
Scalable Real-Time Bandwidth Fairness in Switches
Robert MacDavid, Xiaoqi Chen, Jennifer Rexford

Princeton University, Princeton, NJ, USA. {macdavid,xiaoqic,jrex}@cs.princeton.edu

Abstract—Network operators want to enforce fair bandwidth
sharing between users without solely relying on congestion
control running on end-user devices. However, in edge networks
(e.g., 5G), the number of user devices sharing a bottleneck link
far exceeds the number of queues supported by today’s switch
hardware; even accurately tracking per-user sending rates may
become too resource-intensive. Meanwhile, traditional software-
based queuing on CPUs struggles to meet the high throughput
and low latency demanded by 5G users.

We propose Approximate Hierarchical Allocation of Band-
width (AHAB), a per-user bandwidth limit enforcer that runs
fully in the data plane of commodity switches. AHAB tracks
each user’s approximate traffic rate and compares it against
a bandwidth limit, which is iteratively updated via a real-time
feedback loop to achieve max-min fairness across users. Using a
novel sketch data structure, AHAB avoids storing per-user state,
and therefore scales to thousands of slices and millions of users.
Furthermore, AHAB supports network slicing, where each slice
has a guaranteed share of the bandwidth that can be scavenged
by other slices when under-utilized. Evaluation shows AHAB can
achieve fair bandwidth allocation within 3.1ms, 13x faster than
prior data-plane hierarchical schedulers.

Index Terms—P4, SDN, Network Slicing, Fair Queuing.

I. INTRODUCTION

Fair bandwidth allocation between users is an important
goal for network operators, since a minority of users demand-
ing too much bandwidth should not negatively affect other
users’ quality of service. Yet, leaving bandwidth allocation
entirely to congestion control running on end hosts may
lead to unfair allocation between different congestion control
algorithms. Fair bandwidth allocation is, therefore, a necessary
function of the core network. As modern networks scale
to higher speed and more users, implementing per-user fair
bandwidth allocation becomes increasingly more challenging.

Network slicing is a network feature that allows an operator
to divide its network resources into many virtualized net-
works. Slicing enables operators to rapidly create new service
offerings for different markets, while achieving performance
isolation and quality-of-service guarantees between different
slices. To support slicing, the network needs to implement both
intra-slice fairness where different users within the same slice
gets a fair share of the slice’s bandwidth, as well as inter-
slice fairness where each slice gets its share of bandwidth
proportional to its specified weight. Meanwhile, the idle ca-
pacity from underutilized slices must also be fairly distributed
to other over-subscribed slices.

One real-life example of a sliced network is the mobile
access network. As IoT and 5G becomes prevalent, we face
scalability challenges in implementing fairness. A base station
may serve 100-1000 user devices, which belong to different

classes of services (IoT, smartphones, mobile broadband, first
responders, etc.) and have different usage patterns. Each slice
(class of service) gets its guaranteed share of bandwidth;
when a slice has few active users, its unused bandwidth can
be distributed to users in other slices. Meanwhile, we want
different users within the same slice to fairly share the limited
physical-layer bandwidth: every user in the same slice should
be allocated the same maximum bandwidth limit, which should
be increased or decreased in real time based on both the
number of active users in the slice and the total bandwidth
allocated to the slice.

The slice-based fairness paradigm also exists in other sce-
narios. A data-center network operator may slice its network
capacity into multiple classes of service (free tier, spot in-
stances, enterprise customers, etc.) and allocate bandwidth
fairly between different tenants within the same slice. Like-
wise, a network-layer DDoS mitigation mechanism might slice
the network to serve different websites, and fairly allocate the
bandwidth between all (potentially malicious) clients visiting
a particular website.

In all of these example use cases, the number of users
within each network slice (from thousands to millions) far
exceeds the number of hardware queues available on today’s
networking hardware, which commonly supports 8-32 queues
per port. In today’s mobile network, client rate-limiting and
scheduling are sometimes implemented as a virtual network
function running on server CPUs [9]. Such a setup supports
versatile scheduling policies, yet it requires many CPU cores to
serve high-speed traffic and often adds latency and jitter to the
traffic. Meanwhile, maintaining ultra-low latency for latency-
sensitive applications is one of the most important features in
5G and next-generation 6G networks, which already achieves
sub-10ms end-to-end latency [15, 18].

The emergence of high-speed programmable network de-
vices had enabled implementing Active Queue Management
(AQM) algorithms directly in the switch data plane [13,
17, 20, 21]. Although recent works [10, 12] have offloaded
many mobile core network functionalities onto programmable
switches, traffic scheduling is a notable exception. To the
best of our knowledge, no existing work has attempted to
offload scalable slice-based fair bandwidth allocation to high-
speed programmable switches. Cebinae [19] enforces long-
term fair bandwidth allocation but takes seconds to converge.
HCSFQ [21] supports slice-based fair bandwidth allocation
but requires per-user memory to monitor each user’s sending
rate; this not only adds control-plane overhead for adding and
removing users, but also leads to scalability challenges given
the limited amount of memory in the data plane.

There are two main challenges for running fair bandwidth
allocation directly within the data plane of high-speed pro-
grammable switches. Firstly, the available memory is insuf-
ficient for maintaining per-user state. We therefore need to
use approximate data structures, whose memory footprint
scales sub-linearly with the number of users (as discussed
in § IV). Secondly, we can only perform a limited set of
arithmetic operations in the data plane. We use lookup tables
to implement approximated multiplication and division, which
is then used for calculating linear interpolation. This enables
us to implement real-time, closed-loop iterative update for the
per-user bandwidth limit (as discussed in § V). Finally, without
using separate queues for each user, we enforce per-user
bandwidth limits via probabilistic packet dropping, achieving
approximate fair bandwidth allocation.

In this paper, we present Approximate Hierarchical Alloca-
tion of Bandwidth (AHAB), a hierarchical per-user bandwidth
limit enforcer directly implemented in the data plane of
programmable switch hardware. AHAB dynamically adjusts
the per-user bandwidth limit for each slice in real time,
calculated using max-min fairness with the bandwidth demand
of all users across all slices. The novelty of AHAB can be
summarized as follows:
• Scalability: By using a novel approximate data structure,

AHAB avoids maintaining per-user state in data-plane
memory, thereby supporting millions of simultaneous users.

• Fast Convergence: When user traffic changes, AHAB’s
interpolation-based iterative bandwidth limit update con-
verges to fair bandwidth allocation within 3.1ms, 13x faster
than prior work [21].

• Precise Enforcement: We use probabilistic dropping to
precisely enforce bandwidth limits. This allows users to
steadily send at the fair rate observing the bandwidth
limit, without requiring hardware queues to pace packets
as needed by prior work.

• One-stop Bandwidth Allocation: AHAB supports an ar-
bitrary number of hierarchy levels. Therefore, a single
instance of AHAB in the core network can rate-limit traffic
correctly to adhere to all downstream bandwidth bottle-
necks. This is highly useful when downstream devices do
not support sophisticated scheduling policies (e.g., legacy
routers or thin Wi-Fi access points), or when the network
operator is unable to arbitrarily adjust device configura-
tions, possibly because the core and downstream networks
are managed between different administrative entities (e.g.,
MVNOs and wireless carriers).

The rest of this paper is structured as follows. §II defines the
hierarchical fair bandwidth allocation problem. §III presents
an overview of AHAB’s division of labor between control
and data plane. §IV discusses how AHAB overcomes the
scalability challenge by avoiding per-user memory using a
customized approximate data structure, while §V describes
how AHAB approximately calculates an interpolation-based
bandwidth limit update given the arithmetic constraints in
the data plane. Evaluation in §VI demonstrate that AHAB
converges to a fair bandwidth allocation quickly within 5 ms,

Fig. 1. We calculate and enforce per-user bandwidth limit Tn for all users
in slice n, so that their total bandwidth consumed is equal to capacity Cn.

achieving both fairness and throughput stability. We discuss
related work in §VII and conclude in §VIII.

II. HIERARCHICAL FAIR BANDWIDTH ALLOCATION

AHAB needs to allocate a network slice’s available band-
width fairly between all users in different slices based on max-
min fairness. Here we reuse the same problem definition as in
earlier works [21]. For simplicity of discussion, for now we
assume all users and slices in our system have equal weight,
although it is trivial to add weights and allocate bandwidth
proportionally. Let us denote slice n’s set of users as child(n)
(its “children” in the scheduling hierarchy). We also define
each user m’s bandwidth demand as Rm, sorted and plotted
in Figure 1, and the total demand

∑
m∈child(n) Rm. When total

demand exceeds the slice’s capacity Cn, we can calculate a
per-user bandwidth limit according to max-min fairness:

Tn = argmax
T

∑
m∈child(n)

min(T,Rm) ≤ Cn. (1)

If we plot the limit Tn as a horizontal line in Figure 1, the
shaded area under the intersection of Tn and the demand curve
has area equal to the capacity Cn. Finding the right bandwidth
limit Tn under max-min fairness is equivalent to finding the
right “horizontal cut” across the demand curve.

Meanwhile, some slices may have idle capacity after de-
mand from all users are satisfied. AHAB needs to re-allocate
these unused bandwidth to other over-subscribed slices and
adjust their capacity Cn upwards, similarly according to max-
min fairness. This builds a two-level scheduling hierarchy.
Although two scheduling levels are sufficient for many use
cases (slices/users in mobile networks, tenants/VMs in data
center networks, etc.), we can also define three or four levels.
In the interest of space, we omit detailed examples and how
to solve for the fair allocation; we refer interested readers to
[3, 7, 14, 21] for a more comprehensive introduction.

III. AHAB SYSTEM OVERVIEW

Figure 2 illustrates the basic design of AHAB. At a high
level, we split the bandwidth allocation process into a fast-
reacting data plane component and a more sophisticated
control-plane component for hierarchical updates.

Fig. 2. The control plane maintains inter-slice fairness by periodically reading
each slice bandwidth demands Dn and writing fair capacities Cn; the data
plane keeps intra-slice fairness by iteratively updating bandwidth limits Tn.

Data Plane: Intra-slice Fairness. To quickly react to changes
in individual user’s traffic, AHAB calculates iterative updates
for the per-user bandwidth limit Tn fully within the data plane,
using approximated linear regression. This allows the intra-
slice bandwidth allocation to converge within milliseconds
after a user starts or stops sending, much faster than updating
using the switch control plane.

Since it is impossible to perfectly predict the constantly
changing per-user traffic demand, AHAB splits the traffic into
very small time epochs (on the order of milliseconds) and uses
the demand distribution in the past epoch as a prediction for
the next epoch. At the end of each epoch, we use this demand
distribution (as illustrated in Figure 1) to iteratively refine the
per-user bandwidth limit Tn, such that the total bandwidth
used by all users in the slice will be equal to the capacity Cn.
Control Plane: Inter-slice Fairness. The control plane peri-
odically reads the per-slice total bandwidth demand Dn cal-
culated by the data plane and writes the updated per-slice fair
allocation capacity Cn to the data plane, on the order of once
every 10-20ms. Surplus bandwidth from underutilized slices
is reallocated to other slices using max-min fairness (§II).

Thanks to statistical multiplexing, the aggregated bandwidth
demand of different slices changes on a longer timescale.
Therefore, the slightly slower update of capacities has little im-
pact on maintaining intra-slice fairness. Note that the allocated
capacities only changes when some slices are underutilized.

IV. SCALING BEYOND MEMORY LIMITS

In this section, we discuss how AHAB overcomes the
scalability challenge imposed by hardware memory size limits.
We first discuss how the bandwidth limit Tn is enforced on
each user using their estimated sending rates. Subsequently,
we show how AHAB avoids allocating per-user memory, using
a novel approximate data structure that combines Count-Min
Sketch with Low-Pass Filters to estimate per-user sending
rates. Finally, we discuss how we share one approximate data
structure across all slices using weight-based normalization.

A. Enforcing Bandwidth Limits

For the entire scheduling hierarchy to achieve bandwidth
fairness, we must properly enforce bandwidth limit Tn on

all users. Naively, we can allocate one queue per user and
assign the bandwidth limit as the queue’s drain rate. However,
the number of users (thousands to millions) far exceeds the
number of queues available in hardware switches (8-32 queues
per port). Instead, we can enforce bandwidth limits using
active queue management, or more specifically probabilistic
dropping as discussed in [11, 16], as long as we know the
user’s sending rate. This approach does not require a traffic
scheduler, and can be performed even if the switch has only
a single queue.

For a user m in slice n with bandwidth limit Tn and sending
rate Rm, we can enforce the bandwidth limit Tn by dropping
its packets with probability 1−min

(
1, Tn

Rm

)
as described in

[11, 16]. If a user uses less than the limit Tn, no packet will
be dropped; otherwise, after probabilistic dropping the user’s
remaining packets will use bandwidth equal to Tn.

We also observe that TCP flows react poorly to traffic
policing using probabilistic dropping, and we instead adapt the
ECN-shaping technique proposed by Nimble [17] alongside
approximate dropping to enforce bandwidth limits for TCP.

B. Avoiding Per-user Memory

Knowing a user’s sending rate Rm is vital for correctly
enforcing the bandwidth limit. As discussed in [16, 21], asking
the sender of all traffic to attach their traffic rate to each packet
is an easy yet unrealistic solution, as the sender might belong
to a different administrative entity and may not honestly report
the rate. Therefore, AHAB needs to measure each user’s
sending rate directly.

Recent works [17, 21] in queue scheduling within high-
speed programmable switches rely on using the onboard mem-
ory to maintain per-user sending rate statistics, by allocating
one traffic counter per user. However, programmable switches
only have a limited amount of onboard memory in the data
plane, limiting its scalability. At any given time, a core network
switch may be servicing millions of users across thousands of
base stations, making it infeasible to store any per-user state
in memory, not to mention the hassle of keeping the memory
allocation up-to-date when users constantly join or leave the
network.

Instead, we build a customized memory-efficient approxi-
mate data structure to track per-user sending rate, by combin-
ing two techniques: Low-Pass Filters (LPF) and Count-Min
Sketch (CMS) [6]:
• The LPF is a self-decaying counter available in the switch

hardware. If we add value x at time t to a LPF with
previous value v0 and last update time t0, its new value
becomes v = x + v0e

−(t−t0)/τ where τ is its decay time
constant. As discussed in [16], if we aggregate the packet
sizes of a single user’s traffic in a LPF, the LPF will report
an exponentially-decayed moving sum of recent packet
sizes, which is proportional to a good estimate of the user’s
instantaneous sending rate.

• The CMS [6] is an approximate data structure that answers
frequency queries, using r rows of hash-indexed arrays
each having c counters. Given an “insertion” with a size

and a user ID, we find one location per row by applying r
different random hash functions over its ID, and increment
the counters at those location by the size; when querying
the total size of a particular ID, we find the same r locations
and report the minimum of the r counters.

When used to estimate size of flows in traffic, CMS is good at
reporting heavy flows, as it never underestimates flow sizes.
However, a vanilla CMS can only track the total number of
bytes sent by a user since the CMS is initialized, not the
user’s instantaneous sending rate. Although it is possible to
run multiple instances of CMS in a round-robin fashion to
query moving-window flow rates [5], such an arrangement
adds complexity and requires 2x-4x more memory.

AHAB combines CMS with LPF by replacing individual
counters in the CMS structure with LPF counters. When
inserting a packet with its size and user ID, we apply the r
hash functions over the user ID to locate one LPF counter per
row, and add the packet size to these r LPF counters. When
querying the instantaneous sending rate of the same user ID,
we read the LPF counters in the same r locations, and use the
minimum across their reported rate as the estimated sending
rate of this user. This allows us to estimate per-user sending
rate without the need to allocate per-user memory.

Note that CMS is a linear transformation in the ID dimen-
sion while LPF is also a linear transformation in the time
dimension. Since they are commutative, CMS-LPF retains the
additive-error guarantee from CMS:

Theorem 1. Let Ri be user i’s sending rate reported by
an ideal LPF counter, and

∑
m Rm be the total sending

rate across all users, again reported by ideal per-user LPF
counters. When querying a CMS-LPF estimator of size r ×
c, the estimated sending rate R̃i satisfies R̃i ≥ Ri and
Pr

[
R̃i ≤ Ri + ϵ

∑
m Rm

]
≤ δ, with ϵ = e/r and δ = e−c.

In the interest of space we omit the full proof, which derives
naturally from the proof of original CMS properties.

C. Sharing One Rate Estimator Across Slices

Naively, AHAB would allocate one CMS-LPF estimator for
each slice. However, due to the natural skewness of traffic, not
all slices will have lots of “heavy” users sending at high rates.
Some slices may be underutilized and have no heavy user at
all, and the memory dedicated for their estimators is wasted.
Instead, we share a single CMS-LPF estimator across all slices.
We can then exploit statistical multiplexing, as the heavy users
and busy slices are now effectively using the unused memory
sacrificed by the underutilized slices with no heavy user.

However, we note that CMS provides an additive error
guarantee, meaning that the error of each user’s estimated rate
is of similar magnitude regardless of the true sending rate of
the user. This is not a problem for intra-slice comparison, as
we only care about enforcing bandwidth limits for heavy users
and can safely ignore the underutilized users. Yet, different
slices may have vastly different bandwidth allocations. If two
slices of capacity 100Mbps and 10Gbps naively share the same
CMS-LPF structure, the 10Gbps slice will dominate; “small”

users of 200Mbps in the heavy slice will overwhelm the CMS
while the “heavy” users of 30Mbps in the small slice become
a rounding error.

To ensure the estimation error is scaled proportionally with
the bandwidth of different slices, we perform pre-update
normalization: we scale packet sizes inversely proportional
to the weight of their parent slice before feeding them into
CMS-LPF. Heavy users in smaller slices can now be accurately
tracked as they are scaled up. Subsequently, estimated sending
rates are also compared to scaled versions of bandwidth limit.

V. APPROXIMATE ARITHMETIC IN THE DATA PLANE

To achieve line-rate packet processing and low forwarding
latency, high-speed programmable switches like Intel Tofino
support a limited set of arithmetic operations, and we can only
perform a constant number of computational steps per packet.
Thus, it is infeasible to exactly track the bandwidth demands,
precisely calculate the fair allocation, or accurately compute
per-user drop probabilities.

Figure 3 shows an overview of the AHAB data plane,
where we use approximate arithmetic heavily to implement
probabilistic dropping and interpolation-based iterative update
to the bandwidth limit. We also note that the approximate
arithmetic techniques presented here are widely applicable to
other applications running in programmable switches, beyond
fair bandwidth allocation.

A. Approximated Probabilistic Dropping

For a given user, we obtain its estimated sending rate Rm

from the CMS-LPF estimator and compare it against the per-
user bandwidth limit Tn of its slice. For non-TCP traffic, we
need to enforce the bandwidth limit by dropping the packet
with probability 1− Tn

Rm
.

Since we cannot calculate exact division in the data plane,
we perform approximate arithmetic using a TCAM lookup
table, similar to the approximate multiplication technique used
in Nimble [17]. Here we truncate Tn and Rm’s binary form to
retain only the few most significant bits as i and j such that
Tn ≈ i× 2k and Rm = j × 2k, and use (i, j) as index in the
lookup table. To reduce the error bias of lookup table entries,
we store i+0.5

j+0.5 instead of i
j in the lookup table.

Subsequently, we can simply sample a number rnd uni-
formly at random between [0, 1] using the random number
generator, and compare it against Tn

Rm
≈ i+0.5

j+0.5 . If rnd is
greater than Tn

Rm
, we drop the packet.

B. Tracking the Bandwidth Demand

For slice n, it is infeasible for switches to track its entire
bandwidth demand curve (shown in Figure 1) representing
all user’s sending rates, which we can neither store nor sort.
However, we can track the actual bandwidth used by all users
f(Tn), which is a function of the currently-enforced bandwidth
limit Tn and represented by the shaded area under the demand
curve intersected with Tn. To get f(Tn), we simply need to
use a LPF to track the size of all packets that are not dropped.

Fig. 3. When a packet arrives, AHAB first maps it to a slice n and estimates its user’s sending rate Rm using the CMS-LPF estimator (§IV-B), then
uses probabilistic dropping to enforce slice n’s bandwidth limit Tn (§V-A). AHAB also maintains two bandwidth limit candidates Tlow , Thi and tracks the
hypothetical total bandwidth usagef(·) (§V-B), which is used to derive a more accurate bandwidth limit Tnew via approximated linear interpolation (§V-C).

Fig. 4. Relationship between bandwidth limit candidates Tlow , Tmid, Thi

and total bandwidth consumption f(Tlow), f(Tmid), f(Thi).

Still, comparing f(Tn) with Cn only tells us whether we
are over- or under-utilizing the capacity Cn, i.e., whether we
should increase or decrease Tn. This does not say much about
what is the ideal limit or how much should we change Tn.

To better analyze how to update Tn, we further specify two
candidate bandwidth limits, a lower candidate Tlow = Tn −
∆ and a higher candidate Thi = Tn + ∆, where ∆ is the
maximum step-size we want to change Tn. For example, we
may use Tlow ≈ 0.5Tn and Thi ≈ 1.5Tn. From now on, we
also refer to Tmid = 1.0Tn as the middle candidate.

We now track two more hypothetical total transmitted
bandwidth f(Tlow) and f(Thi), by generating two hypothet-
ical probabilistic dropping decisions in addition to the real
dropping decision. Using the same lookup table technique
discussed in §V-A, we approximately calculate Thi

Rm
and Tlo

Rm

and track the packets that are hypothetically not dropped under
Tlow or Thi respectively. As illustrated in Figure 4, f(Tlow),
f(Tmid), and f(Thi) are the shaded area under the demand
curve intersecting with different horizontal lines.

Figure 5 plots the monotonically-increasing function f . The
optimal bandwidth limit T̃ satisfies f(T̃) = Cn, thus we need
to calculate a new limit Tnew that is as close to T̃ as possible.

C. Update Bandwidth Limit via Interpolation

A naive policy for updating the bandwidth limit is simply
comparing f(Tmid) with Cn: if f(Tmid) > Cn, i.e., the slice
is sending too much traffic, we choose Tlow as the new limit,
otherwise we choose Thi. This policy works well enough for

Fig. 5. Finding new bandwidth limit using interpolation. When we plot
f(T∗), x-axis in this figure refers to the bandwidth limit T∗ (y-axis in Fig. 4),
while y-axis in this figure refers to the area under line T∗ in Fig. 4.

very small step size ∆ (e.g., 1%-5% of Tmid), however, such
small steps converge too slowly; conversely, when using a
larger ∆ the limit never converges.

Instead, given the three candidate points on the f curve, we
can produce a much more accurate estimate of the optimal
bandwidth limit using linear interpolation. Let us first assume
the target lies between the lower and higher candidate points,
i.e., f(Tlow) < Cn < f(Thi). Without loss of generality,
assume we need to adjust to a higher limit, i.e., f(Tmid) <
Cn < f(Thi). We calculate the new bandwidth limit as

Tnew = Tmid +
Cn − f(Tmid)

f(Thi)− f(Tmid)
× (Thi − Tmid). (2)

As illustrated in Figure 5, the interpolated estimate Tnew is a
much better estimate of the ideal bandwidth limit, compared
to naively choosing Thi.

In Figure 6 we illustrate the process using an example. To
calculate Cn−f(Tmid)

f(Thi)−f(Tmid)
= 1012
1690 , we first use the same approxi-

mate division lookup table technique discussed earlier in §V-A,
except the division results are now stored as a (mantissa, ex-
ponent) pair. We first truncate the numerator and denominator
to get most significant non-zero bits i =01111/j =11010,
and retrieve the approximate division result i+0.5

j+0.5 = 2396
212 .

After the approximate division, we need to multiply the
result by ∆. To make this calculation easier, we choose ∆
to be a power of 2, reducing the multiplication into a bit-

Numerator, Denominator Approx. scale

01110, 11010 2241/212

01111, 11010 2396/212

10100, 11100 2946/212

11000, 11100 3521/212

… …

Cn-f(Tmid)

f(Thi)-f(Tmid)

0b0001111110100

0b0011010011010

1012

1690
=

Cn-f(Tmid)

f(Thi)-f(Tmid)
Δ

Δ=Thi-Tmid =214

2396 * 2(14-12)=9584

≈ 9584

Approximate Division Lookup Table

Fig. 6. We use a lookup table to implement approximate linear interpolation.
We first match on the highest binary bits of numerator and denominator to get
a scaled division result, then multiply ∆ via bit shifting for the final result.

shift. In practice, we set ∆ = 2⌊log2 (1
2Tmid)⌋, meaning Tlow =

Tmid −∆ ≈ 0.5Tmid and Thi = Tmid +∆ ≈ 1.5Tmid.
The divide-then-multiply calculation can be applied as a

single bit shift. In the example in Figure 6, we have ∆ = 214

and need to calculate 2396
212 · 214, which can be simplified into

a left shift: 2396 << (14− 12) = 9584. Finally, we finish the
last addition operation in the approximate linear interpolation,
and obtain the new bandwidth limit Tnew = Tmid + 9584.

Similarly, when adjusting towards a lower limit, we use

Tnew = Tmid −
f(Tmid)− Cn

f(Tmid)− f(Tlow)
× (Tmid − Tlow). (3)

Notice that we use subtraction from Tmid instead of adding
up from Tlo to interpolate. This is because the approximate
division has a constant relative error proportional to the result.
By subtracting the result from Tmid, we can make more
accurate fine-grained adjustments near Tmid to better converge
towards the optimal bandwidth limit. Instead, if we use

Tnew = Tlow +
Cn − f(Tlow)

f(Tmid)− f(Tlow)
× (Tmid − Tlow), (4)

the approximated interpolation is more accurate near Tlow and
has a larger error near Tmid.

When Cn falls out of the range [f(Tlow), f(Thi)], our
estimate candidates are too far off from the ideal bandwidth
limit, and we clip the update by choosing f(Tlow) or f(Thi)
directly. Clipping prevents overshooting caused by using linear
interpolation outside of the two candidate points.

We further note that although CMS-LPF will introduce
over-estimation errors across the board for all estimated rates,
our closed-loop bandwidth limit update process will naturally
adapt to this error. When all rates are slightly over-estimated
while the bandwidth limit Tn is not yet over-estimated, users
will suffer from an unnecessarily high drop probability, leading
to less than Cn total traffic; AHAB will then automatically
raise Tn to account for such global over-estimation.

D. Iterative Update Using Worker Packets

To achieve fast convergence towards intra-slice fairness,
AHAB updates the bandwidth limit Tn fully within data plane.
At the end of every epoch, AHAB calculates a new bandwidth
limit Tnew for each slice using approximate interpolation, and
use it as the new bandwidth limit for the next epoch.

However, Tn is stored in a register memory lookup table
near the beginning of the switch’s packet-processing pipeline

while the new limit Tnew is only available in later pipeline
stages; the pipeline’s memory access constraint does not allow
us to write Tnew back to the same register memory directly.
Therefore, at the end of every epoch, we generate one worker
packet per slice by packet cloning, and use packet recirculation
to let the worker packet go through the pipeline a second time,
carrying and writing the Tnew value.

Although the update is slightly delayed due to packet
recirculation (about 0.65µs), only a very small fraction of
packets near the beginning of the epoch are affected, therefore
the actual difference in enforcement due to the delayed update
is negligible. As we show in §VI, this closed-loop update
process rapidly converges to the fair bandwidth allocation.

E. Supporting Weighted Allocation

A network operator sometimes needs to allocate bandwidth
in proportion to a pre-assigned weight, for example when im-
plementing differentiated services. AHAB supports weighted
fair allocation at both the slice level and the user level.

To support weighted fair bandwidth allocation between
users in the same slice, we scale each packet’s length using
the user’s weight: if a user m has weight wm, a packet with
size x is scaled into x

wm
before being used to calculate the

user’s scaled sending rate Rm in the CMS-LPF estimator. This
way, we can directly compare different user sending rates Rm

against the same per-user bandwidth limit Tn.
Meanwhile, the control plane is more flexible and trivially

supports allocating bandwidth to different slices based on their
weight. We simply divide each slice’s demand and capacity by
its weight before computing the max-min fairness allocation.

We also note that the weights assigned to slices / users can
be easily updated at run time. To adjust the weight for a subset
of users, we adjust the rules installed in the slice lookup table
in the data plane; to adjust the weight of a slice, we modify
it directly from the control plane.

VI. EVALUATION

Using a prototype implementation running in a hardware
testbed, we show that AHAB can quickly achieve fair and
stable bandwidth allocation between users. Compared to the
prior state-of-the-art, HCSFQ [21], AHAB not only converges
to the target fair bandwidth allocation faster (in 3.1ms), but
also achieves comparable or better fairness and throughput
stability. Subsequently, we use real-world traffic traces in a
simulation-based experiment to show that AHAB scales well
to 5.9-23.9 million users with a reasonable memory footprint,
and CMS-LPF has a minimal impact on scheduling fairness.

A. Testbed Experiment Setup

We evaluate AHAB’s real-world scheduling fairness using
a hardware testbed with two sender and receiver servers con-
nected via an Intel Tofino Wedge32-X programmable switch,
which runs a prototype implementation of AHAB written in
2,000 lines of P4 [1]. Both servers have a 20-core CPU and
a Mellanox ConnectX-5 2x100Gbps NIC, and run Ubuntu
20.04. The sender sends TCP flows using iperf3 with

0 2000 4000 6000 8000
Time (ms)

0

50

100

Th
ro

ug
hp

ut
 (M

bp
s)

0 2000 4000 6000 8000
Time (ms)

0

50

100

Th
ro

ug
hp

ut
 (M

bp
s)

6800 6900 7000 7100 7200 7300 7400 7500 7600
Time (ms)

0

50

100

Th
ro

ug
hp

ut
 (M

bp
s)

6800 6900 7000 7100 7200 7300 7400 7500 7600
Time (ms)

0

50

100

Th
ro

ug
hp

ut
 (M

bp
s)

Flow0 Flow1 Flow2 Flow3 target rate

Fig. 7. AHAB (left) converges to fair bandwidth allocation within 3.1ms on average, while HCSFQ [21] (right) needs 42.3ms.

Fig. 8. Cumulative distribution of competing TCP flows’s goodput when
using AHAB versus HCSFQ.

Linux’s default congestion control (cubic), and send UDP
flows using either iperf3 or a customized Go script that
performs millisecond-level throughput measurement. We set
the iterative update epoch time to 1ms and configure the LPF
rate estimator’s time constant to τ=4ms. Unless otherwise
noted, we use a CMS-LPF estimator with size 3x2048.

In all experiments, we treat each flow as a unique user, using
its 5-tuple (source and destination IP/port pairs) as the user ID.
We note that real-world traffic may be grouped more coarsely;
for example, one user in a mobile network may include all
flows destined for the same device (same destination IP).

B. Fast Convergence

We now compare AHAB to the state-of-the-art of hierarchi-
cal fair queuing based on programmable switch: HCSFQ [21].
HCSFQ iteratively converges to the fair rate via Additive In-
crease Multiplicative Decrease, limiting its convergence speed
when the number of users decreases and the fair rate increases.

To demonstrate the difference in convergence time, we
program both AHAB and HCSFQ to enforce fairness between
four UDP flows in a single slice, with a fixed 100Mbps capac-
ity. All four flows have the same 100Mbps constant sending
rate, but have different starting and ending time: they run
between T=0-8s, T=1-7s, T=2-6s, and T=3-5s, respectively.

Figure 7 shows the actual bandwidth used by the four
flows over time, after bandwidth limit enforcement done
by AHAB (left) or HCSFQ (right). At a longer timescale
(top), the two schedulers behaved similarly. However, if we
zoom in to a smaller timescale and plot the millisecond-
level per-flow throughput (bottom) immediately after T=7s
(where flow 1 stopped), we can see AHAB converges much
faster than HCSFQ to allow flow 0 to use the full 100Mbps
bandwidth. We measured the time for flow throughput to
converge to within 10% of ideal fair bandwidth limit; AHAB’s
interpolation-based update only needs around three iterations
to converge, taking only 3.1ms on average (at most 5ms), more
than 13x faster than HCSFQ (average 42.3ms, at most 234ms).

C. Fairness and Goodput Stability

We first demonstrate that AHAB can effectively enforce
fair bandwidth allocation for TCP flows, by simultaneously
running 2, 4, or 8 flows sharing a slice with fixed 1Gbps
capacity. In Figure 8 we plot the cumulative distribution
function (CDF) of the TCP goodput of all flows, reported
by iperf3 in 1-second intervals across 60 seconds. Ideally,
all flows exhibit the same goodput across time, leading to a
steeper CDF. The stability achieved by AHAB is comparable
to that of HCSFQ: on average, the goodputs of flows enforced
by AHAB are within 12.1% of ideal fair share, while those
enforced by HCSFQ exhibits 15.5%.

Meanwhile, we also show approximate probabilistic drop-
ping can effectively achieve fair bandwidth allocation for non-
TCP traffic, even with very different sending rates. We let
multiple UDP flows share the same slice with fixed 100Mbps
capacity, and configured their sending rate to be 10Mbps,
20Mbps, 30Mbps, and so on. In Figure 9, we show the
throughput achieved by these flows, when 4, 8, and 16 flows
are sent simultaneously. In the latter two cases, the slice is
over-utilized and approximate probabilistic dropping kicks in.

Fig. 9. Given flows with various sending rates, AHAB’s approximate
probabilistic dropping achieved fair bandwidth allocation within 6% error.

Fig. 10. Goodput of weighted TCP and UDP flows sharing one 1Gbps slice.

Although AHAB needs to apply vastly different dropping
probabilities for the wide range of sending rates, the resulting
allocation is quite fair. On average, the mean throughput
achieved is within 4% and 6% of the fair bandwidth allocation
target, for 8 and 16 flows respectively. This corresponds to the
error of the approximated division using the lookup table.

Figure 10 demonstrates AHAB’s support of weighted fair-
ness. We start three groups of flows with weight 1x, 2x, and
4x respectively, with four flows per group, all sharing one slice
with 1Gbps capacity. Flows with the same weight achieve the
same throughput, proportional to their allocated weight, and
their attained throughput averages within 15% and 1% of the
weighted fair allocation for TCP and UDP, respectively.

D. Inter-slice Fairness

In Figure 11 we demonstrate that AHAB rapidly adjusts to
the changing bandwidth demands of different slices. We set up
an experiment where Slice 1 always has x users (TCP flows),
and Slice 2 is initially idle with no user. At T=10s x users
in Slice 2 that starts sending, lasting until T=50s. At T=20s
another x users join Slice 2 and start sending until T=40s.
In the ideal case, all bandwidth is fully allocated to Slice 1
between T=0-10s as well as T=50-60s, fairly shared between
x users; the total bandwidth is split in half between Slice 1
and Slice 2 during T=10-50s. When more users are added to
Slice 2 during T=20-40s, users in Slice 2 each get a lower
share while users in Slice 1 are not affected.

Figure 11 shows three scenarios: the total bandwidth shared
by the two slices are 100, 1000, and 4000 Mbps, respectively,
and we also have x=2, 20, and 80 users proportionally. We
plot and compare the average goodput attained by the users in
each slice, which is also a good indicator of fairness between
slices. The bandwidth allocation between slices always quickly
converged to fairness (within a few RTTs). When users send
UDP traffic instead, AHAB instantly achieves near-perfect fair
allocation for all three cases; the result is omitted here.

Fig. 11. Three experiments showing two slices sharing a common bottleneck.
Slice 1 uses half the bandwidth even when Slice 2 has twice as many flows.

Fig. 12. 3x4096 CMS-LPF estimator is sufficient for serving millions of
users, with negligible error in drop probability.

E. Scalability

To evaluate AHAB’s performance at scale, we run trace-
based simulation experiments to understand how much mem-
ory is needed to support a large number of users.

We collected a 15-minute anonymized traffic trace from the
core network of a local Internet Service Provider and played
the trace through a Python-based simulator. We treat each of
the 5,980,000 unique source-destination IP pairs as an user,
and let all users share a single slice with capacity Cn set
to 0.84Gbps, equal to the average throughput of the trace.
Due to natural fluctuations in traffic rate, the instantaneous
bandwidth demand often exceeds Cn. The simulator calculates
the fair per-user bandwidth limit Tn for each epoch, and then
calculates the “target” probabilistic drop rate 1 − min(Tn

Rm
)

using the ground-truth per-user sending rate Rm.
Meanwhile, we also simulate the per-user estimated sending

rate R̃m reported by CMS-LPF estimators of different sizes,
and use R̃m to calculate the “approximated” drop probability
1 − min(Tn

R̃m
). Shrinking the size of CMS-LPF estimator

reduces the accuracy of rate estimation, which in turns leads
to more error in the drop probability.

CMS-LPF Hardware Memory Supported
Dimension Utilization # of Users

2048x3 (24KB) 1.56% 2,990,000
4096x3 (48KB) 2.60% 5,980,000

16384x3 (768KB) 8.85% 23,920,000 (est.)
TABLE I

MEMORY UTILIZATION AND SUPPORTED NUMBER OF USERS W.R.T.
DIFFERENT SIZES OF THE CMS-LPF ESTIMATOR.

Resource Instr. Words Hash Units TCAM
Utilization 28.6% 37.5% 5.2%

TABLE II
UTILIZATION OF OTHER SWITCH HARDWARE RESOURCES.

As shown by Figure 12(a), using a CMS-LPF estimator with
size 3x512 led to a fraction of packets with drop rate higher
than the target; although most errors lie in over-utilized users,
some users with a target drop rate of 0% (under-utilized users)
also experience significant packet drops. Meanwhile, CMS-
LPF size 3x4096 is sufficient to reduce errors to negligible
level. We conclude that a CMS-LPF estimator with size
3x4096 is sufficient for AHAB to accurately produce per-user
rate estimate for the 5,980,000 unique users in our trace.

We also run the same simulation using five minutes of
CAIDA Anonymized Internet Trace 2018 [4]. The trace has an
average throughout of 3.5Gbps and has 7,300,000 unique flow
5-tuples. We obtain similar results, as shown in Figure 12(b).

Now we analyze the switch hardware resources used by
AHAB, and specifically focus on the memory used by the
CMS-LPF estimator. As shown in Table I, a small 2048x3
CMS-LPF estimator only costs a small fraction (1.56%) of
all stateful memory available on the switch hardware, yet it
already supports accurately enforcing bandwidth limit for 3
million users. We can fit a much larger sketch than what we
used in the prototype: allocating a 16384x3 CMS-LPF estima-
tor costs 8.85% of the available memory. Assuming similar
traffic skewness as in our ISP trace, a single programmable
switch can support 23.9 million devices across all slices, which
is sufficient for many application scenarios. We also report
other resource utilization in Table II.

As for the number of slices, our prototype program supports
up to 16,000 slices. The Tofino switch supports 3.2Tbps
aggregated throughput, which can be shared among 2,000
downstream base stations. It is possible to expand further by
adding more entries to the slice lookup table and allocating
more per-slice bandwidth demand trackers, as they only oc-
cupy a small fraction of the total data-plane memory usage
(with the majority being the CMS-LPF rate estimator). The
primary limiting factor on the number of slices is control-
plane speed, as supporting N slices requires the control plane
to read N demands and write N capacities per update.

VII. RELATED WORK

Fair Queuing using Estimated Rate: Core Stateless Fair
Queuing [16] is a network architecture where edge nodes
estimate the rate of incoming flows and attach the rate to
packets, while core nodes in the network choose a fair per-
flow rate and enforce it using probabilistic dropping. It re-

quires maintaining per-flow state to estimate sending rates.
Approximate Fairness through Differential Dropping [11] uses
a shadow buffer that holds recent packets to approximately
derive per-flow rates, and similarly performs probabilistic
dropping. It is not straightforward to implement a large shadow
buffer given the computational constraints present in today’s
high-speed programmable switches. Also, both works require
one dedicated hardware queue per “slice” (group of flows).
Rank-based Scheduling: In Push-In, First-Out (PIFO)
queues, each packet is pushed in with a certain rank, and
packets with the highest rank are transmitted first. Admit-In,
First-Out [20] and SP-PIFO [2] both approximate the behavior
of a PIFO queue on commodity programmable switches. AIFO
uses a sample of recently admitted packets to estimate the rank
distribution of packets in the queue, which is used to decide a
threshold and reject low-ranked packets from being admitted.
Meanwhile, SP-PIFO uses an array of strict-priority queues
and dynamically adjust the mapping from ranks to queues
using estimated quantile distribution of ranks. These works
both assume an oracle which assigns ranks to packets.
Fair Queuing in the Data Plane: Approximate Fair Queu-
ing [13] implements scalable per-flow fair queuing by splitting
traffic into calendar epochs. This design requires rapidly
rotating the priority between multiple queues to serve dif-
ferent future epochs, and does not support a multi-layer
scheduling hierarchy. Gearbox [8] proposed a new hardware
design specifically supporting multi-level calendar queuing.
Meanwhile, Hierarchical Core-Stateless Fair Queuing [21]
extends CSFQ [16] and uses Addictive Increase, Multiplicative
Decrease (AIMD) to iteratively find a fair per-user (per-tenant)
sending rate limit using queue congestion status feedback.
Although it can support multiple layers of scheduling hi-
erarchy, its dependency on per-user memory for estimating
per-user sending rates hurts scalability. The AIMD process
also takes a relatively long time to adapt when the fair rate
increases. Cebinae [19] uses leaky-bucket filters to estimate
per-flow rate and enforce fairness by “taxing” the heavy flows,
however it takes several seconds to converge to fair allocation.
Nimble [17] implements precise TCP flow rate limiting by
simulating queue draining in the data plane. However, it only
supports fixed rates set by the control plane and requires per-
flow memory. Instead, our work automatically adjusts and
enforces fair per-user bandwidth limit within milliseconds
timescale for millions of users.

VIII. CONCLUSION

We present AHAB, a data-plane hierarchical fair bandwidth
limit enforcer. Using a novel approximate data structure,
AHAB scales to millions of users across thousands of network
slices. AHAB exploits approximate arithmetic to implement
interpolation-based bandwidth limit update fully within the
data plane, leading to fast convergence. Evaluation shows
that AHAB converges to a fair allocation within 3.1ms, 13x
faster than prior work, without sacrificing fairness or stability.
The authors have provided public access to their code at
https://github.com/Princeton-Cabernet/AHAB.

https://github.com/Princeton-Cabernet/AHAB

ACKNOWLEDGMENT

This work was supported by DARPA grant
HR001120C0107. We sincerely thank Zhuolong Yu for
his assistance in evaluation experiments. We also thank Henry
Birge-Lee, Yufei Zheng, and reviewers of INFOCOM for
their helpful comments and feedback.

REFERENCES

[1] (2021) P4 - Programming Protocol-independent Packet
Processors. https://p4.org.

[2] A. G. Alcoz, A. Dietmüller, and L. Vanbever, “SP-
PIFO: Approximating Push-In First-Out behaviors using
Strict-Priority queues,” in Proc. of 17th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI’20). USENIX Association, Feb. 2020, pp. 59–76.

[3] J. C. R. Bennett and H. Zhang, “Hierarchical packet
fair queueing algorithms,” in Proc. of ACM SIGCOMM,
vol. 26, no. 4. New York, NY, USA: ACM, August
1996, p. 143–156.

[4] CAIDA, “The CAIDA UCSD Anonymized Internet
Traces 2018 - July 19th,” 2018, https://www.caida.org/
data/passive/passive dataset.xml.

[5] X. Chen, S. L. Feibish, Y. Koral, J. Rexford, O. Rot-
tenstreich, S. A. Monetti, and T.-Y. Wang, “Fine-grained
queue measurement in the data plane,” in Proc. of 15th
International Conference on Emerging Networking Ex-
periments And Technologies (CoNEXT’19). New York,
NY, USA: ACM, Dec. 2019, p. 15–29.

[6] G. Cormode and S. Muthukrishnan, “An improved data
stream summary: The count-min sketch and its applica-
tions,” Journal of Algorithms, vol. 55, no. 1, p. 58–75,
Apr. 2005.

[7] S. Floyd and V. Jacobson, “Link-sharing and resource
management models for packet networks,” IEEE/ACM
Transactions on Networking, vol. 3, no. 4, pp. 365–386,
Aug. 1995.

[8] P. Gao, A. Dalleggio, Y. Xu, and H. J. Chao, “Gear-
box: A hierarchical packet scheduler for approximate
weighted fair queuing,” in Proc. of 19th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI’22), Apr. 2022, pp. 551–565.

[9] S. Hasan, A. Padmanabhan, B. Davie, J. Rexford,
U. Kozat, H. Gatewood, S. Sanadhya, N. Yurchenko,
T. Al-Khasib, O. Batalla, M. Bremner, A. Lee, E. Ma-
keev, S. Moeller, A. Rodriguez, P. Shelar, K. Subraveti,
S. Kandi, A. Xoconostle, P. K. Ramakrishnan, X. Tian,
and A. Tomar, “Building flexible, low-cost wireless ac-
cess networks with Magma,” in Proc. of 20th USENIX
Symposium on Networked Systems Design and Implemen-
tation (NSDI’23). USENIX Association, Apr. 2023.

[10] R. MacDavid, C. Cascone, P. Lin, B. Padmanabhan,
A. Thakur, L. Peterson, J. Rexford, and O. Sunay, “A

P4-based 5G user plane function,” in Proc. of ACM
Symposium on SDN Research (SOSR’21). ACM, Oct.
2021, p. 162–168.

[11] R. Pan, L. Breslau, B. Prabhakar, and S. Shenker, “Ap-
proximate fairness through differential dropping,” ACM
SIGCOMM Computer Communications Review, vol. 33,
no. 2, p. 23–39, April 2003.

[12] R. Shah, V. Kumar, M. Vutukuru, and P. Kulkarni,
“TurboEPC: Leveraging dataplane programmability to
accelerate the mobile packet core,” in Proc. of ACM
Symposium on SDN Research (SOSR’20), Mar. 2020, p.
83–95.

[13] N. K. Sharma, M. Liu, K. Atreya, and A. Krishna-
murthy, “Approximating fair queueing on reconfigurable
switches,” in Proc. of 15th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI’18).
Renton, WA: USENIX Association, Apr. 2018, pp. 1–16.

[14] A. Sivaraman, S. Subramanian, M. Alizadeh, S. Chole,
S.-T. Chuang, A. Agrawal, H. Balakrishnan, T. Ed-
sall, S. Katti, and N. McKeown, “Programmable packet
scheduling at line rate,” in Proc. of ACM SIGCOMM.
New York, NY, USA: ACM, Aug. 2016, p. 44–57.

[15] G. Soós, D. Ficzere, P. Varga, and Z. Szalay, “Practical
5G KPI measurement results on a non-standalone archi-
tecture,” in Proc. of IEEE/IFIP Network Operations and
Management Symposium, Apr. 2020, pp. 1–5.

[16] I. Stoica, S. Shenker, and H. Zhang, “Core-stateless
fair queueing: Achieving approximately fair bandwidth
allocations in high speed networks,” in Proc. of ACM
SIGCOMM. ACM, Oct. 1998, p. 118–130.

[17] V. S. Thapeta, K. Shinde, M. Malekpourshahraki,
D. Grassi, B. Vamanan, and B. E. Stephens, “Nimble:
Scalable TCP-friendly programmable in-network rate-
limiting,” in Proc. of ACM SIGCOMM Symposium on
SDN Research (SOSR’21), Oct. 2021, pp. 27–40.

[18] D. Xu, A. Zhou, X. Zhang, G. Wang, X. Liu, C. An,
Y. Shi, L. Liu, and H. Ma, “Understanding operational
5G: A first measurement study on its coverage, per-
formance and energy consumption,” in Proc. of ACM
SIGCOMM. New York, NY, USA: ACM, 2020, p.
479–494.

[19] L. Yu, J. Sonchack, and V. Liu, “Cebinae: Scalable
in-network fairness augmentation,” in Proc. of ACM
SIGCOMM, Aug. 2022.

[20] Z. Yu, C. Hu, J. Wu, X. Sun, V. Braverman, M. Chowd-
hury, Z. Liu, and X. Jin, “Programmable packet schedul-
ing with a single queue,” in Proc. of ACM SIGCOMM.
ACM, Aug. 2021, p. 179–193.

[21] Z. Yu, J. Wu, V. Braverman, I. Stoica, and X. Jin,
“Twenty years after: Hierarchical Core-Stateless fair
queueing,” in Proc. of 18th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI’21).
USENIX Association, Apr. 2021, pp. 29–45.

https://p4.org
https://www.caida.org/data/passive/passive_dataset.xml
https://www.caida.org/data/passive/passive_dataset.xml

	Introduction
	Hierarchical Fair Bandwidth Allocation
	AHAB System Overview
	Scaling Beyond Memory Limits
	Enforcing Bandwidth Limits
	Avoiding Per-user Memory
	Sharing One Rate Estimator Across Slices

	Approximate Arithmetic in the Data Plane
	Approximated Probabilistic Dropping
	Tracking the Bandwidth Demand
	Update Bandwidth Limit via Interpolation
	Iterative Update Using Worker Packets
	Supporting Weighted Allocation

	Evaluation
	Testbed Experiment Setup
	Fast Convergence
	Fairness and Goodput Stability
	Inter-slice Fairness
	Scalability

	Related Work
	Conclusion

