
Dynamic Service Chaining with Dysco
Pamela Zave

AT&T Labs–Research
pamela@research.att.com

Ronaldo A. Ferreira
UFMS

raf@facom.ufms.br

Xuan Kelvin Zou
Google

kelvinzou@google.com

Masaharu Morimoto
NEC Corporation of America
m-morimoto@bc.jp.nec.com

Jennifer Rexford
Princeton University
jrex@cs.princeton.edu

ABSTRACT
Middleboxes are crucial for improving network security and per-
formance, but only if the right traffic goes through the right mid-
dleboxes at the right time. Existing traffic-steering techniques rely
on a central controller to install fine-grained forwarding rules in
network elements—at the expense of a large number of rules, a cen-
tral point of failure, challenges in ensuring all packets of a session
traverse the same middleboxes, and difficulties with middleboxes
that modify the “five tuple.” We argue that a session-level protocol is
a fundamentally better approach to traffic steering, while naturally
supporting host mobility and multihoming in an integrated fashion.
In addition, a session-level protocol can enable new capabilities like
dynamic service chaining, where the sequence of middleboxes can
change during the life of a session, e.g., to remove a load-balancer
that is no longer needed, replace a middlebox undergoing main-
tenance, or add a packet scrubber when traffic looks suspicious.
Our Dysco protocol steers the packets of a TCP session through
a service chain, and can dynamically reconfigure the chain for
an ongoing session. Dysco requires no changes to end-host and
middlebox applications, host TCP stacks, or IP routing. Dysco’s
distributed reconfiguration protocol handles the removal of proxies
that terminate TCP connections, middleboxes that change the size
of a byte stream, and concurrent requests to reconfigure different
parts of a chain. Through formal verification using Spin and ex-
periments with our Linux-based prototype, we show that Dysco is
provably correct, highly scalable, and able to reconfigure service
chains across a range of middleboxes.

CCS CONCEPTS
• Networks → Network protocols; Middle boxes / network
appliances; Session protocols; Network components;

KEYWORDS
Session Protocol; NFV; Verification; Spin.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGCOMM ’17, August 21–25, 2017, Los Angeles, CA, USA
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-4653-5/17/08. . . $15.00
https://doi.org/10.1145/3098822.3098827

ACM Reference format:
Pamela Zave, Ronaldo A. Ferreira, Xuan Kelvin Zou, Masaharu Morimoto,
and Jennifer Rexford. 2017. Dynamic Service Chaining with Dysco. In Pro-
ceedings of SIGCOMM ’17, Los Angeles, CA, USA, August 21–25, 2017, 14 pages.
https://doi.org/10.1145/3098822.3098827

1 INTRODUCTION
In the early days of the Internet, end-hosts were stationary devices,
each with a single network interface, communicating directly with
other such devices. Now most end-hosts are mobile, many are
multihomed, and traffic traverses chains of middleboxes such as
firewalls, network address translators, and load balancers. In this
paper, we argue that the “new normal” of middleboxes warrants a
re-examination of approaches, as has happened with mobility [49].

Most existing research proposals for middlebox insertion or
“service chaining” use a logically centralized controller to install
fine-grained forwarding rules in network elements, to steer traffic
through the right sequence of middleboxes [1, 9, 10, 18, 19, 36, 37,
50]. The many weaknesses of these solutions are a direct result of
their reliance on forwarding rules for traffic steering:
• They rely on real-time response from the central controller to
handle frequent events, including link failures, traffic fluctua-
tions, and the addition of new middlebox instances.

• They need network state that grows with the number of policies,
the difficulty of classifying traffic, the length of service chains,
and the number of instances per middlebox type.

• Updates to rules due to changes in policy, topology, or load may
change the paths of ongoing sessions, yet all packets of a session
must traverse the same middleboxes (“session affinity”).

• Fine-grained routing is inherently intra-domain. It is difficult
to outsource middleboxes to the cloud [40] or other third-party
providers [45], since the controller cannot control the entire path.

• Some middleboxes modify the “five-tuple” of packets in unpre-
dictable ways, so that forwarding rules matching packets going
into the middlebox might not match them on the way out.

• Some middleboxes classify packets to choose which middlebox
should come next. These middleboxes should be able to select
the service chain for their outgoing packets, which forwarding
by network elements does not allow them to do.

• Adding middleboxes to a secure session (e.g., TLS) is challeng-
ing without cooperation with the end-hosts to exchange the
information needed to decrypt and reencrypt the data [25].

• A multihomed host spreads traffic over multiple administrative
domains (e.g., enterprise WiFi and commercial cellular network),
yet some middleboxes need to see all the data in a TCP session
(e.g., for parental controls [38]). In the administrative domain

https://doi.org/10.1145/3098822.3098827
https://doi.org/10.1145/3098822.3098827

SIGCOMM ’17, August 21–25, 2017, Los Angeles, CA, USA P. Zave et al.

where the paths converge, this requires coordination between
seemingly independent paths.

Some of these problems can be ameliorated. Research has shown
how to reduce forwarding state [10, 18, 37], maintain session affin-
ity [10, 18], identify packets whose headers have been changed
by a middlebox [9, 10, 37], install forwarding rules for modified
packets [10], and allow classification by middleboxes [9]. Yet all
these mechanisms add complexity, reduce rather than eliminate
some problems, and leave other problems untouched.

The principal contribution of this paper is a detailed exploration
of an opposing viewpoint, that session protocols might be a better
mechanism for service chaining. By session protocol we mean any
end-to-end protocol, one that establishes and controls communi-
cation between end-hosts. There are two major advantages to this
approach, which appear in direct contrast to the disadvantages of
routing/forwarding above:
• Many of the requirements for service chaining—session affinity,
handling modified five-tuples, selective control by middleboxes,
and convergence—apply to specific individual sessions. The need
for inter-domain control arises primarily because sessions often
cross domain boundaries. A session protocol operates on individ-
ual sessions rather than on aggregates of them, and can operate
end-to-end as well as separately in each domain.

• In the spirit of the end-to-end argument, all of the key functions
of a session protocol are performed by hosts—whether end-hosts
or middlebox hosts. Compared to the session state that is already
in these hosts, service chaining requires little additional state.
This provides inherent scalability, relieves the pressure on con-
troller capacity, and eliminates the need for network state to do
service chaining.

In response to the difficulties with fine-grained forwarding, emerg-
ing industry solutions are already replacing fine-grained forwarding
with encapsulation, so that forwarding through the service chain
is by destination addresses alone [6, 16, 26]. This is a step in the
right direction, but these solutions are intra-domain and some are
proprietary. In contrast, we are interested in service chaining that
can work across domains and can be added straightforwardly to
existing deployments. Session protocols already provide effective
and efficient support for mobility [3, 4, 24, 29, 30, 34, 41] and multi-
homing [17, 31], and we complete the exploration of this “design
pattern” by focusing on middleboxes.

Given the obvious flexibility of signaling in a session protocol,
it might be predicted that use of a session protocol for service
chaining would provide entirely new opportunities for optimization
and network management. This is indeed the case. We introduce a
session protocol that does dynamic reconfiguration, which means
changing the middleboxes in a service chain mid-session. Dynamic
reconfiguration could be useful in many situations (see also [20]):
• After directing a request to a backend server, a load balancer
could remove itself from the path of the request. The load bal-
ancer is no longer a possible point of failure, and there is no need
for custom optimizations, like direct server return for response
traffic to bypass the load balancer [33].

• AWeb proxy cache, ad-inserting proxy, or intrusion detection
system could remove itself after its work for a session is done.

• When suspicious traffic is identified, ongoing sessions could be
redirected through a packet scrubber for further analysis.

• When the network is congested, ongoing video sessions could
be redirected through compression middleboxes [13].

• A middlebox that is overloaded or undergoing maintenance,
could be replaced with another of the same type (e.g., see [11, 39]).

• When an end-host moves to a new location, a middlebox could
be added temporarily to buffer and redirect traffic from the old
location. In addition, the old middleboxes in the service chain
could be replaced with new ones closer to the new location.

Note that removing a middlebox removes the host machine from
the path entirely, rather than having the kernel simply bypass
the application. This improves performance and relability, while
conserving middlebox resources for sessions that actually need
them.

In this paper we describe the Dysco session protocol for service
chaining with dynamic reconfiguration. Dysco is an extension to
TCP (already a session protocol by our definition) requiring no
alterations to end-host applications, middlebox applications, host
TCP stacks, or IP routing. Because service chains need not span
the entire TCP session, Dysco can be deployed incrementally and
across untrusted domains, with conventional security techniques.

We have focused on TCP because of its dominance. Although
the Dysco approach will not work for connectionless protocols
such as UDP, Dysco does not interfere with forwarding in any
way. Therefore existing forwarding solutions can continue to steer
all traffic through essential middleboxes such as firewalls, while
co-existing with Dysco for more-demanding TCP service chaining.

In addition to the design, implementation, and measurement of
a Dysco prototype, this paper makes the following contributions:

Highly distributed control: Service chaining and dynamic re-
configuration of the service chain can be performed completely
under the control of middlebox hosts. Autonomous operation is
valuable not only because it avoids controller bottlenecks, but also
because sometimes only the middlebox itself knows which mid-
dlebox should be next in the chain for a session, or when its job
within a session has been completed. During dynamic reconfigura-
tion, Dysco manages possible contention between different Dysco
agents (representing different middleboxes) attempting to reconfig-
ure overlapping segments of the same session at the same time.

Generalized dynamic reconfiguration: For maximum gener-
ality, dynamic reconfiguration of a service chain works even if a
middlebox being deleted hasmodified the TCP session, most notably
by acting as a session-terminating proxy. It also works if the mid-
dlebox has changed the size of a byte stream (e.g., by transcoding
or adding/removing content). There is no inherent need for packet
buffering except in the case of server migration, when server state
must be frozen before it can be transferred. Such packet buffering,
when needed, can be performed exclusively by hosts.

Protocol verification: Although the code for dynamic recon-
figuration is compact, it was difficult to design, and covers many
subtle cases. It would be wrong to assume it is correct without some
clear evidence. We have this evidence because we designed the pro-
tocol using the modeling language of the model-checker Spin [15],
and used Spin to verify it at every stage of design. By presenting
an automated proof of correctness, we show how to increase the

Dynamic Service Chaining with Dysco SIGCOMM ’17, August 21–25, 2017, Los Angeles, CA, USA

p1 p8

p2 p3 p4 p5 p6 p7

TCP session (A, D, p1, p8)

Dysco subsession
(A, B, p2, p3)

Dysco subsession
(B, C, p4, p5)

Dysco subsession
(C, D, p6, p7)

Dysco
agent
host A

Dysco
agent
host B

Dysco
agent
host C

Dysco
agent
host D

TCP
endpoint

A
middle-

box
middle-

box
TCP

endpoint
D

Figure 1: A TCP session with its Dysco subsessions.

power of session protocols without sacrificing our confidence in
them.

Transparent support formiddleboxes:Our prototype includes
a Linux kernel module that intercepts packets in the network device,
so it works with unmodified applications and a wide range of mid-
dleboxes. The kernel module supports Linux namespaces, which
makes it suitable for virtualized environments (e.g., Docker [7]) and
experimentation with Mininet [23]. Experiments show that session
setup is fast, steady-state throughput is high, and disruption during
reconfiguration is small.

2 DYSCO ARCHITECTURE
In Dysco, agents running on the hosts establish, reconfigure, and
tear down service chains, relying only on high-level policies and
basic IP routing. In this section, we introduce the Dysco architecture
and give an overview of the protocol; in §3, we expand on how
Dysco can reconfigure an existing service chain.

2.1 Basic service chaining
The basic Dysco concept is that a service chain for a TCP session
is a chain of middleboxes and subsessions, each connecting an end-
host and a middlebox or two middleboxes. A service chain is set up
when the TCP session is set up. The service chain sometimes has
the same endpoints as the TCP session, as shown in Figure 1. Each
subsession is identified by a five-tuple, just as the TCP session is.
The unmodified end-host applications and middleboxes see packets
with the original header of the TCP session; as such, Dysco works
with existing application-layer protocols. As usual, congestion con-
trol and retransmission are performed end-to-end (see Figure 2). At
the same time, Dysco agents rewrite packet headers for transmis-
sion so that packets traveling between hosts have the subsession
five-tuple in their headers. In this way, normal forwarding steers
packets through the service chain, and there is no encapsulation to
increase packet size.

Establishment of the service chain: Establishment of the ser-
vice chain in Figure 1 begins when the Dysco agent at host A
intercepts the outbound SYN packet. If the SYN packet matches a
policy predicate, the agent will get an address list for the service
chain such as [B, C]. The agent then allocates local TCP ports for the
subsession with the next middlebox. The agent rewrites the packet
header with its own address as the source IP address, the address
of the next specified middlebox as the destination IP address, and
the new allocated TCP ports as source and destination TCP ports.
The agent also adds to the payload of the SYN packet the original
five-tuple of the session header and the address list [B, C, D]. It

Dysco agent

middleboxapplication

Dysco agent

host TCP stack

useruser
OSOS

Dysco
socketshost A host B

Figure 2: Data flow inside hosts with Dysco agents.

creates a dictionary entry to map the original session to the new
subsession, and another entry to map the subsession to the session
on the reverse path. It then transmits the modified SYN packet.

When the Dysco agent at host B receives the SYN packet from
the network, it checks to see if the payload carries an address list. If
it does, the agent removes the address list from the payload (storing
it), and rewrites the packet header with the session information
also stored in the payload. The agent also creates dictionary entries
to map the subsession to the session and vice-versa, and delivers
the packet to the middlebox application. When the SYN packet
emerges from the middlebox, the agent retrieves the address list [B,
C, D] and removes its own address to get [C, D]. It then follows the
procedure above to create a new subsession from B to C , rewrite
the packet, and transmit the modified SYN packet. This continues
along the service chain until the SYN packet reaches D, where it is
delivered to the TCP end-host.

When D replies to the SYN, the SYN-ACK packet travels back
along the chain of subsessions and middleboxes to continue the
handshake. The forward and reverse paths of the TCP session must
go through exactly the same middleboxes. Between middleboxes,
however, the forward and reverse network paths traversed by sub-
sessions need not be the same.

Middleboxes thatmodify the five-tuple: If such a middlebox,
e.g., a NAT, has a Dysco agent, the header modification makes it
difficult to associate a SYN packet going into the middlebox with
a SYN packet coming out of it. To solve this problem, the Dysco
agent applies a local tag to each incoming SYN packet, which it can
recognize in the outgoing packet. The agent then associates the
incoming and outgoing five-tuples, and removes the tag. (Note that
Dysco tags are different from tags in FlowTags [9] and Stratos [10],
because they are applied only to SYN packets, are never sent to
the network, and are meaningful only to the agent that inserts and
removes them.)

SIGCOMM ’17, August 21–25, 2017, Los Angeles, CA, USA P. Zave et al.

A middlebox that modifies the five-tuple can also become part
of a service chain because ordinary routing of subsession packets
directs traffic through it. This will not affect establishment of the
Dysco service chain, even though the subsession five-tuple will be
different on each side of the middlebox.

Flexible session teardown in each direction: The Dysco pro-
tocol preserves TCP’s ability to send data in the two directions
independently. For instance, one end of a TCP session can send a
request, and then send a FIN to indicate that it will send nothing
more. It can then receive the response through a long period of one-
way transmission. When the TCP session is torn down normally,
the chain is torn down along with it. A TCP session can also time
out rather than terminate explicitly, particularly when a middlebox
discards its packets, or an end-host fails. In this case the agents
will time out the subsessions. If necessary, agents can use heartbeat
signals to keep good subsessions alive.

2.2 Role of the policy server
We assume that a policy for service chaining combines a pattern
that matches five-tuples with an (ordered) list of middleboxes or
middlebox types to be traversed by packets matching the pattern.
A policy server determines the policies in force, and can optionally
trigger dynamic reconfiguration of groups of service chains. Com-
pared to an SDN controller, the policy server has no involvement
with individual sessions, and does nothing to enforce its policies
(such as installing forwarding rules in network elements).

Selecting the service chain: The first Dysco agent in a service
chain needs the policy for the chain. Yet the policy server need
not be queried for individual sessions. For example, initial policies
can be pre-loaded or cached in Dysco agents. Policies can specify
middlebox types rather than instances, and agents can choose the
instances, e.g., in a round-robin fashion or based on load. In addition,
each agent can add middleboxes to the untraversed portion of the
list. This makes it possible for any agent along the chain to inject
policies. This also makes it possible for a middlebox, such as an
application classifier, to itself select the next middlebox in the chain.
The middlebox communicates its choice to the local Dysco agent,
and the agent adds the next middlebox to the head of the policy list.

Initiating reconfiguration of a service chain: In some use
cases, Dysco agents initiate reconfiguration of the service chain,
without the involvement of the policy server (e.g., when a load bal-
ancer or Web proxy triggers the change). In other cases, the policy
server is involved, but only in a coarse-grained way. For example,
taking a middlebox instance down for maintenance would involve
the policy server sending a single command to tell the associated
Dysco agent to replace itself in all of its ongoing sessions. Similarly,
when a measurement system suggests that certain traffic is suspi-
cious, the policy server can send a command to Dysco agents to add
a scrubber to the service chain for all sessions matching a particular
classifier. The agents handle the full details of reconfiguring the
session, including resolving any contention if multiple portions of
a service chain try to change at the same time.

2.3 Agents can reconfigure a session
Reconfiguration of the service chain of a session can be triggered
by the policy server or the middleboxes themselves, but it is always

old path

new path

left anchor right anchor

Dysco

Dysco

Dysco Dysco

Dysco DyscoDysco

Figure 3: Agents reconfigure a segment of a session, replac-
ing an old path with two middleboxes by a new path with
one.

initiated by a Dysco agent and carried out exclusively by the agents
in the chain. Reconfiguration operates on a segment, consisting of
some contiguous subsessions and the associated hosts. As shown
in Figure 3, the agents at the two unvarying ends of a segment are
the left anchor and right anchor. An anchor can be the agent for a
middlebox or end-host. If the old path consists of a single subsession
(with no middleboxes), and the new path has at least one middlebox,
then middleboxes have been inserted. Reverse old and new above,
and middleboxes have been deleted. If both old and new paths have
middleboxes, then the old ones have been replaced by the new. The
anchors cooperate by exchanging control packets to replace the old
path of the segment with a new path. Reconfiguration is always
initiated by the left anchor, which must know the address of the
right anchor and the list of middlebox addresses to be inserted in
the new path (if any). There is no need for packet buffering, because
new data can always be sent on one of the two paths.

Security: Like other session protocols [4, 24, 29, 30, 34, 41],
Dysco is vulnerable to adversaries that inject or modify control
packets. Dysco can adopt the same solutions to protect against both
off-path attacks (e.g., an initial exchange of nonces, with nonces
included in all control packets) and on-path attacks (e.g., encrypt-
ing control packets within a chain and with the policy server).
The agents of a service chain are cooperating entities that must
trust each other. Excluding untrusted hosts from a service chain
is straightforward, since a service chain can span just a portion
of a TCP session (see below). Cooperating domains can exchange
information about trusted middlebox hosts (by IP address and op-
tional public key) so a middlebox in one domain can establish a
subsession with a trusted middlebox in another.

2.4 Sessions and service chains need not
coincide exactly

In Figure 1 there is one TCP session and one service chain, and
both have the same endpoints. Dysco allows other usages, making
it both versatile and incrementally deployable.

One option is that a service chain can spanmultiple TCP sessions.
For example, a service chain that includes a session-terminating
proxy (e.g., a layer-7 load balancer, Web cache, or ad-inserting
proxy) would encompass two TCP sessions. The Dysco agent of
the proxy simply presents data to the proxy application with the
TCP session identifier that applies at that point in the service chain.
Later, the proxy’s work may be completed, e.g., when the load
balancer establishes a session to a backend server, or the Web cache
realizes the requested content is not cacheable. The Dysco agent
can then delete the host from the service chain, in response to a

Dynamic Service Chaining with Dysco SIGCOMM ’17, August 21–25, 2017, Los Angeles, CA, USA

LEFT
ANCHOR

RIGHT
ANCHOR

requestLock (leftAnchor, rightAnchor, rightDelta)

ackLock (leftAnchor, rightAnchor, leftDelta)

SYN (addressList)

SYN-ACK
ACK

Figure 4: Control packets exchanged for reconfiguration.
Red packets travel on the old path, blue on the new path.

trigger by the proxy (e.g., a “splice” call to relegate further handling
of the traffic to the kernel). After a session-terminating proxy has
been deleted, the resulting service chain would correspond to a
single TCP session.

Another option is that a TCP session can be longer than a service
chain, or even encompass multiple separate service chains. This is
particularly important for partial deployment of Dysco or whenmul-
tiple administrative domains do not trust each other. For example,
an end-host that does not run Dysco may connect to the Internet
via an ISP edge router that does. This edge router can initiate a
Dysco service chain to the remote end-host, or to the other edge of
the ISP, on the client’s behalf. In another example, a TCP session
may access a server in a cloud. The part of the session covered by a
service chain in the cloud would begin at some gateway or other
utility guaranteed to be in the path of all of the session’s packets as
they enter the cloud. A Dysco agent in this network element would
begin the service chain.

3 DYNAMIC RECONFIGURATION
3.1 Protocol overview
To reconfigure a service chain Dysco agents use control packets,
each carrying in its body the associated session identifier. Recon-
figuration is always initiated by the Dysco agent acting as the left
anchor, as in Figure 3. Although reconfiguration can be triggered
by a controller or other middlebox, the triggering component must
always communicate with the left anchor to request it to execute
the protocol.

Just as the Dysco agent for A in Figure 1 needs the address list
[B, C, D] to set up the original service chain, the left anchor of a
reconfiguration needs an address list [M1, M2, . . . , rightAnchor]with
the middleboxes and right anchor of the new path that will replace
the old path. Typically the list comes from the triggering agent. If a
middlebox wants to delete itself, it sends a triggering packet to the
agent on its left with the address list [myRightNeighbor], so the left
anchor has an address list containing only a right anchor.

Figure 4 shows the control packets exchanged by the anchors
during the first phase of a simple, successful reconfiguration. The
red packets travel on the old path, so they are forwarded through
the Dysco agents of current middleboxes (the delta fields will be
explained in §3.4). The blue three-way SYN handshake sets up the
new path within the service chain. As in §2, the SYN carries an
address list so that the Dysco agents can include all the addressed
middleboxes before the right anchor. During this phase normal data
transmission continues on the old path.

1: requestLock (X, Z)3: requestLock (W, Y) 2: requestLock (X, Z)

state =
lockPending

state =
lockPending

state =
lockPending

requestor = Xrequestor = Y requestor = X

Dysco
agent

X

Dysco
agent

Y

Dysco
agent

Z

Dysco
agent

W

Figure 5: Contention to reconfigure overlapping segments.

In the second phase of reconfiguration, both paths exist. The
anchors send new data only on the new path, but continue to send
acknowledgments and retransmissions on the old path for data that
was sent on the old path. This prevents trouble with middleboxes
that might reject packets with acknowledgments for data they did
not send. This phase continues until all the data sent on the old
path has been acknowledged, after which the anchors tear down
the old path and discard the state kept for it.

In subsequent sections we provide protocol details, organized
by significant issues and challenges.

3.2 Contention over segments
Dysco is designed to work even if middleboxes have a great deal of
autonomy, so that new solutions to network-management problems
can be explored. In the most general case, two different Dysco
agents might be triggered to reconfigure overlapping segments at
the same time. Figure 5 shows how the protocol prevents this.

For each subsession, the agent on its left maintains a state that is
one of unlocked, lockPending, or locked. If it is lockPending or locked,
then variable requestor holds the left anchor of the request for which
it is pending or locked. If an agent receives requestLock(leftAnchor,
rightAnchor) from the left, the agent is not rightAnchor, and its
subsession to the right is unlocked, then it forwards the packet
to the right, while setting the subsession state to lockPending and
requestor to leftAnchor. If there is no contention, the same agent
will receive a matching ackLock from the right. It will forward
the ackLock and set the subsession state to locked. In the figure, a
request to lock the segment from X to Z has propagated from X to
Z (packets 1 and 2).

Meanwhile agentW might be triggered to lock the segment from
W to Y . Its request (packet 3) will be blocked at X because the sub-
session to its right is lockPending. Eventually X will receive either
ackLock or nackLock in response to its own request. If ackLock, it
replies with nackLock to the request fromW . As a nackLock propa-
gates leftward, lockPending states are reset to unlocked. On the other
hand, if X receives nackLock in response to its own request, then
the subsession to its right becomes unlocked, and it can forward
the saved request fromW .

This protocol cannot deadlock because of the linear order of the
service chain. The rightmost request will never be blocked by a
lockPending subsession. Therefore it will always receive a reply,
which will unblock the blocked request to its immediate left (if any).
The unblocked request is now the rightmost request, which will not
be blocked again, and so on. Requests could in theory be starved by
a continual succession of new requests, but this would not happen
in an otherwise correct implementation.

SIGCOMM ’17, August 21–25, 2017, Los Angeles, CA, USA P. Zave et al.

3.3 Control signaling
Dynamic reconfiguration requires control signaling, e.g., to resolve
contention over segments (§3.2) and to cancel reconfiguration if a
new path cannot be created (§3.6).

In Dysco we implement control signals as UDP packets, rather
than introducing extra data into the TCP byte stream. This simplifies
implementation, as the Dysco agents do not have to monitor the
data stream for control signals, extract them, and fix the TCP header
information (such as sequence number and checksum). Also, an
implementation in the data path would introduce additional delays
to data packets for processing the control information.

Although the packets used to set up the new path (as shown in
Figure 4) and tear down the old path resemble TCP SYN and FIN
handshakes, they are actually UDP packets. The reason we do not
use a TCP SYN handshake (as used in Multipath TCP to set up a
new subflow [38]) is as follows. A principal design goal for dynamic
reconfiguration is to disrupt data transfer as little as possible. While
we attempt to set up the new path, data transfer continues on the old
path. This means that the SYN to set up the new path has no initial
sequence number, as the cutoff number is not determined until the
path is ready to use. This is not a problem formiddlebox applications
because, not surprisingly, the only middleboxes inserted in a new
path are ones that do not need to see the initial SYN handshake.
Examples are DPIs that operate at the packet level, and middleboxes
in the old path that are being replaced (with migration of the session
state, as detailed in §3.5).

The reason that we do not use an actual FIN handshake to tear
down the old path is that, if TCP packets are used, it is too difficult
for the anchors to distinguish between tearing down the old path
and tearing down the entire session. This is due to the many possi-
ble race conditions between these two cases, which is something
revealed by verification (see §3.7). In both cases sequence numbers
in the packets mean the same thing, so for both cases TCP packets
are passed to the application.

3.4 Sequence-number deltas
Some middleboxes increase or decrease the size of a byte stream
(by transcoding, inserting, or deleting content). They keep track
of the difference (delta) between incoming and outgoing sequence
numbers (a signed integer) in the relevant direction, so that they can
adjust the sequence numbers of acknowledgments accordingly. A
session-terminating proxy also has a delta because it begins sending
in its TCP session with the server with a different sequence number
than the client chose. If a middlebox with a delta is deleted, the
discrepancy in sequence numbers must be fixed elsewhere.

We make the assumption that once a middlebox is ready for
deletion from a session, its deltas do not change.1 The middlebox’s
Dysco agent must know the deltas, either through an API or by
reconstructing them. As the requestLock packet traverses the old
path, it accumulates the sum of the middlebox deltas for that di-
rection in the field rightDelta. As the ackLock packet traverses the
old path, it accumulates the sum of the middlebox deltas for that
direction in the field leftDelta.

1Without this assumption, there must be a wait while the last data passes through the
old path, during which new data cannot be sent on either path.

middlebox
application

former
right

anchor

AN = n

AN = n - delta

SN = n

SN = n + delta

formerly existing
subsession

new subsession

Figure 6: How a former anchormodifies TCP packets (dotted
arrows) of the new subsession.

Each anchor must remember the delta it has received in the
requestLock handshake. For the remainder of the session after re-
configuration, for data coming in on the new path or going out on
the new path, the anchor must apply its delta to packets. The table
below shows how. To simplify the presentation, we assume that
sequence numbers do not wrap around to zero.

packet how apply to which
direction delta field

in add sequence number
out subtract acknowledgment number

Figure 6 illustrates the use of this table. In the figure, a former
right anchor is holding a delta (assumed positive in this example)
from the reconfiguration, which means that a middlebox formerly
to the left of it added delta bytes to the data stream. As shown in the
figure, packets going into the Dysco agent from the new subsession
have delta added to their sequence numbers so that the agent’s
middlebox and all hosts to the right of the agent see consistent
sequence numbers. Packets going out of the Dysco agent on the
new subsession have delta subtracted from their acknowledgment
numbers, so that all hosts to the left of the agent see consistent
acknowledgment numbers.

3.5 Packet handling on two paths
In the second phase of reconfiguration, both old and new paths exist.
To handle packets correctly, the anchors must decide which path
to use when sending data or acknowledgments, and must know
when the old path is no longer needed. To make these decisions, an
anchor maintains the following variables (the “plus one” follows
TCP conventions for sequence numbers):
• oldSent: highest sequence number of bytes sent on old path, plus
one (this is known at the beginning of the phase, as no new data
is sent on the old path);

• oldRcvd: highest sequence number of bytes received on old path,
plus one;

• oldSentAcked: highest sequence number sent and acknowledged
on old path, plus one;

• oldRcvdAcked: highest sequence number received and acknowl-
edged on old path, plus one;

• firstNewRcvd: lowest sequence number received on the new path,
if any.

A byte sent by an anchor is allocated to a path according to the
following rules. If a packet contains data for both paths (both new
and retransmitted bytes), then the data must be divided into two
new packets.

Dynamic Service Chaining with Dysco SIGCOMM ’17, August 21–25, 2017, Los Angeles, CA, USA

predicate on byteSeq where to send byte
byteSeq < oldSent old path
byteSeq ≥ oldSent new path

Acknowledgment numbers are a little different because their mean-
ing is cumulative. For these the rules are:

predicate on packetAck where to send ack
packetAck ≤ oldRcvd ∧

packetAck > oldRcvdAcked old path
packetAck > oldRcvd ∧
oldRcvd = oldRcvdAcked new path
packetAck > oldRcvd ∧ new path, also
oldRcvd > oldRcvdAcked ack oldRcvd on old path

If the two sets of rules imply that the data of a packet goes to one
path and its acknowledgment goes to another, then the packet must
be divided into two. These rules need not consider deltas, as deltas
are already applied to incoming packets, and not yet applied to
outgoing packets.

For an anchor to decide that it no longer needs the old path, of
course it must have received acknowledgments for everything it
sent on the old path, or oldSentAcked = oldSent. Knowing that it has
received everything on the old path is harder, unless it has received
a FIN on the old path, because it does not have direct knowledge
of the cutoff sequence number at the other anchor. The first byte
received on the new path is not a reliable indication, because earlier
data sent to it on the new path may have been lost. The correct
predicate is:
oldRcvdAcked = oldRcvd ∧ oldRcvd = firstNewRcvd

The first equality says that everything received has been acknowl-
edged. The second says that the cutoff sequence number must be
oldRcvd. When the old path is no longer needed, reconfiguration is
complete. The anchors send UDP FIN packets on the old path, then
clean up the extra state variables.

If a stateful middlebox in the session is being replaced, additional
delay must be introduced. First, all use of the old path must be com-
pleted. Second, the stateful middlebox on the old path must export
its state for that session to the new stateful middlebox, using exist-
ing mechanisms [39]. Then and only then can data be sent on the
new path. During the interval when the old path is being emptied
and state is being migrated, the anchors must buffer incoming data.

3.6 Failures
If control packets are lost, then the protocol detects this and re-
transmits them. The most significant failure during reconfiguration
is failure to set up the new path, which can happen because of host
failure or network partition. The remedy is to abort the reconfigu-
ration, so the session continues to use the old path. After this the
subsessions of the old path between the anchors are still locked, so
that they cannot be reconfigured in the future. So the left anchor
sends a cancelLock control packet to the right anchor, the right
anchor replies with an ackCancel, and all the agents that receive
these signals unlock their subsessions.

Unfortunately, dynamic reconfiguration cannot be used to re-
cover from the failure of a middlebox. This is because the old path
must be fully operational for the protocol to work. Consequently,
the utility of reconfiguration is limited to policy change and re-
source management, rather than fault-tolerance.

3.7 Design and verification
In designing the reconfiguration protocol, we had to solve a number
of related problems simultaneously. We had to decide how to make
the cutoff between the old and new paths for maximum efficiency
(§3.1), how to exercise distributed control among conflicting re-
configuration attempts (§3.2), how to compute and use deltas to
accommodate the broadest range of middlebox applications (§3.4),
how to split acknowledgments across the two paths and determine
when the use of the old path is completed (§3.5), and how to handle
failures (§3.6). We had to decide whether any particular packet
should be TCP or UDP (§3.3). We also had to deal with many race
conditions—for example, an anchor might receive a FIN going in
either direction in almost any state, and the FIN might indicate the
completion of data transmission on the old path or the completion
of end-to-end TCP data transmission.

We did not believe that we could design such a protocol correctly
without help, so we designed it in Promela, which is the modeling
language of the model-checker (verifier) Spin [15]. In Promela, each
Dysco agent is a concurrent process that communicates with other
processes through message queues. The messages represent both
TCP and UDP packets, with fields for sequence numbers and other
metadata. Each agent is structured as a finite-state machine that
can react to the receipt of a message by reading and writing local
variables, sending other messages, and/or changing state. Choices
made by end-hosts and middlebox applications are modeled by
nondeterminism in the program. As a result, the Promela program
for a Dysco agent has a straightforward structure that translates
easily to actual implementation code.

The great advantage of using Promela for design is that we were
able to verify the model at every step, obtaining immediate feed-
back on bugs and unresolved issues. It was necessary to verify each
configuration separately, where a configuration is an initial service
chain and a set of attempted reconfigurations. For each configura-
tion, Spin checks the model for all possible executions, meaning all
possible network delays and scheduling decisions, which in turn
generates all possible interleavings of modeled events. In a typical
verification run for a typical configuration, Spin constructs a global
state machine of all possible execution behaviors with 100 million
state transitions.

What can verification tell us? Any run of Spin will find errors
such as deadlocks and undefined cases. In addition, it is possible
to check stronger properties by putting assertions at appropriate
points in the model. If execution reaches an assertion point and
the assertion evaluates to false, that will also be flagged as an
error. Using this technique, we were also able to verify that each
configuration has the following desirable properties:
• When multiple left anchors contend to lock overlapping seg-
ments, exactly one of them succeeds.

• No data is lost due to reconfiguration.
• Unless the new path cannot be set up, an attempted reconfigura-
tion always succeeds.

• The sequence and acknowledgment numbers received by end-
hosts are correct.

• All sessions terminate cleanly.
Themodel, alongwith extensive documentation of design, modeling
abstractions, and Spin runs, can be found at [8]. It shows that

SIGCOMM ’17, August 21–25, 2017, Los Angeles, CA, USA P. Zave et al.

Figure 7: Implementation, where solid black lines represent
the data path, blue dashed lines the control path, and red
dashed-dotted lines the management path for distributing
policies.

with modern tools, protocol design can be more ambitious without
sacrificing robust operation.

4 DYSCO PROTOTYPE
Our Dysco prototype consists of a kernel-level agent that communi-
cates with an external policy server through a user-space daemon,
as shown in Figure 7.

4.1 Dysco components and interfaces
Agent: The Dysco agent supports unmodified end-host applica-
tions, middleboxes, and host network stacks by intercepting packets
going to/from the network. The agent could be implemented in
various ways, including a modified device driver, a software switch,
or a user-space library like DPDK with direct NIC access. In our
prototype, the Dysco agent is a Linux kernel module that intercepts
packets in the device driver. Even though the Linux kernel is not
the fastest option for high-performance middleboxes, we decided
to do an in-kernel implementation to transparently support TCP-
terminating applications (e.g., proxies, HTTP servers, and clients),
middleboxes that use libpcap to get/send packets from/to the net-
work (e.g., Bro [5], Snort [42]2, and PRADS [35]), and middleboxes
that run in the Linux kernel (e.g., Traffic Controller (tc) [22] and
Iptables/Netfilter Firewall [21]). As the Dysco agent processes all
packets from a TCP session, it can change how TCP behaves in
several ways. For example, it can advertise a smaller receive win-
dow to throttle a sender during reconfiguration or even prevent it
from sending data at all by advertising a window of size zero. Our
prototype also supports network namespaces for virtualized envi-
ronments, such as Docker and Mininet. The kernel module consists
of over 6000 lines of C code, and adds only 16 lines of C code in the
device drivers to call the functions that intercept the packets and
initialize and remove the module. Our prototype currently supports
the Intel ixgbe driver (for 10 gigabit NICs), the e1000 driver (for 1
gigabit NICs), veth (for virtual interfaces), and the Linux bridge.

2Snort uses a Data Acquisition Layer (DAQ) that allows the use of different packet
acquisition methods, such as libpcap and DPDK.

Middleboxes: Dysco supports unmodified middlebox applica-
tions, andwe have successfully runwith NGINX [27], HAProxy [14],
Iptables/Netfilter [21], Linux tc [22], and libpcap-based middle-
boxes. Most middleboxes send and receive data via libpcap, user
socket, or Linux sk_buff. Some middleboxes only read the pack-
ets (e.g., PRADS [35], Bro [5], Snort [42], Suricata [44], Linux
tc [22], Iptables/Netfilter Firewall [21]) while some others mod-
ify the TCP session identifier or sequence numbers (e.g., Ipta-
bles/Netfilter NAT [21], HAProxy [14], Squid [43]). Middleboxes
that only read the packets and use libpcap or sk_buff run trans-
parently and unmodified with Dysco. To support the removal of
TCP-terminating proxies, the Dysco agent intercepts the Linux
“splice” system call and then invokes the reconfiguration protocol.
We also support a dysco_splice system call that a (modified) mid-
dlebox can use to trigger its removal. We discuss these in more
detail below. Dysco also supports middleboxes that can import
and export internal state as part of migrating a session from one
middlebox instance to another, inspired by OpenNF [11].

Daemon: The Dysco agent performs session setup and tear-
down, as well as data transfers, directly in the kernel. We imple-
mented the reconfiguration protocol in a separate user-space dae-
mon for ease of implementation and debugging. Reconfiguration
messages are infrequent, compared to data packets, so the small
performance penalty for handling reconfiguration in user space is
acceptable. The daemon communicates with the Dysco agent in
the kernel via netlink (a native Linux IPC function), with other
Dysco agents via UDP, and with the policy server via TCP. Our pro-
totype includes a library for a simple management protocol for the
daemon and the policy server. The daemon compiles and forwards
to the kernel the policies received from the policy server, triggers
reconfiguration, and performs state migration when replacing one
middlebox with another (by importing and exporting state, and
serializing and sending the state to another middlebox).

Policy server: The policy server provides a simple command-
line interface for specifying the service-chaining policies and trigger
reconfiguration of live sessions. A policy includes a predicate on
packets, expressed as BPF filters, and a sequence of middleboxes.
The policy server distributes these commands to the relevant Dysco
daemons. Commands can be batched and distributed to different
hosts using shell scripts. The policy server and the Dysco daemon
consist of over 5000 lines of Go of which 3000 lines are a shared
library for message serialization and reliable UDP transmission.
The source code of Dysco as well as the shell scripts used for the
evaluation are available at [8].

4.2 Protocol details
Tagging SYN packets: The local tags added to SYN packets, as
described in §2.1, are implemented with TCP option 253 (reserved
for experimentation). The option carries a unique 32-bit number to
identify the session. SYN packets are tagged only when they are
inside a middlebox host.

Packet rewriting for data transmission: During data trans-
mission, the agent simply rewrites the five-tuple of each incom-
ing or outgoing TCP packet, and applies any necessary sequence
number delta and window scaling. Since the agent rewrites the
packet header, it has to recompute the IP and TCP checksums. All

Dynamic Service Chaining with Dysco SIGCOMM ’17, August 21–25, 2017, Los Angeles, CA, USA

checksum computations are incremental to avoid recomputing the
checksum of the whole packet.

Minimizing contention during lookups: The agent stores
the mapping between incoming and outgoing five-tuples in a hash
table that uses RCU (Read-Copy-Update) locks for minimizing con-
tention during lookups. Since entries are added to the hash table for
each new TCP session, a naïve locking strategy based on mutexes or
spin locks would degrade the performance significantly. To support
Linux namespaces, the agent maintains one translation table per
namespace.

UDPmessages for reconfiguration: Our daemon implements
the reconfiguration protocol using UDP messages. We chose to
use UDP in user space to facilitate development and debugging.
Also, reconfigurations do not occur frequently, so the performance
requirements are not as stringent as for the data plane. The UDP
control messages, described in §3, carry the five-tuples of the TCP
sessions going through the reconfiguration, so the Dysco daemon
and agent can associate the control message with the session state
inside the kernel.

Beyond the protocol outlined in §3, we now address several
interoperability issues that arise for middleboxes that terminate
TCP sessions, including layer-7 load balancers and proxies.

Triggering a reconfiguration using “splice”: To deal with
middleboxes that terminate TCP sessions and want to remove them-
selves, Dysco offers two options First, we have a library function
that receives two sockets and a delta representing how much data
was added to or removed from the first socket before delivering the
data to the second socket:

int dysco_splice(int fd_in, int fd_out, int delta)

A positive delta indicates that data were added to and a negative
delta indicates that data were removed from fd_in. This option
requires the modification of a middlebox to call the library function.
Second, we support unmodified middleboxes that use the Linux’s
“splice” system call. This system call is used by many applications,
e.g., HAProxy [14], to avoid transferring data from the kernel to
user space. For this case, we provide a shared library that inter-
cepts the C library functions used for network communication (e.g.,
socket, accept, connect, splice, close, and the read and write func-
tions). The shared library must be preloaded using LD_PRELOAD.
Each function of the shared library first calls the original function
from the C library and then records the result of the operation. For
example, a function that intercepts any of the read calls records
the amount of data read from a socket. When the splice function is
called, the shared library uses the recorded information to compute
the delta between two sockets and find the information about the
associated TCP sessions (i.e., the two five-tuples). Note that the
Linux splice call receives a socket and a pipe as parameters. The
first call to splice just sets data structures internal to the kernel.
The operation is performed only on the second call to splice. We
track both calls and trigger a reconfiguration after the second call,
when we have all the information needed. Note that we assume
that the application calling splice does not want to process the
data anymore. This is the case for L7 load balancers, but this is
not necessarily true when an HTTP proxy is handling persistent
connections, so the shared library must be used with prudence.

Differences in TCP options for two spliced TCP sessions:
When a Dysco agent initiates a “splice” of two TCP sessions, the
Dysco agents on the left and right anchors need to translate not
only the sequence and acknowledgment numbers of each packet
but also the TCP options that differ between the two sessions or
have a different meaning. The relevant options are window scal-
ing, selective acknowledgment, and timestamp. Window scaling
is easy to convert, as the anchors record the scale factor negoti-
ated during the session setup. The Dysco agent first computes the
actual receiver window of a packet using the scale factor of its
incoming subsession and then rescales the calculated value by the
scale factor of the outgoing subsession. The translation of the se-
lective acknowledgment (SACK) blocks is particularly important
because the blocks of one session have no meaning to the other
session (if blocks are not translated, the Linux kernel will discard
all packets that contain blocks with invalid sequence numbers). To
convert the sequence numbers of SACK blocks, the anchors add to
(or subtract from) each sequence number the delta that they receive
during session reconfiguration. Timestamps are used for protection
against wrapped sequence numbers and RTT computation. The
Linux kernel keeps track of the highest timestamp received and
discards packets whose timestamps are too far from it. To avoid
packets being discarded by the kernel, Dysco translates timestamps
in the same way as it does with sequence numbers.

5 PERFORMANCE EVALUATION
We now evaluate Dysco in the three main phases of a session
across different network settings. First, we measure the latencies for
session initiation to quantify the overhead introduced by subsession
setup and including middlebox address lists in the SYN packets.
Second, we measure the throughput of a session during normal data
transfer to show that the Dysco agents can forward packets at high
speed. Third, we show that dynamic reconfiguration improves end-
to-end performance and introduces minimal transient disruptions.

Our testbed consists of a NEC DX2000 blade server with 11 hosts,
each with one Intel eight-core Xeon D 2.1 GHz processor, 64 GB
of memory, and two 10Gbps NICs. The two NICs of each host are
connected to two layer-two switches, forming two independent
LANs. The 11 hosts run Ubuntu Linux with kernel 4.4.0.

5.1 Session initiation
Figure 8 shows session setup latency under two scenarios: Dysco
and middleboxes inserted by IP routing (Baseline). We do not run a
middlebox application (i.e., the middleboxes simply forward packets
in both directions), so we only measure the overhead of the Dysco
protocol. The scenario with one middlebox has three hosts, and the
one with four middleboxes has six hosts connected in a line. The
measurements represent the time for a TCP socket connect() at
the client, which is the round-trip for establishing the TCP session
to the server. Figure 8(a) shows the latencies when the checksum
computation is offloaded to the NIC and Figure 8(b) when the
computation is not offloaded. The worst case for Dysco is with
four middleboxes, and when the checksum computation is not
offloaded to the NIC. The time difference between the two averages,
in this case, is only 94µs . The measured latencies are insignificant
compared to the overhead for middlebox applications to transfer

SIGCOMM ’17, August 21–25, 2017, Los Angeles, CA, USA P. Zave et al.

packets to user space to perform network functions and represent
less than 0.5% in a TCP session with RTT of 20 ms in the worst
case. From now on, we report results only for the cases where
checksum and TCP segmentation are not offloaded to the NIC, as
these represent the worst cases for Dysco.

(a) Checksum offloading (b) No checksum offloading

Figure 8: Latency for session initiation.

5.2 Data-plane throughput
Figure 9 shows the goodput, measured at the receivers, of multiple
TCP sessions between four clients and four servers connected via a
middlebox that simply forwards traffic between the clients and the
servers. Again, we do not run an application on the middlebox to
quantify just the Dysco overhead. The figure shows no noticeable
difference between the performance of Dysco and the baseline
case; the differences between the two cases are always within one
standard deviation and are less than 1.5 percentage points in the
worst case. We show the results up to 10000 sessions. Note that after
100 sessions the link becomes the bottleneck, so we do not notice
a significant difference between Dysco and the baseline. Receive
side scaling (RSS) is supported in the NIC and enabled in the Linux
kernel, so packets belonging to one TCP session are directed to the
same core. Therefore, the result for one session gives a better idea
of the performance degradation of Dysco, because it represents the
goodput of one core.

Figure 9: Goodput of Dysco compared with the baseline.

We also measured the number of requests that NGINX [27], a
popular HTTP server, can sustain under Dysco and compared the

results with the baseline. The measurement was performed with
wrk [47], an HTTP benchmarking tool, with 16 threads and four
hundred persistent connections, as recommended in [47]. NGINX
is able to serve more than 300,000 connections per second when
only one middlebox is between the client and the server, and a little
under 300,000 connections per second when four middleboxes are
between the client and the server. The results are consistent with
the throughput measurements, and the largest difference between
Dysco and the baseline is less than 1.8 percentage points.

Figure 10: Number of HTTP requests per second NGINX can serve
under Dysco and the baseline.

5.3 Dynamic reconfiguration
In this section, we investigate a few scenarios of dynamic reconfig-
uration. We use the logical topology of Figure 11; one of the hosts
works as the router, and each IP subnet is on a different VLAN.

Figure 11: Testbed topology for the performance evaluation of the
reconfiguration experiments.

Middlebox deletion:We run TCP sessions from four Clients to
four Servers, passing through the Router and Middlebox1, which is
running a TCP proxy. After 40, 60, 80, and 100 seconds, we trigger
reconfigurations that remove Middlebox1 from a client-server pair
and direct the traffic of all TCP sessions between them directly
from the client to the server passing only through the Router. Each
client-server pair has a bundle of 150 TCP sessions for a total of
600 simultaneous sessions.

The top of Figure 12 shows the goodput before and after each
reconfiguration. The time series represents measures of application
data (goodput) at one-second intervals. After each reconfiguration,
the goodput of the sessions that no longer go through the proxy
increases significantly. We can see that after 100 seconds, when all

Dynamic Service Chaining with Dysco SIGCOMM ’17, August 21–25, 2017, Los Angeles, CA, USA

600 sessions no longer go through the proxy, the overall goodput
has doubled from the time interval before the reconfigurations
started. The bottom of Figure 12 shows the CPU utilization at the
proxy. We can see that the CPU utilization decreases at the instants
40, 60, 80, and 100, going to zero after all the reconfigurations end.

Figure 12: Goodput of TCP sessions (top) and CPU Utilization at
the proxy (bottom) before and after multiple reconfigurations.

We can see in Figure 12 that the reconfigurations are successful
and the traffic reaches steady-state behavior after 100 seconds. Dur-
ing the reconfiguration, the Dysco agent on the proxy advertises
a small window to the senders to reduce the amount of traffic on
the receivers. Note that during the reconfiguration, packets are
received from both paths causing a surge of traffic at the receivers.
We initially tested a zero window advertisement, but the perfor-
mance degraded significantly. The strategy that worked best was to
advertise the minimum of the actual advertised window and a small
constant (64K) that allowed the flow of packets to continue without
overwhelming the receivers. Figure 13 shows that reconfiguration
time is short: almost 80% of reconfigurations took less than 2ms and
98.7% less than 4ms. The few larger values happen when control
messages are lost and need to be retransmitted.

Figure 13: CDF of the reconfiguration time for the proxy removal.

Session disruption:We investigate the transient performance
of a session after removing a proxy, where the new path is faster

(a) TCP SACK enabled

(b) TCP SACK disabled

Figure 14: TCP performance during reconfiguration.

than the old one (so packets may arrive out of order to the destina-
tion). To better control network latency, we simulate the testbed
topology in Mininet, where we can introduce different link delays
and bandwidths. Figure 14(a) plots the congestion window (left
y-axis) and TCP goodput (right y-axis) during a proxy removal.
The proxy triggers the reconfiguration 30 seconds after the be-
ginning of the session. As we can see, the session experiences no
disruption. Figure 14(b) shows why the Dysco agents must handle
TCP options—with TCP SACK disabled, packet losses temporarily
degrade session performance.

Middlebox replacement with state transfer: Middleboxes
may need to transfer internal state as part of middlebox replace-
ment, and ensure that the new component is ready before receiv-
ing its first packet [11, 39]. While routing solutions rely on clever
synchronization of switches and a controller, Dysco uses simpler
mechanisms, as the anchors can coordinate to determine when the
new component is ready.

To experiment with state transfer, we extended the Dysco dae-
mon to get state information of the Linux Netfilter firewall, serialize
the data using JSON, and send the serialized data to another Dysco
daemon. We did not modify Netfilter to interact with Dysco, so
the interaction between Dysco and Netfilter is completely transpar-
ent to the firewall. The internal state of Netfilter can be obtained
by running the conntrack Linux utility with a filter to select the
relevant session(s).

The reconfiguration involves two Netfilter firewalls running on
Middlebox1 and Middlebox2, and TCP sessions running from three
clients to three servers in Figure 11. The client and the server are
the left and right anchors, respectively. Upon receiving a SYN-ACK
message (indicating that the new path is established), the left anchor
sends a state-transfer message to Middlebox1 with the session that
is migrating to the new path, the address of Middlebox2, and the
addresses of the left and right anchors. The Dysco daemon running
on Middlebox1 gets and sends the state information directly to the
Dysco agent running on Middlebox2 and waits for a notification
that the state is installed before notifying the left and right anchors
that the new path is ready.

SIGCOMM ’17, August 21–25, 2017, Los Angeles, CA, USA P. Zave et al.

Figure 15: Goodput during reconfiguration and state migration.

Figure 15 shows the goodput of three bundles of 100 sessions
running while the state from Middlebox1 is transferred to Middle-
box2. For this experiment, the link speeds on the two middleboxes
were limited to 2Gbps to avoid creating a bottleneck on the router
of Figure 11. The time series represents the goodput measured at
one-second intervals. The blue line is a bundle of sessions that runs
through Middlebox1 until the 70s mark and then changes to a new
path that goes through Middlebox2. After the blue-line sessions
are moved from Middlebox1 to Middlebox2, the goodput of all ses-
sions increases. The overall goodput of the sessions that now go
through Middlebox2 is almost twice the goodput of the sessions
that stayed on Middlebox1. The sessions that migrate from Middle-
box1 to Middlebox2 do not suffer performance degradation (i.e., no
lost or reordered packets) and are not blocked by the firewall on
Middlebox2. The average reconfiguration time for the 100 migra-
tions, including state transfer and measured from the moment a
SYN message is sent until the new path is used, was less than 100
ms. Comparing with the times from Figure 13, we can see that in
this case the state transfer dominates the reconfiguration time.

6 LIMITATIONS
Our prototype does not implement the security mechanisms pre-
sented in §2.3.

In principle, Dysco service chains can span domain boundaries,
because packets are steered from one middlebox to another by
ordinary addressing and forwarding. In practice, a SYN packet with
a payload—the address list, as in §2.1—may not be accepted by a
domain’s firewall.

There is also a potential practical problem with service chains
that begin where a TCP session enters a new domain. Routing in
the domain must ensure that all packets of the session are routed
to the same middlebox, one with a Dysco agent that initiates the
service chain for the session.

There may be an additional difficulty with dynamic reconfigura-
tion, if the reconfigured segment crosses a domain boundary, and
an unmodified NAT at the boundary does not allow UDP packets
to pass through. Our current prototype has yet another problem
that the new path is set up with UDP packets (§3.3), so its TCP data
packets appear unsolicited. The latter problem can be fixed, how-
ever, by setting up the new path with a TCP SYN handshake with
random initial sequence numbers, and using the delta mechanism
(§3.4) to correct subsequent sequence numbers in the data stream.

Most of these difficulties have a single root cause: service chain-
ing in Dysco, and especially dynamic reconfiguration, requires
control signaling and metadata that are difficult to transmit within
a TCP session. This is exactly the same difficulty encountered in im-
plementing multihoming with Multipath TCP [38]. Multipath TCP
uses primarily TCP options, which we did not use for lack of space.
Whether a protocol uses SYN payloads, TCP options, or auxiliary
UDP signaling, there is a danger that control and metadata will be
blocked, dropped, or modified in transit. This can happen because
of security measures, or, in the case of TCP options, because of inno-
cent functions such as resegmentation in NICs. The safest approach
seems to be encoding control and metadata in escape sequences in
the TCP byte stream, but this is inefficient and requires significant
manipulation of sequence numbers.

Given the importance of TCP, this is a problem urgently in need
of a good solution. There should be a secure, reliable, and efficient
way of associating control and metadata with a TCP session. Most
importantly, designers of this solution should recognize that there
may be more than one additional feature, function, or protocol
adding metadata to a single session, so that they do not interfere
with each other.

7 RELATEDWORK
7.1 Service chaining by forwarding
BGP: Early solutions to dynamic service chaining manipulate BGP
to “hijack” traffic, either within a single domain [2] or across the
wide area [45]. However, manipulating BGP is risky in the wide
area, and operates at the coarse level of destination IP prefixes
rather than individual sessions. Plus, it is difficult to use BGP to
insert multiple middleboxes in a service chain.

Stratos and E2: Stratos [10] and E2 [32] are designed for middle-
box deployment within clouds. They use fine-grained forwarding
rules for (static) service chaining, inheriting the scaling challenges
mentioned in §1. They also offer integrated solutions for managing
middleboxes, including elastic scaling of middlebox instances, fault-
tolerance, and placement. Dysco is not concerned with middlebox
management and can be readily combined with any approach to
middlebox management, including these.

OpenNF: OpenNF [11] (and also Split-Merge [39]) assumes
that dynamic service chaining is provided by updating how SDN
switches forward packets. The special contribution of OpenNF is
efficient, coordinated control of forwarding changes and middlebox
state migration, so that middleboxes can be replaced quickly and
safely. Our Dysco prototype was easily extended to support import-
ing and exporting middlebox state. As a session protocol, Dysco can
naturally handle a wider range of reconfiguration scenarios than
OpenNF can, including removing proxies. OpenNF is designed for
use in an SDN environment, while Dysco places no constraints on
the choice of the control plane. Also, there is a risk of performance
problems with OpenNF controllers because they are responsible
for packet buffering.

7.2 Service chaining by session protocols
DOA: Like Dysco, DOA [46] uses a session protocol for service
chaining. Dysco and DOA differ as follows: (i) DOA requires a new

Dynamic Service Chaining with Dysco SIGCOMM ’17, August 21–25, 2017, Los Angeles, CA, USA

global name space, while Dysco does not; (ii) DOA does not sup-
port dynamic reconfiguration of the service chain; (iii) DOA inserts
middleboxes only on behalf of end-hosts (ignoring middleboxes
inserted on behalf of administrators), and (iv) DOA uses encapsu-
lation, so that both high- and low-level addresses are included in
each packet. Extra addresses increase packet size, which may cause
MTU problems.

NUTSS: In the NUTSS architecture [12], session setup begins
with an end-to-end handshake between end-hosts with high-level
names. The handshake signals are routed by the high-level names
through an overlay network of servers. These servers are not mid-
dleboxes, however, but rather policy servers that provide name
authentication, negotiation of encryption, and distribution of cre-
dentials. After the handshake in the overlay network, packets in the
ordinary network carry credentials they can use to be accepted by
middleboxes such as firewalls that they are routed through. NUTSS
requires changes to all end-hosts and middleboxes.

Connection Acrobatics: Nicutar et al. [28] use Multipath TCP
to insert middleboxes into sessions. However, middleboxes cannot
be inserted until a TCP session is established end-to-end. Subse-
quently a second end-to-end path is established going through a
middlebox, and the first path is removed. A second middlebox can
then be inserted between an end-host and the first middlebox, and
so on. This approach takes dynamic insertion too far—because mid-
dleboxes are not included as the session is formed, middleboxes
cannot protect an end-host from unwanted sessions as a firewall
does, cannot choose the end-host of a session as a load balancer
does, and are not guaranteed to see all packets within a session.

NSH: Network Service Header [16] is an encapsulation format
for service chaining without the use of forwarding rules, so in this
list it is most closely related to DOA. NSH is an intra-domain format
only, and there is no mechanism for dynamic reconfiguration.

7.3 Research complementary to Dysco
mcTLS: Multi-context TLS (mcTLS) [25] enables middleboxes to
operate on encrypted traffic, through a signaling protocol that (i)
establishes a TCP session for each hop in the service chain and (ii)
exchanges the relevant security information for decrypting and
reencrypting the data. Like Dysco, mcTLS has a list of middleboxes
in a session setupmessage, which is yet another example of the need
for metadata. In mcTLS, however, the list is carried in the TLS Hello
message rather than the TCP SYN packet. mcTLS illustrates clearly
that if middleboxes are to operate on encrypted sessions then they
must receive encryption keys through the session protocol. Fine-
grained routing and forwarding can never be sufficient to enable
such middleboxes to do their jobs.

Mobility and multihoming: End-to-end signaling protocols
have been widely used for supporting end-host mobility [49]. Of
these, ECCP [3], TCP Migrate [41], and msocket [48] are TCP-
oriented. Both ECCP and TCPMigrate are oblivious to middleboxes.
msocket explicitly uses signaling at the application layer to avoid
introducing new TCP options and to deal with the complexities
introduced by middleboxes. Application data are encapsulated in
msocket packets, so data streams look like regular TCP data for
middleboxes. Likewise signaling protocols have been used for sup-
portingmultihoming, notably ECCP [3] andMultipath TCP [31]. All

of these protocols are intrinsically compatible with Dysco, which
suggests that merging the approaches would be fruitful.

8 CONCLUSION
In this paper we have presented motivations for using a session
protocol as the mechanism for TCP service chaining. Our Dysco
protocol meets the requirements of a wide variety of use cases.
The protocol interoperates smoothly with the use of routing and
forwarding for service chaining, so there is no need to exclude
either approach.

Dysco introduces a very general capability for dynamic recon-
figuration of a service chain, along with a number of use cases for
it (§1). Correctness of this capability has been formally verified,
including the property that no data is lost due to reconfiguration.
Concerning the demand for new capabilities such as dynamic re-
configuration, the question to ask is not, “Is this capability being
demanded now?”, when even much simpler things are difficult
to deploy. A fairer question might be, “Would good uses for this
capability be found if it were readily available?”

Because Dysco agents have a great deal of autonomy, the load on
centralized policy servers is relatively light. Our experiments show
that session setup and teardown are fast, steady-state throughput is
high, and disruption due to dynamic reconfiguration is minimized.
Many middleboxes can run unmodified in the Dysco architecture.
Future work will include more measurements, prototyping of new
use cases, and deployment of Dysco in a real network.

Some limitations remain, particularly in the realization of Dysco’s
potential for inter-domain service chaining. However, the Dysco
approach has received far less attention than fine-grained forward-
ing as a mechanism for service chaining (which has little hope
of extending to inter-domain service chains). A fair question for
comparison might be, “If the same amount of research effort were
put into this approach as has gone into fine-grained forwarding,
which alternative would look better?”

ACKNOWLEDGMENTS
We thank our shepherd Vyas Sekar and the anonymous SIGCOMM
reviewers for their valuable feedback. We also thankMina Arashloo,
Bharath Balasubramanian, Jennifer Gossels, Rob Harrison, Yaron
Koral, Robert MacDavid, and Shankaranarayanan Narayanan for
their feedback on earlier drafts of this paper. This work was sup-
ported in part by NSF grant CNS-116112, and by the Brazilian
National Council for Scientific and Technological Development
(CNPq) proc. 201983/2014-1.

REFERENCES
[1] Bilal Anwer, Theophilus Benson, Nick Feamster, and David Levin. 2015. "Pro-

gramming Slick Network Functions". In ACM SIGCOMM Symposium on Software
Defined Networking Research. 14:1–14:13.

[2] Arbor 2015. Arbor Networks SP Solution. (2015). http://www.arbornetworks.
com/images/documents/Data%20Sheets/DS_SP_EN.pdf.

[3] Matvey Arye, Erik Nordstrom, Robert Kiefer, Jennifer Rexford, and Michael J.
Freedman. 2012. A Formally-verified Migration Protocol for Mobile, Multi-homed
Hosts. In IEEE International Conference on Network Protocols. 1–12.

[4] R. Atkinson, S. Bhatti, and S. Hailes. 2010. Evolving the Internet Architecture
Through Naming. IEEE Journal on Selected Areas in Communication 28, 8 (October
2010), 1319–1325.

[5] Bro 2017. The Bro Network Security Monitor. (2017). https://www.bro.org/.

http://www.arbornetworks.com/images/documents/Data%20Sheets/DS_SP_EN.pdf
http://www.arbornetworks.com/images/documents/Data%20Sheets/DS_SP_EN.pdf
https://www.bro.org/

SIGCOMM ’17, August 21–25, 2017, Los Angeles, CA, USA P. Zave et al.

[6] Contrail 2017. Contrail Feature Guide, Release 2.20, Service Chaining.
(2017). http://www.juniper.net/techpubs/en_US/contrail2.2/topics/task/
configuration/service-chaining-vnc.html.

[7] Docker 2017. Docker. (2017). https://www.docker.com/.
[8] Dysco 2017. Dysco supplemental material. (2017). https://github.com/dysco/.
[9] Seyed Kaveh Fayazbakhsh, Luis Chiang, Vyas Sekar, Minlan Yu, and Jeffrey C.

Mogul. 2014. Enforcing Network-Wide Policies in the Presence of Dynamic
Middlebox Actions using FlowTags. In USENIX Conference on Networked Systems
Design and Implementation. 533–546.

[10] Aaron Gember, Anand Krishnamurthy, Saul St. John, Robert Grandl, Xiaoyang
Gao, Ashok Anand, Theophilus Benson, Vyas Sekar, and Aditya Akella. 2014.
Stratos: A Network-Aware Orchestration Layer for Virtual Middleboxes in Clouds.
http://arxiv.org/abs/1305.0209. (2014).

[11] Aaron Gember-Jacobson, Raajay Viswanathan, Chaithan Prakash, Robert Grandl,
Junaid Khalid, Sourav Das, and Aditya Akella. 2014. OpenNF: Enabling Innovation
in Network Function Control. In ACM SIGCOMM Conference on Applications,
Technologies, and Protocols for Computer Communication. 163–174.

[12] Saikat Guha and Paul Francis. 2007. An End-Middle-End Approach to Connection
Establishment. In ACM SIGCOMM Conference on Applications, Technologies, and
Protocols for Computer Communication. 193–204.

[13] W. Haeffner, J. Napper, M. Stiemerling, D. Lopez, and J. Uttaro. 2016. Service
Function Chaining Use Cases in Mobile Networks. IETF Internet Draft draft-ietf-
sfc-use-case-mobility-07. (Oct. 2016).

[14] HAProxy 2017. HAProxy: The Reliable, High Performance TCP/HTTP Load
Balancer. (2017). http://www.haproxy.org/.

[15] Gerard J. Holzmann. 2003. The Spin Model Checker: Primer and Reference Manual
(first ed.). Addison-Wesley Professional, Boston, MA, USA.

[16] IETF 2017. IETF Working Group on Service Function Chaining (SFC). (2017).
http://datatracker.ietf.org/wg/sfc/.

[17] J. R. Iyengar, P. D. Amer, and R. Stewart. 2006. Concurrent Multipath Trans-
fer Using SCTP Multihoming over Independent End-to-End Paths. IEEE/ACM
Transactions on Networking 14, 5 (2006), 951–964.

[18] Xin Jin, Li Erran Li, Laurent Vanbever, and Jennifer Rexford. 2013. SoftCell:
Scalable and Flexible Cellular Core Network Architecture. In ACM Conference on
Emerging Networking Experiments and Technologies. 163–174.

[19] Dilip A. Joseph, Arsalan Tavakoli, and Ion Stoica. 2008. A Policy-Aware Switching
Layer for Data Centers. In ACM SIGCOMM Conference on Applications, Technolo-
gies, and Protocols for Computer Communication. 51–62.

[20] R. Krishnan, A. Ghanwani, J. Halpern, S. Kini, and D. Lopez. 2015. SFC Long-lived
Flow Use Cases. IETF Internet Draft draft-ietf-sfc-long-lived-flow-use-cases-03.
(Feb. 2015).

[21] Linux-NF 2017. Linux Netfilter. (2017). http://www.netfilter.org.
[22] Linux-TC 2017. Linux TC. (2017). http://lartc.org/manpages/tc.txt.
[23] Mininet 2017. Mininet: An Instant Virtual Network on your Laptop (or other

PC). (2017). http://mininet.org/.
[24] A. R. Natal, L. Jakab, M. Portolés, V. Ermagan, P. Natarajan, F. Maino, D. Meyer,

and A. C. Aparicio. 2013. LISP-MN: Mobile networking through LISP. Wireless
Personal Communications 70, 1 (May 2013), 253–266.

[25] David Naylor, Kyle Schomp, Matteo Varvello, Ilias Leontiadis, Jeremy Blackburn,
Diego Lopez, Konstantina Papagiannaki, Pablo Rodriguez Rodriguez, and Peter
Steenkiste. 2015. Multi-Context TLS (mcTLS): Enabling Secure In-Network
Functionality in TLS. In ACM SIGCOMM Conference on Applications, Technologies,
and Protocols for Computer Communication. 199–212.

[26] Neutron 2017. Neutron Service Insertion and Chaining. (2017). http://wiki.
openstack.org/wiki/Neutron/ServiceInsertionAndChaining.

[27] NGINX 2017. NGINX: A High-Performance HTTP Server and Reverse Proxy.
(2017). https://nginx.com/.

[28] Catalin Nicutar, Christoph Paasch, Marcel Bagnulo, and Costin Raiciu. 2013.
Evolving the Internet with Connection Acrobatics. In Workshop on Hot Topics in
Middleboxes and Network Function Virtualization. 7–12.

[29] P. Nikander, A. Gurtov, and T. R. Henderson. 2010. Host Identity Protocol (HIP):
Connectivity, Mobility, Multi-Homing, Security, and Privacy over IPv4 and IPv6
Networks. IEEE Communications Surveys and Tutorials 12, 2 (April 2010), 186–204.

[30] Erik Nordström, David Shue, Prem Gopalan, Rob Kiefer, Matvey Arye, Steven Ko,
Jennifer Rexford, and Michael J. Freedman. 2012. Serval: An End-host Stack for
Service-centric Networking. In USENIX Conference on Networked Systems Design
and Implementation. 85–98.

[31] Christoph Paasch and Olivier Bonaventure. 2014. Multipath TCP. Commun. ACM
57, 4 (April 2014), 51–57.

[32] Shoumik Palkar, Chang Lan, Sangjin Han, Keon Jang, Aurojit Panda, Sylvia
Ratnasamy, Luigi Rizzo, and Scott Shenker. 2015. E2: A Framework for NFV
Applications. In Symposium on Operating Systems Principles. 121–136.

[33] Parveen Patel, Deepak Bansal, Lihua Yuan, Ashwin Murthy, Albert Green-
berg, David A. Maltz, Randy Kern, Hemant Kumar, Marios Zikos, Hongyu Wu,
Changhoon Kim, and Naveen Karri. 2013. Ananta: Cloud Scale Load Balancing.
In ACM SIGCOMM Conference on Applications, Technologies, and Protocols for
Computer Communication. 207–218.

[34] C. Perkins, D. Johnson, and J. Arkko. 2011. Mobility Support in IPv6. IETF
Request for Comments 6275. (July 2011).

[35] PRADS 2017. PRADS. (2017). http://gamelinux.github.io/prads/.
[36] Zafar Ayyub Qazi, Phani Krishna, Vyas Sekar, Vijay Gopalakrishnan, Kaustubh

Joshi, and Samir Das. 2016. KLEIN: A Minimally Disruptive Design for an Elastic
Cellular Core. In ACM Symposium on SDN Research. 2:1–2:12.

[37] Zafar Ayyub Qazi, Cheng-Chun Tu, Luis Chiang, Rui Miao, Vyas Sekar, and
Minlan Yu. 2013. SIMPLE-fying Middlebox Policy Enforcement Using SDN.
In ACM SIGCOMM Conference on Applications, Technologies, and Protocols for
Computer Communication. 27–38.

[38] Costin Raiciu, Christoph Paasch, Sebastien Barre, Alan Ford, Michio Honda,
Fabien Duchene, Olivier Bonaventure, and Mark Handley. 2012. How Hard Can
It Be? Designing and Implementing a Deployable Multipath TCP. In USENIX
Conference on Networked Systems Design and Implementation. 399–412.

[39] Shriram Rajagopalan, Dan Williams, Hani Jamjoon, and Andrew Warfield. 2013.
Split/Merge: System Support for Elastic Execution in Virtual Middleboxes. In
USENIX Conference on Networked Systems Design and Implementation. 227–240.

[40] Justine Sherry, Shaddi Hasan, Colin Scott, Arvind Krishnamurthy, Sylvia Rat-
nasamy, and Vyas Sekar. 2012. Making Middleboxes Someone Else’s Problem:
Network Processing As a Cloud Service. In ACM SIGCOMM Conference on Appli-
cations, Technologies, and Protocols for Computer Communication. 13–24.

[41] Alex C. Snoeren and Hari Balakrishnan. 2000. An End-to-End Approach to
Host Mobility. In ACM Annual International Conference on Mobile Computing and
Networking. 155–166.

[42] Snort 2017. Snort. (2017). https://www.snort.org/.
[43] Squid 2017. Squid. (2017). http://www.squid-cache.org/Intro/.
[44] Suricata 2017. Suricata. (2017). http://www.suricata-ids.org/.
[45] Verisign 2015. Faster DDoS Mitigation with Increased Customer Control: In-

troducing Verisign OpenHybrid Customer Activated Mitigation. (Sept. 2015).
http://blogs.verisign.com/blog/entry/faster_ddos_mitigation_with_increased.

[46] Michael Walfish, Jeremy Stribling, Maxwell Krohn, Hari Balakrishnan, Robert
Morris, and Scott Shenker. 2004. Middleboxes No Longer Considered Harmful.
In USENIX Symposium on Opearting Systems Design & Implementation. 215–230.

[47] wrk 2017. wrk: A HTTP Benchmarking Tool. (2017). https://github.com/wg/wrk/.
[48] Aditya Yadav and Arun Venkataramani. 2016. msocket: System Support for

Mobile, Multipath, and Middlebox-Agnostic Applications. In IEEE International
Conference on Network Protocols. 1–10.

[49] Pamela Zave and Jennifer Rexford. 2013. The Design Space of Network Mobility.
In Recent Advances in Networking, Olivier Bonaventure and Hamed Haddadi
(Eds.). ACM SIGCOMM, New York, NY, USA.

[50] Ying Zhang, Neda Beheshti, Ludovic Beliveau, Geoffrey Lefebvret, Ravi Manghir-
malani, RameshMishra, Ritun Patney, Meral Shirazipour, Ramesh Subrahmaniam,
Catherine Truchan, and Mallik Tatipamula. 2013. StEERING: A Software-Defined
Networking for Inline Service Chaining. In IEEE International Conference on
Network Protocols. 1–10.

http://www.juniper.net/techpubs/en_US/contrail2.2/topics/task/configuration/service-chaining-vnc.html
http://www.juniper.net/techpubs/en_US/contrail2.2/topics/task/configuration/service-chaining-vnc.html
https://www.docker.com/
https://github.com/dysco/
http://arxiv.org/abs/1305.0209
http://www.haproxy.org/
http://datatracker.ietf.org/wg/sfc/
http://www.netfilter.org
http://lartc.org/manpages/tc.txt
http://mininet.org/
http://wiki.openstack.org/wiki/Neutron/ServiceInsertionAndChaining
http://wiki.openstack.org/wiki/Neutron/ServiceInsertionAndChaining
https://nginx.com/
http://gamelinux.github.io/prads/
https://www.snort.org/
http://www.squid-cache.org/Intro/
http://www.suricata-ids.org/
http://blogs.verisign.com/blog/entry/faster_ddos_mitigation_with_increased
https://github.com/wg/wrk/

	Abstract
	1 Introduction
	2 Dysco architecture
	2.1 Basic service chaining
	2.2 Role of the policy server
	2.3 Agents can reconfigure a session
	2.4 Sessions and service chains need not coincide exactly

	3 Dynamic reconfiguration
	3.1 Protocol overview
	3.2 Contention over segments
	3.3 Control signaling
	3.4 Sequence-number deltas
	3.5 Packet handling on two paths
	3.6 Failures
	3.7 Design and verification

	4 Dysco Prototype
	4.1 Dysco components and interfaces
	4.2 Protocol details

	5 Performance evaluation
	5.1 Session initiation
	5.2 Data-plane throughput
	5.3 Dynamic reconfiguration

	6 Limitations
	7 Related work
	7.1 Service chaining by forwarding
	7.2 Service chaining by session protocols
	7.3 Research complementary to Dysco

	8 Conclusion
	References

