMULATOR DESIGN
To demonstrate that the algorithm from Section 4 is accurate and

practical, we have implemented a BGP emulator that computes the
outcome of the BGP decision process for all routers in an AS. In
this section, we discuss the input data that the emulator requires and
how network operators can obtain this data in practice. Then we
describe the basic design of the emulator, deferring the discussion
of performance optimizations to Section 6.3.

5.1 Input Data
As shown in Figure 8, the emulator uses three inputs:
� BGP routing tables: The BGP tables for the eBGP-speaking

routers provide the first phase of the algorithm with a snap-
shot of the routes advertised by neighboring ASes. We ignore
the router’s current view of the best route and the current set-
ting of the local preference attribute, since these relate to the
existing network configuration rather than the scenarios we
might want to emulate.

� Router configuration files: The configuration files are used to
(1) determine the import policies (i.e., route maps) for each
eBGP session, (2) determine the iBGP signaling graph, and
(3) compute the IGP path costs between each pair of routers.
The import policies are used to manipulate attributes of the
eBGP routes in the first phase of the algorithm, and the iBGP
and IGP information are needed for the third phase.

� BGP neighbor information: Because the BGP decision pro-
cess depends on the router ID associated with the BGP ses-
sion announcing the route, our algorithms require knowing
the router ID associated with each BGP session. The second
phase uses the router IDs of the eBGP sessions, while the
third phase uses the router IDs for the iBGP sessions.

We emphasize several points with regard to the input data. First, a
network operator can capture all of the necessary data with telnet
or ssh access to each router. Second, many aspects of the input
data (e.g., the router ID data, routes for prefixes with stable traffic
volumes, etc.) do not change very often; as such, the emulator is
useful even if all of the input data is collected infrequently (e.g.,
once a day). Finally, because certain inputs can be approximated
(e.g., router ID is typically the loopback IP address of the router)
and often do not affect the decision process, the emulator can be
effective even with limited input.

BGP tables

known routes

route maps

import

MODIFIED ROUTES

BGP Neighbor Info

router ID

EGRESS POINTS

iBGP topology

RR clients

IGP configuration

IGP Path Costs

PREDICTED ROUTES

Apply import policy
Compute best

eBGP routes
Compute best route

Figure 8: Data flow in the emulator. Fonts specify raw inputs,
input tables, and DERIVED TABLES. In practice, operators might
collect raw inputs once a day.

5.2 Emulator Design Overview
The emulator uses a database back-end. This design provides ef-

ficient access to small subsets of the configuration data and routes
and also stores intermediate results, which allow us to validate each
part of the algorithm separately. Figure 8 summarizes how the em-
ulator uses the inputs and intermediate results to generate a table of
predicted routes. The emulator performs route prediction with three
distinct database operations that correspond to the three phases de-
scribed in Section 3.2:

Computing the modified routes: Once the emulator loads the
BGP tables and route maps into the database, the first operation
applies the import policies to the eBGP routes: each row of the im-
port table specifies how a particular set of rows in the known routes
table should be modified; the emulator performs the actual mod-
ifications on the MODIFIED ROUTES table. More specifically, each
row of the import table specifies a router name, the IP address of the
BGP neighbor, and an AS path regular expression. Each row of the
known routes table contains a routing table entry, which includes
the IP prefix, the router where the route was learned, the next-hop
IP address (i.e., the BGP neighbor), and the AS path for that route
(among other attributes). For each row in the import table, the first
operation applies the policy by (1) finding the appropriate routes
by selecting the set of routes learned at the corresponding router on
that BGP session that match the specified AS path regular expres-
sion and (2) setting the other attributes (e.g., local preference) ac-
cording to the values specified in that row of the import table. The
primary challenges associated with this operation result from the
potentially large number (i.e., on the order of millions) of eBGP-
learned routes; we address these challenges in Section 6.3.

Computing the egress points: The second operation applies the
technique from Section 4.1 to generate the set of best eBGP-learned
routes, which serves as an input to the third module. This part of the
algorithm performs “select” statements on the MODIFIED ROUTES
table to successively refine the set of candidate routes. The router
ID table contains the router ID for every BGP session at each router,
which is needed for step 7 of the decision process. As the method
from Section 4.1 marks “best” routes, these routes are inserted into
the EGRESS POINTS table for use by the third operation.

Computing the predicted routes: The third operation uses the
iBGP signaling graph, IGP path costs, and technique from Sec-
tion 4.2 to determine the best BGP route for each prefix at each
router. The module uses the iBGP signaling graph to determine
which routes are advertised to each router, the IGP path costs be-
tween each pair of routers to determine the closest eBGP-speaking
router to each ingress router (used in step 6 of the decision pro-
cess), and the router ID of each iBGP session (step 7) to determine
the egress router that each ingress router will select. The RR clients

table represents the iBGP signaling graph and IGP path costs rep-
resents the shortest IGP path between each pair of routers in the
AS. Each row of RR clients specifies a route reflector client for a
particular cluster; this provides the partial ordering needed by the
algorithm. When applying the IGP tiebreaking step at an ingress
router, IGP path costs is used to determine the egress router with
the shortest IGP path.

6. PERFORMANCE EVALUATION
In this section, we evaluate the performance of our implementa-

tion of the BGP emulator. We do not attempt to perform a complete
performance analysis of the prototype. Rather, we conduct experi-
ments that demonstrate the practicality of the prediction algorithm.

While our evaluation is preliminary, our performance tests demon-
strate that the emulator can operate on timescales that could allow
an operator to use a BGP emulator based on our algorithms in a
practical setting. Our evaluation demonstrates the following points:

� The emulator computes the best routes for one prefix through-
out a large tier-1 ISP network in about one second. Although
predicting the best route for all prefixes at all routers in such
a network takes several hours, this type of computation does
not need to be performed all that frequently in practice.

� Exploiting commonalities among route advertisements to elim-
inate redundant computation reduces the running time of the
emulator by approximately 50%.

� Using the emulator to evaluate the effects of an incremental
change to router configuration typically takes only a few sec-
onds. Thus, we believe that the emulator can be practical for
tasks such as interdomain traffic engineering.

After briefly discussing the evaluation framework, we examine
the emulator’s performance. First, we discuss the emulator’s per-
formance when it computes the routes for every prefix in the rout-
ing table from scratch, without any performance optimizations. We
then examine how insights from the BGP decision process and pre-
vious measurement studies can improve performance. Finally, we
describe how the emulator can quickly predict the effects of incre-
mental configuration changes.

6.1 Evaluation Framework
We ran the emulator on a Sun Fire 15000 with 192 GB of RAM

and 48 900 MHz Ultrasparc-III Copper processors. Because this
is a time-shared machine, we ran each of our experiments several
times to ensure the accuracy of our measurements. Except where
noted, the prototype used only two 900 MHz processors (one for
the database process and one for the emulator itself); the combined
memory footprint of the database process and the emulator never
exceeded 50 MB. Because the emulator did not use more resources
than a standard PC, the results of our evaluation should reasonably
reflect the emulator’s performance on commodity hardware.

Because the emulator’s running time depends on many interde-
pendent factors—including the number of neighbor ASes, the num-
ber of eBGP sessions, the number of prefixes, and the number of
routers—running independent benchmarks for each of these factors
with realistic routing and configuration data is extremely difficult.
For example, it is difficult to run an experiment that controls every
other factor that affects running time while varying the number of
eBGP sessions. Similarly, determining a precise running time for
the emulator to process an incremental configuration change is dif-
ficult because the running time depends on how many routes must
be recomputed as a result of that change.

Rather than isolating individual factors that affect performance,
which is difficult and may not accurately reflect realistic network
conditions, we evaluated the BGP emulator’s running time using
the actual routing tables and configuration data from a large tier-1
ISP with several hundred routers; we present absolute performance
numbers, as well as appropriate averages, to give a rough estimate
of the emulator’s running time for an arbitrary-sized network. We
also use the averages to estimate the running time for computing
the effects of incremental routing changes. Most networks have
fewer prefixes in their routing tables, fewer routers, and fewer BGP
sessions per router. Therefore, the running times we report can be
considered conservative: the emulator should have a shorter run-
ning time for most other networks.

6.2 Route Prediction from Scratch
To get a baseline performance estimate for the algorithm, we first

ran the emulator without any performance optimizations. Before
the emulator can begin executing the route prediction algorithm, it
must load the input data into the database. Loading the configura-
tion data has three separate steps: (1) parsing and loading the rout-
ing tables, (2) parsing and loading the import policies, (3) build-
ing the database indexes. The first two steps can be parallelized
by router since the tables and configuration for each router can be
parsed and loaded independently. When loading each routing table
in sequence, the prototype parsed and loaded all 1,620,061 eBGP-
learned routes from a large tier-1 ISP in just over 90 minutes, at a
rate of about 280 routes per second. When loading up to 20 tables
in parallel, the emulator finished loading the routing tables in about
520 seconds. The speed of this operation is not critical, since it
is likely only performed once per day. The time to parse and load
the import policies and router ID information was negligible; the
emulator parsed and loaded this information in just over 1 second.

Once all of the data was parsed and loaded into the database, the
emulator applied the 486 import policy operations to the eBGP-
learned routes in a total of 1,576 seconds, or about 0.31 opera-
tions per second (it does not make sense to give a per-prefix per-
formance number for this module, since one import policy applies
to many prefixes). The second module computed the set of best
eBGP routes at a rate of about 3 prefixes per second, and the third
module computed the best route for each prefix and ingress router
at approximately 7.3 milliseconds per prefix per router.

Although the emulator takes a total of about 5 hours to compute
all routes for all routers in a large ISP network, running the emula-
tor is likely to be much faster in most cases. First, depending on the
task, a network operator may not need to perform route prediction
for every prefix. For example, it is well known that the majority of
network traffic is destined for a relatively small fraction of the to-
tal prefixes [8]; thus, a network operator would likely to be able to
perform effective traffic engineering by emulating route selection
for only a small number of prefixes. Similarly, a network opera-
tor who is debugging a reachability problem to a single prefix or
small group of prefixes will only need to run the emulator for those
prefixes. Second, several performance optimizations can signifi-
cantly improve the efficiency of the emulator, as discussed in the
next subsection.

6.3 Performance Optimizations
To ensure that the emulator operates on reasonable timescales,

even with a large number of routes and eBGP sessions, we de-
signed the emulator around the inherent structure of the input data.
In particular, we make three observations that inspire aspects of
the design: (1) many BGP routes have the same AS path attribute;
(2) neighboring ASes often advertise a large group of prefixes with

the same attributes across all eBGP sessions, and they often ad-
vertise a large group of prefixes to the same set of eBGP-speaking
routers; and (3) incremental router configuration changes typically
only affect a relatively small number of routes. These observations
allow the BGP emulator to scale to a large number of prefixes and
eBGP sessions and divide the emulator’s running time in half.

Store and manipulate each unique AS path only once: Modi-
fying the eBGP-learned routes according to import policies poten-
tially involves sequentially scanning each router’s BGP routing ta-
ble for routes whose AS paths match a given regular expression;
performing this operation once per import policy would involve
many table scans. Fortunately, many eBGP-learned routes have the
same AS path: in our BGP routing tables, each unique AS path ap-
pears in twenty eBGP-learned routes, on average. We exploit this
observation by having the known routes and MODIFIED ROUTES ta-
bles store a pointer (i.e., a foreign key) into a separate table that
contains the distinct AS paths. This level of indirection signifi-
cantly reduces the overhead of the first module, which repeatedly
modifies attributes for some set of routes that match a certain AS
path regular expression. The first module (1) searches the relatively
small AS path table to find the AS path pointers associated with a
regular expression and (2) selects the subset of table entries that
must be modified by selecting the entries that have those AS path
pointers (on which the table is indexed). By operating on a table
of 45,000 AS paths instead of more than 1 million eBGP-learned
routes, the first module can apply 1.02 import policy operations per
second—more than a factor of 3 improvement over the 0.31 opera-
tions per second reported in Section 6.2.

Group prefixes with the same eBGP routing choices: The
emulator must compute the set of best eBGP-learned routes for
each prefix; because an Internet routing table often has more than
100,000 prefixes, performing this prediction once per prefix could
be computationally expensive. Fortunately, because a neighbor-
ing AS typically advertises a large group of prefixes over the same
set of peering sessions, many prefixes are advertised in exactly the
same fashion across all eBGP sessions with neighboring ASes [8].
This typically happens when a single institution announces several
prefixes from a single location or a single peer advertises various
prefixes with the same AS path length. As such, the process for
computing the set of best routes is exactly the same for large groups
of prefixes. For example, if two prefixes have an identical set of
MODIFIED ROUTES (i.e., the same attributes for the route from each
eBGP neighbor), the second module of the emulator would produce
the same egress set. In fact, this is true as long as the two prefixes
have routes with the same AS path length from each neighbor, since
the BGP decision process only considers the length of the path. To
exploit this observation, the known routes and MODIFIED ROUTES
tables store the length of the AS path, along with the pointer to
the table of unique AS paths. We group prefixes that have routes
with the same AS path length, local preference, origin type, and
MED, reducing the total number of predictions from 91,554 (i.e.,
one per prefix) to 8,291 (i.e., one per group of prefixes). Identi-
fying these groups of prefixes required 1,420 seconds (this time is
proportional to the total number of eBGP-learned routes). After
grouping the prefixes, the computation in the second module re-
quires only 15,753 seconds, rather than the 30,212 seconds needed
when performing the computation separately for each prefix. The
speed-up does not exceed a factor of two because of the overhead
for checking the database to determine whether a new computation
can be avoided.

Group prefixes with the same egress set: The best route that
the emulator predicts at a particular ingress router ultimately de-
pends on the set of routers in the egress set for that prefix. In

theory, the number of distinct sets of egress routers is exponen-
tial in the number of routers. Fortunately, because many prefixes
are advertised in exactly the same fashion, and because an AS usu-
ally applies the same local policies to manipulate and select these
routes, many prefixes have exactly the same set of egress routers;
the emulator can thus select the best route for each group of prefixes
with the same egress set, rather than for each prefix. In our routing
data, the 91,554 prefixes have only 290 distinct egress sets. We ex-
ploit this observation by applying the algorithm in Section 4.2 only
once per ingress router and set of egress routers, rather than once
for each ingress router and prefix. Determining whether a predic-
tion has already been computed for an ingress router and a set of
egress routers requires an additional database query. Despite this
additional overhead, this optimization reduces the running time of
the third module from 7.3 to 4.3 milliseconds per prefix per ingress
router.

Compute small differences after incremental changes: We
envision that network operators would use the BGP emulator as
a traffic engineering tool, in order to predict how a configuration
change would affect the flow of traffic. These kinds of configu-
ration changes typically only affect some small subset of the to-
tal number of routes. Thus, in cases of incremental configuration
change, the emulator avoids unnecessary recomputation by deter-
mining which prefixes are affected by the policy change and recom-
puting the best routes only for these prefixes. The first phase of the
algorithm only reapplies the import policy for the routes learned
on the associated eBGP session. The first phase keeps track of the
prefixes that are affected by the policy change, which allows the
second phase to reevaluate the BGP decision process only for these
prefixes. Then, the third phase evaluates the selection of the egress
point for these destination prefixes only. In fact, some of these pre-
fixes might have a set of egress points that the third phase has eval-
uated before, allowing the emulator to reuse the result of the ear-
lier computation. Together, these optimizations allow the emulator
to return a quick answer to “what if” questions about incremental
changes to the network configuration. We find that recomputing the
best routes after a single import policy change takes less than one
second on average.

7. VALIDATION
To verify that the emulator produces correct answers, we per-

form validation using complete routing protocol implementations
on production routers in a large operational network. Network sim-
ulators do not capture the full details of the standard routing proto-
cols, so it is not useful to compare the emulator’s results with those
of a simulator. In addition, we may be unaware of vendor-specific
variations that could affect the accuracy of our results. Since we
cannot make arbitrary changes to the network, we run the emula-
tor on individual snapshots derived from daily dumps of the router
configuration files, BGP routing tables, and BGP neighbor infor-
mation and compare the emulator’s route predictions to what was
seen in practice. For each phase of the algorithm, we compare our
results to actual BGP tables and present a breakdown of any mis-
matches we encounter. To isolate the sources of inaccuracy, we
evaluate each module independently, assuming perfect inputs from
the previous module; we also perform an end-to-end validation.

The emulator generates correct results for more than DEDEF of the
prefixes. Most mismatches can be attributed to the fact the data sets
were collected at slightly different times. The analysis focuses on a
snapshot of the network state from early morning (EST) on Febru-
ary 4, 2003. We validate the prediction algorithm for the 91,554
prefixes whose eBGP routes are learned at peering points to other
large providers, since we have routing tables from all of these lo-

Number Attribute
Mismatch

Unusual
Configuration Total Errors

AS Paths 43,434 3 9 12 (0.028%)
Routes 1,620,061 36 277 313 (0.019%)

Table 2: Summary of errors in applying import policy.

Number Different Missing Total Errors
AS Paths 43,434 66 187 253 (0.582%)
Prefixes 91,554 120 483 603 (0.659%)

Table 3: Mispredictions in the set of best eBGP routes.

cations; we excluded prefixes that were learned at other routers.
(Recall that the prediction algorithm relies on knowing all of the
potential egress routers where routes to a prefix are learned.) The
initial BGP routing data consists of 1,620,061 eBGP-learned routes
with 43,434 distinct AS paths. We apply the tool to these inputs and
check whether the emulator produces the same answers that the op-
erational routers selected. In addition to collecting BGP routing ta-
bles from the peering routers (where the eBGP routes are learned),
we also collect BGP tables from several route reflectors and access
routers to verify the results.

7.1 Applying Import Policy
To verify that the first phase correctly emulates the application

of import policy, we need only compare the route attributes (i.e.,
local preference, MED, etc.) in the MODIFIED ROUTES table to the
actual BGP routing tables. The MODIFIED ROUTES table contains
the routes with attributes modified by applying the import policies
specified in the import table to the initial known routes table. Be-
cause the prototype uses routing tables to approximate the actual
routes received at each router in the AS, we cannot determine what
routes were discarded by the import policy. Thus, the emulator can-
not emulate the filtering policies specified by import policies, but it
can still determine the effects of import policy configurations that
set or manipulate route attributes (e.g., for traffic engineering).

We compare the route attributes between the known routes and
modified routes tables for all 1,620,061 eBGP routes with 43,434
distinct AS paths. Table 2 summarizes the results of our validation.
The emulator’s results matched the route attributes seen in the BGP
tables for all but 313 eBGP-learned routes on 12 distinct AS paths.
We observed 36 attribute mismatches over 3 AS paths, which can
likely be attributed to actual policy changes, since the routing tables
and the configuration files were captured at slightly different times
of day; we verified this conclusion by inspecting the configuration
data for the next day. The remaining mismatches involved 9 unique
AS paths because the prototype did not handle a complex config-
uration scenario permitted on Cisco routers. This accounted for
277 of the 313 route mismatches. Overall, the first phase produced
successful results for more than 99.97% of the cases.

7.2 Computing the Set of Best eBGP Routes
To verify that the second phase correctly computes the set of best

eBGP routes, we check that the best route at each eBGP-speaking
router as specified by the EGRESS POINTS table corresponds to the
route that appears in the routing table of that router’s route reflec-
tors. These routes match the vast majority of the time. However, in
a few cases, the two routers had different routes (i.e., with differ-
ent AS paths), even though one router apparently learned the route
directly from the other; these results are summarized in the “Dif-
ferent” column in Table 3. The “Missing” column highlights cases
where the RR did not have any route for that prefix. Timing incon-

Router # Predictions Case 1 Case 2 Case 3 Total Errors
RR1 88,865 33 322 21 376 (0.423%)
RR2 88,164 33 185 5 223 (0.253%)
AR1 88,165 38 178 5 221 (0.251%)
AR2 76,547 151 170 37 358 (0.468%)

Table 4: Errors in predicting the best egress router. Prefixes
predicted incorrectly by the second phase and those where the
“right” answer was not a peering router are excluded.

sistencies can explain both scenarios, which together account for
just over 0.5% of the cases.

To verify that the emulator does not incorrectly exclude routes
from the set of best eBGP routes, we check that, for each prefix,
the best route at each RR appears in the set of best eBGP routes
as computed by the emulator3. In other words, we consider cases
where an RR’s best route would have directed traffic towards some
egress router that was not contained in the EGRESS POINTS table.
Only 1.11% of best routes at RRs for 2% of prefixes fell into this
category. Routing dynamics can explain these inconsistencies—
through manual inspection, we found that, in many cases, the best
route at the RR was clearly worse than the routes in the set of best
eBGP routes (e.g., the RR’s best route had the same local prefer-
ence but a higher AS path length).

7.3 Computing the Best Route at Each Router
To verify that the emulator correctly predicts the best egress

router, we examined the best routes in BGP tables at several routers
and compared the (destination prefix, next-hop) pair from the rout-
ing table with the results in the PREDICTED ROUTES table entry
for that router. We performed these comparisons at two access
routers that connect directly to customers in different geographic
locations to verify that the emulator makes correct predictions at
ingress routers. We also analyzed the emulator’s predictions at two
route reflectors to verify that the algorithm makes correct route pre-
dictions as it traverses the signaling graph. The best route matched
our prediction for 99.5-99.7% of the cases, as summarized in Ta-
ble 4. At each router, we excluded prefixes if the best egress router
was not one of the peering routers included in the known routes
table (recall that we excluded routers for which we did not have
routing tables). In these cases, we cannot evaluate whether the al-
gorithm would have made the correct prediction because we didn’t
have the routes from that egress router in the first place.

We classify the errors among the remaining prefixes in terms of
three cases: Case 1: The route at the ingress router does not appear
in the MODIFIED ROUTES table and, as such, does not appear in the
egress set. Case 2: The route at the ingress router appears in the
MODIFIED ROUTES table but does not appear in the EGRESS POINTS
table. Case 3: The misprediction has no obvious explanation.

Case 1 errors likely result from timing inconsistencies, where
the best route at the ingress router did not exist at the egress router
when the routing tables were dumped. Timing inconsistencies can
also explain Case 2 errors: for example, an ingress router or a route
reflector could have a route that is no longer one of the best eBGP-
learned routes; this could happen if a better route arrives at an
eBGP-speaking router but has not yet propagated to other routers
in the AS. We are unable to explain only 0.05% of the errors.

7.4 End-to-End Validation
We performed an end-to-end validation to study the effect of er-

ror propagation on the best routes ultimately predicted by the em-G
The reverse is not necessarily true. An egress point may have a larger IGP

path cost to each of the top-level RRs for certain sets of eBGP routes.

Router # Predictions Case 1 Case 2 Case 3 Total Errors
RR1 89,343 40 459 55 554 (0.620%)
RR2 88,647 39 314 41 394 (0.444%)
AR1 88,649 44 307 40 391 (0.441%)
AR2 76,733 157 283 71 511 (0.666%)

Table 5: Summary of errors for end-to-end validation.

ulator. We compared the emulator’s prediction with the same four
routing tables used for the validation of the third module, with the
exception that the input included the errors from the first two mod-
ules. At these four routers, the emulator predicted the correct routes
for more than 99% of all prefixes, as summarized in Table 5. We
hypothesized that the majority of the mispredicted routes could be
explained by the dynamics of the input data. For example, if the
best route at an eBGP-speaking router were temporarily withdrawn
at the time that the route reflector table was captured, inconsisten-
cies between routing tables could arise4.

These results suggest that the algorithm we have proposed is ac-
curate: prediction errors are infrequent and result mainly the dy-
namics of the inputs. Since most prefixes whose routes change
frequently do not receive much traffic [11], these inconsistencies
would certainly not prevent the emulator from being used for traf-
fic engineering tasks.

8. RELATED WORK
Previous work presented an IGP emulator that helps network

operators optimize link weights for intradomain traffic engineer-
ing [3], but this emulator does not model changes to BGP routing
policies or the effects of iBGP on path selection. There has also
been much focus on modeling BGP convergence [9, 15], but this is
the first paper to model BGP route selection.

Recent work proposes efficient techniques for large-scale param-
eter optimization for various network protocols, including the tun-
ing of the local preference attribute in BGP [16]. This work is com-
plementary to ours—the proposed search techniques could use our
emulator as the “inner loop”. These techniques currently use sim-
ulators such as SSFNet [7], but they only depend on the outcome
of BGP path selection (not on dynamics) and would likely benefit
from having an efficient, accurate emulator as an inner loop.

The BGP model in this paper applies several previous theoreti-
cal results in new ways. The constraints for iBGP configuration that
we present in Section 3 are motivated by previously-derived suffi-
cient conditions for iBGP to guarantee that the routing protocols
converge to a stable, deflection-free path assignment [12, 17]. This
work specified these conditions to ensure correct routing behavior,
but these constraints are also required to model BGP routing. The
third phase of the route prediction algorithm also uses results from
previous work. We applied a constructive proof regarding stable
inter-AS policy configurations [15] to iBGP configuration and used
this proof as the basis for the third phase of the algorithm.

Recent work explores practical traffic engineering techniques in
BGP and assumes the existence of a BGP emulator for testing traf-
fic engineering techniques offline [8]. We previously proposed a
high-level architecture for a BGP emulator, including the decom-
position in Figure 3 and the second phase of the algorithm [13]. In
this paper, we present the complete design of each phase of the al-
gorithm (including more detailed analysis of the second phase) andH
To evaluate our hypothesis, we analyzed a feed of iBGP update messages

collected on the same day. More than 45% of the prefixes with incorrect
predictions had a BGP routing change during the data collection period at
the same router where the apparent mismatch occurred, and 83% of the
prefixes experienced an update at some router in the AS during this period.

argue why this decomposition models the route selection process
correctly. We also describe the design and implementation of an
emulator based on all three phases of this algorithm and present an
evaluation and validation.

9. CONCLUSION
To perform everyday network engineering tasks effectively, effi-

ciently, and with minimal unnecessary changes to the live network,
operators need a way to model how a routing protocol configura-
tion will behave before deploying that configuration. In this paper,
we have presented a model that accurately and efficiently predicts
the outcome of the BGP route selection process in a single AS us-
ing only a snapshot of the network configuration and the eBGP-
learned routes from neighboring domains. The algorithm we have
presented is the first that models the outcome of the BGP decision
process across every router in an AS, without simulating protocol
dynamics. We have implemented an emulator based on this model
to demonstrate that our algorithm is accurate and efficient enough
to be used in practice for many network engineering tasks.

The model we have presented is a necessary step for advancing
the state of the art of network engineering. We believe that our
model and BGP emulation tool present several immediate possi-
bilities for future work. First, network-wide BGP route prediction
could be combined with traffic measurements to help network oper-
ators select BGP configuration changes that achieve various traffic
engineering tasks. Second, the emulator could be combined with
higher-level mechanisms that spot misconfiguration or check that
other constraints, such as robustness, are satisfied [18].

Finally, we note that modeling BGP routing is much more diffi-
cult than it should be. In the future, we hope that routing protocol
designers will consider ease of modeling as a design goal. Rout-
ing protocols that are easy to model and reason about will make
everyday network engineering tasks more tractable.

Acknowledgments
Thanks to Joel Gottlieb, Tim Griffin, and Carsten Lund for their
help with the router configuration data, and Glenn Fowler for his
routing table parser. We also thank Magdalena Balazinska, Greg
Harfst, Carsten Lund, Stan Rost, Aman Shaikh, and Renata Teix-
eira for their comments on a draft of this paper.

10. REFERENCES
[1] D. O. Awduche, A. Chiu, A. Elwalid, I. Widjaja, and

X. Xiao, “Overview and principles of Internet traffic
engineering.” Request for Comments 3272, May 2002.

[2] B. Fortz, J. Rexford, and M. Thorup, “Traffic engineering
with traditional IP routing protocols,” IEEE Communication
Magazine, October 2002.

[3] A. Feldmann, A. Greenberg, C. Lund, N. Reingold, and
J. Rexford, “NetScope: Traffic engineering for IP networks,”
IEEE Network Magazine, pp. 11–19, March 2000.

[4] “Cariden.” http://www.cariden.com/, 2003.
[5] “MainStation.” http://www.makesystems.com/

products/MainStation.html, 2003.
[6] “A Border Gateway Protocol 4 (BGP-4).” Internet Draft

draft-ietf-idr-bgp4-23.txt, work in progress, November 2003.
[7] “SSFNet.” http://www.ssfnet.org/, 2003.
[8] N. Feamster, J. Borkenhagen, and J. Rexford, “Guidelines

for interdomain traffic engineering,” ACM Computer
Communication Review, vol. 33, October 2003.

[9] T. Griffin, F. B. Shepherd, and G. Wilfong, “The stable paths
problem and interdomain routing,” IEEE/ACM Trans.
Networking, vol. 10, no. 1, pp. 232–243, 2002.

[10] C. Labovitz, A. Ahuja, and F. Jahanian, “Experimental study
of Internet stability and wide-area network failures,” in Proc.
Fault Tolerant Computing Symposium, June 1999.

[11] J. Rexford, J. Wang, Z. Xiao, and Y. Zhang, “BGP routing
stability of popular destinations,” in Proc. Internet
Measurement Workshop, November 2002.

[12] T. G. Griffin and G. Wilfong, “On the correctness of IBGP
configuration,” in Proc. ACM SIGCOMM, August 2002.

[13] N. Feamster and J. Rexford, “Network-wide BGP route
prediction for traffic engineering,” in Proc. Workshop on
Scalability and Traffic Control in IP Networks, SPIE ITCOM
Conference, August 2002.

[14] A. Feldmann, A. Greenberg, C. Lund, N. Reingold,
J. Rexford, and F. True, “Deriving traffic demands for
operational IP networks: Methodology and experience,”
IEEE/ACM Trans. Networking, vol. 9, June 2001.

[15] L. Gao and J. Rexford, “Stable Internet routing without
global coordination,” IEEE/ACM Trans. Networking, vol. 9,
pp. 681–692, December 2001.

[16] T. Ye, H. T. Kaur, and S. Kalyanaraman, “A recursive
random search algorithm for large-scale network parameter
configuration,” in Proc. ACM SIGMETRICS, June 2003.

[17] T. G. Griffin and G. Wilfong, “Analysis of the MED
oscillation problem in BGP,” in Proc. International
Conference on Network Protocols, November 2002.

[18] N. Feamster, “Practical verification techniques for wide-area
routing,” in 2nd ACM Workshop on Hot Topics in Networks,
November 2003.

