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ABSTRACT
We present a data-plane algorithm that passively and continuously
monitors the Round-Trip Time of TCP traffic, by matching data
packets with their associated acknowledgments and calculating a
time difference. Compared with traditional measurement systems
based on active probing or measuring only SYN/ACK packets, our
algorithm passively produces many samples for long-running con-
nections. This enables network operators to observe abnormal RTT
increases, which signal possible security or performance issues in
the network, in real-time. To satisfy the stringent memory size and
access constraints of programmable switches, our algorithm uses a
multi-stage hash table data structure to maintain records for in-flight
packets; the records not receiving their acknowledgments are lazily
expired and overwritten. We implement our algorithm on a Barefoot
Tofino programmable switch. Evaluation using a real-world traffic
trace from a 10 Gbps campus network link demonstrates that our
solution can accurately capture 99% of available RTT samples, using
only 4 MB of data-plane memory.
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1 INTRODUCTION
Round-Trip Time (RTT) is a key metric for network latency. An
increasing RTT not only affects user’s Quality of Experience, but
also indicates possible performance or security issues in the network,
such as congestion or routing changes. Although RTT statistics
are often readily available at end hosts [14, 15, 28], an Internet
Service Provider (ISP), such as a consumer broadband provider or
an enterprise network operator, does not have direct visibility into
the latency experienced by its customers. Even in a data center,
continuously monitoring RTTs at all hosts is costly. Yet, continuous
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Figure 1: Match data and ACK packets to measure RTT.

RTT monitoring would allow an ISP to better understand both the
security and performance of its network traffic:
• BGP Routing Security: When an attacker uses BGP routing at-

tacks [3, 19] to detour and intercept traffic, that traffic would likely
experience higher-than-normal RTT. Thus, unexpected changes
in the RTT to a remote host may signal a reroute, either due to
equipment failure, or a routing attack. Continuous RTT moni-
toring can help the ISP discover reroutes, even if the re-routing
happens further downstream.

• Detecting IP Spoofing: A spoofed IP address exhibits discordant
RTT values than the legitimate traffic from the same address,
therefore RTT can be used to improve the accuracy for IP spoofing
detection [13, 16].

• Service-Level Agreement (SLA): An ISP usually has RTT re-
quirements in its SLA with customers. For example, Verizon
agrees to set 45 ms and 30 ms as the maximum RTT of intra-
North-America and intra-Europe traffic, respectively [26, 27].
Monitoring RTT in real-time allows an ISP or its customer to
verify the RTT is within limits, or be notified about an upcoming
breach of the SLA.

• Quality of Experience (QoE): An ISP may want to measure the
QoE for customers using a variety of applications. Some appli-
cations such as video live-streaming are sensitive to high latency
and jitter [4], which can be captured in RTT measurements. An
increase in RTT may reflect persistent congestion and queuing on
peering links [8], which can inform an ISP to upgrade its equip-
ment for those links to better accommodate customers’ demand.
To measure RTT, network operators today rely on active measure-

ment tools such as NDT [10], PingMesh [12], and perfSONAR [22],
sometimes after a client reports a degradation in service quality.
Meanwhile, passive performance measurement tools (e.g., Ruru [7])
mostly report RTT samples based only on the three-way TCP con-
nection handshake. Such tools cannot capture the latency change
during long-running TCP connections such as video streaming. Also,
they may be biased when SYN/SYN-ACK packets are processed
differently than regular TCP packets; for example, SYN/SYN-ACK
packets might go through a middlebox or get delayed by the remote
server before accepting new connections.
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In this paper, we present an algorithm to continuously measure
RTT for all outgoing TCP packets, on a programmable switch at an
ISP vantage point, passively and continuously. Our algorithm does
this by matching an outgoing TCP packet using its sequence number
with an incoming packet that has the corresponding acknowledg-
ment number. As illustrated in Figure 1, our algorithm captures
RTT samples beyond the three-way handshake, allowing continuous
monitoring throughout a TCP session. Running in the data plane
of commodity programmable switches gives us the opportunity to
measure per-packet RTT in real-time, at a higher line rate. This
enables potential future work on real-time mitigation directly in the
data plane (e.g., reroute for further inspection) when RTT anomalies
are detected (e.g., IP spoofing).

Continuously monitoring RTT in the data plane has several unique
challenges. To achieve high throughput and constant-time process-
ing, the programmable switch imposes strict constraints, including
limited memory size and memory access pattern. We need to store
records for outgoing packets in the memory, then efficiently look
up these records to calculate RTT upon seeing incoming acknowl-
edgments (ACKs). Due to the TCP delayed ACK mechanism, some
packets never receive their corresponding ACKs, so we need to clean
up their records; some ACKs are delayed, which inflates RTT, so
we also need to filter them. Finally, as memory is limited in the data
plane, sometimes we cannot record every packet and inevitably lose
some RTT samples; we want to ensure the subset of RTT samples we
indeed measure are unbiased: a high-RTT packet with a late-arriving
ACK shall not be discriminated against, and it should have an equal
chance to be reported as the samples with lower RTT.

Our solution is to use a multi-stage hash table data structure that
performs “lazy garbage collection”, by assigning an expiration time
for each record and overwriting expired records only upon hash
collisions. For each outgoing packet, we record a fingerprint (a hash
of 5-tuple flow ID and expected ACK number) and a timestamp in
the hash table. The records matching with incoming packets pro-
duces RTT samples and are deleted, while those never matched
with incoming packets are considered expired based on their times-
tamps, and are overwritten when hash collisions occur. When the
data structure runs out of memory, it randomly rejects new records,
thus automatically achieves unbiased sub-sampling.

We have implemented our algorithm on a commodity programmable
switch using the P4 language [21]. We are in the process of deploy-
ing it in our local campus network. Our deployment will provide
researchers with valuable measurement data about RTTs “in the
wild,” while also giving the local network operators a useful tool for
diagnosing end-user performance problems in real-time.

The remainder of this paper is structured as follows. Section 2
introduces our RTT measurement algorithm based on multi-stage
hash tables, as well as some considerations in measuring real-world
TCP flows. In Section 3, we evaluate our algorithm for its accuracy
and resource requirements. Section 4 discusses some related work
on RTT monitoring, and we conclude the paper in Section 5.

2 MEASURING RTT IN THE DATA PLANE
In this section, we present our data-plane RTT monitoring technique
using a multi-stage hash table data structure.

2.1 Overview of Measuring TCP RTT
A TCP connection carries bi-directional data streams between two
end hosts. In our application scenario, one end host resides in our
local network and the other is a remote host, similar to [1]. At
the vantage point, we can see both incoming and outgoing TCP
packets, and observe TCP sequence (SEQ) and acknowledgment
(ACK) numbers. In particular, each outgoing TCP packet with non-
zero payload may be acknowledged by a future ACK number sent
from the remote host. We can then infer the round-trip time from the
vantage point to the remote host using the time difference between
the two packets. Note that we only consider the Internet leg of the
RTT and ignore the local leg from our vantage point to the local host,
which we consider negligible for a local ISP.

Thus, at our vantage point, we do the following:

(1) For each outgoing TCP packet with a unique expected ACK
number (eACK), we record its flow ID (IP address pair and port
pair), eACK (calculated using the SEQ number plus the payload
size), and a timestamp. Non-handshake packets that have no
payload are not recorded.

(2) For each incoming TCP packet, we look up our records using its
flow ID and ACK number. If we find a match, we subtract the
current time with the recorded outgoing timestamp to recover
an RTT sample from this packet.

2.2 Lazily Expiring Records
In reality, many TCP packets do not receive a corresponding ACK for
various reasons; for example, a remote host using the TCP “delayed
ACK” mechanism may only send one ACK for every two consecutive
data packets. A strawman solution that removes records only when
they are matched will soon find its memory filled up by stale records.
To efficiently use the limited memory space, we need to clean up the
records for the unmatched packets. Yet, if we clean the records too
aggressively, ACKs arriving long after the data packets may fail to
match their records, so we cannot produce RTT samples for high
RTTs.

We set an expiration threshold for all records: a record that was
not matched after a predetermined interval T_Expire will be con-
sidered stale and get evicted. Fortunately, as a record includes a
timestamp already, we do not need any extra memory to implement
this expiration mechanism. This threshold is set to be reasonably
larger than the RTT samples observed in a network to avoid prema-
turely removing records. For example, in Section 3 we set this to
500 ms as it corresponds to the 99th -percentile of the RTT samples
observed in our network, so we rarely under-sample high RTTs.

When we set T_Expire too small, an outgoing packet’s record
may get overwritten before the incoming packet can match it. When
T_Expire is too large, the algorithm’s memory fills up with useless
records, preventing the tracking of new packets that would produce
RTT samples later. Both cases result in missing a lot of RTT samples
unnecessarily. When T_Expire is set appropriately, the algorithm
uses its memory efficiently to store records and is not under memory
pressure.

It is, however, expensive to track all the records and actively
remove a record from the data structure once it expires. Therefore,
we lazily expire such records: if a record’s timestamp becomes too
old, it is overwritten by a future attempted insertion into the same
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(A->B, 1001) T=101
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Insert record

Match & erase
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Figure 2: We store a record for outgoing packets in a hash table.
An incoming packet can find its matching record, calculate its
RTT, and remove the record from the table.

location, making our data structure self-cleaning. As a bonus, this
mechanism allows producing RTT samples for packets with true
RTT higher thanT_Expire that were not removed immediately upon
expiration; observing many such samples implies a need to increase
T_Expire.

We assume the traffic at our vantage point exhibits a stable RTT
distribution, therefore we only need to set the constant T_Expire
once for any given vantage point. However, if the RTT distribu-
tion changes frequently and significantly, we may need to adjust
T_Expire on the fly, based on the observed RTT distribution. We
leave the adaptive adjustment of T_Expire as future work.

2.3 Multi-stage Hash Table
Programmable switches are constrained in how they access their
data-plane memory, as surveyed in prior works [2, 18]. In particular,
the amount of memory available in a hardware pipeline stage is
limited, and an algorithm can only perform a limited number of
memory accesses per stage.

In this paper, we present a novel implementation of hash tables in
the data plane to store the records of outgoing packets. Unlike prior
works that utilize hash table-based data structure to aggregate data,
our implementation uses the tables to perform a join of outgoing and
incoming packet streams in the data plane. Our algorithm also lazily
cleans expired entries to further reduce workload.

In our use case, a strawman solution can use a simple one-stage
hash table to store packets, as illustrated in Figure 2:
(1) For outgoing packets, we compute a memory address using the

hash function. If the location is empty or the existing record
has expired, we write the record tuple (f id, eACK , timestamp);
otherwise, we record nothing.

(2) For incoming ACKs, we calculate the same hash-based address
to retrieve the recorded tuple, check if the flow ID and eACK
matched, and finally compute the RTT based on the recorded
timestamp. If the ACK does not match the recorded tuple, we
do not compute an RTT sample.

In the example shown in Figure 2, an outgoing packet with flow ID
A->B, sequence number 1001 and length 3 arrives at time T = 105.
We first compute its expected acknowledgment number eACK =
1001 + 3 = 1004, then use a hash function to find its location in the
table h(f lowID, eACK) = 2, and insert a record into the 2nd row of

Stage 1 Stage 2 Stage 3 Stage 4
Occupied Occupied
Expired Expired Occupied
Occupied Occupied
Occupied Expired Occupied

Occupied Occupied Inserted
Occupied

Outgoing
Packet

Insert record

h2(fid, eACK)
h3(fid, eACK)

h4(fid, eACK)
h1(fid, eACK)

Figure 3: In the multi-stage hash table, each stage uses a differ-
ent hash function to calculate the location.

the table. Later, an incoming packet with flow ID B->A and ACK
number 1004 may arrive, to match with (and erase) this record.

For an incoming packet with flow ID C->A and ACK number
1050, arriving at T = 125, we first reverse its flow ID into A->C,
and find a location using the hash function h(f lowID,ACK) = 4.
Then, we verify that the record stored in the 4th row indeed matched
the incoming packet, and read the stored timestamp 122. We now
report an RTT sample 3 for flow A->C, and erase this record from
the table.

However, the strawman solution suffers from the maximum mem-
ory size limit of a single pipeline stage. Furthermore, due to memory
access constraints in the data plane, each packet has only one chance
to be inserted into the table, and cannot be saved upon a hash colli-
sion with another entry.

Therefore, we use multiple memory arrays spread across different
pipeline stages to implement a multi-stage hash table; as before, each
table stores record tuples of (f id, eACK , timestamp). Note that we
use different independent hash functions for addressing in each table,
which further reduces the impact of hash collisions. We optimize
the algorithm’s memory space demand by using a fingerprint hash
function H to produce and store a 32-bit fingerprint H (f id, eACK)
in the hash tables, instead of the 128-bit original form. For incoming
packets, we reverse the flow ID to produce the same fingerprint
H (f id,ACK) as their matching outgoing packets.

In Figure 3, we illustrate the process of inserting a record for
an outgoing packet into a S=4-stage hash table. We note that eval-
uation in Section 3.3 showed that S = 3 or S = 4 yield the most
performance improvements given the same total memory space,
while having more stages provides diminishing returns. Given the
packet’s flow ID and expected ACK number, different hash functions
h1,h2,h3 and h4 selects four locations in each stage independently.
The algorithm first attempts to insert a record into the first stage, at
address h1(f id, eACK) = 4; since it is currently occupied and the
current entry has not expired yet, the insertion fails. It subsequently
tries inserting into the 2nd and 3th stage, before successfully in-
serting the record into an empty location at 4th stage. If all four
locations are occupied and unexpired, the outgoing packet will not
be recorded.

Likewise, for incoming packets, the algorithm checks all four
locations to see if they hold a matching record. Any matched record
will be cleared, and the RTT is computed. If no matching record
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was found across all 4 stages, no RTT sample is produced for this
incoming packet.

In Section 3, we evaluate the effect of changing the number of
tables and their sizes on the algorithm’s success rate.

2.4 Analyzing and Reporting
In our prototype implementation, once we obtain an RTT sample, we
report it alongside the packet’s flow ID to the switch control plane. It
is also possible to aggregate the RTT samples based on destinations
(defined by IP blocks or domain names), and subsequently calculate
the RTT distribution for each remote destination in the data plane
in real-time. The switch can report only the aggregated statistics for
each IP block, saving the throughput required for reporting each and
every RTT sample.

Network operators may specify an expected RTT distribution for a
particular destination, and get notified when the distribution deviates
significantly. This allows timely detection of SLA violations or BGP
hijacks. Detecting these violations in the data plane opens up the
possibility of the switch taking immediate action, e.g., to re-route
the traffic to a faster or more secure alternative path. We leave this
as future work.

2.5 Challenges with Measuring RTT
Bidirectional traffic. Our vantage point must see both directions of
the data stream. This assumption is true for most local ISPs, however
at Internet scale the outgoing and incoming traffic may traverse
different paths due to asymmetric routing.

Outgoing traffic. Each RTT sample requires a unique outgoing
SEQ number, thus the outgoing packets cannot have zero payload
length. Therefore, we need some amount of data sent in the outgoing
direction; a pure incoming TCP flow, such as downloading a large
file from a remote server, does not produce RTT samples beyond the
initial handshake.

However, we should note that many modern user applications like
web apps, video streaming, etc., include two-way traffic for tracking
or control purpose. In particular, web-based video playback (such as
Netflix) are often chunk-based, with the browser requesting 5-second
or 15-second chunks periodically, thus we can expect outgoing data
(and hence RTT samples) every 5 or 15 seconds.

Delayed ACK. Delayed ACK is an optimization used by some
TCP implementations to combine an acknowledgment packet with
response traffic. By not immediately sending back an ACK packet
for incoming data, the host has an opportunity to piggyback future
response data with this acknowledgment. When there is no response
to send, a delayed ACK timer will timeout, usually after 50 ms, and
an ACK packet with no piggybacked data will be sent. The hosts
also immediately send out the ACK after receiving two consecutive
full-sized packets. A packet receiving a delayed ACK produces an
artificially higher RTT sample since it includes the delay timeout.
To avoid producing biased RTT samples, we need to filter packets
that experience a delayed ACK. Rather than track the TCP state
machine for each flow, we use a very simple heuristic: the full-sized
packets typically do not suffer from delayed ACKs, as end hosts
are not allowed to delay ACKs when receiving two consecutive full-
sized packets. To further ease implementation, we avoid tracking

Maximum Transmission Unit (MTU) or TCP’s negotiated Maximum
Segment Size (MSS) for each flow, but rather assume a packet is
full-sized if its length is one of several commonly used MTUs (e.g.
1440, 1500, etc.); the user can choose to only report RTT samples
produced by outgoing packets with these sizes.

Stretch ACK. Due to delayed ACK, we expect observing one in-
coming ACK for every two data packets. Yet, the server may send
even fewer ACK packets, and this practice is referred to as Stretch
ACK [17]. As we discussed earlier, packets not receiving correspond-
ing ACKs create stale hash-table entries, which are automatically
removed when they expire. Meanwhile, the effect of Stretch ACKs
on RTT measurement accuracy has been studied previously by [9].

Selective ACK and retransmissions. When a packet is lost, TCP
will re-transmit the packet after seeing duplicated ACKs; we may
observe two identical outgoing packets in this case. If there are pack-
ets with larger SEQ numbers already delivered, the acknowledgment
for the re-transmitted packet will directly jump to a much later ACK
number than its eACK . The re-transmitted packet will not produce
an incorrect RTT sample, however the resulting ACK packet may
produce an inflated RTT sample, as it could be matched with an ear-
lier data packet. TCP implementations may also send Selective ACK
(SACK) upon packet drops to acknowledge subsequent packets; the
SACK packet will share the same ACK number as an earlier normal
ACK packet, which would have erased the matching record. Thus,
our algorithm will not produce an incorrect RTT sample for these
SACK packets.

Sampling under memory pressure. In Section 3, we show that our
prototype tracks >99% of RTT samples using a moderate amount
of data-plane resources. However, if the monitored link rate grows
faster and average RTT grows higher, our algorithm needs more
memory to save in-flight records and achieve adequate accuracy.
Also, data-plane memory may be shared among other measurement
applications running in the data plane, further limiting the mem-
ory available for RTT measurement. When memory is insufficient,
records for new outgoing packets cannot be inserted into the data
structure, which is filled up by unmatched and unexpired records.
However, since records are naturally expiring and the location for
insertion is pseudo-random (determined by hash functions), some
records will be inserted successfully when their randomly chosen lo-
cation aligns with a just-expired record. In effect, a random fraction
of outgoing packets are automatically sampled, and the algorithm
produces an unbiased sample subset of RTT measurements.

As an alternative to the packet-level sampling, we can also ran-
domly sample a small fractions of flows or IP addresses, and only
insert their records into the hash table data structure. This way, we
can accurately measure the RTT distribution for the fraction of flows
or IP addresses sampled.

Security. As a proof of concept, our current data plane implemen-
tation uses simple hash functions and fixed expiration threshold.
An attacker who can inject traffic into the measured network may
manipulate the outgoing and incoming packets, to either deliberately
cause hash collisions and evade RTT measurement, or maximize the
algorithm’s memory consumption by controlling the RTT to be just
below the fixed threshold. To defend against such adversarial traffic,
we should use a more secure hash function implementation in the
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data plane, and introduce random expiry for hash table entries; we
leave these as future work.

3 EVALUATION
We implement our RTT measurement algorithm and multi-stage
hash table data structure on a Barefoot Tofino programmable switch
using P416 [21]. Our implementation has approximately 600 lines
of code, and is open-sourced on GitHub1. We also implement the
identical algorithm in a Python-based simulator, which allows us
to arbitrarily adjust table sizes and the number of tables, beyond
hardware limitations.

We use different variants of the CRC16 function (with different
polynomials) to calculate indices in hash tables, and use the CRC32
function to calculate packet fingerprints. Since each record consists
of a 32-bit nanosecond-precision timestamp and a 32-bit fingerprint
hash, a S=8 tables, 64k records-per-table configuration uses S+1=9
hash function computations and 8 ⇥ 2 ⇥ 32bit ⇥ 64k=4096KB of
data-plane memory, both less than 50% of total capacity. To verify
our algorithm can report RTT samples under a realistic workload,
we collected a bi-directional traffic trace from a vantage point in
a university campus network, which is also a future deployment
site of the algorithm. We subsequently use the trace to evaluate the
effectiveness of our RTT monitoring algorithm using the simulator,
under various table sizes and number of stages.

3.1 Dataset and Method
We captured a bi-directional traffic trace from a 10 Gbps peering
link between a border router of a university campus network and
a local ISP. The traffic trace has been anonymized and sanitized to
obfuscate personal data before being used by researchers, and our
research has been approved by the university’s institutional review
board.

The trace contains 1 million TCP packets and lasts 1.10 second.
It contains 11,085 unique TCP flows, with a mean and median IP
packet size of 1100 and 1500 bytes, respectively; about 58% of
packets are likely MTU-sized (longer than 1450 bytes).

After tagging packets as incoming or outgoing based on IP prefix,
we calculated the ground truth RTT samples by matching TCP
sequence and acknowledgment numbers. The trace contains 0.6
million outgoing packets, 0.4 million incoming packets, and 71K
pairs of RTT samples. The median RTT for all samples is 44 ms.
We plot the RTT distribution we observed in the trace in Figure 4.
As a back-of-envelope calculation, reporting all 71k RTT samples
to the control plane in real time (using 32-bit timestamps) requires
2.07 Mbps of additional throughput; reporting the RTT samples in
lieu with the 12-byte flow ID requires 8.28 Mbps, a moderate fraction
compared with the 10 Gbps line rate. We expect the throughput
required for processing samples to grow proportionally when we
scale up the measurement effort at a vantage point with multiple
100 Gbps links.

In the following experiments, we use 500ms as the stale threshold
(corresponding to 99th percentile of all RTT samples), and investi-
gate our algorithm’s success rate under various table size configura-
tions. The success rate is determined by how many incoming packets
are matched with a record (out of those having ground truth RTTs,

1https://github.com/Princeton-Cabernet/p4-projects/tree/master/RTT-tofino

Figure 4: The histogram and Cumulative Distribution Function
(CDF) of the RTTs observed in our experiment trace, collected
from a university network border router.

Figure 5: As we allocate more memory to each hash table, the
algorithm achieves higher read success rate, defined as the num-
ber of RTT samples correctly produced divided by total possible
RTT samples.

i.e., theoretically could have matched with a record of an outgoing
packet).

3.2 Table Size
We first investigate the relationship between the size of multi-stage
hash table, which directly relates to our algorithm’s memory foot-
print, to the percentage of successful matches. We now vary the size
of each hash table, and check how it affects the algorithm’s success
rate for reporting all RTT samples. We define Read Success Rate
as the number of incoming packets successfully matched with a
recorded timestamp stored in the data structure, divided by the total
number of RTT samples available in the ground truth.

As can be seen from Figure 5, when our hash table grows larger,
the likelihood of a hash collision between non-expired records de-
creases, therefore more outgoing packets can be recorded and more
incoming packets can successfully match with a record. We can reach
over 99% of successful matches when using 8 tables with 65,536
entries, which corresponds to 4,096 KB of data plane memory, less
than half of the total available in our switches.
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Figure 6: When splitting the same total memory across multi-
ple stages, using S=3 or 4 tables yield the most significant im-
provement over using a single table, with diminishing return
afterwards.

3.3 Optimal Number of Table Stages
We now investigate the optimal number of tables to use in the multi-
stage hash table, given a fixed total memory size, to quantify the
benefit of using multiple stages. In this experiment, we fix total
memory size and divide it by varying the number of stages; for
example, splitting 64k records into S=2 stages means having 32k
records per table, while using S=7 stages will have 9.1k records in
each table.

Figure 6 shows that the read success rate saturates at S=3 to 4
stages, under a fixed total memory size constraint. Having more than
four stages yields diminishing returns, as the memory in later stages
is underutilized. We note that the configurations in Figure 6 use a
smaller total memory size than most points appearing in Figure 5,
therefore they exhibit lower read success rate. Turkovic et.al. [24]
explored the idea of using different table sizes per stage to achieve
higher memory utilization; we leave this as future work.

4 RELATED WORK
Active/host-based measurements. Several works have explored
measuring RTT from end-hosts. PingMesh [12] and NetBouncer [20]
monitors the health of data center networks, including RTT, by
using end hosts (or VM hypervisors) as vantage points to send and
receive probe packets. However, unlike data center networks, ISPs
do not have control over end-hosts, thus cannot run agents on them.
Furthermore, active measurement tools add extra probing traffic into
the network.

RTT measurement at ISP vantage points. Aikat et.al [1] mea-
sured the RTT experienced by campus network users by capturing
traffic at a border link and later analyzing the traffic to match out-
going TCP packets with corresponding acknowledgments. This pre-
vious work shows the presence of significant variability in RTTs in
a TCP connection, motivating our work to monitor this variability
in real-time. Ruru [7] is a system that passively measures the RTT
of TCP handshake packets at ISP vantage points. Yet Ruru does not
measure RTTs for subsequent packets in long-running TCP connec-
tions.Veal et.al. [25] proposed a method to measure RTT beyond

handshakes at an intermediate vantage point. However, it requires
a modification to a TCP packet to add a timestamp option. It also
depends on the recipient host to echo this timestamp.

Measuring RTT on a programmable switch. Dapper [11] is a
TCP monitoring tool that tracks various metrics, including RTT,
in the data plane. Dapper produces accurate measurements for the
tracked flows, but it can only track a single outgoing packet per
congestion window for RTT measurement, and must wait until that
packet’s acknowledgment arrives before recording another outgoing
packet for the flow. Our algorithm does not limit the number of
outgoing packet records stored for each flow; a flow can produce as
many RTT samples as possible as long as the memory space permits.

Hash table data structure. Our multi-stage hash table data struc-
ture is motivated by prior works on data-plane algorithms for pro-
grammable switches. Count-Min Sketch [6] is a data structure made
of several hash-indexed counter arrays, and is often used for esti-
mating flow sizes and detecting heavy hitters. HashPipe [18] and
PRECISION [2] designed more sophisticated multi-stage hash tables
for heavy-hitter detection, with each record storing a hashed flow
ID and a counter. Such data structures, however, are not suitable for
continuous RTT monitoring as they are. An RTT sample is produced
only when a corresponding acknowledgment arrives, thus a naive
implementation of such data structure quickly gets populated by
useless entries. Our multi-stage hash table implements an efficient
garbage collection scheme by deleting expired entries upon hash
collision, which addresses the issue caused by the delayed ACK
mechanism. To the best of our knowledge, we are the first to imple-
ment a multi-stage hash table data structure for computing RTT in
the data plane. Also, our approach is unique in the sense that entries
in the hash table are automatically expired and lazily cleaned.

Non-TCP traffic. Google proposed QUIC [5], a UDP-based trans-
port alternative to TCP. QUIC encrypts its packet header fields,
which prevents an ISP from performing RTT measurement based on
SEQ/ACK matching. The QUIC standardization body is planning
to add a “spin bit” [23] specifically for RTT measurement at ISP
vantage points.

5 CONCLUSION
We present an algorithm to track the per-packet Round-Trip Time of
TCP traffic in a commodity programmable switch using a multi-stage
hash table data structure. Our algorithm successfully reports over
99% of all RTT samples, in a traffic trace collected from a 10 Gbps
peering link of a campus network. Our evaluation also shows that
using three to four stages in our hash table structure achieves the best
performance for RTT monitoring, given the same amount of total
memory. We are currently deploying continuous RTT monitoring on
our university campus network. For future work, we plan to integrate
real-time RTT samples with anomaly detection and other routing
change detection techniques.

6 ACKNOWLEDGMENTS
This research is supported by NSF Awards CNS-1704077. We sin-
cerely thank the anonymous reviewers, as well as David Walker,
Liang Wang, Shir Landau Feibish, Robert MacDavid, Mary Hogan,
and Ross Teixeira, for their helpful comments and feedback.



Measuring TCP RTT in the Data Plane SPIN’20, August 14, 2020, Virtual Event, NY, USA

REFERENCES
[1] Jay Aikat, Jasleen Kaur, F Donelson Smith, and Kevin Jeffay. 2003. Variability

in TCP round-trip times. In ACM SIGCOMM Internet Measurement Conference.
279–284.

[2] Ran Ben-Basat, Xiaoqi Chen, Gil Einziger, and Ori Rottenstreich. 2018. Efficient
Measurement on Programmable Switches Using Probabilistic Recirculation. In
IEEE ICNP. 313–323.

[3] Henry Birge-Lee, Liang Wang, Jennifer Rexford, and Prateek Mittal. 2019. SICO:
Surgical Interception Attacks by Manipulating BGP Communities. In ACM
SIGSAC Conference on Computer and Communications Security.

[4] Francesco Bronzino, Paul Schmitt, Sara Ayoubi, Guilherme Martins, Renata
Teixeira, and Nick Feamster. 2020. Inferring Streaming Video Quality from
Encrypted Traffic: Practical Models and Deployment Experience. ACM SIGMET-
RICS (2020).

[5] Gaetano Carlucci, Luca De Cicco, and Saverio Mascolo. 2015. HTTP over
UDP: an Experimental Investigation of QUIC. In ACM Symposium on Applied
Computing. 609–614.

[6] Graham Cormode and S. Muthukrishnan. 2005. An improved data stream sum-
mary: The Count-Min Sketch and its applications. Journal of Algorithms 55, 1
(2005), 58–75.

[7] Richard Cziva, Christopher Lorier, and Dimitrios P Pezaros. 2017. Ruru: High-
speed, Flow-level Latency Measurement and Visualization of Live Internet Traffic.
In ACM SIGCOMM Posters and Demos. 46–47.

[8] Amogh Dhamdhere, David D Clark, Alexander Gamero-Garrido, Matthew Luckie,
Ricky KP Mok, Gautam Akiwate, Kabir Gogia, Vaibhav Bajpai, Alex C Sno-
eren, and Kc Claffy. 2018. Inferring persistent interdomain congestion. In ACM
SIGCOMM. 1–15.

[9] Hao Ding and Michael Rabinovich. 2015. TCP stretch acknowledgements and
timestamps: findings and implications for passive RTT measurement. ACM
SIGCOMM Computer Communication Review 45, 3 (2015), 20–27.

[10] Constantine Dovrolis, Krishna Gummadi, Aleksandar Kuzmanovic, and Sascha D
Meinrath. 2010. Measurement Lab: Overview and an invitation to the research
community. ACM SIGCOMM Computer Communication Review 40, 3 (2010),
53–56.

[11] Mojgan Ghasemi, Theophilus Benson, and Jennifer Rexford. 2017. Dapper: Data
plane performance diagnosis of TCP. In ACM SIGCOMM Symposium on SDN
Research (SOSR). ACM, 61–74.

[12] Chuanxiong Guo, Lihua Yuan, Dong Xiang, Yingnong Dang, Ray Huang, Dave
Maltz, Zhaoyi Liu, Vin Wang, Bin Pang, Hua Chen, et al. 2015. Pingmesh: A
large-scale system for data center network latency measurement and analysis. In
ACM SIGCOMM, Vol. 45. ACM, 139–152.

[13] Ritu Maheshwari, C Rama Krishna, and M Sridhar Brahma. 2014. Defending net-
work system against IP spoofing based distributed DoS attacks using DPHCF-RTT

packet filtering technique. In International Conference on Issues and Challenges
in Intelligent Computing Techniques (ICICT). IEEE, 206–209.

[14] Matt Mathis, John Heffner, and Rajiv Raghunarayan. 2007. RFC4898: TCP
extended statistics MIB. IETF (2007).

[15] Matt Mathis, John Heffner, and Raghu Reddy. 2003. Web100: Extended TCP
instrumentation for research, education and diagnosis. ACM SIGCOMM Computer
Communication Review 33, 3 (2003), 69–79.

[16] Ayman Mukaddam and Imad H Elhajj. 2012. Round trip time to improve hop count
filtering. In Symposium on Broadband Networks and Fast Internet (RELABIRA).
IEEE, 66–72.

[17] Vern Paxson. 1997. Measurements and analysis of end-to-end Internet dynamics.
PhD Thesis, UC Berkeley (1997).

[18] Vibhaalakshmi Sivaraman, Srinivas Narayana, Ori Rottenstreich, S. Muthukrish-
nan, and Jennifer Rexford. 2017. Heavy-Hitter Detection Entirely in the Data
Plane. In ACM SIGCOMM Symposium on SDN Research. 164–176.

[19] Yixin Sun, Anne Edmundson, Laurent Vanbever, Oscar Li, Jennifer Rexford,
Mung Chiang, and Prateek Mittal. 2015. RAPTOR: Routing Attacks on Privacy
in Tor. In USENIX Security Symposium. 271–286.

[20] Cheng Tan, Ze Jin, Chuanxiong Guo, Tianrong Zhang, Haitao Wu, Karl Deng,
Dongming Bi, and Dong Xiang. 2019. NetBouncer: Active Device and Link
Failure Localization in Data Center Networks. In NSDI. 599–614.

[21] The P4 Language Consortium. 2018. P416 Language Specification. https://p4.org/
p4-spec/docs/P4-16-v1.1.0-spec.html. (Nov. 2018).

[22] Brian Tierney, Joe Metzger, Jeff Boote, Eric Boyd, Aaron Brown, Rich Carlson,
Matt Zekauskas, Jason Zurawski, Martin Swany, and Maxim Grigoriev. 2009. perf-
Sonar: Instantiating a global network measurement framework. SOSP Workshop
on Real Overlays and Distributed Systems (2009).

[23] Brian Trammell and Mirja Kuehlewind. 2019. The QUIC Latency Spin Bit. IETF
Internet Draft (2019). https://tools.ietf.org/html/draft-ietf-quic-spin-exp-01

[24] Belma Turkovic, Jorik Oostenbrink, and Fernando Kuipers. 2019. Detecting
Heavy Hitters in the Data-plane. arXiv preprint arXiv:1902.06993 (2019).

[25] Bryan Veal, Kang Li, and David Lowenthal. 2005. New methods for passive
estimation of TCP round-trip times. In International Workshop on Passive and
Active Network Measurement. Springer, 121–134.

[26] Verizon. 2020. IP Latency Statistics. (2020). https://enterprise.verizon.com/terms/
latency/ Accessed: 2020-04-29.

[27] Verizon. 2020. Service Level Agreements. (2020). http://www.verizonenterprise.
com/solutions/public_sector/state_local/contracts/calnet3/sla/ Accessed: 2020-04-
29.

[28] Minlan Yu, Albert G Greenberg, David A Maltz, Jennifer Rexford, Lihua Yuan,
Srikanth Kandula, and Changhoon Kim. 2011. Profiling Network Performance
for Multi-tier Data Center Applications.. In NSDI, Vol. 11. 5–5.


