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Interdomain routing involves coordination among mutually
distrustful parties, leading to the requirements that BGP pro-
vide policy autonomy, flexibility, and privacy. BGP provides
these properties via the distributed execution of policy-based
decisions during the iterative route computation process. This
approach has poor convergence properties, makes planning
and failover difficult, and is extremely difficult to change.
To rectify these and other problems, we propose a radically
different approach to interdomain-route computation, based
on secure multi-party computation (SMPC). Our approach
provides stronger privacy guarantees than BGP and enables
the deployment of new policy paradigms. We report on an
initial exploration of this idea and outline future directions
for research.

1 Introduction
The Internet architecture was born with the invention of
the Internet Protocol (IP) whose purpose was to connect
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the disparate networking technologies that were then being
developed by different groups. When this unifying archi-
tecture left the sheltered world of research and entered the
commercial realm, it had to deal with a new and unforeseen
task: interdomain routing. Moreover, this task did not
have a clear and globally defined objective (such as finding
the shortest path) but instead involved the individual (and
often conflicting) commercial interests of each domain.
Specifically, domains needed flexibility in the routes they
use and in the routes they let other domains use, autonomy
to determine these routing policies for themselves without
consulting other domains, and the ability to keep their routing
policies private.

At the time of the Internet’s transition into a commercial
infrastructure, no existing routing technologies offered the
necessary policy flexibility, autonomy, and privacy. After a
period of intensive research into the problem, the Border
Gateway Protocol (BGP) was invented to address these
requirements. BGP provides flexibility by allowing domains
to choose freely among available routes (with the path-
vector formulation preventing loops) and provides autonomy
and (some) privacy by having both route-import and route-
export choices exercised in a completely local manner; that
is, routing policies are not announced globally but rather
acted upon locally in each step of BGP’s distributed routing
protocol. Of course, the resulting routing decisions are visible
to neighbors, which implicitly reveals some information, but
the general policy is never announced.

Even though BGP has so far provided a durable foundation
for the Internet, it is far from an ideal solution. First,
BGP is notorious for taking a long time to converge after a
topology or policy change, leading to significant disruptions
for interactive applications when packets are lost, stuck in
loops, or delivered out of order [8]. We are not listing
policy oscillations as one of the problematic aspects of BGP
because (i) it isn’t clear how important this problem is in
practice, and (ii) policy oscillations arise almost directly
from the policy requirements, as opposed to being artifacts
of their implementation. We believe that our SMPC-based
approach to interdomain routing can enable alternative policy
frameworks, and we plan to explore this aspect of the problem
in future work.



Second, network operators cannot assess a priori the
impact of a topology or policy change. This makes network
planning difficult as even planned changes, such as might
happen during scheduled maintenance, could result in long
outages, protocol oscillation, or poor performance. Third,
any significant enhancement to BGP (e.g., better security,
multipath routing, or multicast communication) faces nearly
insurmountable barriers, due to the need for global adoption.
Moreover, the prevailing policy model is limiting; while
domains control their own import and export policies, they
have no control over the upstream portion of the path (as they
do in [10]). All three of these problems are deeply rooted in
BGP’s local execution model.

BGP’s many problems are well known, and there have
been many proposals to fix various isolated aspects of BGP.
These proposals improve the convergence and/or consistency
properties of BGP [7], alter the degree of policy privacy
and autonomy in return for more stable dynamics [14], give
some route choice to the ends rather than having routes
be chosen solely by the domains themselves [5, 15], and
introduce enforcement mechanisms to ensure that policy
choices are indeed respected [10, 18]. However, none
of these interdomain-routing proposals alters the basic
fact that currently the only way to match BGP’s level of
policy flexibility, autonomy, and privacy is to leave BGP’s
distributed execution model largely intact, and that the
problems cited above are largely inherent in this approach.

In this paper, we describe a radically different approach
that leverages two recent trends—the vast computational
resources in modern data centers and advances in Secure
Multi-Party Computation (SMPC)—to address the three
problematic aspects of BGP while retaining flexibility and au-
tonomy and improving privacy. We propose that, rather than
using local execution to compute interdomain routes, a small
number k of computational clusters compute interdomain
routes in a manner that both allows domains (at least) the
same degrees of flexibility and autonomy as with BGP and
is provably privacy-preserving. Privacy is achieved through
cryptographically based SMPC protocols rather than through
the local execution of routing policy.

In the next section, we give a brief introduction to SMPC,
and explain how we apply it to interdomain routing. Here,
we describe some of the benefits of this approach and how it
“fixes” the BGP shortcomings described above.

• Faster convergence. Working together, the clusters
compute the routing outcome for all domains, rather
than have each domain perform a long path-exploration
process. This leads to faster convergence, especially
if the SMPC algorithm completes quickly or can run
in advance. In addition, domains no longer set local
parameters (e.g., MRAI timers, route-flap damping
thresholds, etc.) that have unpredictable effects on
global convergence. Convergence time becomes a
question of the network latencies to/from the clusters
and the computation time in the clusters, the latter

of which can be improved over time through better
algorithms and machines.

• ‘What-if’ analysis. The clusters can perform ‘what-
if’ analysis to precompute paths after a failure and
identify network events that would partition parts of
the Internet. For example, undersea cable cuts often
cause serious disruptions in Internet connectivity. The
clusters could notify domains about potential risks to
support advanced planning to install additional capacity
or negotiate backup relationships.

• More efficient routers. With most computation moved
to the k clusters, IP routers do not need to store a
large number of BGP-learned routes and run the BGP
decision process. Routers would (at most) need to
select among multiple “best” egress points to reach a
destination, based on intradomain-routing information.
In addition, future enhancements to interdomain routing
would only impact the clusters and would not impose a
computation and storage burden on legacy routers.

• Better security. In addition to offering provable
privacy, our approach enables better security generally.
The clusters could upgrade to new security solutions,
such as comparing routing information against histor-
ical data, Internet routing registries, or Route Origin
Authorizations (ROAs). Upgrading a small number of
clusters is much easier than convincing every domain to
upgrade its router software (and perhaps even hardware)
and move to new operational practices.

• Freedom to innovate. Similarly, the clusters can easily
move to new computational models, such as computing
multiple paths for a destination prefix or computing
multicast routes. Since the policy model is no longer
tied to the distribution model, these clusters could
support routing policies that go beyond today’s “route-
maps” that manipulate and rank locally-learned routes.
For example, business relationships between domains
could move beyond bilateral arrangements to allow a
group of networks to cooperate in offering a value-
added service.

The preceding words sketch out a vision. This paper
reports on an initial step toward this vision – a full but slow
implementation of this approach for a special case of routing
policies. Our hope is that these initial results are sufficient
to illustrate the benefits and the challenges inherent in our
vision.

2 SMPC-Based Interdomain Routing
In this section, we give some basic background on SMPC
and then explain how we use it to compute routes.
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2.1 SMPC Background

The study of SMPC was initiated in the seminal papers of
Yao [16, 17] and has been pursued intensively for more than
30 years by the cryptographic-theory community. SMPC ad-
dresses scenarios in which n parties P1, . . . , Pn hold private
inputs x1, . . . , xn and wish to compute y = f(x1, . . . , xn)
in such a way that all parties learn y but no Pi learns anything
about xj , i 6= j, except what is logically implied by the result
y and the particular input xi that he already knew. Moreover,
they wish to do so by executing a protocol in which they
all play equivalent roles; that is, they don’t want simply to
send the xi’s to one trusted party that can compute y and
send it to all of them. Natural applications include voting,
survey computation, and set operations. One of the central
results of cryptographic theory is that such privacy-preserving
protocols can be obtained for any function f , provided one
is willing to assume that certain cryptographic primitives are
secure or that some fraction of the Pi’s do not cheat (i.e., that
they follow the protocol scrupulously). An in-depth survey of
SMPC and its application to data mining can be found in [9].

The following structure is common to many SMPC
protocols. In the first round, each Pi splits its input xi into
shares, using a secret-sharing scheme in the sense of [13], and
sends one share to each Pj ; the privacy-preserving properties
of secret sharing guarantee that the shares do not reveal xi

to the other parties (or even to coalitions of other parties,
provided that the coalitions are not too large). The parties
then execute an interactive protocol to compute shares of
y; the multi-round protocol is designed to ensure that the
shares of intermediate results computed in each round also
do not reveal xi. In the last round, the parties broadcast
their shares of y so that all of them can reconstruct the result.
Alternatively, they may send the shares of y to an outside
entity or to a subset of the Pj’s if none (or only a subset)
of the Pj’s is supposed to learn the result. The choice of
secret-sharing scheme is determined by the size of the largest
coalition of cheating parties that the protocol must be able to
thwart and by the “adversarial model,” i.e., the capabilities
and resources available to the cheaters.

Because secret-sharing-based SMPC is very common (and
for ease of exposition), we will refer at some points to parties’
“sharing” or “splitting” their inputs. Note, however, that
there are SMPC protocols that use other techniques (such
as threshold public-key cryptography) to encode inputs and
execute multi-round computations in a privacy-preserving
manner.

One crucial limitation of the powerful and general SMPC
protocols in the literature is their highly interactive nature;
for example, they require multiple rounds of communication
and computation and may require every pair of parties to
exchange messages in every round – clearly impractical
for large n. This leads naturally to an architecture, which
we adopt here, in which the original parties P1, . . . , Pn (in
our setting, the domains) play the role of input providers
and a disjoint set of parties S1, . . . , Sk (in our setting, the

computational clusters) play the role of secure-computation
servers. The domains share their inputs with the computa-
tional clusters; once the clusters have their shares of the route
that a particular domain is assigned, they send the shares to
that domain only. This hybrid form of SMPC is often referred
to as “secure outsourcing.” It has been applied, for example,
to the problem of privacy-preserving survey computation [3].
To the best of our knowledge, ours is the first attempt to apply
it to interdomain routing.

One can implement SMPC using a general-purpose plat-
form, such as FairplayMP, SEPIA, VIFF, or Tasty, or develop
special-purpose implementations of SMPC that can be more
efficient, as in [6]. In this paper we focus on the former,
using the SEPIA platform to implement our approach to a
special case of interdomain policies (next-hop policies [12]).
However, this implementation has not been optimized, nor
has it been run in a fully parallel mode; so the timing
results we present later are merely an initial indication of
the scheme’s viability.

2.2 Application to Interdomain Routing
We propose a secure-outsourcing architecture in which the
input providers are the ASes, and each of the k secure-
computation servers is operated by a different organization
with many machines at its disposal (e.g., companies such
as Google, Amazon, and Microsoft that run very large
data centers). We believe that a plausible value for the
number of servers is k = 3. Section 3 describes a SEPIA
implementation that works for any k ≥ 3. It is secure against
coalitions of fewer than k/2 “honest but curious” cheating
servers. In the honest-but-curious adversarial model, all
parties follow the protocol specification but may later collude
by pooling information they obtained during an execution.

In our design, as in today’s BGP, routes to every destination
IP prefix are computed independently; thus, we describe the
computation process for a fixed destination prefix. In SMPC
terms, the private input xi of each AS i is its routing policy,
which consists of the following two components:

1. Ranking of routes: an order over all of i’s possible
(loop-free) AS-level routes to the destination.

2. Export policy: for every neighboring AS j, a specifi-
cation of which routes to the destination AS i is willing
to make available (“export”) to j.

Each i splits its policy xi into k shares and sends one
to each of the k computational clusters. The clusters now
engage in an SMPC to compute the BGP-routing outcome
determined by these inputs.1 At the end of this computation,
each of the k clusters holds, for every AS i, a share of i’s
route in the computed outcome. Each cluster then sends to
1We make the assumption that, for every combination of ASes’
routing policies, the routing outcome (stable state) that BGP
computes is uniquely defined. The Gao-Rexford conditions [4],
which capture many of today’s routing policies, indeed induce a
unique routing outcome.
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each i that cluster’s share of i’s computed route. AS i can
then combine these k shares to learn its own route to the
destination.

Such an SMPC-based interdomain-routing protocol pro-
vides two strong guarantees: (a) each domain learns its own
routes but learns nothing about the others’ routes except for
the information logically implied by its own route; (b) the
clusters do not learn anything about the domains’ routing
policies or about the resulting routes themselves unless at
least half of them collude and pool their shares.

3 Proof-of-Concept
We now describe our initial attempt to test out these ideas.

3.1 Simplifications and Structure

Rather than attack BGP in its full policy generality, we
considered a special case that simplifies the problem along
several dimensions. In terms of policy, we assume that
domains use only next-hop policies [12]; that is, their import
and export policies depend only on the first-hop domain of
each route. Moreover, we assume that the Gao-Rexford [4]
constraints hold, so that no policy oscillations result from
such policies. With respect to privacy, we distinguish between
information about the network (e.g., which nodes are stubs,
which are transit nodes, which pairs of nodes are neighbors,
and which prefixes are hosted where) and information about
the individual ASes’ policies. We do not attempt to protect the
network information, and we protect the policy information
with SMPC.

More precisely, we assume that the interdomain topology
is explicitly revealed by domains (i.e, they inform the
computational clusters who their neighbors are), which makes
it easier to execute ‘what-if’ scenarios. This peering topology
is not officially revealed by BGP, but large components of it
are easily inferred by looking at BGP routes; thus, we do not
consider this a major violation of domain privacy. In a similar
vein, we assume that stub domains (domains not willing to
provide transit to anyone) are willing to reveal this fact. We
note that currently the Internet has over 50,000 domains, the
vast majority of which are estimated to be stub domains.
Thus, the interdomain route computation can consist of two
components: computing the routing choices for each of the
transit domains, and then having the stub domains choose
among the transit choices made available to them.

A more significant simplification, which is not necessary
for the correctness of our approach but is important for its
feasibility, is that we compute routes on a per-domain rather
than per-prefix basis. To this end, we require domains to
explicitly reveal which prefixes they host and assign to each
prefix the route to the domain to which it belongs. This limits
certain policy choices (routing two prefixes destined for the
same domain along different paths), but greatly increases our
approach’s scalability.

In principal, SMPC could be used to hide network

information as well as policy information, and we may
explore that possibility in future work.

Lastly, even though our approach gives us great flexibility
in how we might structure the computation, in our initial
exploration we use an approach that essentially mimics
BGP’s per-domain iterative computation: Our computation
proceeds in rounds, and in each round the clusters compute
the same policy choices that the domain would have. Of
course, the advantage here is that this iterative computation
is now occurring among k computational clusters, not run
over the global Internet between all the domains. With next-
hop policies and Gao-Rexford constraints, it is known that
such a round-based computational process will converge after
2D+1 rounds [11], where D is the height of the Gao-Rexford
hierarchy [4].

Note that there is an exceptional level of parallelism in this
computation. First, the paths for each destination prefix can
be computed independently. Second, the choices for each
domain during a given round can be computed in parallel.2

Third, some of the basic crypto operations in the SMPC
algorithm can be done in parallel. This is why the available
number of machines should be large.

Our proof-of-concept shows that this approach can indeed
be made to work but points to computation time as a
concern (though, as noted above, there is substantial room
for improving the SEPIA results).

3.2 Overall Structure

Ignoring the startup phase and looking only at what happens
incrementally, our approach works as follows. When a
domain has a link event (failure or recovery) or a change
in policy, it informs the cluster. For a link event, this is
sent “in the clear” to the clusters, who then recompute routes
with this modified topology and distribute them to all the
domains. Inside a domain, these updates are handled in a
manner similar to RCP [2], or one could have a small set
of top-level route reflectors distribute the information. If
two domains have multiple peering links, they are free to
exchange information about which of these links to use; we
leave this outside of our simplified BGP computation, but
domains can find some other method of coordination.

Because the topology is known, the clusters can pre-
compute routes for a variety of failure scenarios. When
informed of a topology change for which the routes have
been precomputed, they can immediately send out the result
of their computation. Thus, the response time of this
algorithm could be reduced, in most cases, to the latencies of
communication to/from the clusters.

To avoid having a “single-point-of-failure” (if one of the
cluster nodes goes down, that set of clusters cannot compute
routes), we envision having several sets of clusters, all
computing routes in parallel. These routes should agree,

2The convergence result in [11] applies regardless of whether the
updating in a round is synchronous or asynchronous.
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Figure 1: A visual representation of the computation. We show domains and the associated preference list (Pi), and export table
(Ei). During a round, r, the algorithm computes the next hop table Nr

i for each domain. This next hop table is used to compute
information exchanged between domains, and is ultimately the output from the algorithm.

but if they do not then there should be a rank ordering for
deciding which set of clusters to follow.

There is an obvious bootstrap problem: how will domains
reach the clusters, and vice-versa? We will run a traditional
form of BGP on a small set of addresses: one for each cluster
and domain. This “normal” BGP will provide routes for
traffic to and from the clusters. The addresses will come from
a currently unused portion of the address space; so there is
no worry about clashes between the two forms of BGP. This
approach may be overkill; the update traffic will likely be very
light, and one could imagine using OSPF-style broadcasts,
which would require the domains to forgo policy control over
this routing traffic.

3.3 Structure of Computation

We implemented this scheme using the SEPIA Java library
for SMPC [1]. We expected that using a general-purpose
platform like SEPIA would be computationally inefficient,
but this implementation provides a useful proof-of-concept
with existing tools.

Figure 1 presents a graphical representation of our algo-
rithm. We describe our implenetation using SEPIA below.

We assume that the topology of the network is publicly
known to all parties and denote by [n] = {1, . . . , n} the
set of domains. Each domain u with neighboring domains
v1, . . . , vdu

has two private inputs: (1) a ranking of its

neighbors; and (2) an export policy that, for every two
neighboring domains i and j, specifies whether u is willing
to make routes that have i as a next-hop available to j. As
the computation is done independently for each destination
domain, fix a specific destination X .

Initialization. For each domain u ∈ [n], we initially define
NextHop(u) = u if u = X (that is, u is the destination),
and NextHop(u) = 0 otherwise. Throughout the execution
of the protocol, the value NextHop(u) specifies u’s current
next hop en route to the destination X , and NextHop(u) =
0 captures the scenario that u currently has no next hop en
route to X .

The basic iteration. As discussed in Section 3, the protocol
consists of 2D + 1 iterations, where D is the depth of the
Gao-Rexford hierarchy. In each iteration, the following is
executed in parallel for each domain u ∈ [n]:

• Set NextHop(u) to be u’s most preferred neighboring
domain i, according to u’s ranking of neighbors, such
that (1) NextHop(i) 6= 0 and (2) according to i’s
export policy i is willing to announce routes through
NextHop(i) to u.

• Set NextHop(u) = 0 if no neighboring domain i as
defined above exists.
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Output. Output for each domain u the next hop domain
stored in NextHop(u).

3.4 Computation Time Estimates
Here we estimate the computation time of this algorithm,
under the following assumptions. We assume perfect paral-
lelization between the domains (each domain is computed in
a separate process) and for each destination domain; so one in
general has the square of the number of domains running in
parallel. Thus, the unit of parallelism is computing the routes
used by a single domain for a single destination domain. This
requires a vast number of processes, but we expect many
of them will be quite fast because the domains have so few
neighbors.

On the one hand, these are extremely optimistic assump-
tions. On the other hand, this is extremely unoptimized
code, so we hope that the gains made through improving
the implementation will outweigh the overoptimism about
parallelism.

With these caveats in hand, we found that the operation for
a single domain with 19 neighbors to compute 11 rounds was
.13 seconds. This was on a 2.7 GHz quad-core machine with 8
GB of memory. The algorithm scales poorly as you increase
the number of neighbors (remember we don’t count stub
neighbors), but we expect this can be improved by increasing
the parallelization across these neighbors.

4 Discussion
Our experience with our SEPIA-based implementation sug-
gests that this approach may be feasible. We hope to confirm
this with additional work on the following topics:

• Improving the performance in the special case consid-
ered here with a from-scratch implementation of the
protocol.

• Investigating the performance when fully parallelized.

• Implementing route precomputation and investigating
its impact on under real network traces.

However, we think the most important implication of
this approach may be that, be breaking away from BGP’s
distributed computational framework, we can explore new
policy models that provide better stability and/or more
flexibility.
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