
Don’t Optimize Existing Protocols,
Design Optimizable Protocols

Jiayue He, Jennifer Rexford and Mung Chiang
Princeton University, Princeton, New Jersey, United States

jhe@princeton.edu, jrex@princeton.edu, chiangm@princeton.edu
This article is an editorial note submitted to CCR. It has NOT been peer reviewed. Authors take full

responsibility for this article’s technical content. Comments can be posted through CCR Online.

ABSTRACT
As networks grow in size and complexity, network management
has become an increasingly challenging task. Many protocols have
tunable parameters, and optimization is the process of setting these
parameters to optimize an objective. In recent years, optimization
techniques have been widely applied to network management prob-
lems, albeit with mixed success. Realizing that optimization prob-
lems in network management are induced by assumptions adopted
in protocol design, we argue that instead of optimizing existing
protocols, protocols should be designed with optimization in mind
from the beginning. Using examples from our past research on traf-
fic management, we present principles that guide how changes to
existing protocols and architectures can lead to optimizable pro-
tocols. We also discuss the trade-offs between making network
optimization easier and the overhead these changes impose.

Categories and Subject Descriptors
C.2.1 [Computer Communication Networks]:
Network Architecture and Design

General Terms
Design, Management, Performance

1. INTRODUCTION
Network management is the continuous process of monitoring a

network to detect and diagnose problems, and of configuring pro-
tocols and mechanisms to fix problems and optimize performance.
Traditionally, network management has been largely impenetrable
to the research community since many of the problems appear both
complex and ill-defined. In the past few years, the research com-
munity has made tremendous progress casting many important net-
work management problems as optimization problems. Network
optimization involves satisfying network management objectives
by setting the tunable parameters that control network behavior.
Solving an optimization problem involves optimizing an objective
function subject to a set of constraints. It is well-established that
convexity is a watershed between hard and easy optimization prob-
lems. Unfortunately, many optimization problems that arise in data
networks are nonconvex. Consequently, they are computationally
intractable, with many local optima that are suboptimal.

In this paper, we argue that the difficulty of solving the key opti-
mization problems is an indication that we may need to revise the
underlying protocols, or even the architectures, that lead to these
problem formulations in the first place. We advocate the design
of optimizable networks—network architectures and protocols that
lead to easy-to-solve optimization problems and consequently, op-
timal solutions. Indeed, the key difference between “network op-
timization” and “optimizable networks” is that the former refers to

solving a given problem (induced by the existing protocols and ar-
chitectures) while the latter involves formulating the “right” prob-
lem (by changing protocols or architectures accordingly).

The changes to protocols and architectures can range from mi-
nor extensions to clean-slate designs. In general, the more freedom
we have to make changes, the easier it would be to create an op-
timizable network. On the other hand, the resulting improvements
in network management also need to balanced against other con-
siderations such as scalability and extensibility, and must be made
judiciously. To make design decisions, it is essential to quantify
the trade-off between making network-management problems eas-
ier by changing the problem statement and the extra overhead the
resulting protocol imposes on the network.

Network optimization has had a particularly large impact in the
area of traffic management, which controls the flow of traffic through
the network. Today, this spans across congestion control, routing
and traffic engineering. In Section 2, we describe how optimization
is used in traffic management today. In Section 3, we illustrate de-
sign principles which we have uncovered through our own research
experiences on traffic management. Traffic management is an ex-
tremely active area of research, but we will not address related work
in this paper since these examples are included to serve as illustra-
tions of general principles. In Section 4, we discuss other aspects of
traffic management, such as interdomain routing and active queue
management, where the problems are even more challenging. We
also examine the trade-off between performance achieved and over-
head imposed when designing optimizable protocols. We conclude
and point to future work in Section 5.

2. TRAFFIC MANAGEMENT TODAY

parameters
Setting

control

optimization

measurement

Operational network

Routing model

demands
Traffic

configuration
Topology &

Figure 1: Components of the route optimization framework.

In this section, we introduce how optimization is used in the
context of traffic management inside a single Autonomous System



(AS). Traffic management has three players: users, routers, and
operators. In today’s Internet, users run TCP congestion control
to adapt their sending rates at the edge of the network based on
packet loss. Congestion control has been reverse engineered to be
implicitly solving an optimization problem, [1, 2, 3]. Inside the
network, operators tune parameters in the existing routing proto-
cols to achieve some network-wide objective in a process called
traffic engineering, see Figure 1.

2.1 Traffic Engineering
Inside a single AS, each router is configured with an integer

weight on each of its outgoing links, as shown in Figure 2. The
routers flood the link weights throughout the network and compute
shortest paths as the sum of the weights. Each router uses this in-
formation to construct a table that drives the forwarding of each IP
packet to the next hop in its path to the destination. These proto-
cols view the network inside an AS as a graph G(R, L) where each
router is a node r ∈ R and each directed edge is a link l ∈ L be-
tween two routers. Each unidirectional link has a fixed capacity cl,
as well as a configurable weight wl. The outcome of the shortest-
path computation can be represented as the proportion Pi,j,l of the
traffic from router i to router j that traverses the link l.i j3 22 11 3 14 53 k
Figure 2: Network topology with link weights for shortest path
routing.

Operators set the link weights in intradomain routing protocols
in a process called traffic engineering. The selection of the link
weights wl should depend on the offered traffic, as captured by a
matrix Mi,j that represents the rate of traffic entering at router i
that is destined to router j. The traffic matrix can be computed
based on traffic measurements or may represent explicit subscrip-
tions or reservations from users. Given the traffic matrix Mi,j

and link weights wl, the volume of traffic on each link l is yl =∑
i,j Mi,jPi,j,l, the proportion of traffic that traverses link l summed

over all pairs of routers. An objective function can quantify the
“goodness” of a particular setting of the link weights. For traffic
engineering, the optimization considers a network-wide objective
of minimizing

∑
l f(yl/cl) for a convex function f that penalizes

solutions that have heavily-loaded links.
So far, we have covered the impact of link weights inside an

AS. When a network, such as an Internet Service Provider (ISP)
backbone, can reach a destination through multiple egress points, a
routing change inside the AS may change how traffic leaves the AS.
Each router i typically selects the closest egress point e out of a set
Ed of egress points which can reach destination d, in terms of the
intradomain link weights wl, in a practice known as early-exit or
hot-potato routing [4]. In the example in Figure 2, suppose a des-
tination d is reachable via egress points j and k. Then traffic from
i exits via k rather than j since the intradomain path cost from i to
k is smaller. If the traffic from i encounters congestion along the
downstream path from k in Figure 2, the network operators could
tune the link weights to make the path through j appear more attrac-
tive. Controlling where packets leave the network, and preventing

large shifts from one egress point to another, is an important part of
engineering the flow of traffic in the network. Models can capture
the effects of changing the link weights on the intradomain paths
and the egress points, but identifying good settings of the weights
is very difficult.

2.2 Pros and Cons of Traffic Management
Traffic management today has several strengths. First, routing

depends on a very small amount of state per link i.e., link weights.
In addition, forwarding is done hop-by-hop, so that each router de-
cides independently how to forward traffic on its outgoing links.
Second, routers only disseminate information when link weights
or topology change. In addition, TCP congestion control is based
only on implicit feedback of packet loss loss and delay, rather than
explicit messages from the network. Third, the selection of link
weights can depend on a wide variety of performance and reliabil-
ity constraints. Fourth, hot-potato routing reduces internal resource
usage (by using the closest egress point), adapts automatically to
changes in link weights, and allows routers in the AS to do hop-
by-hop forwarding toward the egress point. Last but not least, the
decoupling of congestion control and traffic engineering reduces
complexity through separation of concerns.

On the other hand, today’s protocols also have a few shortcom-
ings. To start with, optimizing the link weights in shortest-path
routing protocols based on the traffic matrix is NP-hard, even for
simplest of objective functions [5]. In practice, local-search tech-
niques are are used for selecting link weights [5]; however, the
computation time is long and, while the solutions are frequently
good [5], the deviation from the optimal solution can be large.
Finding link weights which work well for egress point selection is
even more challenging, as this adds even more constraints on how
the weights are set.

There are other limitations to today’s traffic management. The
network operator can only indirectly influence how the routers for-
ward traffic, through the setting of the link weights. Further, traffic
engineering is performed assuming that the offered traffic is inelas-
tic. In reality, end hosts adapt their sending rates to network con-
gestion, and network operators adapt the routing based on measure-
ments of the traffic matrix. Although congestion control and rout-
ing operate independently, their decisions are coupled. The joint
system is stable, but often suboptimal [6]. Furthermore, traffic en-
gineering does not necessarily adapt on a small enough timescale
to respond to shifts in user demands. In addition to timescale al-
ternatives, there are also choices as to geographically which part of
traffic management work should be carried out inside the network,
and which by the sources. These limitations suggest that revisiting
architectural decisions is a worthy research direction.

3. DESIGN OPTIMIZABLE PROTOCOLS
In this section, we illustrate three design principles through pro-

posed protocols. The three principles also correspond to the three
parts of an optimization problem formulation: objective, variables
and constraints. In a generic optimization problem formulation, the
objective is to minimize f(x) over the variable x, subject to con-
straints on x:

minimize f(x)
subject to x ∈ S
variable x

(1)

From optimization theory, it is well established that a local opti-
mum of (1) is also a global optimum, which can be found in polyno-
mial time and often very fast, if S is a convex set and f is a convex



function1. In other words, a convex optimization problem leads to
both tractability and optimality. Due to single-path routing, an arti-
fact of the current system, the constraint set is not convex for most
traffic management problems. In our first example, we tackle this
problem head-on by changing the shape of the constraint set. In our
second example, we avoid the problem because the particular prob-
lem formulation falls under a special class of integer programming
problems. In our third example, we change the system to allow
routing to be per path multi-commodity flow, so that decomposi-
tion techniques can be applied to derive stable and fast-timescale
interaction between routing and congestion control.

3.1 Changing the Shape of the Constraint Set
Some optimization problems involve integer constraints, which

are not convex, making them intractable and their solutions sub-
optimal. Relaxing the integer constraint to approximate a convex
constraint can lead to a more tractable problem and a smaller opti-
mality gap. This is the case in link-weight setting problem where
the network usually has a single shortest path from i to j, resulting
in Pi,j,l = 1 for all links l along the path, and Pi,j,l = 0 for the
remaining links. An OSPF or IS-IS router typically splits traffic
evenly along one or more outgoing links along shortest paths to the
destination, allowing for limited fractional values of Pi,j,l, but the
constraint set is still highly nonconvex. The ability to split traffic
arbitrarily over multiple paths would make the constraints convex,
i.e., Pi,j,l ∈ [0, 1]. The downside is this approach would sacrifice
the simplicity of OSPF and IS-IS, where routers compute paths in a
distributed fashion based on a small amount of configuration state.

Rather than supporting arbitrary splitting, a recent proposal ad-
vocates small extensions to OSPF and IS-IS to split traffic over
multiple paths [7]. Under this proposal, the routers forward traf-
fic on multiple paths, with exponentially diminishing proportions
of the traffic directed to the longer paths. For example, in Figure
2, there are two outgoing links from i, with link weights (2,3), the
load on each path would be proportional to (e−2, e−3). Under this
formulation, both link weights and the flow splitting ratios are vari-
ables. This enlarges the constraint set, and the resulting constraints
are much easier to approximate with convex constraints. Conse-
quently, the link-weight tuning problem is tractable, i.e., can be
solved much faster than the local search heuristics today. In addi-
tion, the modified protocol is closer to optimal, i.e., makes more
efficient use of link capacities, and is more robust to small changes
in the path costs. By changing the constraint set, the work in [7] re-
tains the simplicity of link-state routing protocols and hop-by-hop
forwarding, while inducing an optimization problem that is both
faster to solve and lead to smaller optimality gap.

3.2 Adding Variables to Decouple Constraints
Some optimization problems can involve many tightly-coupled

constraints, making it difficult to find a feasible solution. Introduc-
ing extra variables can decouple the constraints, and increase the
size of the feasible region. As an example, setting the link weights
is highly constrained, since the weights are used to compute both
the forwarding paths between the routers inside the domain and the
egress points where the traffic leaves the domain. Weakening the
coupling between intradomain routing and egress-point selection
is the key to simplifying the optimization problem and improving
network performance.

Rather than selecting egress points e from ingress router i based
only on the intradomain path costs wi,e (sum of all link weights wl

1A convex set S is defined as if x, y ∈ S, then θx +(1− θ)y ∈ S,
for all θ ∈ [0, 1]. A function f is a convex function if domain of f
is a convex set and f(θx + (1− θ)y) ≤ θf(x) + (1− θ)f(y).

on the path from i to e), a variable qi,p,e is introduced for router
i, across all prefixes p and egress points e. To support flexible
policy while adapting automatically to network changes, the met-
ric qi,p,e includes both configurable parameters and values com-
puted directly from a real-time view of the topology. In particular,
qi,p,e = αi,p,ewi,e + βi,p,e where α and β are configurable val-
ues [8]. The first component of the equation supports automatic
adaptation to topology changes, whereas the second represents a
static ranking of egress points per ingress router. Providing separate
parameters for each destination prefix allows even greater flexibil-
ity, such as allowing delay-sensitive traffic to use the closest egress
point while preventing unintentional shifts in the egress points for
other traffic.

In general, the resulting integer multicommodity-flow problem
is still nonconvex and consequently intractable. This problem for-
mulation happen to correspond to a very special subset of integer
programming problems where relaxing the integrality constraints
x(i, e, p) ∈ 0, 1 to simply x(i, e, p) ≥ 0 would still produce inte-
ger solutions [9], thus side-stepping the convexity issue. Overall,
by increasing the degrees of freedom, a management system can
set the new parameters under a variety of constraints that reflect the
operators’ goals for the network [8]. Not only does the network
become easier to optimize, but the performance improves as well,
due to the extra flexibility in controlling where the traffic flows.

3.3 Combining Objectives to Derive Protocols
In a system, there can be multiple interacting optimization prob-

lems with different objectives. Combining the objectives of multi-
ple problems can allow for a better solution to the overall problem.
In today’s traffic management system, congestion control and traf-
fic engineering have different objectives. Congestion control tries
to maximize aggregate user utility, and as a result tends to push
traffic into the network so that multiple links are used at capac-
ity. In contrast, traffic engineering uses a link cost function which
heavily penalizes solutions with bottleneck links. One way to com-
bine the objectives of traffic engineering and congestion control is
to construct a weighted sum of utility and link cost functions as the
overall objective for traffic management [6].

In [6], we revisit the division of labor between users, operators
and routers. In this case, we allow for a per path multi-commodity
flow solution, hence resulting in a convex problem, and opens up
many standard optimization techniques such as dual decomposition
that derive distributed and iterative solutions. Decomposition is the
process of breaking up a single optimization problem into multiple
ones that can be solved independently. Decomposing the overall
traffic management optimization problem, a distributed protocol is
derived that splits traffic over multiple paths, where the splitting
proportions depend on feedback from the links. The solution is
called DATE (Distributed Adaptive Traffic Engineering). By em-
bedding the management objectives in the protocols, the link-cost
function is now automated incorporated by the links themselves
as part of computing the feedback sent to the edge routers, rather
than by the network-management system. As such, the network-
management system merely specifies the link cost function, and
does not need to adapt the configuration of the routers over time.

4. OPEN CHALLENGES IN TRAFFIC
MANAGEMENT OPTIMIZATION

The principles introduced in the previous section are a useful
first step towards designing optimizable protocols, but are by no
means comprehensive. The merits of proposed optimizable proto-
cols should always be balanced with any extra overhead in practical



implementation and robustness to changing network dynamics. In
addition, the principles introduced in the previous section focuses
on intradomain traffic management, and do not address all the chal-
lenges in end-to-end traffic management. Finally, when deriving
new architectures, the balance between performance and other fac-
tors is even more delicate.

4.1 Performance vs. Overhead Trade-off
Characterizing a network architecture in terms of the tractability

of network-management problems is just one piece of a complex
design puzzle. The design of optimizable networks introduces ten-
sion between the ease of network optimizability and the overhead
on network resources. Some of the architectural decisions today
make the resulting protocols simple. For example, protocols which
rely on implicit feedback e.g., TCP congestion control, do not have
message passing overhead. Further, hop-by-hop forwarding does
not depend on the upstream path, requiring less processing at the
individual routers. It would be desirable to capture such notions
of simplicity mathematically, so we can learn to derive optimizable
protocols which retain them.

Our example in Section 3.1 manages to retain the simplicity of
hop-by-hop forwarding while resulting in a tractable optimization
problem. In this particular case, optimality gap was significantly re-
duced with very little extra overhead. However, some approaches
make the protocol more optimizable at the expense of additional
overhead. For example, adding flexibility in egress-point selec-
tion in Section 3.2 introduces more parameters that the network-
management system must set. Similarly, revisiting the division of
functionalities in Section 3.3 leads to a solution that requires ex-
plicit feedback from the links. Imposing extra overhead on the
network may be acceptable, if the improvement in performance is
sufficiently large.

Furthermore, ensuring a completely tractable optimization prob-
lem is sometimes unnecessary. An NP-hard problem may be ac-
ceptable, if good heuristics are available. For striking the right
trade-offs in the design of optimizable networks, it is important
to find effective ways to quantify the acceptable amount of devi-
ation from the optimal solution. There are also well-established,
quantitative measures of the notions of how easily-solvable an op-
timization is. These quantitative measures can help determine how
much the protocols and architectures need to change to better sup-
port network management.

simplicity
optimality

Figure 3: Different trade-off curves in the optimality versus
simplicity in design space. The dotted line is the original trade-
off curve, the solid line and the cross are possible when under-
lying assumptions are perturbed.

The protocols today are designed with certain assumptions in
mind, e.g., single-path routing and hop-by-hop forwarding. Some

of these assumptions cause the resulting optimization problem to
be intractable e.g., single-path routing, while others do not, e.g.,
hop-by-hop forwarding. By perturbing the underlying assumptions
in today’s protocol, we can achieve a different curve or a differ-
ent point in the trade-off space of optimality versus simplicity, see
Figure 3. This curve or point could be strictly better than today’s
protocols, or at least offer different properties. Therefore, it’s worth
exploring the alternatives, even if at the end the decision is to keep
the original protocol and architectures. In order to choose between
protocol designs, the key is to gain a deeper understanding of the
trade-offs. As such, we believe that design for optimizability can
be a promising, new interdisciplinary area between the systems and
theory communities.

4.2 End-to-End Traffic Management
Our examples thus far focused on optimization problems in in-

tradomain traffic management. Routing within a single domain
side-steps several important issues that arise in other aspects of data
networking, for several reasons:

• A single domain has the authority to collect measurement
data (such as the traffic and performance statistics) and tune
the protocol configuration (such as the link weights).

• The routing configuration changes on the timescale of hours
or days, allowing ample time to apply more computationally
intensive solution techniques.

• The optimization problems consider highly aggregated infor-
mation, such as link-level performance statistics or offered
load between pairs of routers.

When these assumptions do not hold, the resulting optimization
problems become even more complicated, as illustrated by the fol-
lowing two examples.

Optimization in interdomain traffic management: In the Internet,
there are often multiple Autonomous Systems (AS) in the path be-
tween the sender and the receiver. Each AS does not have full view
of the topology, only the paths which are made visible to it through
the routing-protocol messages exchanged in the Border Gateway
Protocol (BGP). In addition, each AS has a set of private policies
that reflect its business relationships with other ASes. Without full
visibility and control, it is difficult to perform interdomain traffic
management. For example, to implement DATE in the Internet, the
ASes would need to agree to provide explicit feedback from the
links to the end hosts or edge routers, and trust that the feedback is
an honest reflection of network conditions. Extending BGPs to al-
low for multiple paths would simplify the underlying optimization
problem, but identifying the right incentives for ASes to deploy a
multipath extension to BGP remains an open question.

Optimization in active queue management: A router may ap-
ply active queue management schemes like Random Early Detec-
tion [10] to provide TCP senders with early feedback about im-
pending congestion. RED has many configurable parameters to
be selected by network operators, e.g.,, queue-length thresholds
and maximum drop probability. Unfortunately, predictive mod-
els for how the tunable parameters affect RED’s behavior remain
elusive. In addition, the appropriate parameter values may depend
on a number of factors, including the number of active data trans-
fers and the distribution of round-trip times, which are difficult to
measure on high-speed links. Recent analytic work demonstrates
that setting RED parameters to stabilize TCP is fundamentally dif-
ficult [11]. It is appealing to explore alternative active-queue man-
agement schemes that are easier to optimize, including self-tuning



algorithms that do not require the network-management system to
adjust any parameters.

From these two examples, it is clear that there remains open chal-
lenges in end-to-end traffic management. Outside the context of
traffic management, network optimization’s role is even less under-
stood. We argue for a principled approach in tackling these chal-
lenges, so that in time, protocol design can more less of an art and
more of a science.

4.3 Placement of Functionality
The challenges are not just limited to protocols, but extends to ar-

chitectural decisions regarding the placement of functionality. Ar-
chitecturally, the DATE example represents one extreme where most
of computation and coordination is moved into the distributed pro-
tocols that run in the routers. In the context of Figure 1, this means
much of the measurement, control and optimization is pushed down
into the network. One can consider another extreme, where the
network-management systems bear all the responsibility for adapt-
ing to changes in network conditions, as in [12]. Both approaches
redefine the division of labor between the management system and
the routers, where one moves most of the control into the dis-
tributed protocols and the other has the management systems di-
rectly specify how the routers handle packets.

In some cases, having the management system bear more re-
sponsibility would be a natural choice. For example, if an opti-
mization problem is fundamentally difficult, consequently leading
to distributed solutions that are complicated or suboptimal, or both.
Unlike the routers, a management system has the luxury of a global
view of network conditions and the ability to run centralized al-
gorithms for computing the protocol parameters. Today’s traffic
engineering uses the centralized approach and allows operators to
tailor the objectives to the administrative goals of the network. This
leads to a more evolvable system, where the objective function and
constraints can differ from one network to another, and change over
time. In addition, the operators can capitalize on new advances in
techniques for solving the optimization problems, providing an im-
mediate outlet for promising research results.

The network-management system can apply centralized algo-
rithms based on a global view of network conditions, at the expense
of a slower response based on coarse-grain measurements. Yet
some parts of traffic management, such as detecting link failures
and traffic shifts, must occur in real time. In order to understand
which functions must reside in the routers to enable adaptation on
a sufficiently small time-scale, it is important to quantify the loss in
performance due to slower adaptation. For functions which require
fast adaptation, an architecture where end user load balance across
multiple paths would be desirable. For functions that can operate
on a slower timescale, the control of flow distribution can be left to
operators. In general, determining the appropriate division of labor
between the network elements and the management systems is an
avenue for future research.

5. CONCLUSIONS AND FUTURE WORK
In recent years, optimization has played an increasingly impor-

tant role in network management. In this paper, we argue that, in-
stead of just trying to optimize existing protocols, protocols should
be designed for the ease of optimization. If a set of architectures
and protocols lead to intractable optimization problems for network
management, we argue that, instead of trying to solve these prob-
lems by ad hoc heuristics, we should revisit some of the underlying
assumptions in the architectures and protocols. Such explorations
can lead to easier network optimization problems and may provide
superior simplicity-optimality tradeoff curves.

Drawing from our own research experiences in traffic manage-
ment, we propose three guiding principles for making optimiz-
able protocols which correspond to three aspects of an optimiza-
tion problem i.e., constraints, variables and objective. First, chang-
ing the constraint set can turn an NP-hard optimization problem
into an easy problem and reduce the optimality gap. Second, in-
creasing degrees of freedom (by introducing extra parameters) can
break tightly coupled constraints. Finally, embedding management
objectives in the protocol can lead to alternative architectures. Still,
protocols changes must be made judiciously to balance the gain in
performance with the extra consumption of network resources.

Ultimately, the design of manageable networks raises important
architectural questions about the appropriate division of functional-
ities between network elements and the systems that manage them.
This paper represents a first step toward identifying design princi-
ples that can guide these architectural decisions. The open chal-
lenges which remain suggest that the design of manageable net-
works may continue to be somewhat of an art, but hopefully one
that will be guided by more and more design principles. We believe
that providing a new, comprehensive foundation for the design of
manageable networks is an exciting avenue for future research.

Acknowledgment
We would like to thank Constantine Dovrolis, Nick Feamster, Re-
nata Teixeira and Dahai Xu for their feedback on earlier drafts. This
work has been supported in part by NSF grants CNS-0519880 and
CCF-0448012, and DAPRA Seedling W911NF-07-1-0057.

6. REFERENCES
[1] F. P. Kelly, A. Maulloo, and D. Tan, “Rate control for communication

networks: Shadow prices, proportional fairness and stability,” J. of
Operational Research Society, vol. 49, pp. 237–252, March 1998.

[2] S. H. Low, “A duality model of TCP and queue management
algorithms,” IEEE/ACM Trans. Networking, vol. 11, pp. 525–536,
August 2003.

[3] R. Srikant, The Mathematics of Internet Congestion Control.
Birkhauser, 2004.

[4] R. Teixeira, A. Shaikh, T. Griffin, and J. Rexford, “Dynamics of
hot-potato routing in IP networks,” in Proc. ACM SIGMETRICS,
June 2004.

[5] B. Fortz and M. Thorup, “Optimizing OSPF weights in a changing
world,” IEEE J. on Selected Areas in Communications, vol. 20,
pp. 756–767, May 2002.

[6] J. He, M. Bresler, M. Chiang, and J. Rexford, “Towards multi-layer
traffic engineering: Optimization of congestion control and routing,”
IEEE J. on Selected Areas in Communications, June 2007.

[7] D. Xu, M. Chiang, and J. Rexford, “DEFT: Distributed
exponentially-weighted flow splitting,” in Proc. IEEE INFOCOM,
May 2007.

[8] R. Teixeira, T. Griffin, M. Resende, and J. Rexford, “TIE Breaking:
Tunable Interdomain Egress Selection,” in Proc. CoNEXT, October
2005.

[9] A. Ozdaglar and D. P. Bertsekas, “Optimal Solution of Integer
Multicommodity Flow Problems with Application in Optical
Networks,”

[10] S. Floyd and V. Jacobson, “Random early detection gateways for
congestion avoidance,” IEEE/ACM Trans. Networking, vol. 1,
pp. 397–413, August 1993.

[11] S. H. Low, F. Paganini, J. Wang, and J. C. Doyle, “Linear stability of
TCP/RED and a scalable control,” Computer Networks, vol. 43,
pp. 633–647, December 2003.

[12] A. Greenberg, G. Hjalmtysson, D. A. Maltz, A. Meyers, J. Rexford,
G. Xie, H. Yan, J. Zhan, and H. Zhang, “A clean slate 4D approach to
network control and management,” ACM SIGCOMM Computer
Communication Review, October 2005.


