
Multi-commodity Flow with In-Network
Processing

Moses Charikar1, Yonatan Naamad2(B), Jenifer Rexford3, and X. Kelvin Zou4

1 Stanford University, Stanford, CA, USA
moses@cs.stanford.edu

2 Amazon.com, East Palo Alto, CA, USA
ynaamad@amazon.com

3 Princeton University, Princeton, NJ, USA
jrex@cs.princeton.edu

4 ByteDance, Seattle, WA, USA
xuanzou1991@gmail.com

AQ1

Abstract. Modern networks run “middleboxes” that offer services rang-
ing from network address translation and server load balancing to fire-
walls, encryption, and compression. In an industry trend known as Net-
work Functions Virtualization (NFV), these middleboxes run as virtual
machines on any commodity server, and the switches steer traffic through
the relevant chain of services. Network administrators must decide how
many middleboxes to run, where to place them, and how to direct traf-
fic through them, based on the traffic load and the server and network
capacity. Rather than placing specific kinds of middleboxes on each pro-
cessing node, we argue that server virtualization allows each server node
to host all middlebox functions, and simply vary the fraction of resources
devoted to each one. This extra flexibility fundamentally changes the
optimization problem the network administrators must solve to a new
kind of multi-commodity flow problem, where the traffic flows consume
bandwidth on the links as well as processing resources on the nodes.
We show that allocating resources to maximize the processed flow can
be optimized exactly via a linear programming formulation, and to arbi-
trary accuracy via an efficient combinatorial algorithm. Our experiments
with real traffic and topologies show that a joint optimization of node
and link resources leads to an efficient use of bandwidth and processing
capacity. We also study a class of design problems that decide where to
provide node capacity to best process and route a given set of demands,
and demonstrate both approximation algorithms and hardness results
for these problems.

Keywords: Multi-commodity flow · Middleboxes ·
Network Function Virtualization · Approximation algorithms ·
Hardness of approximation

Y. Naamad—This work was done while the author was at the Department of Computer
Science, Princeton University.

c⃝ Springer Nature Switzerland AG 2019
Y. Disser and V. S. Verykios (Eds.): ALGOCLOUD 2018, LNCS 11409, pp. 1–29, 2019.
https://doi.org/10.1007/978-3-030-19759-9_6

A
u

th
o

r 
P

ro
o

f

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19759-9_6&domain=pdf
https://doi.org/10.1007/978-3-030-19759-9_6


2 M. Charikar et al.

1 Introduction

In addition to delivering data efficiently, modern networks often perform ser-
vices on the traffic in flight to enhance security, privacy, or performance, or pro-
vide new features. Network administrators often install “middleboxes” such as
firewalls, network address translators, server load balancers, Web caches, video
transcoders, and devices that compress or encrypt the traffic. In fact, many net-
works have as many middleboxes as underlying routers or switches [29]. Often a
single connection must traverse multiple middleboxes, and different connections
may go through different sequences of middleboxes. For example, while Web
traffic may go through a firewall followed by a server load balancer, video traffic
may simply go through a transcoder. To keep up with the traffic demands, an
organization may run multiple instances of the same middlebox. Deciding how
many middleboxes to run, where to place them, and how to direct traffic through
them, is a major challenge facing network administrators.

Until recently, each middlebox was a dedicated appliance, consisting of both
software and hardware. Administrators typically installed these appliances at
critical locations that naturally see most of the traffic, such as the gateway con-
necting a campus or company to the rest of the Internet. A network could easily
have a long chain of these appliances at one location, forcing all connections
to traverse every appliance—whether they need all of the services or not. In
addition, placing middleboxes only at the gateway does not serve the organiza-
tion’s many internal connections, unless the internal traffic is routed circuitously
through the gateway.

Over the last few years, middleboxes have become increasingly virtualized,
with the software service separate from the physical hardware—an industry trend
called Network Functions Virtualization (NFV) [5,22]. The network can “spin
up” (or down) virtual machines on any physical server, as needed. This has
led to a growing interest in good algorithms for optimizing the (i) allocation
of middleboxes over a pool of server resources, (ii) steering of traffic through a
suitable sequence of middleboxes based on a high-level policy, and (iii) routing
of the traffic between the servers over efficient network paths [1,16,17,19,24].

Rather than solving these three optimization problems separately, we
introduce—and solve—a joint optimization problem. Since server resources are
fungible, we argue that each processing node could subdivide its resources arbi-
trarily across any of the middlebox functions, as needed. That is, the allocation
problem is more naturally a question of what fraction of each node’s computa-
tional (or memory) resources to allocate to each middlebox function. Similarly,
each connection can have its middlebox processing performed on any node, or
set of nodes, that have sufficient resources. That is, the steering problem is
more naturally a question of deciding which nodes should devote a share of their
processing resources to a particular portion of the traffic. Hence, the joint opti-
mization problem devolves to a new kind of routing problem, where we compute
paths based on both the bandwidth and processing requirements of the traffic
between each source-sink pair. That is, each flow from a source to a sink must

A
u

th
o

r 
P

ro
o

f



Multi-commodity Flow with In-Network Processing 3

be allocated both (i) a certain amount of bandwidth on every link in its path
and (ii) a total amount of computational across all of the nodes on its path.

In our flow with in-network processing problem, we have a flow demand with
multiple sources and multiple sinks, and each flow requires a certain amount of
processing. The required processing is proportional to the flow size and, without
loss of generality, we assume one unit of flow requires one unit of processing. Each
flow from a source to a sink is an aggregate flow of many connections, so the
routing and processing for a flow are both divisible. In this model there are two
types of constraints: edge capacity constraints and vertex capacity constraints,
which represent link bandwidth and node processing capacity, respectively. A
feasible flow pattern satisfies three conditions: (i) for each edge, the sum over
all flows on that edge is bounded by that edge’s capacity, (ii) for each node, the
sum over all flows of in-network processing done at that node is bounded by the
vertex capacity, and (iii) each flow must be allocated a total amount of node
processing power equal to its size.

Although ignoring vertex capacity constraints reduces our class of problems
to those of the standard multi-commodity flow variety, the introduction of these
constraints yields a new class of problems that has not been studied before. This
paper provides a systematic approach to this new class of network problems,
applicable to both directed and undirected graphs.

In Sect. 2, we introduce the processed flow routing class of problems,
in which we discuss how to optimize processed flow routed in a fixed network.
Next, we present two linear programming-based algorithms to find a maximum
feasible multi-commodity flow with the additional processing constraints. We
show that, like standard multi-commodity flow, the program can be written in
two different equivalent ways: either with an exponentially-sized walk-based LP
or with a polynomially-sized edge-based LP. The proof of equivalence of these
two LPs requires a more careful argument than that for standard MCF. As an
aside, we argue that this pair of LPs can also be adapted to optimize several other
objective functions, such as those minimizing congestion. In Sect. 4, we briefly
describe an experimental evaluation of this linear programming approach.

In Sect. 5, we design an efficient multiplicative weight update (MWU) algo-
rithm that finds approximately optimal solutions to our walk-based linear pro-
gram far more quickly than one could with the edge-based program paired with
an off-the-shelf LP-solver.

In Sect. 6, we consider the middlebox node purchase class of problems, in
which the goal is to optimally purchase processing power at various middleboxes.
Prices for placing processing at the various nodes is given as part of the input,
and may differ substantially from one location to the next. This class of problems
comes has two natural variants:

1. Min Middlebox Node Purchase: given a set of flow demands, mini-
mize cost while purchasing enough middlebox processing capacity so that
all flow demands are simultaneously satisfiable (that is, jointly routable and
steerable).

A
u

th
o

r 
P

ro
o

f



4 M. Charikar et al.

2. Budgeted Middlebox Node Purchase: given a set of flow demands and
a budget of k dollars, spend at most $k on purchasing middlebox processing
capacity while maximizing the fraction of the given demand that is simulta-
neously satisfiable.

Linear programs for both of these problems can be found in Sects. 6.2 and
6.4. For Min Middlebox Node Purchase, we show an O(log(n)/δ2) approx-
imation for node costs and an associated multi-commodity flow that satisfies
(1 − δ) fraction of the demands and satisfies all edge capacities, where n is the
number of nodes. We show that in the directed case, the problem is hard to
approximate better than a logarithmic factor, even if the demand requirements
are relaxed. Additionally, we show that the undirected case is at least as hard
to approximate as Vertex Cover.

We also prove approximation and hardness results for Budgeted Middle-
box Node Purchase. Although it’s tempting to conjecture that the problem
is an instance of Budgeted Submodular Maximization, one can construct
instances on both directed and undirected graphs where the amount of routable
processed flow is not submodular in the set of purchased nodes, so black-box sub-
modular maximization techniques cannot be used here. We show an Ω(1/ log(n))
approximation for both problems, as well as a constant factor approximation
algorithm for undirected instances with a single source-sink pair. For the directed
case, we show approximation hardness of 1 − 1/e, and constant factor hardness
for the undirected problem. Our results are summarized in the following Table 1AQ2

Table 1. Network design results

Directed Undirected

Budgeted Approximation hardness Ω(1/ log n) .078b

1− 1/e .999

Minimization Approximation hardness O(log n)a O(log n)a

O(log n) 2− ϵ
aAll demands are satisfied only up to an (1− ϵ) fraction.
bAssuming 1 source-sink pair. For multiple pairs, we adapt the
Ω(1/ log n)-approximation digraph algorithm.

2 Flow Routing with In-Network Processing

2.1 Processed Flow Routing Problem

Network Function Virtualization (NFV) allows each node to function as a
general-purpose server that can run any in-network processing task, such as
transcoding, compression, and encryption. Such servers can reside anywhere in
the network, from the leaf nodes (as in the case of traditional servers) to inter-
mediary nodes (such as top-of-rack and spine switches).

Therefore, in our model, we treat all in-network processing as homogeneous,
meaning that every node with a sufficient quantity of available computational

A
u

th
o

r 
P

ro
o

f



Multi-commodity Flow with In-Network Processing 5

s

2

0

2

0 T

2

5 5
5

55

5

5 5

Fig. 1. The edge capacity is 10 for all edges and the node capacities are denoted in
each node. Here, we can send maximum flow size 5, by routing it along the red arcs,
have it processed at the nodes at the top, and then sent to T along the blue arcs. The
capacity of the bottom middle edge forms the bottleneck here, as all flow must pass
through it twice before reaching T . (Color figure online)

resources can be adapted to accomplish any processing task. In practice, this can
be accomplished simply by spinning up a new virtual machine for that specific
task as needed. We assume that all flows are both aggregate and sufficiently
large that they can be treated as continuous quantities (and thus can be arbi-
trarily subdivided), and that the processing capacity of a given node can also be
fractionally divided among a number of different flows.

Each flow is initially generated at a source fully unprocessed. By the time
it reaches its destination, it needs to go through and get processed by one or
more intermediate processing nodes with available computational resources. We
assume that each unit of flow requires one unit of processing, meaning that for
any given flow f , the total processing workload done on f by vertices along f ’s
flow path should equal the size f .

This problem can be modeled mathematically as follows. We are given an
(un)directed graph G = (V,E) along with edge capacities B : E → R+, vertex
capacities C : V → [0,∞), and a collection of flows of varying commodities
D = {(s1, t1, k1), (s2, t2, k2), · · · } ⊆ V ×V ×R+. While the edge capacities
are used in the same way as in a standard multi-commodity flow problem, we
also require that each unit of flow undergo a total of one unit of processing at
intermediate vertices. In particular, while edge capacities limit the total amount
of flow that may pass through an edge, vertex capacities only bottleneck the
amount of processing that may be done at a given vertex, regardless of the total
amount of flow that uses the vertex as an intermediate node. The goal is then
either to route as much flow as possible, or to satisfy all flow demand subject
to a congestion-minimization objective function. For concreteness, this paper
focuses on maximizing the total amount of flow we can send between the source-
destination pairs while satisfying edge and node capacity constraints. In practice
we can also extend our results to other objective functions such as minimizing the
weighted sum of congestion at edges and nodes. For ease of exposition, we focus
our attention almost entirely on directed instances. The results for undirected
graphs follow analogously (Table 2).

A
u

th
o

r 
P

ro
o

f



6 M. Charikar et al.

Table 2. Variables in the optimization solutions

Variable Description

V Set of nodes in a graph

E Set of edges in a graph

B(e) Edge capacity for edge e

C(v) Node capacity for node v

D The set of flow demands

δ+(v) The edges leaving vertex v

δ−(v) The edges entering vertex v

P The set of 2-walks from sources to destinations

pv
i,π 2-walk-based; the amount of flow i from si to ti exactly using

2-walk π and processed at v

fi(e) Edge-based; the amount of flow i that traverses e on its way
from si to ti

wi(e) Edge-based; the amount of unprocessed flow i that traverses e
on its way from si to ti

pi(v) Edge-based; the amount of processing done at node v for the
ith flow

2.2 A 2-Walk-Based Solution

We now describe a 2-walk-based formulation of the problem. A 2-walk from s to
t is a route between s and t that visits each vertex (and thus each edge) at most
twice.

The approach we take is analogous to path-based solutions for the traditional
multicommodity flow (MCF) problem, with the key difference that, unlike paths,
our 2-walks may visit vertices and edges more than once. Additionally, a 2-walk
may traverse the same undirected edge in both directions.

To express the 2-walk-based linear program, we introduce one variable pv
i,π

for each {2-Walk}–vertex–demand triplet, representing the total amount of flow
from si, ti exactly utilizing walk π and processed at v. Note here the set P of
2-walks is an enumeration of all possible 2-walks in the graph, which can be
exponential in size. The LP is then formulated as follows:

maximize Σ|D|
i=1

∑
π∈P

∑
v∈π pv

i,π

subject to

pi,π =
∑

v∈π pv
i,π ∀i ∈ [|D|],∀π ∈ P

∑|D|
i=1

∑
π∈P
π∋e

pi,π ≤ B(e) ∀e ∈ E

∑|D|
i=1

∑
π∈P

pv
i,π ≤ C(v) ∀v ∈ V

A
u

th
o

r 
P

ro
o

f



Multi-commodity Flow with In-Network Processing 7

∑
π∈P

∑
v∈π

pv
i,π ≤ ki ∀i ∈ [|D|]

pv
i,π ≥ 0 ∀i ∈ [|D|],∀π ∈ P,∀v ∈ V

While the first constraint enforces that all flows are fully processed, the sec-
ond and third constraints ensure that no edge or vertex is over-saturated.

3 An Edge-Based Polynomially-Sized LP

Although the 2-walk-based solution exactly solves our MCF with in-network
processing problem, the LP may be exponentially sized and thus even writing
it down (let alone solving it) leaves us with an exponential worst-case running
time. In Sect. 3.1, we present a polynomially-sized (and thus polytime-solvable)
edge-based linear program for this problem. We then follow this up by a proof
of correctness in Sect. 3.2.

3.1 The Edge-Based Solution

A standard technique for solving the traditional MCF problem relies on con-
structing a polynomially-sized edge-based LP whose set of feasible solutions
equals that of an exponentially-sized path-based LP. Analogously, we estab-
lish a polynomial-sized edge-based LP corresponding to the 2-walk-based LP
introduced previously.

maximize

|D|∑

i=1

∑

e∈δ+(si)

fi(e) (2a)

Subject to (2b)
∑

e∈δ−(v)

fi(e) =
∑

e∈δ+(v)

fi(e) ∀i ∈ [|D|],∀v ∈ V \ {si, ti} (2c)

pi(v) =
∑

e∈δ−(v)

wi(e) −
∑

e∈δ+(v)

wi(e) ∀i ∈ [|D|],∀v ∈ V \ {si} (2d)

[D]∑

i=1

fi(e) ≤ B(e) ∀e ∈ E (2e)

|D|∑

i=1

pi(v) ≤ C(v) ∀v ∈ V (2f)

∑

e∈δ+(si)

fi(e) ≤ ki ∀i ∈ [D] (2g)

wi(e) ≤ fi(e) ∀i ∈ [D],∀e ∈ E (2h)

wi(e) = fi(e) ∀i ∈ [D],∀e ∈ δ+(si) (2i)

wi(e) = 0 ∀i ∈ [D],∀e ∈ δ− (ti) (2j)
wi(e), pi(v) ≥ 0 ∀i ∈ [D],∀e ∈ E (2k)

A
u

th
o

r 
P

ro
o

f



8 M. Charikar et al.

The LP constraints can be interpreted as follows. Constraint (2c) is a flow
conservation constraint: at any non-terminal node of flow i, the amount of flow
i that enters the node equals the amount that leaves it. Constraint (2d) is a
processing conservation constraint, ensuring that the total amount of flow (pro-
cessed or unprocessed) going through a node remains unchanged, although the
quantity of each might change if the node processes any of the flow. Constraints
(2e) and (2f) ensure that we don’t exceed edge and node capacities. Constraint
(2g) ensures that we don’t route more flow than is requested between any demand
pair. Constraint (2h) ensures that the amount of work yet to be done on a flow
does not exceed the size of the flow itself, while (2i) and (2j) ensure that all flows
leave the sources unprocessed and arrive to the destinations fully processed.

3.2 Proof of Equivalence to the 2-Walk-Based LP

While the construction of the edge-based LP is not particularly difficult, it is not
obvious that the edge-based solution actually solves the problem in question. We
need to prove the correctness of the edge-based LP. A priori, solutions to the
edge-based LP here may not be decomposable to a valid routing pattern at all.
We provide an efficient algorithm converting feasible solutions to the edge-based
LP into corresponding solutions to the 2-walk-based program, proving both that
the edge-based LP is correct and that the actual flow paths can be recovered in
polynomial time as well. We summarize this result in the following theorem.

Theorem 1. The edge-based formulation provides a polynomial-sized linear pro-
gram solving the Maximum Processed Flow problem. Further, the full routing pat-
tern can be extracted from the LP solution by decomposing it into its composing
si, ti 2-walks in O(|V | · |E| · |D| · log |V |) time.

Notably, as the reduction maps the set of feasible solutions to the edge-based
LP to equivalent feasible solutions of the 2-walk-based LP, the same technique
can also be used to show the equivalence of the two corresponding programs
when the objective function is changed to optimize some other linear quantity,
such as the amount of congestion.

We now describe the algorithm in more detail and prove its correctness. The
first part of the proof involves showing how to construct a solution to the flow-
based LP when there is exactly one si, ti pair. Extracting the corresponding flow
paths and iterating this procedure for each demand pair eventually extracts all
si, ti flows, giving us a solution to the multicommodity problem.

The flow extraction argument proceeds in two steps. First, we simplify the
solution by removing extraneous loops that do not affect the optimal solution.
Next, we show that the existence of any residual flow in the graph (i.e., the exis-
tence of some strictly positive fi(e)) implies that there exists at least one valid
2-walk we can efficiently extract while maintaining feasibility of all constraints
for the updated residual graph. As we show, a linear number of extractions suf-
fices to remove all flow from the solution. We provide a complete algorithm in
Algorithm 1.

A
u

th
o

r 
P

ro
o

f



Multi-commodity Flow with In-Network Processing 9

Algorithm 1. 2-Walk Decomposition
Data: G′(V, E), w(e), f(e) for ∀e ∈ E and p(v) for ∀v ∈ V
Result: f(π), p(π, v) with v ∈ π
Algorithm TwoWalkConstruction(s, t, v)

//Construct 2-walk from s → v and v → t
From v, run a backward traversal, each time picking an incoming edge e
maximizing ρ(e) = w(e)/f(e)
From v, run a forward traversal, each time picking an outgoing edge minimizing
ρ(e) = w(e)/f(e).
return π

Algorithm FlowPlacement(s, t)

while there exists a v with p(v) > 0 do
π ← TwoWalkConstruction(s, t, v)
f ′ ← mine∈π,e precedes v f1(e)
f ′′ ← mine∈π,e succeeds v f2(e)
pv

π ← min{f ′, f ′′, p(v)}
for u ∈ π and u ̸= v do

pu
π = 0

end
C(v)← C(v)− pv

π

p(v)← p(v)− pv
π

for e ∈ π do
f(e)← f(e)− pv

π

B(e)← B(e)− pv
π

end

end

Removing Extraneous Loops. Suppose we are given a nonempty solution
to the edge-based LP for an instance with graph G(V,E). We focus on some
(arbitrarily chosen) commodity i with positive flow in this solution, and drop
subscripts to let f(e), w(e), and p(v) denote fi(e), wi(e), and pi(v), respectively.
To assist with our exposition, we restrict our attention to the subgraph G′ which
excludes all edges for which f(e) = 0. For each edge e in this subgraph, we also
associate two new variables, f1(e) and f2(e) denoting the amount of unprocessed
and processed flow passing through this edge, respectively. Thus, by definition,
f1(e) = w(e) and f2(e) = f(e) − w(e).

As in solutions to the edge-based linear program for the standard multicom-
modity flow problem, solutions to our edge-based LP may introduce closed loops
(that is, directed cycles along which a positive amount of flow is routed). In tra-
ditional MCF, such loops are easily shown to be non-essential, and can be easily
removed from a feasible solution without affecting its correctness. As illustrated
in Fig. 1, such loops may actually be critical in solutions to our variant, and
handling such cases takes additional care. Thus, instead of arguing that cycles
can be removed (so that the flows form a set of paths), we show how to ensure
that no vertex may be visited more than twice (and thus the flows form a set of

A
u

th
o

r 
P

ro
o

f



10 M. Charikar et al.

2-walks). In particular, we show how to cancel out all cycles along which each
edge contains f1 flow, as well as all cycles along which each edge carries f2 flow.

Lemma 1. Any closed loop for which every edge contains f1 (resp. f2) flow can
be removed without affecting the total (s, t) flow.

Proof. This argument proceeds similarly to the flow cancellation arguments in
the traditional MCF setting. For any loop l containing a positive amount of f1

flow, reducing both f(e) and w(e) on the constituent edges by mine′∈l f1(e′)
ensures that all constraints in the LP remain satisfied. For loops containing a
positive amount of f2 flow, similarly reducing just f(e) suffices.

Extracting 2-Walks. Suppose extraneous loops have been removed using the
process described in Lemma 1. Define ρe = w(e)

f(e) = f1(e)
f1(e)+f2(e) . By Lemma 1,

every cycle with a positive f(e) on each edge contains at least one edge with ρ = 1
and another with ρ = 0. We now repeat the following until all flow is removed
from the graph. Select a vertex v that is allocated processing (i.e., p(v) > 0),
and run a backwards traversal from v, at each step selecting the incoming edge
with the largest fraction of unprocessed flow (i.e., maximizing ρ(e)) until we
reach s. Similarly, run a forward traversal from v to t along edges minimizing
ρ. This route will be our “flow-2-walk”. The amount of flow routable along
this flow-2-walk is the minimum of three quantities: (1) the smallest amount of
unprocessed flow sent on each edge of the s! v path, (2) the smallest amount
of processed flow sent along each edge of the v ! t path, and (3) the amount of
processing still to be done at v (i.e., p(v)). We then extract this flow-2-walk from
the solution by decreasing each LP variable accordingly. Complete pseudo-code
for this algorithm is given in Algorithm1.

Lemma 2 (2-Walk Extraction). Algorithm1 can always generate a 2-walk
with non-zero flow from source to sink if there exists any v where p(v) > 0.
Further, the number of iterations needed of Algorithm 1 is bounded by O(|E|),
each of which can be made to take O(|V | log |V |) time. Thus, the total running
time is O(|E| · |V | log |V |).

Proof. The removal of extraneous cycles guarantees that no 2-walk can visit the
same vertex more than twice. Now suppose that a vertex v has p(v) > 0. By
constraint (2d), the f1 flow on some incoming edge and the f2 flow on some
outgoing edge must both be positive. By a combination of constraints (2c), (2d),
and (2j), the reverse traversal from v to s must succeed: it cannot get “stuck” at
a vertex u with no in-edge with positive f1 flow. Similarly, the forward traversal
from v to t must find a path with positive f2 on each edge. Subtracting the
minimum of all of the reverse path’s observed f1 values, all of the forward
path’s observed f2 values, and p(v) from each of those variables ensures that
all variables remain nonnegative. Further, as this operation is monotone and it
decreases one of the variables to 0, repeating this must remove all flow from
the graph in at most |V | + 2|E| = O(|E|) iterations. By initially constructing

A
u

th
o

r 
P

ro
o

f



Multi-commodity Flow with In-Network Processing 11

a priority queue for each vertex on the f1, f2, and ρ values of its neighboring
edges and updating them accordingly, the forward and backward traversals can
be found in |V | log |V | time, each.

We can generalize the above approach to the multicommodity problem by
treating each of the commodities independently. Namely, sequentially applying
the above algorithm to remove flow 2-walks for each of the |D| demand pair gives
us a solution to the multicommodity problem without violating any of the LP
constraints. Thus, we get the O(|V | · |E| · |D| · log |V |) running time promised in
the statement of Theorem 1.

4 Evaluations

We ran several experiments to address (i) how well the LP fares against “naive”
algorithms, and (ii) the in-practice running time for an edge-based LP solution.

Throughput Improvement. To determine how well the LP fares against sim-
ple approaches, we compare it to a “naive” algorithm that first routes flow with-
out vertex capacities in mind, and then processes as much flow as possible on
the flow paths it initially routed. This is a variant of the path-selection approach
used in [15]. While there are simple examples where the naive algorithm performs
extremely poorly in theory, we seek to study the performance in practice.

0 200 400 600 800 1000
0

1000

2000

3000

4000

Per-node Processing Capacity (Mbps)

A
ve

ra
ge

 R
ou

te
d 

Fl
ow

 (M
bp

s)

Naive (All)
LP (All)
Naive (Half)
LP (Half)

(a) Amount of flow that the two algo-
rithms could process given various node
processing capacities.

0 200 400 600 800 1000
0.5

0.6

0.7

0.8

0.9

1

Per-node Processing Capacity (Mbps)

N
ai

ve
-t

o-
O

P
T 

R
ou

tin
g 

R
at

io

All Process
Half Process

(b) The ratio of the demanded flow pro-
cessable by the naive algorithm to that
processable by the LP, plotted at various
processing capacities.

Fig. 2. Experimental results showing how much of the demand both the naive and the
(optimal) LP-based algorithm could successfully route and process given the Abilene
traffic matrices.

We ran both algorithms on 150 randomly sampled traffic matrices provided
by the TOTEM project [31] for the Abilene network in 2004. As these datasets

A
u

th
o

r 
P

ro
o

f



12 M. Charikar et al.

don’t include vertex processing capacities, we compared the two algorithms on
a wide range of values, with processing capacities assigned according to one of
two distributions: either they all have the same capacity (the all case) or exactly
half of them have the prescribed capacity and the other half have zero (the half
case). The results are diagrammed in Fig. 2.

Experimental analysis shows that while the LP and the “naive” algorithm
fare similarly when the network is low on processing capacity and thus node-
throttled, or, in the all case, high on node capacity and thus bottlenecked by the
link capacities and the demand itself, the LP has a distinct advantage in between
the two extremes when either resource could become the bottleneck when the
flows are not routed efficiently. Additionally, the experiments show that the naive
algorithm suffers when processing is not uniformly distributed among the nodes
even in the high-capacity case, as many of the initial flow paths might go entirely
through nodes without any processing capacity and thus fail to get processed.
Our experiments show that using the exact algorithm gives an improvement of
up to 30% over the naive approach if processing power is available at all nodes,
and up to 80% if the processing power is only placed at half of the nodes.

Runtime Analysis. Although the edge-based LP provides a polynomial
running-time guarantee, it may still be too slow in practice on large graphs.
To study the empirical performance of linear programming, we also run the LP
solver over a number of topologies acquired from SNDLib [23]. For each of the
topologies in Table 3, enough processing capacity was evenly distributed among
a random sample of half of all nodes so that the total processing capacity equals
half of the total demand. Although the implementation, hardware, and choice of
solver were not optimized for running time, the table below indicates that the
time to solve the LP grows quickly with the input size.

Table 3. Time to solve the edge based LP for various topologies. All values are averaged
over 15 runs of CoinLP [13] on a 3.3 GHz Intel i5 2500k processor.

Network |V | |E| Time (sec)

abilene 12 15 1.91

dfn-bwin 10 45 3.08

atlanta 15 22 5.28

dfn-gwin 11 47 13.91

geant 22 36 23.69

france 25 45 44.38

india35 35 57 105.89

The cost of solving this LP even on small topologies justifies the use of
the faster multiplicative weight algorithm instead. The MWU algorithm has a

A
u

th
o

r 
P

ro
o

f



Multi-commodity Flow with In-Network Processing 13

running time of roughly Õ(|D|∗|E|2/ϵ2), which on sparse graphs is roughly equal
to just the number of variables in the edge-based LP (as opposed to the time
needed to actually solve it). While the algorithm is only approximately optimal,
choosing an appropriate value of ϵ (say, ϵ = 0.1) can grant a better running time
while still significantly outperforming the naive algorithm.

5 Multiplicative Weights Based Approximation
Algorithm

We first briefly overview the MWU method in Sect. 5.1. Next, we describe how to
apply the MWU method to our model including processing vertices. The proof
of correctness is given in Sect. 5.3;

5.1 Multiplicative Weight Update for Traditional MCF

In the traditional multiplicative weights algorithm for multicommodity flow,
there an “expert” is assigned to each edge, each of which is initially assigned a
sufficiently small weight. The algorithm then iteratively finds si, ti walks mini-
mizing the sum of weighted utilization of their edges and adds together scaled
down versions of these paths to eventually construct a solution. When a path
is chosen, all experts corresponding to edges along the path have their weight
increased by a multiplicative factor, making it less likely that we repeat our
selection of the edges. This process is repeated until some expert’s weight sur-
passes the value 1, corresponding to a fully utilized edge. When this happens,
all paths are scaled down by the weight of the largest expert to ensure that no
capacities are exceeded. One then shows that the final result is within a (1 − ϵ)
factor of the maximum multicommodity flow.

5.2 Formulation and Analysis

Although we derive the same (1 − ϵ) approximation factor for our problem, the
analysis of our multiplicative weights algorithm is quite different from that of
traditional multicommodity flow. Intuitively, this is because vertex capacities
are inherently very different from edge capacities: while a flow 2-walk reduces
the remaining capacity on all edges it traverses, it only reduces the capacity for
one of its vertices. Thus, we set up a different update condition, as well as a
different method for picking the best flow 2-walks for each round.

Setup. For each edge e, we have a constraint
∑

π pπ ≤ B(e), where pπ is the
amount of flow sent on 2-walk π. For each vertex, the corresponding constraint
is
∑

π pv
π ≤ C(v), where pv

π is the amount of flow on 2-walk π that is processed
at v. For each of these two sets of constraints, we associate one expert, (which
we call ê and v̂), whose weights are denoted by wê and qv̂, respectively.

Consider a feasible solution to the 2-walk-based LP. The feasible solution
consists of variables of the form pπ and pv

π. In this section, we abuse notation

A
u

th
o

r 
P

ro
o

f



14 M. Charikar et al.

and let the variable p denote a feasible solution to the LP, at which point pπ

and pv
π become bound variables for each π and v (that is, p can be thought of

as a dictionary containing the aforementioned set of variables). Further, define
A(p) as the objective function value of p, i.e. A(p) =

∑
v∈V

∑
π∈P pv

π.
For an expert ê and feasible solution p, define the gain M(ê, p) by M(ê, p) =

1
B(e)

∑
π∋e pπ. This can be thought of as the fraction of e’s capacity actually

utilized by the feasible solution. For each expert v̂, we define the gain M(v̂, p)
by M(v̂, p) = 1

C(v)

∑
π∋v pv

π, which corresponds to the fractional utilization of
v’s processing capacity.

Let D be the probability distribution over experts in which the probability of
choosing a given expert is proportional to its weight. For a fixed p, the expected
gain of a random variable sampled from D is

M(D, p) =
∑

e wêM(ê, p) +
∑

v qv̂M(v̂, p)∑
e wê +

∑
v qv̂

We first make two observations:

Observation 1: For any feasible solution p, 0 ≤ M(D, p) ≤ 1. This is because
M(ê, p) ≤ 1 and M(v̂, p) ≤ 1 for all e and v.

Observation 2: For any feasible solution p and weights w, q, if π∗ =
argminπ

(∑
e∈π wê/B(e) + minv̂∈π qv̂/C(v)

)
, then

M(D, p) ≥
A(p)

(∑
ê∈π∗ wê/B(e) + minv̂∈π∗ qv̂/C(v)

)
∑

e wê +
∑

v qv̂

This is due to the fact that:

M(D, p) =
∑

e wêM(ê, p) +
∑

v qv̂M(v̂, p)∑
e wê +

∑
v qv̂

=
∑

π

(
pπ(
∑

e wê/B(e)) +
∑

v∈π pv
πqv̂/C(v)

)
∑

e wê +
∑

v qv̂

≥
∑

π (pπ(
∑

e wê/B(e) + minv∈π qv̂/C(v))∑
e wê +

∑
v qv̂

≥
∑

π pπ minπ(
∑

e∈π wê/B(e) + minv∈π qv̂/C(v))∑
e wê +

∑
v qv̂

≥
A(p)(

∑
e∈π∗ wê/B(e) + minv∈π∗ qv̂/C(v))∑

e wê +
∑

v qv̂

Where π∗ is the path minimizing the argmin in the statement of the obser-
vation. Thus, in each round, we aim to find the π∗ minimizing this value. Con-
ditioned on us being able to do so, the rest of the MWU algorithm proceeds as
follows:

1. We initialize all expert weights {wê} and {qv̂} to 1/δ, where δ = (1 + ϵ)((1 +
ϵ) · |E|)−1/ϵ. This choice of δ will be justified in the analysis of Sect. 5.3.

A
u

th
o

r 
P

ro
o

f



Multi-commodity Flow with In-Network Processing 15

2. At each step t, given weights wt
e and qt

v on the experts, we pick the flow-2-walk
pt minimizing the quantity

∑
e∈π

wê
B(e) + minv∈π

qv̂

C(v) . An efficient algorithm
for finding such a 2-walk is given in Sect. 5.2.

3. Given the 2-walk pt chosen in the previous step, we treat this as a feasible
solution to the instance, giving expert ĵ a gain of M(ĵ, pt). Consequently, the
weight wê or qv̂ of each expert j is increased by a multiplicative factor of
M(ĵ, pt).

4. The algorithm stops when one of the weights wê or qv̂ is larger than 1. Once
the algorithm terminates, we scale down the flow pt computed at each round
by a factor of log1+ϵ

1+ϵ
δ = 1− ln δ

ln 1+ϵ , and return the set of all flow-2-walks pt.

Computing the Optimal Path. To compute the 2-walk πt with minimum
cost, we use a dynamic programming algorithm reminiscent of Dijkstra’s shortest
path algorithm. Given a graph G(V,E), with weights w(e) on edges, weights
n(v) on nodes, and some source-sink pair s, t, we are interested in computing
the following quantity

opt(s, t) := argmin
π=(s,··· ,t),v∈π

cost(π, v) (3)

where cost(π, v) is defined as

cost(π, v) :=

(
∑

e∈π

w(e) + n(v)

)

We compute opt(s, t) in two stages. First, for every v, we upper bound the
value of opt(s, v) by n(v) plus the shortest distance from s to v. Afterwards,
we use dynamic programming to iteratively decrease these upper bounds. Full
details are given in Algorithm2.

Algorithm 2. Optimal 2-Walk Algorithm
Require: Graph G = (V, E) with edge weights w(e), node weights n(v), and a desig-

nated source s.
return r(v) = opt(s, v) for every v ∈ V .
Use Dijsktra’s algorithm to compute the shortest path d(v) between s and v.
Initialize r(v)← d(v) + n(v) for all v ∈ V . S ← {s}.
while S ̸= V do

Let u∗ = argminv∈V \S r(v). Add u∗ to S.
For all neighbors z of u∗ that are not already in S, let r(z) ← min{r(u∗) +
w(u, z), r(z)}

end while

A
u

th
o

r 
P

ro
o

f



16 M. Charikar et al.

Update. Suppose now that the 2-walk π with smallest cost has been computed.
One of two things may bottleneck the amount of processed flow that can be sent
along π: either the edge capacity of some edge e, or the processing capacity of
some vertex v. We consider the two cases separately

If the bottleneck is edge-based, i.e.
∑

v∈πt C(v) ≥ mine∈πt B(e), then let
et = argmine∈πt B(e), and let the chosen flow 2-walk pt be the one satisfying

pt,v
π =

{
C(v)∑

v∈πt C(v) · Bet if π = πt, v ∈ πt

0 otherwise

On the other hand, if
∑

v∈πt C(v) < mine∈πt B(e), select pt to satisfy

pt,v
π =

{
C(v) if π = πt, v ∈ πt

0 otherwise

5.3 Proof of the (1 − ϵ) Approximation

Let T be the number of rounds taken until we hit the stopping criterion, and
let p̄ =

∑T
t=1 pt be the total amount of flow selected after T rounds. By the

guarantee of the multiplicative update method (Theorem 2.5 in [2]), we have
that for any e and any v

T∑

t=1

M(Dt, pt) ≥ ln(1 + ϵ)
ϵ

M(ê, p̄) − ln m

ϵ

T∑

t=1

M(Dt, pt) ≥ ln(1 + ϵ)
ϵ

M(v̂, p̄) − ln m

ϵ

Since at time T , wT
ê = w0

ê(1 + ϵ)M(ê,p̄), and qT
v̂ = w0

v(1 + ϵ)M(v̂,p̄), and the
stopping rule ensures that at there exists e or v such that wT

ê ≥ 1 or qT
v̂ ≥ 1, we

have that either there exists an e such that M(ê, p̄) ≥ ln 1/δ
ln(1+ϵ) or there exists v

such that M(v̂, p̄) ≥ ln 1/δ
ln(1+ϵ) . Therefore, by the guarantee of the MWU method,

we have that
T∑

t=1

M(Dt, pt) ≥ ln 1/δ

ϵ
− ln m

ϵ

We now attempt to bound the left-hand-side of the preceding inequality. Note
that

M(Dt, pt) =
∑

e wt
êM(êt, pt) +

∑
v qt

v̂M(v̂t, pt)∑
e wt

ê +
∑

v qt
v̂

=
A(pt) · (

∑
e∈πt wt

ê/B(e) + minv∈πt qt
v̂/C(v))∑

e wt
ê +

∑
v qt

v̂

A
u

th
o

r 
P

ro
o

f



Multi-commodity Flow with In-Network Processing 17

By the definition of πt and Observation 2, we have

M(Dt, pt) =
A(pt)(

∑
e∈πt wt

ê/B(e) + minv∈πt qt
v̂/C(v))∑

e wt
ê +

∑
v qt

v̂

≤ A(pt)/A(popt)

Combining these inequalities, we get that

A(p̄)/A(popt) ≥
T∑

t=1

M(Dt, pt) ≥ ln 1/(|E| · δ)
ϵ

Fixing any edge e, its expert’s initial weight is 1/δ and its expert’s final
weight is at most 1+ϵ. Thus, p̄ passes at most B(e) log1+ϵ((1+ϵ)/δ) flow through
it. Similarly, for each v, at most C(v) log1+ϵ((1 + ϵ)/δ) units of processing are
assigned to it. In other words, scaling down all pt flows by log1+ϵ(1 + ϵ)/δ will
result in a feasible flow. Letting p′ = p̄/ log1+ϵ

1+ϵ
δ , we get

A(p′)/A(popt) ≥ A(p̄)/
(

A(popt) log1+ϵ
1 + ϵ

δ

)

≥ ln(1/(|E| · δ))
ϵ

/ log1+ϵ
1 + ϵ

δ

Taking δ = (1 + ϵ)((1 + ϵ)m)−1/ϵ, we have that

A(p′)
A(popt)

≥ (1 − ϵ),

giving the promised approximation factor.
Note that in each iteration, we either increase the weight of one wê by a

factor of (1 + ϵ), or increase all of the qv̂’s on a path πt by a factor of (1 +
ϵ). Since each wê and each qv̂ can only be increased by such a factor at most
ln 1/(|E|·δ)

ϵ times before its weight exceeds 1, the total running time T is bounded
by (|V | + |E|) ln 1/(|E|·δ)

ϵ · Tsp = O(|E| log |V |/ϵ2 · Tsp), where Tsp is the time it
takes Algorithm 2 to compute the optimal path for each the |D| flows. As a single
flow takes time O(|E| + |V | log V ) using Fibonacci heaps, we can compute the
2-walk for each of the flows in time O(|D| · (|E| + |V | log |V |)). Thus, the total
running time is O(|D| · |E| · (|E| + |V | log |V |) · log2 |V |/ϵ2).

6 Middlebox Node Purchase Optimization

We now discuss the network design problems mentioned in the introduction.
Although such problems can be modeled in multiple ways, we limit our discussion
to the case where each vertex v has a potential processing capacity C, which can
only be utilized if v is “purchased”. Flow processed elsewhere can be routed
through v regardless of whether or not v is purchased. We give results for both
directed and undirected variants of two versions of the network design problem:

A
u

th
o

r 
P

ro
o

f



18 M. Charikar et al.

1. The minimization version (Min Middlebox Node Purchase), where the
goal is to pick the smallest set of vertices such that all flow is routable.

2. The maximization version (Budgeted Middlebox Node Purchase), in
which we try to maximize the amount of routable flow while subject to a
budget constraint of k.

Formally, the input to Min Middlebox Node Purchase is a (di)graph
G = (V,E) with nonnegative costs qv on its vertices, a potential processing
capacity C : V → [0,∞), and a collection of (si, ti) pairs with demands Ri.
The goal is to select a set T ⊆V of vertices such that all demands are satisfied.
Budgeted Middlebox Node Purchase is given the same collection of inputs
along with a budget integer k, and the goal is to route as much of the demand
as possible.

All four problems (maximization or minimization, directed or undirected),
are NP-hard.

6.1 Approximation Hardness for Directed Min Middlebox Node
Purchase

We now prove that directed Min Middlebox Node Purchase is NP-hard to
approximate to a factor better than (1 − ϵ) ln n by showing an approximation-
preserving reduction from Set Cover, a problem already known to have the
aforementioned (1 − ϵ) ln n hardness [8].

Given a Set Cover instance with set system S = {S1, S2, · · · } and universe
of elements U , we create one vertex vS for each S ∈ S and one vertex wu for
each u ∈ U . Further, we create one source vertex s and one sink vertex t, where
t demands |U| units of processed flow from s. We add one capacity-n arc from s
to each vS , and one capacity-1 arc from each wu to t. We then add a capacity-1
arc from each vS to wu whenever S ∋ u. Finally, we give each vS vertex n units
of processing capacity at a cost of 1 each.

In order for t to get |U| units of flow, each wu must get at least one unit of
processed flow itself. Thus, at least one of its incoming vS neighbors must be
able to process flow. Therefore, this instance of directed Min Middlebox Node
Purchase can be seen as the problem of purchasing as few of the vS vertices
so that each uW vertex has one (or more) incoming vS vertex. This provides
a direct one-to-one mapping between solutions to our constructed instance and
the initial Set Cover instance, and the values of the solutions are conserved by
the mapping. Therefore, we have an approximation-preserving reduction between
the two problems, and directed Min Middlebox Node Purchase acquires the
known (1−ϵ) ln n inapproximability of Set Cover, summarized in the following
result:

Theorem 2. For every ϵ > 0, it is NP-hard to approximate directed Min Mid-
dlebox Node Purchase to within a factor of (1 − ϵ) ln n.

Note that this construction provides the same hardness even when all
demands are only to be satisfied up to a (1−δ) fraction, showing the asymptotic
tightness of the approximation factor in Theorem3.

A
u

th
o

r 
P

ro
o

f



Multi-commodity Flow with In-Network Processing 19

s

v1

v2

v3

w1

w2

w3

t

Fig. 3. Approximation-preserving reduction from Set Cover and Max k-Coverage
to directed Min Middlebox Node Purchase and directed Budgeted Middlebox
Node Purchase. Solid edges have infinite capacity, dashed edges have capacity 1. vi

vertices have infinite processing potential, at a cost of 1 each.

6.2 Bicriterion Approximation Algorithm for Directed
and Undirected Min Middlebox Node Purchase

We first describe an algorithm for directed Min Middlebox Node Purchase
that satisfies all flow requirements up to a factor of 1 − δ fraction with expected
cost bounded by O(log n/δ2) times the optimum.

We begin our approximation algorithm for directed Min Middlebox Node
Purchase by modifying the 2-walk-based LP formulation with additional vari-
ables xv corresponding to whether or not processing capacity at vertex v has
been purchased. We further give a polynomial sized edge-based LP formulation
with flow variables f1,v

i (e) and f2,v
i (e) for each commodity i, each vertex v ∈ V

and each edge e ∈ E. The variables f1,v
i (e) correspond to the (processed) com-

modity i flow that has been processed by vertex v: these variables describe a flow
from v to ti. The variables f2,v

i (e) correspond to the (unprocessed) commodity
i flow that will be processed by vertex v: these variables describe a flow from si

to v. See Fig. 4 for the full linear program.
Given an optimal solution to this LP, we pick vertices to install processing

capacity on by randomized rounding: pick vertex v with probability xv. if xv

is picked, then all flows processed by v are rounded up in the following way:
F̂ j,v

i (e) = f j,v
i (e)/xv for all i ∈ [|D|], j ∈ {1, 2}, e ∈ E. If v is not picked, then

all flows processed by v are set to zero, i.e. F̂ j,v
i (e) = 0.

By design, E[F̂ j,v
i (e)] = f j,v

i (e). In the solution produced by the rounding

algorithm, the total flow through edge e is
∑

v∈V

|D|∑

i=1

((F̂ 1,v
i (e) + F̂ 2,v

i (e)). This

is a random variable whose expectation is at most B(e), and is the sum of
independent random variables, one for each vertex v. The constraints of the
LP ensure that if v is selected, then the total processing done by vertex v is
at most C(v). Further, the total contribution of vertex v to the flow on edge

e does not exceed the capacity B(e), i.e.
|D|∑

i=1

(F̂ 1,v
i (e) + F̂ 2,v

i (e)) ≤ B(e). Also,

A
u

th
o

r 
P

ro
o

f



20 M. Charikar et al.

2-Walk-based formulation:

minimize ∑
v∈V qvxv

subject to
xv ≤ 1 ∀v∈V

pi,π=
∑

v∈π pv
i,π ∀i∈[|D|],π∈P

∑
π∈P pi,π≥Ri ∀i∈[|D|]

∑|D|
i=1

∑
π∈P
π∋e

pi,π≤B(e) ∀e∈E

∑|D|
i=1

∑
π∈P pv

i,π≤C(v)xv ∀v∈V

∑|D|
i=1

∑
π∈P
π∋e

pv
i,π≤B(e)xv ∀e∈E,v∈V

∑
π∈P pv

i,π≤Rixv ∀i∈[|D|],v∈V,

pv
i,π≥0 ∀i∈[|D|],π∈P,v∈π

xv≥0 ∀v∈V

Edge-based formulation:

minimize ∑
v∈V qvxv

Subject to
xv≤1 ∀v∈V

∑
e∈δ−(u) fj,v

i (e)=
∑

e∈δ+(u) fj,v
i (e)

∀i∈[|D|],j∈{1,2} ,v∈V,∀u∈V \{si,ti,v}
∑

e∈δ−(v) f2,v
i (e)=

∑
e∈δ+(v) f1,v

i (e) ∀i∈[|D|],v∈V

∑
v∈V

∑
e∈δ+(si)

f2,v
i (e)≥Ri ∀i∈[|D|]

∑|D|
i=1

∑
v∈V (f1,v

i (e)+f2,v
i (e))≤B(e) ∀e∈E

∑|D|
i=1

∑
e∈δ−(v) f2,v

i (e)≤C(v)xv ∀v∈V

∑|D|
i=1(f1,v

i (e)+f2,v
i (e))≤B(e)xv ∀e∈E,v∈V

∑
e∈δ+(si)

f2,v
i (e)≤Rixv ∀i∈[|D|],v∈V

f2,v
i (e)=0 ∀i∈[|D|],v∈V,e∈δ−(si)

f1,v
i (e)=0 ∀i∈[|D|],v∈V,e∈δ+(ti)

p1,v
i (e),p2,v

i (e),xv≥0 ∀i∈[|D|],v∈V,e∈E

Fig. 4. Linear programs from Sect. 3 adapted to middlebox placement problems.

the total contribution of vertex v to the commodity i flow is at most Ri, i.e.∑

e∈δ+(si)

F̂ 2,v
i (e) ≤ Ri.

We repeat this randomized rounding process t = O(log(n)/ϵ2) times. Let
gk(e) denote the total flow along edge e, and hk

i denote the total amount of
commodity i flow in the solution produced by the kth round of the random-
ized rounding process. The following lemma follows easily by Chernoff-Hoeffding
bounds:AQ3

Lemma 3

Pr

[
t∑

k=1

gk(e) ≥ (1 + ϵ)t · B(e)

]
≤ e−tϵ2/3 ∀e ∈ E (4)

Pr

[
t∑

k=1

hk
i ≤ (1 − ϵ)t · Ri

]
≤ e−tϵ2/2 ∀i ∈ [|D|] (5)

We set t = O(log(n)/ϵ2) so that the above probabilities are at most 1/n3

for each edge e ∈ E and each commodity i. With high probability, none of the
associated events occurs. The final solution is constructed as follows: A vertex
is purchased if it is selected in any of the t rounds of randomized rounding.
Thus the expected cost of the solution is at most t = O(log(n)/ϵ2) times the LP
optimum. We consider the superposition of all flows produced by the t solutions
and scale down the sum by t(1 + ϵ). This ensures that the capacity constraints
are satisfied. Note that the vertex processing constraints are also satisfied by

A
u

th
o

r 
P

ro
o

f



Multi-commodity Flow with In-Network Processing 21

the scaled solution. The total amount of commodity i flow is at least 1−ϵ
1+ϵRi ≥

(1 − 2ϵ)Ri. Hence we get the following result:

Theorem 3. For directed Min Middlebox Node Purchase, there is a poly-
nomial time randomized algorithm that satisfies all flow requirements up to fac-
tor 1 − δ and produces a solution that respects all capacities, with expected cost
bounded by O(log(n)/δ2) times the optimal cost.

We can modify the LP to simulate the inclusion of an undirected edge with
capacity B(e) by adding the constraints for two arcs between its endpoints with
capacity B(e) each, as well as an additional constraint requiring that the sum of
flows over these two arcs is bounded by B(e). The analysis done above carries
through line-by-line, giving the following result.

Theorem 4. For undirected Min Middlebox Node Purchase, there is a
polynomial time randomized algorithm that satisfies all flow requirements up to
factor 1 − δ and produces a solution that respects all capacities, with expected
cost bounded by O(log(n)/δ2) times the optimal cost.

6.3 Approximation Hardness for Undirected Min Middlebox Node
Purchase

We now show an approximation preserving reduction from Min Vertex Cover
to undirected Min Middlebox Node Purchase, proving that the latter prob-
lem is UGC-hard to approximate within a factor of 2− ϵ for any ϵ > 0 [18], and
NP-hard to approximate within a factor of 1.36 [7].

The construction is simple. Given a Vertex Cover instance with graph
G = (V,E), we create an identical graph with each vertex v demanding one
unit of processed flow from each of its neighbors, and each edge’s capacity is 2.
Further, each vertex has n units of processing potential, at a cost of 1. Because
the total demand equals the sum of all edge capacities, each unit of flow sent
must use exactly one unit of edge capacity, i.e. all flow paths have length exactly
one. Thus, the set of solutions exactly corresponds to vertex covers, with one unit
of flow going each way across each edge, from source to sink and either to or from
its point of processing. The unit costs ensure that the objective value equals the
number of vertices picked, and thus that the optimal solution to this undirected
Min Middlebox Node Purchase instance equals that of the original Min
Vertex Cover. The conclusion, summarized below, follows.

Theorem 5. Approximating undirected Min Middlebox Node Purchase is
at least as hard as approximating Min Vertex Cover. In particular, it is
NP-hard to approximate within a factor of 1.36 and UGC-hard to approximate
within a factor of 2 − ϵ, for any ϵ > 0.

A
u

th
o

r 
P

ro
o

f



22 M. Charikar et al.

6.4 Approximation Algorithm for Directed Budgeted Middlebox
Node Purchase

The algorithm here proceeds similarly to that in Sect. 6.2. The LPs we use are
the natural maximization variant of those used for the minimization problem,
with the added restriction that we only use a 1/2 fraction of the budget. It is
easy to see that this additional restriction does not reduce the objective value of
the optimal LP solution by more than an 1/2-fraction. We also assume (without
loss of generality) that no vertex has cost greater than the budget. The LPs are
formulated as follows:

2-Walk-based formulation:

maximize
∑|D|

i=1
∑

π∈P pi,π

subject to
∑

v∈V cvxv≤k/2

xv≤1 ∀v∈V

pi,π=
∑

v∈π pv
i,π ∀i∈[|D|],π∈P

∑
π∈P pi,π≥Ri ∀i∈[|D|]

∑|D|
i=1

∑
π∈P
π∋e

pi,π≤B(e) ∀e∈E

∑|D|
i=1

∑
π∈P pv

i,π≤C(v)xv ∀v∈V

∑|D|
i=1

∑
π∈P
π∋e

pv
i,π≤B(e)xv ∀e∈E,v∈V

∑
π∈P pv

i,π≤Rixv ∀i∈[|D|],v∈V,

pv
i,π≥0 ∀i∈[|D|],π∈P,v∈π

0 ≤ xv ≤ 1 ∀v∈V

Edge-based formulation:

maximize
∑

v∈V
∑|D|

i=1
∑

e∈δ−(v) f
2,v
i (e)

Subject to
∑

v∈V cvxv≤k/2

∑
e∈δ−(u) f

j,v
i (e)=

∑
e∈δ+(u) f

j,v
i (e)

∀i∈[|D|],j∈{1,2} ,v∈V,∀u∈V \{si,ti,v}
∑

e∈δ−(v) f
2,v
i (e)=

∑
e∈δ+(v) f

1,v
i (e) ∀i∈[|D|],v∈V,

∑
v∈V

∑
e∈δ+(si)

f
2,v
i (e)≥Ri ∀i∈[|D|]

∑|D|
i=1

∑
v∈V (f

1,v
i (e)+f

2,v
i (e))≤B(e) ∀e∈E

∑|D|
i=1

∑
e∈δ−(v) f

2,v
i (e)≤C(v)xv ∀v∈V

∑|D|
i=1(f

1,v
i (e)+f

2,v
i (e))≤B(e)xv ∀e∈E,v∈V

∑
e∈δ+(si)

f
2,v
i (e)≤Rixv ∀i∈[|D|],v∈V

f2,v
i (e) = 0 ∀i∈[|D|],v∈V,e∈δ−(si)

f1,v
i (e) = 0 ∀i∈[|D|],v∈V,e∈δ+(ti)

p1,v
i (e), p2,v

i (e), xv ≥ 0 ∀i∈[|D|],v∈V,e∈E

0 ≤ xv ≤ 1 ∀v∈V

If purchasing a single vertex allows us to route a 1/(2 ln n) fraction of the
objective value of the above LP, we purchase only this vertex. Otherwise, we can
remove the potential for processing at each vertex v with cv ≥ k/ ln n and re-
solve the LP to get a solution with objective value at least half as large as before.
Thus, from now on we can assume that no cv exceeds k/ ln n and therefore that
the optimal LP solution puts support on at least a 1/ ln n fraction of the xvs (at
a cost of 2 in our approximation factor). We will call the objective value of this
modified linear program OPTLP′ .

Again, we pick the vertices on which to install processing capacity on by
randomized rounding: each vertex v is picked with probability xv. If xv is picked,
then all flows processed by v are rounded so that F̂ j,v

i (e) = f j,v
i (e)/(4xv ln n)

for all i ∈ [|D|], j ∈ {1, 2}, e ∈ E. If v is not picked, then all flows processed by
v are set to zero, i.e. F̂ j,v

i (e) = 0.

A
u

th
o

r 
P

ro
o

f



Multi-commodity Flow with In-Network Processing 23

By design, E[F̂ j,v
i (e)] = f j,v

i (e)/(4 ln n) and thus the total amount of flow

processed, P , satisfies E[P ] = E

[
∑

v∈V

|D|∑
i=1

∑
e∈δ−(v)

F̂ 2,v
i (e)

]
= OPTLP′/(4 ln n). In

the solution produced by the rounding algorithm, the total flow through edge e is
∑

v∈V

|D|∑

i=1

((F̂ 1,v
i (e)+F̂ 2,v

i (e)). This sum of random variables is B̂(e) = B(e)/(4 ln n)

in expectation. Letting g(e) denote the flow along edge e, standard bounds give

Lemma 4

Pr
[
g(e) ≥ (4 lg n) · B̂(e)

]
≤ e−4 ln n = n−4 ∀e ∈ E (8)

Pr [P ≤ (1/4) · (1/(4 lg n) · OPTLP′)] ≤ e−4 ln n = n−4 ∀e ∈ E (9)

so by the union bound, with probability higher than 1 − 1/n every edge is
assigned ≤ B(e) total flow and the amount of flow processed and routed is
within a 1/16 ln n factor of OPTLP′ .

Finally, by Markov’s inequality, the original budget constraint is satisfied
with probability at least 1/2. Combining this with Lemma4, the algorithm fails
with probability at most 1/2+1/n. Repeating the algorithm O(log n) times and
taking the best feasible solution therefore provides an Ω(1/ log n) approximation
with probability at least 1−1/poly(n). This can be summarized in the following
result:

Theorem 6. For directed Budgeted Middlebox Node Purchase, there is a
polynomial-time randomized algorithm producing an Ω(1/ log(n)) approximation.

We can also apply this algorithm to undirected instances by adding additional
constraints the as we did in Sect. 6.2, with the analysis carrying through as
before. Thus, we attain the following:

Theorem 7. For undirected Budgeted Middlebox Node Purchase,
there is a polynomial-time randomized algorithm producing an Ω(1/ log(n))
approximation.

6.5 Approximation Algorithm for Undirected Budgeted Middlebox
Node Purchase

We now show that the undirected Budgeted Middlebox Node Purchase
admits a constant-factor approximation algorithm when restricted to a single
source s. Let OPT(G, k) denote the value of the optimal solution to an instance
with graph G and budget k. Our algorithm works by splitting the problem into
both a processing step and a routing step. The algorithm begins by reserving a

A
u

th
o

r 
P

ro
o

f



24 M. Charikar et al.

1/2 fraction of each edge for use in the processing step and the remaining 1/2
fraction for use in the routing step. Calling the reserved-capacity graphs Gproc

and Groute, respectively, the algorithm proceeds as follows:

Processing Step. A well known fact in capacitated network design is that the max-
imum amount of flow routable (sans processing) from a set S ⊆V of source ver-
tices to a single sink forms a monotone, submodular function in S [4]. Although
this problem is usually defined in the context of sources that can produce an
arbitrary amount of flow (should the network support it), we can bottleneck
each source si into producing at most some ci units of flow by replacing it with
a pair of vertices connected by a capacity ci edge, without changing the sub-
modularity of the routable flow function, fG(S). For the purpose of this lemma,
redefining s as our “sink” and the set P of processing nodes as our source set S,
we immediately attain that the function fG(P ) is submodular, where P ⊂ V is
the set of nodes purchased for processing.

Let H be a copy of Gproc with all edge capacities halved. Because fH is a
submodular function, the problem of using our budget to purchase a set P ⊆V
of processing nodes so to maximize fH(P ) is simply an instance of a monotone,
submodular maximization subject to knapsack constraints. Such problems are
known to admit simple (1 − 1/e)-approximation algorithms [30]. Let P (H, k)
be the optimal solution to this processable flow problem on H with budget
k and ALG1(H,K) denote the value of the solution found by our algorithm.
Because P (H, k) is an upper bound on OPT(H, k) (indeed, the former is simply
an instance of the former without the need to account for post-processing rout-
ing), the (1 − 1/e) approximation we get has value at least equal to (1 − 1/e)
times the value of OPT(H, k). In particular

ALG1(H, k) ≥ (1 − 1/e)P (H, k)
≥ (1 − 1/e)OPT(H, k)
≥ (1 − 1/e)(1/2)OPT(Gproc, k)
≥ (1 − 1/e)(1/2)(1/2)OPT(G, k)
= (1 − 1/e)/4 · OPT(G, k)

Further, because our solution only uses at most half of the capacity of any
edge in Gproc, we can use the remaining, unused half of the capacities to route
all flow we managed to process back to s.

Routing Step. All flow residing in s after the end of the processing step is already
processed, all of it can be routed directly to the sinks using the 1/2 fraction
of edge capacities we reserved for Groute. Because multiplying all edge capac-
ities by 1/2 reduces the amount of routable flow by the same (multiplicative)
amount, we can route at least (1/2) min(ALG1(H, k),MaxFlowG(s, t)) units of
the processed flow from s to t. As MaxFlowG(s, t) is a (trivial) upper bound on
OPT(G, k), this means we can route at least (1/2)(1−1/e)/4OPT(G, k) units of
the processed flow from s to the sinks, giving a (1−1/e)/8 > .078 approximation
algorithm.

A
u

th
o

r 
P

ro
o

f



Multi-commodity Flow with In-Network Processing 25

Thus, we get the following theorem:

Theorem 8. For undirected Budgeted Middlebox Node Purchase with a
single source, there is a deterministic polynomial time algorithm that produces
a solution that can route at least (1 − 1/e)/8 ≈ .078 times the optimal objective
solution.

6.6 Approximation Hardness for Directed Budgeted Middlebox
Node Purchase

We now prove that directed Budgeted Middlebox Node Purchase is NP-
hard to approximate to a factor of 1 − 1/e + ϵ. To show this, we reduce from
Max k-Cover, which is known to have the same hardness result [12].

Given a Max k-Cover instance with set system S and universe of elements
U , we create one vertex vS for each S ∈ S and one vertex wu for each u ∈ U .
Further, we create one source vertex s and one sink vertex t, where t demands
|U| units of processed flow from s. We add one capacity-n arc from s to each
vS , and one capacity-1 arc from each wu to t. We then add a capacity-1 arc
from each vS to wu whenever S ∋ u. Finally, we give each vS vertex n units of
processing capacity at a cost of 1 each. The budget for the instance is k – the
same as the budget for the Max-k-Cover instance. A diagram of the reduction
is given in Fig. 3.

When flow is routed maximally, each wu contributes 1 unit of flow to the
total s − t flow if and only if it has a neighbor vS that was chosen to be active.
Otherwise, this vertex does not help contribute towards the s − t flow. Thus,
this instance of directed Budgeted Middlebox Node Purchase can be seen
as the problem of buying k different vS vertices so to maximize the number
of distinct wu vertices to which they are adjacent. Thus, there is a direct one-
to-one mapping between solutions to our constructed instance and the initial
Max k-Cover instance, and the values of the solutions are conserved by the
mapping. Therefore, we have an approximation-preserving reduction between the
two problems, and directed Budgeted Middlebox Node Purchase acquires
the known (1 − 1/e + ϵ) inapproximability of Max k-Cover. The result can be
summarized as follows

Theorem 9. For every ϵ > 0, it is NP-hard to approximate directed Bud-
geted Middlebox Node Purchase to within a factor of 1 − 1/e + ϵ.

6.7 Approximation Hardness for Undirected Budgeted Middlebox
Node Purchase

We show that for some fixed ϵ0 > 0, the undirected version of Budgeted
Middlebox Node Purchase is NP-hard to approximate within a factor of
1 − ϵ, implying that the problem does not admit a PTAS unless P = NP. We
make no attempt to maximize the value ϵ0.

A
u

th
o

r 
P

ro
o

f



26 M. Charikar et al.

We show this hardness by reducing from Max Bisection on degree-3 graphs,
shown to be hard to approximate within a factor of .997 in [3]1. Let G = (V,E) be
the input to the degree-3 Max Bisection instance. For each vi ∈ V , create two
vertices, ui and wi, joined by an edge with capacity 3. We also add a capacity-1
edge between ui and uj whenever vi and vj are adjacent in G. Each wi vertex
demands 3 units of flow from every uj (including when i = j). Further, every ui

vertex can be given 3|V | units of processing capacity (or, equivalently, ∞ units)
at a cost of 1, and the instance’s budget is set to |V |/2.

The intuition behind the construction is as follows. With a budget of |V |/2,
we can purchase exactly half of the ui vertices (and all budget is used up with-
out loss of generality); our bisection will be between the purchased uis and the
unpurchased ones. Let b be the number of edges in any such bisection. Each wi

adjacent to a purchased ui can have 3 units of its demand satisfied by flow orig-
inating from and processed by ui, and the only edge connecting wi to the rest
of the graph ensures wi can never receive more than 3 units of flow regardless.
Thus, such wis are maximally satisfied, and contribute 3|V |/2 units to our objec-
tive value. The remaining wis must have their processed flow routed to them via
edge via the b capacity-1 edges in the bisection (and, indeed, every edge in the
bisection will carry 1 unit of flow when routed optimally, as witnessed by the
solution where each unprocessed ui receives flow on each cut-edge and routes
it directly to wi), so the total amount of demand satisfied by the wi adjacent
to unpurchased vertices is exactly b, so the objective value of a solution with b
edges in the bisection is exactly 3|V |/2 + b.

Let bOPT denote the number of edges cut by the optimal bisection. It is a
well-known fact that bOPT ≥ |E|/2 = 3|V |/4. By the theorem of [3] it is NP-
hard to distinguish instances with 3|V |/2+bOPT units of satisfiable demand from
those with only 3|V |/2 + (1 − .003)bOPT, giving an inapproximability ratio of

3|V |/2 + (1 − .003)bOPT

3|V |/2 + bOPT
= 1 − .003bOPT

3|V |/2 + bOPT

= 1 − .003
3|V |/(2bOPT) + 1

≤ 1 − .003
3|V |/(2 · 3|V |/4) + 1

= 1 − .003
2 + 1

= .999

This calculation is summarized in the following result:

Theorem 10. It is NP-hard to approximate undirected Budgeted Middle-
box Node Purchase to within a factor better than .999.
1 To be precise, this paper shows the aforementioned hardness for Max Cut. A sim-

ple approximation preserving reduction from Max Cut to Max Bisection can be
derived by looking at maximum cuts of the graph formed by 2 disjoint copies of the
Max Cut instance graph.

A
u

th
o

r 
P

ro
o

f



Multi-commodity Flow with In-Network Processing 27

7 Related Work

Network Function Optimization. In software-defined networking, SIMPLE [24]
and FlowTags [11] take advantage of switches with fine-grained rule support.
Both approaches focus on how to use the constrained TCAM size, a hardware
limitation to support fine-grained policy. Neither approach attempts to solve
the joint optimization of the capacity constraints for both servers and switches.
Slick [1] offers a high-level control program that specifies custom processing on
precise subset of flows. It also assumes the server processing power is heteroge-
neous, and uses heuristic approaches for the underlying placement, routing, and
steering.

Network Function Consolidation. CoMB [28] and Click [21] both consolidate net-
work functions into applications or a VM images, and consider server machines
that can each run multiple instances of different network functions. Both focus on
improving the performance on single nodes, and treat network functions homo-
geneously. Neither covers a network-wide optimization.

Network Function Migration and Reroute. OpenNF [14] and Split-Merge [25]
leverage the SDN controller to manage the network function’s state migration
and the network function’s flow migration. Both focus on reallocating resources
and rerouting flows when either a node or a link is over-utilized. While their
solution focuses on fixing congestion when it occurs, ours focuses on figuring out
how to avoid congestion in the first place.

Network Function Online Request Model. Recently, Even, Medina, and Patt-
Shamir [9] studied an online request admission problem in the same multi-
commodity flow with processing setting that we study. In their work, requests
arrive online and specify a processing pipeline for flow between a source and sink;
intermediate nodes in the pipeline may be any subset of nodes in the underlying
graph. The goal is to accept as many such flow requests as possible while ensuring
that accepted requests are assigned flow paths that satisfy capacity constraints.
In this setting, the authors show an O(k log(kn))-competitive online algorithm
for instances with length-k pipelines.

Routing and Middlebox optimization. A couple of recent papers consider approx-
imation algorithms for path computation and service placement [10] and Service
Chain and Virtual Network Embeddings [26,27]. Both papers use randomized
rounding of a linear programming relaxation of the problem. Both of these works
differ from our paper in that packets between demand pairs are not splittable,
and thus must be sent along paths rather than flows. Other recent papers provide
approximation algorithms for variants of Min Middlebox Node Purchase
with no hard edge constraints [6,20]. In [20], the authors independently derive
the same Set Cover-based hardness construction for their problem variant.

A
u

th
o

r 
P

ro
o

f



28 M. Charikar et al.

References

1. Anwer, B., Benson, T., Feamster, N., Levin, D.: Programming Slick network func-
tions. In: Proceedings of Symposium on SDN Research, June 2015

2. Arora, S., Hazan, E., Kale, S.: The multiplicative weights update method: a meta-
algorithm and applications. Theor. Comput. 8(1), 121–164 (2012)

3. Berman, P., Karpinski, M.: On some tighter inapproximability results (extended
abstract). In: Wiedermann, J., van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999.
LNCS, vol. 1644, pp. 200–209. Springer, Heidelberg (1999). https://doi.org/10.
1007/3-540-48523-6 17

4. Chakrabarty, D., Krishnaswamy, R., Li, S., Narayanan, S.: Capacitated network
design on undirected graphs. In: Raghavendra, P., Raskhodnikova, S., Jansen,
K., Rolim, J.D.P. (eds.) APPROX/RANDOM -2013. LNCS, vol. 8096, pp. 71–
80. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40328-6 6

5. Chiosi, M., et al.: Network functions virtualisation: introductory white paper. In:
SDN and OpenFlow World Congress, October 2012

6. Cohen, R., Lewin-Eytan, L., Naor, J.S., Raz, D.: Near optimal placement of virtual
network functions. In: IEEE Conference on Computer Communications (INFO-
COM), pp. 1346–1354. IEEE (2015)

7. Dinur, I., Safra, S.: On the hardness of approximating minimum vertex cover. Ann.
Math. 162, 439–485 (2005)

8. Dinur, I., Steurer, D.: Analytical approach to parallel repetition. In: Proceedings
of the Annual ACM Symposium on Theory of Computing, pp. 624–633. ACM,
New York (2014). https://doi.org/10.1145/2591796.2591884. http://doi.acm.org/
10.1145/2591796.2591884

9. Even, G., Medina, M., Patt-Shamir, B.: Competitive path computation and func-
tion placement in SDNs. arXiv preprint arXiv:1602.06169 (2016)

10. Even, G., Rost, M., Schmid, S.: An approximation algorithm for path computation
and function placement in SDNs. In: Suomela, J. (ed.) SIROCCO 2016. LNCS,
vol. 9988, pp. 374–390. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
48314-6 24

11. Fayazbakhsh, S.K., Chiang, L., Sekar, V., Yu, M., Mogul, J.C.: Enforcing network-
wide policies in the presence of dynamic middlebox actions using flowtags. In: 11th
USENIX Symposium on Networked Systems Design and Implementation (NSDI
2014), pp. 543–546. USENIX Association, Seattle, April 2014. https://www.usenix.
org/conference/nsdi14/technical-sessions/presentation/fayazbakhsh

12. Feige, U.: A threshold of ln n for approximating set cover. J. ACM (JACM) 45(4),
634–652 (1998)

13. Forrest, J.: Clp: Coin-or linear program solver. In: DIMACS Workshop on COIN-
OR, pp. 17–20, July 2006

14. Gember-Jacobson, A., et al.: OpenNF: enabling innovation in network func-
tion control. In: Proceedings of the ACM Conference on SIGCOMM, pp. 163–
174. ACM (2014). https://doi.org/10.1145/2619239.2626313. http://doi.acm.org/
10.1145/2619239.2626313

15. Heorhiadi, V., Reiter, M.K., Sekar, V.: Accelerating the development of
software-defined network optimization applications using SOL. arXiv preprint
arXiv:1504.07704 (2015)

16. Heorhiadi, V., Reiter, M.K., Sekar, V.: Simplifying software-defined network
optimization using sol. In: 13th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 2016), pp. 223–237. USENIX Association,

A
u

th
o

r 
P

ro
o

f

https://doi.org/10.1007/3-540-48523-6_17
https://doi.org/10.1007/3-540-48523-6_17
https://doi.org/10.1007/978-3-642-40328-6_6
https://doi.org/10.1145/2591796.2591884
http://doi.acm.org/10.1145/2591796.2591884
http://doi.acm.org/10.1145/2591796.2591884
http://arxiv.org/abs/1602.06169
https://doi.org/10.1007/978-3-319-48314-6_24
https://doi.org/10.1007/978-3-319-48314-6_24
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/fayazbakhsh
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/fayazbakhsh
https://doi.org/10.1145/2619239.2626313
http://doi.acm.org/10.1145/2619239.2626313
http://doi.acm.org/10.1145/2619239.2626313
http://arxiv.org/abs/1504.07704


Multi-commodity Flow with In-Network Processing 29

Santa Clara, March 2016. https://www.usenix.org/conference/nsdi16/technical-
sessions/presentation/heorhiadi

17. Jin, Y., Wen, Y., Westphal, C.: Towards joint resource allocation and routing to
optimize video distribution over future internet. In: IFIP Networking Conference
(IFIP Networking) 2015, 1–9 May 2015. https://doi.org/10.1109/IFIPNetworking.
2015.7145311

18. Khot, S., Regev, O.: Vertex cover might be hard to approximate to within 2-ε. J.
Comput. Syst. Sci. 74(3), 335–349 (2008)

19. Li, X., Qian, C.: A survey of network function placement. In: 13th IEEE Annual
Consumer Communications Networking Conference (CCNC), pp. 948–953, Jan-
uary 2016. https://doi.org/10.1109/CCNC.2016.7444915

20. Lukovszki, T., Rost, M., Schmid, S.: Approximate and incremental network func-
tion placement. J. Parallel Distrib. Comput. 120, 159–169 (2018)

21. Martins, J., et al.: Clickos and the art of network function virtualization. In: 11th
USENIX Symposium on Networked Systems Design and Implementation (NSDI
2014), pp. 459–473. USENIX Association, April 2014. https://www.usenix.org/
conference/nsdi14/technical-sessions/presentation/martins

22. OPNFV: OPNFV: an open platform to accelerate NFV, Linux Foundation.
https://www.opnfv.org/

23. Orlowski, S., Wessäly, R., Pióro, M., Tomaszewski, A.: Sndlib 1.0—survivable net-
work design library. Networks 55(3), 276–286 (2010)

24. Qazi, Z.A., Tu, C.C., Chiang, L., Miao, R., Sekar, V., Yu, M.: SIMPLE-fying mid-
dlebox policy enforcement using SDN. In: Proceedings of ACM SIGCOMM, pp. 27–
38. ACM (2013). https://doi.org/10.1145/2486001.2486022. http://doi.acm.org/
10.1145/2486001.2486022

25. Rajagopalan, S., Williams, D., Jamjoom, H., Warfield, A.: Split/merge: system
support for elastic execution in virtual middleboxes. In: Presented as Part of
the 10th USENIX Symposium on Networked Systems Design and Implementa-
tion (NSDI 2013), pp. 227–240. USENIX, Lombard (2013). https://www.usenix.
org/conference/nsdi13/technical-sessions/presentation/rajagopalan

26. Rost, M., Schmid, S.: Charting the complexity landscape of virtual network embed-
dings. In: IFIP Networking, May 2018. http://eprints.cs.univie.ac.at/5580/

27. Rost, M., Schmid, S.: Virtual network embedding approximations: leveraging ran-
domized rounding. In: IFIP Networking, May 2018. http://eprints.cs.univie.ac.at/
5579/

28. Sekar, V., Egi, N., Ratnasamy, S., Reiter, M.K., Shi, G.: Design and implementa-
tion of a consolidated middlebox architecture. In: Proceedings of the 9th USENIX
Conference on Networked Systems Design and Implementation, NSDI 2012, p. 24.
USENIX Association (2012). http://dl.acm.org/citation.cfm?id=2228298.2228331

29. Sherry, J., Hasan, S., Scott, C., Krishnamurthy, A., Ratnasamy, S., Sekar, V.:
Making middleboxes someone else’s problem: network processing as a cloud ser-
vice. In: Proceedings of the ACM SIGCOMM 2012 Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communication, SIG-
COMM 2012, pp. 13–24. ACM (2012). https://doi.org/10.1145/2342356.2342359.
http://doi.acm.org/10.1145/2342356.2342359

30. Sviridenko, M.: A note on maximizing a submodular set function subject to a
knapsack constraint. Oper. Res. Lett. 32(1), 41–43 (2004)

31. Uhlig, S., Quoitin, B., Lepropre, J., Balon, S.: Providing public intradomain traffic
matrices to the research community. ACM SIGCOMM Comput. Commun. Rev.
36(1), 83–86 (2006)

A
u

th
o

r 
P

ro
o

f

https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/heorhiadi
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/heorhiadi
https://doi.org/10.1109/IFIPNetworking.2015.7145311
https://doi.org/10.1109/IFIPNetworking.2015.7145311
https://doi.org/10.1109/CCNC.2016.7444915
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/martins
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/martins
https://www.opnfv.org/
https://doi.org/10.1145/2486001.2486022
http://doi.acm.org/10.1145/2486001.2486022
http://doi.acm.org/10.1145/2486001.2486022
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/rajagopalan
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/rajagopalan
http://eprints.cs.univie.ac.at/5580/
http://eprints.cs.univie.ac.at/5579/
http://eprints.cs.univie.ac.at/5579/
http://dl.acm.org/citation.cfm?id=2228298.2228331
https://doi.org/10.1145/2342356.2342359
http://doi.acm.org/10.1145/2342356.2342359

