
Multipath Protocol for Delay-Sensitive Traffic
Umar Javed, Martin Suchara, Jiayue He, and Jennifer Rexford,

Princeton University, USA
Email: {ujaved, msuchara, jhe, jrex}@princeton.edu

Abstract—Delay-sensitive Internet traffic, such as live streaming
video, voice over IP, and multimedia teleconferencing, requires
low end-to-end delay in order to maintain its interactive and
streaming nature. In recent years, the popularity of delay-sensitive
applications has been rapidly growing. This paper provides a
protocol that minimizes the end-to-end delay experienced by
inelastic traffic. We take a known convex optimization formulation
of the problem and use an optimization decomposition to derive
a simple distributed protocol that provably converges to the
optimum. Through the use of multipath routing, our protocol can
achieve optimal load balancing as well as increased robustness.
By carrying out packet level simulations with realistic topologies,
feedback delays, link capacities, and traffic loads, we show that
our distributed protocol is adaptive and robust. Our results
demonstrate that the protocol performs significantly better than
other techniques such as shortest path routing or equal splitting
among multiple paths.

I. INTRODUCTION

With the rapid proliferation of broadband Internet access in
the consumer market, new video communications and entertain-
ment are gaining in popularity. Interactive applications such as
live video streaming, voice over IP, multimedia conferencing,
or online gaming are promoted by the ISPs who are often
offering IPTV, VoIP, and Internet service in one bundle. In their
recent report [1], Cisco predicts that in 2012, Internet video
traffic will account for nearly 90% of all consumer IP traffic.
Representative of this trend, Internet video has jumped to 22%
of the global consumer Internet traffic in 2007 from 12% in
2006.

To preserve the interactive nature of the video applications,
and to enable real-time-playback, data delivery with a low
latency is required. As even a temporary delay in playback is
likely to harm user experience, preventing delay jitter is equally
important. Despite the growing popularity of the new interactive
applications, the current Internet is not well equipped to support
the delivery of delay-sensitive traffic. First, minimization of
end-to-end latency by utilizing shorter, more direct routes has
not received enough attention, and the existing solutions are
not practical. Second, transmissions are vulnerable to transient
periods of congestion that cause temporary delays or losses
which degrade the quality of live audio or video streams.

Previous work in the Quality of Service (QoS) area [2] guar-
antees data delivery with the bandwidth and latency specified by
the applications. However, this approach requires coordination
in the network because it uses circuit reservations. Moreover,
admission control needs to be used and if the delays increase
above certain value, some sources are not allowed to transmit.
We believe that a simpler more practical solution that does

not require per-flow resource reservation and allows users to
transmit at all times is needed.

A popular technique that improves reliability and robustness
of data delivery is multipath routing [3]. This technique is ben-
eficial because it allows rerouting of traffic if a path becomes
congested or unavailable. Much of the previous work studies
how multipath routing can improve the throughput of the end
hosts. See e.g. [4] [5] [6] [7] [8]. While the key technique used
in this paper is also multipath routing, the focus of our work
is different.

In this paper, we try to address the issues faced by delay-
sensitive traffic by redesigning routing and congestion control.
The goals are to (i) minimize the delay of the network traffic,
(ii) if possible, meet the rate demands of the users while
avoiding congestion, and (iii) improve the robustness of the
network and resilience to transient performance degradation.
The desired design will ensure that the traffic uses paths with
low delay while preventing congestion on the most popular
shortest paths even when the loads in the network change.

Optimization theory is a powerful tool that has yielded
remarkable results in networking research. It played a crucial
role in the design of new distributed protocols for Network
Utility Maximization (NUM) [9], [6], [10], reverse-engineering
of existing protocols, particularly congestion control [11], [12],
[13], and cross-layer optimized architectures in general [14]. In
this paper we use convex optimization to optimize the delivery
of delay-sensitive traffic.

Our optimization problem is a special case of the formulation
that appears in [15]. We chose an objective that penalizes a
combination of the delay experienced by the traffic sources
and excessive link utilization in the network. The same problem
receives treatment in [16] and [17]. However, our solution is
much simpler and more practical. We use optimization decom-
positions [9] to obtain a simple distributed solution that can be
carried out by the routers and traffic sources in the network. We
also translate the distributed solution into a practical protocol
and evaluate it through simulations in NS-2. These packet level
simulations allow us to demonstrate the performance of the
protocol in an environment with realistic network topologies
and feedback delays.

The assumptions of our design are explained and justified
in Section II. Delay minimization is formulated as a central-
ized optimization problem in Section III and the centralized
formulation is translated into a distributed network protocol
in Section IV. Finally, performance, robustness and dynamic
properties of the protocol are evaluated in Section V and related
work is discussed in Section VI.



II. DESIGN ASSUMPTIONS

Before we formulate the optimization problem that our
protocol should be solving, let’s consider the design decisions
we need to make. This section describes these design decisions
and justifies them. On one hand, we choose to use some
simplifying assumptions that allow us to obtain an efficient
distributed network protocol. For example, we assume that all
the traffic in our network is delay sensitive. On the other hand,
we need to extend the design of current networks to ensure that
we have access to low delay paths. This is achieved by allowing
the sources to use multipath routing with flexible splitting of
traffic over these paths.

A. Network Serving Delay-Sensitive Traffic

The objective of our optimization is to minimize the average
delay that a bit of data delivered in the network experiences.
This objective implicitly assumes that all the traffic in the
network is delay sensitive.

We choose to minimize the average delay for several reasons.
First, minimizing the average delay will result in shorter delay
for more traffic than, say, minimizing the maximum delay.
The second reason is mathematical convenience that allows
formulating the problem as convex optimization and solving
it more easily.

The assumption that all traffic in the network is delay
sensitive is justified for two reasons. First, as the proportion
of video and audio transmissions increases, our protocol could
be used to improve the delay experienced by all traffic. Second,
the protocol could be used in a virtual network [18] that carries
delay-sensitive traffic exclusively. Virtual networks subdivide
network resources such as link capacities and router time
among multiple virtual networks, each of which is used for
a different application. For example, one virtual network can
carry delay-sensitive traffic, another bandwidth intensive traffic,
etc.

B. Sources with Traffic Splitting Over Multiple Paths

The traffic sources in the network have by assumption the
ability to split the traffic between multiple paths. Moreover, the
splitting ratios can change dynamically.

The main benefit of having multiple paths is an improved
ability to decrease the end-to-end delay, and better reliability.
Because the mathematics used in this paper does not specify
whether the traffic sources are edge routers or end hosts, and
whether the protocol is used in an interdomain or intradomain
setting, we discuss the feasibility of using multiple paths and
the changes required to the network architecture for these cases
separately.

Using multiple routes in the intradomain setting is easier
since all the traffic originates and terminates within a single
autonomous system. Inside the network, routers can compute k
shortest paths, or a management system can set-up multiple
tunnels between the end hosts or edge routers. Multipath
routing in the interdomain case is also possible. Today, most
routing protocols only forward packets on a single path between
a source and destination. However, as is explained in [6],

the sources can direct traffic on a particular path by, e.g.,
participating in a routing overlay or, if they are multihomed,
simply directing the traffic to one of the available upstream
providers.

Dynamic load splitting improves performance as the sources
are able to choose the path that has momentarily the lowest
delay. Moreover, in case of failures, the source can avoid paths
that do not work or that became congested due to a sudden
traffic shift. If the sources are edge routers, they can rate limit
the hosts and split the traffic among the available paths. If
the sources are end hosts, they have to be given access to the
multiple paths across which the splitting occurs.

C. Cooperative Sources and Routers

Developing a practical protocol that scales with the size
of the network requires that we obtain a distributed protocol
that can be performed by the sources and routers. We assume
that the routers in the network are cooperative and they are
willing to share information about the network, such as the link
propagation delays and current level of congestion, with the
sources. We assume that this signalling is performed honestly.
We also assume that the sources obey the signals provided by
the routers.

Cooperation is easy to achieve in the intradomain case
where the routers are managed by a single network operator.
However, honest signalling may not be incentive compatible in
the interdomain case where routers are managed by multiple
competing entities. This work could be extended to deal with
misbehaving routers and traffic sources, but this is beyond this
paper’s scope.

D. Inelastic Traffic Demands

In our optimization problem formulation we assume that the
demands of the sources are inelastic, i.e., they do not change as
the conditions in the network change. It is important to notice
that even with this assumption, the traffic sources are free to
change their demands at any time. When the demands change,
the algorithm re-converges to the new optimal solution.

Allowing the sources to change the demand is important as
this corresponds to the requirements of applications in practice.
It was observed that the bandwidth requirements of streamed
video remains relatively constant in 10-30 second intervals,
but can vary significantly between these intervals [19] due to
factors such as variable rate compression. Our experimental
results in Section V reflect this observation and demonstrate
the performance of our protocol both for the case when the
demands remain constant, and when the sources change them.

III. OPTIMIZATION PROBLEM FORMULATION

After introducing the notation used throughout the paper,
this section formulates a central optimization problem that
minimizes the average delay of network traffic delivery. We
show that this formulation is equivalent to the ‘optimal routing’
formulation presented in [15] and [16].



A. Notation

A particular link in our network is denoted by l, its capacity is
denoted by cl, and its propagation delay by pl. The network of-
fers multipath routing, i.e., there are multiple paths connecting
each source-destination pair. The paths are encoded in routing
matrices. Hi is the routing matrix for a source-destination pair
i, where Hi

lj = 1 if path j connecting source-destination pair
i uses link l, and Hi

lj = 0 otherwise. H is the collection of
all routing matrices Hi. H does not necessarily represent all
possible paths in the physical topology, but a subset of paths
chosen by the network operators.

The traffic between each source-destination pair is split
among the multiple paths. zij denotes the rate on path j
connecting the source-destination pair i, and (Hz)l denotes
the total load on link l. Each source-destination pair i has
by assumption constant-bit-rate demand xi. Since pl is the
propagation delay, it does not include the queueing delay that
traffic may encounter when traversing link l. Therefore, we
introduce function f(·) that (i) models the queueing delay of
a link, and (ii) penalizes a link’s utilization that approaches its
capacity. How exactly is f(·) calculated is discussed later in
this section.

B. Minimizing Aggregate Delay

The objective of our optimization problem is to minimize the
aggregate end-to-end network delay encountered by the traffic.
In another words, we need to distribute the inelastic traffic
among the available paths in the network in such a way that
the end-to-end delay in seconds/bit for all bits in the network is
minimized. We also need to ensure that the constant demands
xi of the traffic sources are met, and the link loads do not
exceed link capacity.

Since our algorithm needs to calculate the path rates on the
paths that each source-destination pair uses, the variables are
zij . The delay on a path is the sum of the link propagation
delays and queueing delays for all links on the end-to-end
path. Therefore, the end-to-end delay on path j of source
i is

∑
lH

i
lj (pl + f (·)). The objective of the optimization

which captures the average delay for all traffic is obtained by
minimizing the products of the path rates and the associated
delays, i.e., minimize

∑
i

∑
j z

i
j

(∑
lH

i
lj (pl + f (·))

)
. This is

equivalent to the minimization from [15]: minimize
∑
lDl(Ll)

where Ll =
∑
i

∑
j z

i
jH

i
lj is the load on link l and Dl(Ll) =

Ll (pl + f (·)) is the cost associated with link l.
The solution to the optimization problem, therefore, assigns

path rates in a way that takes maximum advantage of low
propagation-delay paths while keeping the queues small to
minimize overall delay. To ensure that link loads do not exceed
link capacity, we introduce the constraint (Hz)l � cl . We
also need to enforce that the sum of the path rates between
each source-destination pair i be equal to the demand xi, i.e.,∑
j z

i
j = xi. Our central optimization is in Figure 1.

The demands xi in the constraints
∑
j z

i
j = xi are constant.

First, this follows from the problem formulation which assumes
inelastic traffic. Second, if xi were variables, the objective of

minimize
∑
i

∑
j

zij

(∑
l

Hi
lj (pl + f (·))

)
subject to (Hz)l � cl, ∀l∑

j

zij = xi, ∀i

z � 0
variables z

(1)

Fig. 1. Central problem for optimized delivery of delay-sensitive traffic.

(1) would have to change to include the demands. Otherwise,
since no traffic implies zero delays, all path rates would become
zero.

It remains to explain how to choose f(·). We want to
choose f(·) such that it represents queueing delays and heavily
penalizes links that approach or exceed their capacity. This
penalty is introduced with the goal of avoiding long queues
as well as improving the robustness of the solution. For mathe-
matical convenience, we also need the function be convex, non-
decreasing and twice-differentiable. Previous optimizations in
traffic engineering [20], [21] use the M/M/1 queueing formula

f(Ll, cl) =
1

cl − Ll
, (2)

where Ll is the load on link l, and cl its capacity. Unfortunately,
(2) is not defined for overutilized links. Overutilization may
occur during convergence. This problem is solved by letting
f (ul) be a piecewise linear function [21] or an exponential
approximation of the M/M/1 formula [22]. Here ul = Ll

cl
is

the utilization of link l. Both the functions are well defined
for any non-negative values of ul. In our work, we chose the
piecewise linear approximation for mathematical convenience
and the ability to obtain closed-form rate updates.

C. Optimization Problem is Convex
In order to have a unique solution to (1), we need to show

that the problem is convex. Since all the inequality constraints,
i.e. the capacity constraints

(Hz)l � cl, ∀l

are linear and therefore convex, and all the equality constraints,
i.e the demand constraints∑

j

zij = xi, ∀i

are affine, we only need to show that the objective∑
i

∑
j

zij

(∑
l

Hi
lj (pl + f (ul))

)
(3)

is convex over zij ∈ R+. As pointed out above, (3) is
equivalent to

∑
l

Ll (pl + f (ul)), which is convex since f(ul)

is non-decreasing, twice differentiable and convex. Hence (3)
is convex.



IV. DISTRIBUTED MULTIPATH PROTOCOL

In this section we will derive a practical protocol that con-
verges to the solution of (1). First, we will use an optimization
decomposition to convert the central optimization derived in the
previous section into a protocol that solves the problem in a
distributed fashion. In the course of finding the distributed solu-
tion, we will explain how mathematical convenience motivates
our choice of f (ul). Finally, we will translate the distributed
solution into a practical protocol which can be carried out by
the routers and traffic sources.

A. Optimization Decomposition

We begin by taking the Lagrangian of (1):

L (z, λ,q) =
∑
i

∑
j

zij

(∑
l

Hi
lj (pl + f (ul))

)
+∑

l

λl ((Hz)l − cl) +

∑
i

qi

xi −∑
j

zij


=

∑
i

∑
j

zij

(∑
l

Hi
lj (pl + λl + f(ul))− qi

)
+∑

i

qixi −
∑
l

λlcl. (4)

Here λl is the dual variable for link l associated with the
constraint

∑
i

∑
j H

i
ljz

i
j � cl, and qi is the dual variable for

source i associated with the constraint
∑
j z

i
j = xi. Similarly

as in [23], these dual variables can be thought of as prices for
violating the respective constraints. In the distributed algorithm,
these prices can be calculated through a subgradient method by
the sources and the routers. The routers can then communicate
the calculated prices to the traffic sources.

Since the problem is convex, we will use the KKT con-
ditions [24] to find the optimal assignments of rates zij . At
time t in the distributed algorithm, the source i receives link
prices λl(t) from all distinct links in its paths and computes
its own source price qi(t). Then by the KKT condition for the
lagrangian the optimal path rate zi?j (t) on path j must satisfy

∂

∂zij
(L (z, λ,q)) = 0. (5)

For real-time computations, we are interested in a solution
of (5) that gives us a closed form expression for zij(t). This
depends on the choice of f(ul), and is not possible if we take
f(ul) to be the M/M/1 queueing formula or an exponential.
Therefore we approximate the M/M/1 formula with a piecewise
linear function similar to the one introduced in [21].

The piecewise linear function is illustrated in Figure 2.
m(Llcl ) is the function that determines the slope of the region
which corresponds to the link utilization level Llcl of link l and
k(Llcl ) is the function that determines the associated y-intercept,
where Ll = (Hz)l =

∑
i

∑
j z

i
jH

i
lj is the link load. For

0.0 0.5 1.0

f(⋅)

link utilization

Fig. 2. The shape
of the piecewise linear
penalty function.

simplification let ml = 1
cl
m(Llcl ) and kl = 1

cl
k(Llcl ). Therefore,

f(ul) = mlLl + kl. Similarly as in [21], the values of f(ul)
are small for low utilizations but increase rapidly as the load
approaches or exceeds the capacity of the link.

Note that the piecewise linear model is still convex. To make
it differentiable at the cutoff points, we need to define slopes at
these points. This can be easily done by letting them take the
slope of either of the adjoining lines. Now (4) can be rewritten
as:

L =
∑
i

∑
j

zij

(∑
l

Hi
lj (pl + λl +ml(Hz)l + kl)− qi

)
+
∑
i

qixi −
∑
l

λlcl (6)

Differentiating (6) w.r.t. zij and after a few simple algebraic
manipulations we obtain:

∂L

∂zij
=

∑
l

Hi
lj (pl + λl +ml(Hz)l + kl)− qi +

zij

(∑
l

Hi
ljml

)
+
∑
l

Hi
ljml

(
(Hz)l − zij

)
.(7)

To compute optimal zij , we set (7) to 0. After rearranging,
introducing iteration index t, and denoting (Hz)l as Ll we
obtain:

zij(t+ 1) = zij(t) + qi(t)−
∑
l H

i
lj(pl+λl(t)+2ml(t)Ll(t)+kl(t))∑

lH
i
ljml(t)

. (8)

Similarly as in [23] and [12], the link feedback subgradient
update for the capacity constraint in (1), λl(t), is:

λl(t+ 1) = [λl(t)− βλ(t) (cl − Ll(t))]+ . (9)

Similarly, the source subgradient update for the demand con-
straint, qi(t), is:

qi(t+ 1) =

qi(t)− βq(t)
∑

j

zij(t)− xi

+

. (10)

Here βλ(t) and βq(t) are the stepsizes at iteration t for the
link price updates and the demand price updates respectively.
For diminishing step size, i.e β → 0 as t → ∞, the
distributed algorithms’s objective will converge to the global
objective [24].



B. Translation to a Network Protocol

Equations (8), (9) and (10) define a mathematical algorithm
which has to be converted into a network protocol that can be
performed by the routers and traffic sources.

The role of the routers is to monitor the performance on the
links they are serving, calculate the prices associated with these
links, and communicate these prices to the traffic sources. The
routers update the link prices iteratively with granularity T . The
prices are obtained by measuring the number of bits NT

l that
arrive on the link l during a time interval T , and comparing
them to the link capacity cl.

The sources collect the feedback from the routers and adjust
the rates zij accordingly. It is important to notice that the sources
receive the feedback from the routers with a delay. Source
i receives the feedback from the links in path j with delay
RTTij , the round-trip-time of that path. Therefore, we let source
i update all its path rates at the timescale of the longest RTT.
We denote this time interval Ti = max(RTTij),∀j.

A closer inspection of (8) reveals that it is not sufficient
for the source to learn λl(t) from the routers. The sources are
unable to calculate Fl(t) = pl + λl(t) + 2ml(t)Ll(t) + kl(t)
and Gl(t) = ml(t) without the help of the routers. Therefore,
we let the routers also calculate Fl(t) and Gl(t) along with the
price λl(t). Therefore, combining (8), (9) and (10) we obtain
the protocol in Figure 3.

Feedback price update at link l:
λl(t+ T ) = [λl(t)− βλ (cl − Ll(t))]+ ,
where βλ is the feedback price stepsize, and Ll(t) = NTl

T .

Feedback computed at link l:
Fl(t) = pl + λl(t) + 2ml(t)Ll(t) + kl(t)
Gl(t) = ml.

Demand price computed at source i:
qi(t+ Ti) =

[
qi(t)− βq

(∑
j z

i
j(t)− xi

)]+
,

where βq is the demand price stepsize.

Path rate update at source i, path j:

zij(t+ Ti) = zij(t) +
qi(t+ Ti)−

∑
lH

i
ljFl(t)∑

lH
i
ljGl(t)

,

where Ti = max(RTTij),∀j.

Fig. 3. Network protocol.

In the protocol in Figure 3, we dropped the dependence of
the stepsizes βλ and βq on time. Implementation of diminishing
stepsizes would be impractical as the stepsizes would have to
increase whenever a new flow enters or leaves the network.
Choosing a constant stepsize simplifies the protocol, but re-
quires finding the proper values of the stepsizes. [24] shows that
even with constant stepsizes, the subgradient method converges
to within ε of the optimal value, where ε is a decreasing function

of the stepsize. However, if the stepsizes are too large, the
solution may end up too far from the optimum, while if the
stepsizes are too small, the convergence of the protocol may
be very slow. The choice of the best numerical values of βλ
and βq is further discussed in Section V. To avoid division by
zero, i.e.

∑
lH

i
ljGl(t) 6= 0, we have ml ≥ 0 at all times.

The protocol in Figure 3 does not always assign the source
rates zij such that xi =

∑
j z

i
j(t). While after the protocol

converges the equality holds, during transients the price qi can
be non-zero, and hence the demand constraint may be violated.
We solve this problem by projecting the source rates zij onto the
feasible region during the transients so that the demands are met
and all rates are non-negative. As shown in [15], projection onto
the feasible region doesn’t affect optimality of convergence. In
particular, after each path rate update, we project the rates of
each source in the j dimensional space onto the closest point
that satisfies the constraints.

V. EVALUATION

The goal of this section is to demonstrate the performance
of the protocol and its dynamic properties. We use NS-2
to perform simulations on realistic network topologies and
in the presence of feedback delay. First, we will describe
our experimental setup in NS-2 and the topologies we used.
Second, we will describe how we selected the values of the two
stepsizes, βλ and βq . Third, we will compare the performance
of our protocol against two other simple schemes. Finally, we
will test the dynamic properties of the protocol by performing
simulations with stochastic traffic.

A. NS-2 Simulations and Topologies

We implement the protocol of Figure 3 in NS-2. The link
prices are updated every 5 ms and fed back to the sources
in acknowledgement packets. It is important to notice that the
prices are delayed because they are attached by the routers to
packets and returned to the traffic sources in the acknowledge-
ments. The sources then update their rates every max(RTTij)
ms. Large router buffers increase propagation delays during
congestion. Since Section V-C compares our protocol against
two schemes which are more likely to cause congestion, we
chose short buffers (5 packets) for all evaluations.

� �

��

�
�

�
� �� 	�


Fig. 4. Abilene topology used in NS-2 simulations.

In our simulations, we used both simple synthetic and more
complicated realistic topologies. One of the topologies, Abi-



lene, is depicted in Figure 4. The link capacities in Abilene were
100 Mb/s and delays approximated realistic values between
the respective pairs of cities. The routing in the network was
defined as follows. We selected 4 source-destination pairs, and
connected each pair by 4 distinct paths. The round trip delays
on these paths ranged between 28 ms and 82 ms.

Since the protocol can be easily deployed inside of a
single autonomous system, we obtained autonomous systems’
topologies along with link delays from the Rocketfuel topology
mapping service [25]. The link capacities were 100 Mb/s if
neither endpoint of the link has degree larger than 7, and 52
Mb/s otherwise. We experimented with the topology of the
Sprint network, using 25 source-destination pairs connected by
4 paths. To obtain the paths connecting a source and destination
in the Sprint topology, a third transit node was selected, then
a shortest path connecting all the three nodes was calculated,
and finally we removed any cycles from the paths.

B. Tuning the Stepsizes

The protocol has two step sizes: βλ, associated with the
link capacity constraint, and βq , associated with the source
demand constraint. In order to find the proper value of βλ,
we experimented with the protocol in MATLAB. We chose
MATLAB rather than NS-2 because it allowed us to sweep the
parameter space quicker. We experimented with link capacities
of 1Mbps, 10Mbps, and 100Mbps, and chose demands that
were sufficiently high to create congestion. We observed the
speed of convergence for different values of βλ. The results
are summarized in Table I.

10 Mbps 100 Mbps 1000 Mbps
βλ = 1 ∗ 10−9 very slow slow slow
βλ = 5 ∗ 10−9 very slow slow slow
βλ = 1 ∗ 10−8 slow slow fast
βλ = 5 ∗ 10−8 slow slow no
βλ = 1 ∗ 10−7 slow fast no
βλ = 5 ∗ 10−7 slow no no
βλ = 1 ∗ 10−6 fast no no

TABLE I
RATE OF CONVERGENCE FOR DIFFERENT βλ VALUES AND DIFFERENT LINK

CAPACITIES.

Taking a close look at the step sizes and capacities, we
observe that higher link capacities require smaller βλ to achieve
quick convergence. We conclude that the optimal value of the
stepsize is βλ = 1/cl. We used the same method to find
the optimal value for βq and found out that the stepsize of
each source depends on its demand. The optimal value is
βq = 0.5/xi where xi denotes the demand of source i.

C. Performance Comparisons

To objectively assess the performance, we implemented two
other simple protocols in NS-2 and compared the performance
against our protocol on the Abilene topology. The first protocol
we compare against uses shortest path routing, and the second
uses equal traffic splitting among multiple paths. We describe
these protocols next.

In the shortest path routing protocol, each source i measures
the propagation delays on the j paths that are available to it.
Then, all traffic is simply sent on the path with the lowest
delay. The protocol that uses equal splitting splits traffic equally
among the j paths that are available to source i.

In this experiment, we slowly increase the traffic demands
from 20 Mbit/sec to 60Mbit/sec and observe the resulting losses
and delays. The losses are depicted in Figure 5. We observe that
the performance of the protocol that uses shortest path routing is
the worst. This is expected because the protocol cannot spread
the loads on the longer less used paths when the loads increase
beyond 30 Mbit/sec and congestion occurs. The performance of
the two protocols which use load balancing is nearly identical.
Our protocol performs slightly better because it dynamically
adjusts the fraction of traffic sent on each path.

The average propagation delay of the delivered traffic mea-
sured during the same experiment is depicted in Figure 6. The
delay of shortest path routing is the same as our protocol
for demands below 30 Mbit/sec, i.e., in the region where
the shortest path algorithm can meet the demands. For larger
demands, shortest path routing cannot deliver all the traffic. The
delay for equal splitting is larger because, unlike our protocol, it
does not place greater load on the shorter paths during periods
of low congestion. We conclude that our protocol is able to
balance the load in such a way so that the propagation delays
are low when the network is not congested, but shifts traffic to
the longer less used paths as congestion increases.

20 25 30 35 40 45 50 55 60 65 70
0

10

20

30

40

50

60

source demands (Mbps)

lo
ss

 (%
)

 

 
our protocol
equal−splitting
shortest path

Fig. 5. Packet loss. Our protocol, equal splitting and shortest path routing are
used respectively. The source rates increase from 20 Mbit/sec to 60 Mbit/sec.

20 25 30 35 40 45 50 55 60 65 70
23

24

25

26

27

28

29

30

31

source demands (Mbps)

av
er

ag
e 

pr
op

ag
at

io
n 

de
la

y 
(m

se
c/

bi
t)

 

 

our protocol
equal−splitting
shortest path

Fig. 6. The average propagation delays. Our protocol, equal splitting and
shortest path routing are used respectively. In the region of the graph without
packet losses, our protocol has the same or lower delay than the other two.



D. Convergence to Optimum

To assess the speed of convergence of the protocol, we
compared the optimal value of the optimization objective with
the achieved value after the sources start the transmission. The
simulation was performed on the Abilene topology using three
different traffic demands for all the sources: 30 Mbit/sec, 45
Mbit/sec and 60 Mbit/sec respectively. The results are depicted
in Figure 7. The plot shows that the objective achieved by
our protocol converges quickly to within a few percent of the
optimal value. The optimal value was obtained by solving the
optimization problem from Figure 1 numerically.

We observe that the speed of convergence is better for slower
demands. This is because the amount of traffic that needs to
be split among the available paths is smaller. At first glance,
the speed of convergence is slow. However, this is not a major
concern for two reasons. First, in this experiment, all flows
start at time 0, which makes the scenario more challenging.
In practice, such a synchronization is not likely. Second, as
mentioned in Section IV, our algorithm uses projections to meet
the demands of the sources. Therefore, even shortly after the
start of the experiment, the demands of the sources are met,
although the distribution of the load among the available paths
is suboptimal with respect to delay during the transient period.
The convergence of the average delays is depicted in Figure 8.

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

time (sec)

op
tim

al
ity

 g
ap

 in
 o

bj
ec

tiv
e 

(%
)

 

 

30 Mb/s
45 Mb/s
60 Mb/s

Fig. 7. The convergence to optimum is faster for smaller demands.

0 10 20 30 40 50 60
22

23

24

25

26

27

28

29

30

time (sec)

av
er

ag
e 

pr
op

ag
at

io
n 

de
la

y 
(m

se
c/

bi
t)

 

 

30 Mb/s
45 Mb/s
60 Mb/s

Fig. 8. The delays converge to smaller values in configurations with lower
demands.

E. Dynamic Properties

In the previous simulations we assumed that the traffic
demands do not change. Now we will relax this assumption

and observe the behavior of the protocol when the demands
change randomly. We start at time 0 by choosing the demand
of each source uniformly at random between 40 Mbit/sec and
60 Mbit/sec. We keep the demands constant for a time interval
of length t. After the time interval elapses, we resample all
demands from the same distribution. This is repeated for each
time interval. The length of each time interval is selected
uniformly at random between 35 sec and 60 sec.

In this simulation, the demand adjustments are synchronized.
In practice, the demand adjustments may or may not be
synchronized. We selected synchronization for two reasons.
First, this is a more arduous test than changing the demands
for each source independently. Second, the optimal value of
the objective changes less frequently, which makes it easier to
compare against the achieved value of the objective.

The simulation was performed on the Abilene topology, and
the results are depicted in Figure 9. The black curve depicts the
optimal value of the objective, which was obtained by solving
the optimization problem from Figure 1 numerically. The red
curve depicts the value achieved by our protocol. We observe
that after each demand adjustment, the achieved value quickly
converges to the optimum.

0 20 40 60 80 100 120 140 160 180 200
3

3.5

4

4.5

5

5.5

6
x 10

6

ob
je

ct
iv

e

time (sec)

 

 

observed objective
optimal

Fig. 9. The source demands change. After each change, the optimal value
of the objective changes (black curve), and our protocol converges to the new
optimum (red curve).

VI. RELATED WORK

Previous work that improves the latency of Internet traffic
falls into three groups. The first group consists of papers whose
primary goal is to minimize these delays in context of ‘optimal
routing’. The second and larger group consists of papers that
decrease the delays as a byproduct of designs that address other
problems. Finally, the third group uses admission control to
guarantee a desired quality of service (QoS).

[16] and [17] minimize propagation delays in the network by
specifying for each node i what fraction of the traffic should
leave node i on each of the links emanating from it. While
this work uses multipath routing and theoretically achieves the
optimal values of delays, it has several drawbacks. First, in [16]
it is not possible to find a stepsize that would offer good
convergence for a range of traffic conditions. This is solved
in [17], but the work requires more complicated calculations,
such as estimation of both the lower and upper bound of



the second derivative of the delays. Second, the protocols
require synchronized message passing where upstream nodes
need message updates from downstream nodes before they can
compute their own updates. This also requires that the network
be ‘loop-free’: node i cannot be upstream and downstream of
node j at the same time to avoid deadlocks. In comparison,
our approach is more practical and does not require significant
changes in current routing protocols.

Proposals that help to improve end-to-end delay also include
TCP protocols such as Vegas [11], or FAST [10] that decrease
the amount of queueing in the router buffers. Decreasing the
physical length of the buffers [26] also decreases the delays.
Since the goal of these papers is not to optimize the delivery
of delay-sensitive traffic, they do not offer optimal delays and
robustness.

QoS approaches are able to guarantee the delay and band-
width requirements to the applications. This is achieved by
using admission control to select sources that are allowed to
use the network. For a survey of the work in this area see
e.g. [2]. While our work does not provide delay or bandwidth
guarantees, we are able to minimize the aggregate delays
without using admission control.

VII. CONCLUSION

In this paper we identified the need to develop a new protocol
that would better serve the needs of interactive applications
such as IPTV, VoIP or videoconferencing. We started with
the observation that these applications would benefit from low
latency as well as better robustness and resilience to transient
performance degradation. With these goals in mind, we used
optimization theory to design a new protocol that modifies
routing and congestion control.

We took a convex optimization problem that minimizes the
latency by splitting traffic on multiple paths while making sure
that the shortest most popular paths do not become congested.
Then we used optimization decomposition to translate the op-
timization problem into a distributed algorithm and a practical
protocol with two tunable parameters. Simulations in NS-2
allowed us to demonstrate the robustness and low latency of
our solution.

The robustness of the protocol was demonstrated by com-
paring it against two other simple algorithms that can be
used to reduce latency, namely shortest path routing and equal
splitting among paths. We concluded that our protocol is able
to shift traffic on longer paths before the shortest paths become
congested. We also observed that the protocol achieves a much
lower latency than equal splitting, and is able to operate without
any losses at higher loads than the other schemes.

We see several possible extensions of this work. Economic
interpretation of prices in our protocol would provide monetary
incentives for the sources and routers to behave honestly. This
would be especially helpful in interdomain deployments that
span networks belonging to competing entities. Another exten-
sion could simplify the protocol by having the sources to obtain
the feedback from the network implicitly by measurement

rather than having to rely on the explicit feedback from the
routers.

REFERENCES

[1] “Cisco Visual Networking Index – Forecast and Methodology, 2007 –
2012.”

[2] X. Xiao and L. Ni, “Internet QoS: a big picture,” IEEE Network, vol. 13,
pp. 8–18, March 1999.

[3] J. He and J. Rexford, “Towards Internet-wide Multipath Routing.” IEEE
Network Magazine, Special Issue on Internet Scalability, March 2008.

[4] J. He, M. Chiang, and J. Rexford, “TCP/IP Interaction Based on Conges-
tion Price: Stability and Optimality,” in Proc. International Conference
on Communications, June 2006.

[5] F. Kelly and T. Voice, “Stability of end-to-end algorithms for joint routing
and rate control,” ACM SIGCOMM Computer Communication Review,
vol. 35, pp. 5–12, April 2005.

[6] J. He, M. Suchara, M. Bresler, J. Rexford, and M. Chiang, “Rethinking
Internet traffic management: From multiple decompositions to a practical
protocol,” in Proc. CoNEXT, December 2007.

[7] X. Lin and N. B. Shroff, “Utility Maximization for Communication
Networks with Multi-path Routing,” IEEE Trans. Automatic Control,
vol. 51, May 2006.

[8] F. Paganini, “Congestion Control with Adaptive Multipath Routing Based
on Optimization,” in Proc. Conference on Information Sciences and
Systems, March 2006.

[9] D. Palomar and M. Chiang, “A tutorial on decomposition methods for
network utility maximization,” IEEE J. on Selected Areas in Communi-
cations, vol. 24, pp. 1439–1451, August 2006.

[10] C. Jin, D. X. Wei, and S. H. Low, “FAST TCP: Motivation, Architecture,
Algorithms, Performance,” in Proc. IEEE INFOCOM, March 2004.

[11] S. H. Low, L. Peterson, and L. Wang, “Understanding Vegas: A duality
model,” J. of the ACM, vol. 49, pp. 207–235, March 2002.

[12] S. H. Low, “A duality model of TCP and queue management algorithms,”
IEEE/ACM Trans. Networking, vol. 11, pp. 525–536, August 2003.

[13] R. Srikant, The Mathematics of Internet Congestion Control. Birkhauser,
2004.

[14] M. Chiang, S. H. Low, R. A. Calderbank, and J. C. Doyle, “Layering as
optimization decomposition,” Proceedings of the IEEE, January 2007.

[15] D. Bertsekas and R. Gallager, Data Networks, ch. 5.4. Prentice Hall,
second ed., 1992.

[16] R. Gallager, “A minimum delay routing algorithm using distributed
computation,” IEEE Transactions on Communications, vol. 25, no. 1,
pp. 73–85, 1977.

[17] D. Bertsekas, E. Gafni, and R. Gallager, “Second derivative algorithms
for minimum delay distributed routing in networks,” IEEE Transactions
on Communications, vol. 32, no. 8, pp. 911–919, 1984.

[18] J. He, R. Zhang-Shen, Y. Li, C.-Y. Lee, J. Rexford, and M. Chiang,
“DaVinci: Dynamically Adaptive Virtual Networks for a Customized
Internet,” in Proc. CoNEXT, December 2008.

[19] T. Borsos, “A Practical Model for VBR Video Traffic with Applications,”
in MMNS ’01: Proceedings of the 4th IFIP/IEEE International Confer-
ence on Management of Multimedia Networks and Services, pp. 85–95,
Springer-Verlag, 2001.

[20] K. G. Ramakrishnan and M. A. Rodrigues, “Optimal routing in shortest-
path data networks,” Lucent Bell Labs Technical Journal, vol. 6, no. 1,
2001.

[21] B. Fortz and M. Thorup, “Optimizing OSPF weights in a changing world,”
IEEE J. on Selected Areas in Communications, vol. 20, pp. 756–767, May
2002.

[22] J. He, M. Bresler, M. Chiang, and J. Rexford, “Towards Robust Multi-
layer Traffic Engineering: Optimization of Congestion Control and Rout-
ing,” IEEE J. on Selected Areas in Communications, June 2007.

[23] F. P. Kelly, A. Maulloo, and D. Tan, “Rate control for communication
networks: Shadow prices, proportional fairness and stability,” J. of Oper-
ational Research Society, vol. 49, pp. 237–252, March 1998.

[24] S. Boyd and L. Vanderberghe, Convex Optimization. Cambridge Univer-
sity Press, 2004.

[25] N. Spring, R. Mahajan, D. Wetherall, and T. Anderson, “Measuring ISP
Topologies with Rocketfuel,” IEEE/ACM Trans. Networking, vol. 12,
pp. 2–16, February 2004.

[26] I. Keslassy and N. McKeown, “Sizing router buffers,” in Proceedings of
ACM SIGCOMM, pp. 281–292, 2004.


