
Sweet Little Lies: Fake Topologies for Flexible Routing

Stefano Vissicchio ∗∗ ‡, Laurent Vanbever †, Jennifer Rexford †

∗F.R.S.-FNRS ‡ Université catholique de Louvain † Princeton University
∗ stefano.vissicchio@uclouvain.be † {vanbever,jrex}@cs.princeton.edu

ABSTRACT

Link-state routing protocols (e.g., OSPF and IS-IS) are widely

used because they are scalable, robust, and based on sim-

ple abstractions. Unfortunately, these protocols are also rel-

atively inflexible, since they direct all traffic over shortest

paths. In contrast, Software Defined Networking (SDN) of-

fers fine-grained control over routing, at the expense of con-

troller overhead, failover latency, and deployment challenges.

We argue that future networks can achieve the benefits

of both approaches through central control over the dis-
tributed route computation. The key idea, which we call

Fibbing, is to have the controller trick the routers into see-

ing a fake topology that is carefully constructed to achieve

the desired Forwarding Information Base (FIB). Given an

acyclic forwarding graph for each destination, the controller

computes an augmented topology with fake nodes (and des-

tinations to announce there) and fake links (and link weights).

The controller injects these “lies” into the link-state routing

protocol, and the routers simply compute the paths accord-

ingly. The controller can also select an augmented topology

that triggers the use of specific backup paths when real links

and routers fail. To reduce router load, our Fibbing algo-

rithms compute augmented topologies of minimal size. Our

preliminary evaluation on realistic ISP topologies shows that

Fibbing works well in practice.

Categories and Subject Descriptors: Network Ar-
chitecture and Design; Network Management

General Terms: Algorithms, Management, Theory

Keywords: Fibbing, link-state routing, hybrid SDN

∗This work has been partially supported by the ARC grant
13/18-054 from Communauté française de Belgique.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
Hotnets ’14, October 27–28, 2014, Los Angeles, CA, USA.
Copyright 2014 ACM 978-1-4503-3256-9 ...$15.00
http://dx.doi.org/10.1145/2670518.2673868

1. INTRODUCTION

“A lie well told is immortal” – Mark Twain

“Tell me lies, tell me sweet little lies” – Fleetwood Mac

Network operators need flexible intra-domain routing
to perform fine-grained Traffic Engineering (TE), pro-
vision backup paths, and steer traffic through middle-
boxes. To do so, they cannot rely on distributed rout-
ing protocols which mandate all traffic to flow along the
shortest paths. Instead, they typically use dedicated TE
mechanisms, prominently MPLS RSVP-TE [1, 2]. Un-
fortunately, these mechanisms come with their own set
of limitations [3]. Among others, the lack of coordina-
tion between routers can lead to long convergence time.
They also introduce control-plane and data-plane over-
head due to signaling and encapsulation, respectively.

As a result, some large cloud providers, like Google [4]
and Microsoft [5], are shifting to SDN, to have a central
controller micromanage the forwarding rules in their
switches. However, the move away from distributed
protocols and destination-based forwarding also comes
at a cost [6]. Primarily, the controller must scale to
compute and install rules for all switches, and respond
quickly to topology changes. The switches must also
support rules that match on many header fields, using
expensive memory. Also, most networks have a huge
installed base of routers and management tools (and
human operators!) that do not support SDN protocols
(e.g., OpenFlow [7]), leading to deployment hurdles. As
a comparison, link-state routing protocols are scalable,
robust, and based on simple abstractions. They main-
tain a relatively small amount of state, respond locally
to failures, and split the computational work over all of
the routers. In addition, the emphasis on destination-
based forwarding enables routers to support many more
rules (because they match on many fewer header fields)
than today’s OpenFlow switches.

In this paper, we argue that many networks do not
need to move all the way to SDN. Indeed, we present a
technique, which we call Fibbing, that realizes flexible
routing using only traditional link-state protocols (like
OSPF and IS-IS). Fibbing combines the advantages of
SDN, i.e., flexibility and centralized coordination, with

1

the ones of distributed routing, using existing routers
and protocols. Rather than installing low-level rules in
the FIB, the controller coaxes the routers into comput-
ing the right paths—by presenting them with a care-
fully constructed topology. The routers simply run the
“tried and true” link-state routing protocol to compute
the forwarding decisions, not knowing that the topology
they see includes fake nodes (with fake announcements
of destination address blocks) and fake links (with fake
weights). That is, the controller treats the routing pro-
tocol as a function from routing messages to forward-
ing paths (e.g., using Dijkstra’s algorithm), and “in-
verts” the function. Given the target FIB entries on
the routers (i.e., the output) and the routing protocol
(i.e., the function), the controller automatically com-
putes the routing messages (i.e., the input).

Fibbing differs from previous approaches that use rout-
ing protocols to program routers, most notably RCP [8,
9]. In the absence of APIs like OpenFlow, RCP uses
BGP as a “poor man’s” SDN protocol for the controller
to install rules in the routers. As such, RCP must in-
stall a rule for each destination prefix on each router,
and update these entries quickly in response to failures.
In contrast, Fibbing leverages the routing protocol im-
plementation on the routers. Doing so, it can adapt the
forwarding behavior of many routers at once, while al-
lowing them to converge on their own. That is, while
the controller computes the routing input centrally, the
routing output is still computed in a distributed fashion.

Faking the routing protocol is not a panacea. By re-
lying on today’s link-state protocols, Fibbing is limited
to destination-based forwarding over loop-free paths.
Nonetheless, it is powerful enough to support sophisti-
cated network-management tasks, including fine-grained
a) traffic steering; b) traffic engineering; c) load balanc-
ing; and d) fast failover. We believe that these enhanced
capabilities are more than sufficient for many networks.
Moreover, by offering a central controller with a high-
level interface for network operators, Fibbing can be a
step in the incremental deployment of SDN, for net-
works that ultimately need even greater flexibility.

We make the following contributions:

Fibbing: Faking the link-state protocol is a simple and
powerful way to make routing much more flexible (§2).

Expressiveness: Given a directed acyclic graph (DAG)
for each destination prefix, Fibbing can always compute
a corresponding augmented topology (§3).

Efficiency: To limit router overhead, Fibbing can com-
pute a minimum augmented topology by solving an In-
teger Linear Program (ILP) (§4).

Experiments: Simulations of Fibbing on realistic topolo-
gies show that small augmented topologies are able to
express multiple deviations from shortest paths (§5).

2. LYING TO LINK-STATE ROUTING

In this section, we describe how a Fibbing controller
creates fake nodes, links, and destinations. We then
present three examples that show how Fibbing performs
traffic steering, backup routing, and load balancing.
Those examples highlight how Fibbing overcomes in-
trinsic inflexibilities of traditional protocols (which hold
even when weights are modified, e.g., using [10]) to im-
plement simple traffic engineering and middleboxing re-
quirements in practical, realistic cases. We discuss po-
tential problems created by failures in §4

2.1 Fibbing By Injecting Fake LSAs

In a link-state routing protocol, routers (i) flood link-
state advertisements (LSAs) to construct a shared view
of the topology, (ii) compute shortest paths (as a sum
of configurable link weights) for each destination prefix,
and (iii) install forwarding entries that direct packets to
the next hops in their paths. While routers may have
vendor-specific configuration interfaces, they all follow
the same protocol with standard formats for the LSAs.

Fibbing leverages the standard protocol to remotely
control the behavior of the routers. A Fibbing controller
forms protocol adjacencies with one or more routers,
and inject well-crafted LSAs to (i) announce additional
nodes and links, which we call fake nodes and fake links,
respectively; (ii) set the fake weights, i.e., weights of
fake links; and (iii) announce the reachability of desti-
nation prefixes (fake destinations) from fake nodes. We
globally refer to a topology enriched with fake nodes,
links, and destinations as an augmented topology. To
avoid changing the configuration of the real routers, the
augmented topology includes all of the real nodes, links,
and destinations, as well as additional fake information.

The Fibbing controller can introduce LSAs that ap-
pear to come from fake nodes and links. Many routing
protocols, including OSPF, allow the router originat-
ing a message to differ from the router described in the
message. In fact, this feature can be a security vulner-
ability, since a compromised router could intentionally
introduce LSAs on behalf of other routers to pollute
their routing tables [11]. In practice, we want the data
traffic to flow through the real routers, not the fake
nodes forged by the controller. In OSPF, a Fibbing
controller can direct traffic to a real router r instead of
a fake node f by specifying an IP address of f as the
“forwarding address” [12] in the LSAs propagated by f .

2.2 Examples of Good Fibbing

The Fibbing controller presents an augmented topol-
ogy to the routers to modify the shortest paths they
compute. We now show simple examples where small
“lies” can attract and detour traffic on a per-destination
basis, for better traffic steering, backup routes, and load
balancing. Our examples draw on the network in Fig-

2

ure 1 where a source s connected to A exchanges data
with two destinations d1 and d2 connected to F and G,
respectively. All of the links have the same capacity.

A

B

C

D

E

F

G

1 1

1

1 1

1

10

3

source

destination

flow

weight

router

1

1

d1

d2

s

Figure 1: “Fishy” network, with shortest-path routing.

2.2.1 Traffic Steering Through Middleboxes

Per-destination traffic steering can be used to direct
traffic selectively through middleboxes [13]. As an illus-
tration, assume that a DDoS attack on d1 congests the
path (A,D,E, F). To address this issue, the operator
wants to redirect traffic to d1 via B, where (say) a DPI
box is located, without impacting the traffic destined to
d2 (Figure 2a). However, this simple requirement is im-
possible to achieve in a traditional link-state protocol.
Indeed, shortest-path routing forces all packets from A

to both d1 and d2 to follow the same path to node E.

A

B

C

D

E

F

G

d1

d2

s

(a) Desired flows

d1

A

B

C

D

E

F

1 1

1

1 1

1

V1

3

1

9fake

node

F

G

1

1

1

d1

d2

s

(b) Augmented IGP topology

Figure 2: Fibbing can steer traffic destined to d1 away
from the shortest path (via D) to B.

Figure 2b shows how Fibbing achieves the desired
forwarding behavior. A fake node v1 is connected to A

and B with a weight of 1 to A and of 9 to B. Also,
v1 advertises that it can reach d1 directly. Since the
shortest path to v1 is shorter than the one to F , A

starts to use v1 for d1. Since v1 is a fake node, packets
actually flow through B. Since A is the only router to
change its forwarding path due to the introduction of
v1, we can enforce the requirement in Figure 2a.

2.2.2 Provisioning of Efficient Backup Paths

Fibbing can provision backup paths, to prevent net-
work congestion after link and node failures. As an illus-
tration, assume that the path (A,D,E) has significantly
more bandwidth than paths (A,B,E) and (A,C,E).
Upon the failure of link (A,D), link (D,E), or node
D, the operator would like to split the traffic directed
to d1 and d2 over the two remaining disjoint paths, to
increase network utilization (see Figure 3a).

A

B

C

D

E

FF
backup

path
FF

G

d1

d2

s

(a) Desired flows

A

B

C

D

E

F

G

1 1

1

1 1

1

V1
1

9

3

F

G

F

G

4
d2

1

1

d1

d2

s

(b) Augmented IGP topology

Figure 3: Fibbing can provision backup paths on a per-
destination basis. Upon the failure of link (A,D) or
(D,E), traffic destined to d1 traverses node B, whereas
traffic destined to d2 traverses node C.

Again, while this simple requirement would be impos-
sible under conventional link-state routing, it is easily
done using Fibbing. Figure 3b shows the corresponding
augmented topology. As before, a single fake node v1
is added, this time advertising d2, with a weight of 4.
This prevents A from using the virtual node to reach d2
unless a failure occurs along the path (A,D,E). Note
that v1 does not advertise d1 as the traffic would already
follow the desired path (A,C,E) after the failure.

2.2.3 Load Balancing Over Multiple Paths

Fibbing can also be used to load-balance traffic over
multiple (non-shortest) paths to maximize throughput,
or minimize response time. For example, suppose source
s sends a huge amount of traffic to d1 in Figure 1. The
operator might like to use all available paths between
the two hosts, as shown in Figure 4a. Using all available
paths between s and d1 is possible under conventional
link-state routing (e.g., by re-weighting links (A,B) and
(B,E) to 1). However, this would force the traffic from
s to d2 to also spread over all of the available paths.
This might be undesirable, e.g., if some of the paths
cannot handle the extra load or have a propagation de-
lay that is too high for that traffic. More generally, it is
impossible to route the traffic for d1 and d2 on different
links under conventional link-state routing.

A

B

C

D

E

FF

G

d1

d2

s

(a) Desired flows

A

B

C

D

E

1 1

1

1 1

1

V1

V2

1

9

1

2

FF

G

d1

d1

3

3

1

1

d1

d2

s

(b) Augmented IGP topology

Figure 4: Fibbing can load-balance traffic over multiple
paths. In this case, the traffic from s to d1 spreads over
three paths, while leaving traffic from s to d2 untouched.

Figure 4b shows the augmented topology which re-
alizes exactly the requirements in Figure 4a. Two fake
nodes (v1 and v2) are required this time. Both fake
nodes announce d1 with a cost of 3 and are mapped to

3

link (A,B) and (A,C), respectively. After their intro-
duction, A ends up with three equal-cost paths of cost
4 to reach d1 and splits the traffic over all of them.

3. FIBBING IS EXPRESSIVE

The Fibbing controller takes, as input, a set of for-
warding Directed Acyclic Graphs (DAGs), each corre-
sponding to a subgraph of the real topology and rep-
resenting the desired forwarding paths to a destination
(i.e., the sink of the DAG). The Fibbing controller can
learn the real topology by listening to the LSAs over
the IGP adjacencies that it forms with real routers (like
in [14]). We assume that all real IGP links have weights
that are greater than 1; if this is not the case, we can
always double all link weights to enforce this condition
without changing any forwarding path.

We proved that an augmented topology realizing any
input forwarding DAGs can always be computed.

Theorem 1. Any set of DAGs, each representing for-
warding paths to a different destination, can be enforced
by an augmented topology.

The proof of Theorem 1 (not fully reported for space
limitation) is based on a constructive procedure. Be-
yond proving Theorem 1, this procedure is also used
by the Fibbing controller to translate input DAGs into
fake topologies. The procedure consists of two steps:
i) translating the input DAGs into constraints on the
shortest paths in the augmented topology, and ii) com-
puting a compliant augmented topology.

3.1 Control-Plane Paths and Requirements

To describe our constructive procedure, we first in-
troduce a concise model and some notation. We denote
the total cost of the shortest path between nodes a and
b in the real topology as cost(a, b). Also, we distinguish
between forwarding paths, i.e., sequences of real routers
traversed by user traffic, and control-plane paths, i.e.,
shortest paths in a (possibly augmented) IGP topol-
ogy. Observe that, in an augmented topology, forward-
ing and control-plane paths do not necessarily coincide.
As an illustration, in Figure 2b, the forwarding and
control-plane paths from A to d1 are (A B E F d1)
and (A v1 d1), respectively. These inconsistencies map
to shortest-path violations, that is, deviations of traffic
from the original shortest paths in the real topology.

We model (the need for) shortest-path violations with
control-plane requirements containing sequences of real
routers and special symbols $ that represent (the need
to traverse) a fake node. A control-plane requirement
R is matched by a set of control-plane paths P1, . . . , Pk

if the next-hop n of each physical node u in any of the
paths Pi is either i) n, if n is the next-hop of u also in
R, or ii) any fake node, if the next-hop of u in R is $.
Referring again to Figure 2, R = (A $ B E F d1) is the

control-plane requirement associated with Figure 2a.
Following the definition of control-plane requirement
matching, it is easy to check that R is matched by the
shortest paths in the augmented topology of Figure 2b.
Note that control-plane requirements naturally map to
traffic steering needs. Moreover, multiple requirements
between the same source-destination pair express load
balancing specifications. Finally, for backup path provi-
sioning cases, control-plane requirements can be tagged
with the corresponding failure scenarios.

3.2 Mapping Input DAGs into Requirements

In the first step of our constructive proof of Theo-
rem 1, we translate input DAGs into control-plane re-
quirements satisfying the following condition. We rely
on this condition to show (in §3.3) an efficient algorithm
that computes the needed topology augmentation.

Condition 1. Let R be a set of control-plane re-
quirements. For any non-empty sequence of consecutive
real nodes F = (v0 . . . vk), and any requirement in R,

1a) F is the shortest path from v0 to vk, and

1b) for every node tl 6= vk at the end of any sequence
of consecutive real nodes in any requirement in R,
cost(v0, vk) < cost(v0, tl)− 1.

The following lemma ensures that the requirement
extraction can be performed for any Fibbing input.

Lemma 1. Any forwarding DAG can be translated to
control-plane requirements satisfying Condition 1.

To show the feasibility of the translation, a general pro-
cedure can be applied. It consists in mapping any for-
warding path (v0 v1 . . . vk) in the considered DAG to a
control-plane requirement R = (v0 $ v1 $. . . vk). This
requirement R matches i) Condition 1a trivially, and
ii) Condition 1b because cost(vi, vi) = 0 < cost(vi tl)−1
for any pair of nodes vi and tl 6= vi (in any topology
where link weights are greater than 1). With this gen-
eral procedure, we would end up with one shortest-path
violation for each router and for each destination in the
input DAGs. However, the number of shortest-path vio-
lations generated by a given set of forwarding DAGs can
be optimized, for instance, by reusing sub-paths of IGP
shortest paths which are compliant with Condition 1.

3.3 Computing the Augmented Topology

The second step of our procedure consists in translat-
ing control-plane requirements into augmented topolo-
gies. For requirements compliant with Condition 1, this
is always possible. Indeed, the following lemma holds,
completing the proof of Theorem 1.

Lemma 2. Control-plane requirements complying with
Condition 1 can be always matched by shortest paths in
an appropriately augmented topology.

4

We proved Lemma 2 with a simple, efficient algorithm
which we call LADDER (for Leaf ADDER). LADDER
takes a real topology and a set R of control-plane re-
quirements as input, and outputs an augmented topol-
ogy. For each destination d in R, the algorithm adds
one fake node fd announcing d, and connects fd to all
the nodes ti appearing before a $ in any requirement in
R. The weight of any link (ti, fd) is asymmetric: it is
set to 1 from ti to fd and to ∞ in the opposite direc-
tion. This way, for each sequence (v0 . . . vk) of consec-
utive real nodes in any requirement to d, the shortest
path from v0 to d becomes (v0 . . . vk fd). Indeed, Con-
dition 1a and Condition 1b respectively guarantee that
this path is shorter than i) old paths in the real topology,
and ii) new paths traversing fake nodes. When stitched
together, those new shortest paths match the original
control-plane requirement, as shown in Figure 2b for
requirement (A $ B E F d1). Note that the time com-
plexity of LADDER is linear with the size of the input
R, since a single pass on each requirement is needed for
LADDER to generate the appropriate fake nodes.

4. FIBBING IN A SCALABLE FASHION

In this section, we show how Fibbing can scale by
computing augmented topologies of minimal size, and
precomputing responses to failures in the real topology.

4.1 Computing Minimal Fake Topologies

Limiting the size of fake topologies has multiple bene-
fits. Primarily, it limits the control-plane overhead, and
does not degrade router performance (e.g., for shortest
path computation). It also enables Fibbing to influence
many forwarding paths by tweaking a few fake weights
(or fake destinations). This is especially useful when
a lot of forwarding paths need to be updated, e.g., to
change network policies or in the case of failures.

Strategically positioning fake nodes to influence many
forwarding paths is the key to minimizing the size of the
augmented topology. For example, Figures 2b and 3b
show how a fake node v1 tunes two different forwarding
paths. Since those paths pertain to two distinct desti-
nations (d1 and d2), only one node v1 (announcing both
destinations with the weights as in the figures) can be
used. Beyond using the same fake node to tweak paths
to distinct destinations, other optimizations are possi-
ble, like using a single fake node for multiple forwarding
paths terminating at the same destination.

We modeled the problem of minimizing the size of
an augmented topology as an Integer Linear Program
(ILP). Given an augmented topology (with fake weights
initially set to ∞) and a set of control-plane require-
ments, the ILP i) formalizes each requirement as a set of
constraints on fake weights, so that a path matching the
requirement would result as the new shortest one in the
augmented topology, and ii) defines the objective func-

tion (to minimize) as the sum of fake links with weight
different from ∞. Until an augmented topology match-
ing all the requirements is found, the Fibbing controller
can, then, iteratively i) compute augmented topologies
with an increasing number of fake nodes, which are con-
nected to real nodes immediately before or after $s in
the requirements, and ii) solve the corresponding ILP to
minimize the number of used fake nodes and edges. This
approach, that we evaluate in §5, represents an alterna-
tive to using polynomial-time algorithms like LADDER.
Being exponential, the ILP approach trades algorithm
efficiency for fake topology minimization. Finding an
efficient algorithm for computing topologies of limited
size (e.g., within a certain approximation bound with
respect to the minimal one) is an interesting algorithmic
problem which we plan to study in future work.

4.2 Precomputing Responses to Failure

Failures are a major challenge for logically-centralized
approaches, since they require the controller to promptly
update the affected paths, e.g., to avoid permanent
loops and blackholes. Fibbing is no exception. For ex-
ample, consider again Figure 2b. If link (A,B) fails, the
presence of the fake node v1 creates a blackhole, since
the forwarding path corresponding to the control-plane
path traversing v1 does not exist anymore. Similarly, a
failure of link (B,E) leads to a forwarding loop.

Fibbing can quickly repair forwarding paths upon
failures. It can pre-compute post-convergence topolo-
gies (e.g., for the most likely or most critical combina-
tions of failures like single link failures and shared-risk
link groups), and store deltas with respect to the fake
topology currently installed. For instance, in Figure 2b,
the controller can pre-compute that it should remove
v1 upon the failure of link (B,E) or of nodes B or E.
Deltas can also be computed on-the-fly upon failures
(if potential short-lived disruptions are tolerated), by
running efficient algorithms like LADDER.

By relying on link-state routing mechanisms, Fibbing
can promptly detects failures by listening to flooded
link-state messages. Moreover, it can inject new fake
topology information during routing convergence, avoid-
ing the cost of having the IGP converge twice (once for
the real failure, and once for the fake topology changes).
Also, Fibbing can leverage years of work on minimizing
IGP convergence time on commercial routers [15] and
can be combined with IGP fast rerouting techniques
like Loop-Free Alternate [16] to further improve fail-
ure recovery time. Finally, we expect that Fibbing can
repair many forwarding paths with changes on a few
strategically-positioned fake nodes and links (as also
suggested by our evaluation, see §5).

5. PRELIMINARY EVALUATION

We implemented the ILP-based approach described

5

5 10 15 20 25

1
2

5
1
0

2
0

5
0

IGP shortest path violations

#
 o

f
fa

k
e
 t
o
p
o
lo

g
y
 c

o
m

p
o
n
e
n
ts

nodes

edges

Figure 5: Small fake topologies can be used to enforce
multiple deviations from shortest-path routing.

in §3. Our implementation relies on about 1, 200 lines of
Python code that extract the ILP formulation from the
input (forwarding DAGs and the original IGP graph),
and runs Gurobi [17] to solve it. We used the imple-
mentation to simulate arbitrary traffic steering in all
the Rocketfuel topologies [18]. Our experiments con-
sisted of simulating random variations of the shortest
paths to 1 to 5 randomly-selected destinations. Those
variations consisted in modifying the next-hop of some
randomly-extracted nodes, while guaranteeing the ab-
sence of loops. This way, we generated 15 forwarding
DAGs for each number of shortest-path violations be-
tween 1 and 25. We ran all our experiments on a ma-
chine with 2.5 GHz processor and 4 GB of memory.

Fake topology size. Figure 5 shows the distribu-
tion of the number of fake nodes and fake edges needed
to enforce an increasing number of shortest-path viola-
tions. In particular, circles and squares represent the
median number of needed fake nodes and edges, respec-
tively, with solid and dashed error bars identifying the
5-th and the 95-th percentiles. Results reported in the
figure are aggregated over all the Rocketfuel topologies,
since they do not significantly vary by topology.

Quite intuitively, the number of fake components tends
to increase when a higher number of IGP shortest paths
need to be violated. The size of fake topologies is not
strictly increasing. This suggests that some combina-
tions of shortest-path violations require more Fibbing
than others, i.e., because fake nodes and edges cannot
be reused to enforce multiple shortest-path violations.
Figure 5 also indicates that the size of computed fake
topologies grows slowly with an increasing number of
shortest-path violations. The variability across differ-
ent random selections of the same number of violations
is also small. Indeed, up to 4 nodes (with a median of 1

or 2) and less than 20 edges (including the ones relative
to fake destinations—like (v1, d1) in Figure 2b) are suf-
ficient in the vast majority of our simulations. Actually,
the maximum values for fake nodes and edges are 5 and
26, respectively, which is still quite limited with respect
to the size of the corresponding real topology (AS6461,
which has 141 nodes and 748 edges).

Computation time. Our ILP approach is fast. In
the 99-th percentile of our experiments, the computa-
tion time ranged from about 0.4 seconds to slightly more
than 10 minutes, with the 95-th percentile being around
2.5 minutes, which we consider already acceptable for
long-term path optimizations and what-if scenarios. We
plan to improve our prototype, with code and algorithm
optimizations, in future work.

6. CONCLUSIONS AND PERSPECTIVES

This paper introduces Fibbing, which centrally con-
trols the distributed computation of forwarding paths.
We show its expressiveness, and its capability to scale
and quickly react to failures. Simulations on realistic
topologies suggest the practicality of Fibbing to exert
SDN-like control of IGP networks. For these reasons, a
hybrid SDN architecture based on Fibbing can be con-
sidered as a valid alternative for the long-term design
of many networks. As argued in [6], it also provides op-
erators with incentives to (partially) transition to SDN.
Among others, we believe Fibbing opens the following
new perspectives.

Fibbing is a unified interface to heterogeneous

networks consisting of any devices (potentially, includ-
ing SDN ones) which run an IGP daemon. Indeed, our
work can be seen as a first step towards a SDN con-
troller managing devices with different capabilities.

Fibbing is beneficial in partial SDN deployments

which include a limited number of pure SDN devices
(e.g., OpenFlow switches). Indeed, its ability to fine-
tune forwarding paths on a per-destination basis en-
ables to steer traffic to SDN devices, e.g., to implement
advanced network functions like NFV on them. Also,
Fibbing is much more powerful than using traditional
devices as underlay layer between SDN ones as in [19] as
Fibbing: (i) can engineer all forwarding paths, even the
ones that do not traverse SDN devices; (ii) can fine-tune
traffic to SDN devices, e.g., balancing their load.

Fibbing enables SDN in the core and supports

new SDN deployment patterns. Existing SDN tech-
niques (e.g., [20]) are based on deploying SDN func-
tionalities only at the network borders, using software
switches. Fibbing can complement those techniques by
enabling SDN functionalities inside the network on tra-
ditional equipments (to optimize internal forwarding
paths) or even replace them completely, by deploying
SDN functions in the core.

6

7. REFERENCES

[1] D. Awduche, L. Berger, D. Gan, T. Li,
V. Srinivasan, and G. Swallow, “RSVP-TE:
Extensions to RSVP for LSP Tunnels,” RFC
3209, 2001.

[2] A. Farrel, J.-P. Vasseur, and J. Ash, “A Path
Computation Element (PCE)-Based
Architecture,” RFC 4655, 2006.

[3] A. Pathak, M. Zhang, Y. C. Hu, R. Mahajan, and
D. A. Maltz, “Latency inflation with MPLS-based
traffic engineering,” in Internet Measurement
Conference, 2011, pp. 463–472.

[4] S. Jain, A. Kumar, S. Mandal, J. Ong,
L. Poutievski, A. Singh, S. Venkata, J. Wanderer,
J. Zhou, M. Zhu, J. Zolla, U. Hölzle, S. Stuart,
and A. Vahdat, “B4: Experience with a
Globally-Deployed Software Defined WAN,” in
ACM SIGCOMM, 2013.

[5] C. Hong, S. Kandula, R. Mahajan, M. Zhang,
V. Gill, M. Nanduri, and R. Wattenhofer,
“Achieving High Utilization with Software-Driven
WAN,” in ACM SIGCOMM, 2013.

[6] S. Vissicchio, L. Vanbever, and O. Bonaventure,
“Opportunities and research challenges of hybrid
software defined networks,” ACM SIGCOMM
Computer Communication Review, vol. 44, no. 2,
Apr. 2014.

[7] N. McKeown, T. Anderson, H. Balakrishnan,
G. Parulkar, L. Peterson, J. Rexford, S. Shenker,
and J. Turner, “OpenFlow: Enabling innovation
in campus networks,” ACM SIGCOMM Computer
Communication Review, vol. 38, no. 2, pp. 69–74,
2008.

[8] M. Caesar, D. Caldwell, N. Feamster, J. Rexford,
A. Shaikh, and J. van der Merwe, “Design and
implementation of a routing control platform,” in
NSDI, 2005.

[9] J. van der Merwe, A. Cepleanu, K. D’Souza,
B. Freeman, A. Greenberg et al., “Dynamic
connectivity management with an intelligent
route service control point,” in INM, 2006.

[10] B. Fortz and M. Thorup, “Internet traffic
engineering by optimizing ospf weights,” in
INFOCOM, 2000.

[11] G. Nakibly, E. Menahem, A. Waizel, and
Y. Elovici, “Owning the Routing Table. Part II,”
Black Hat, 2013.

[12] J. Moy, “OSPF Version 2,” RFC 2328, 1998.
[13] Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao,

V. Sekar, and M. Yu, “SIMPLE-fying Middlebox
Policy Enforcement Using SDN,” in ACM
SIGCOMM, 2013.

[14] A. Shaikh and A. Greenberg, “OSPF Monitoring:
Architecture, Design and Deployment
Experience,” in NSDI, 2004.

[15] P. Francois, C. Filsfils, J. Evans, and
O. Bonaventure, “Achieving sub-second IGP
convergence in large IP networks,” ACM
SIGCOMM Computer Communication Review,
vol. 35, no. 3, pp. 33–44, 2005.

[16] C. Filsfils, P. Francois, M. Shand, B. Decraene,
J. Uttaro, N. Leymann, and M. Horneffer, “LFA
applicability in SP networks,” RFC 6571, 2012.

[17] “Gurobi Solver,” http://www.gurobi.com/.
[18] N. Spring, R. Mahajan, and D. Wetherall,

“Measuring ISP topologies with Rocketfuel,” in
ACM SIGCOMM, 2002.

[19] D. Levin, M. Canini, S. Schmid, F. Schaffert, and
A. Feldmann, “Panopticon: Reaping the Benefits
of Incremental SDN Deployment in Enterprise
Networks,” in USENIX ATC, 2014.

[20] T. Koponen, K. Amidon, P. Balland, M. Casado,
A. Chanda, B. Fulton, I. Ganichev, J. Gross,
P. Ingram, E. Jackson, A. Lambeth, R. Lenglet,
S.-H. Li, A. Padmanabhan, J. Pettit, B. Pfaff,
R. Ramanathan, S. Shenker, A. Shieh,
J. Stribling, P. Thakkar, D. Wendlandt, A. Yip,
and R. Zhang, “Network virtualization in
multi-tenant datacenters,” in NSDI, 2014.

7

