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1 Hashing: Preliminaries

Hashing can be thought of as a way to rename an address space. For instance, a router at
the internet backbone may wish to have a searchable database of destination IP addresses
of packets that are whizing by. An IP address is 128 bits, so the number of possible IP
addresses is 2128, which is too large to let us have a table indexed by IP addresses. Hashing
allows us to rename each IP address by fewer bits.

Formally, we want to store a subset S of a large universe U (where |U | = 2128 in the
above example). And |S| = m is a relatively small subset.
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Figure 1: Hash table. x is placed in T [h(x)].

We design a hash function

h : U −→ {0, 1, . . . , n− 1} (1)

such that x ∈ U is placed in T [h(x)], where T is a table of size n. Typically, we can assume
that m ≤ n ≪ |U |.

There are two flexible components in this design: 1. the hash function h; 2. how do we
deal with multiple elements that are mapped to the same location in T . In this lecture, we
will focus on the former, designing good hash functions. For resolving hash collisions, we
use the standard linked list solution – storing all keys mapped to the same location in T
using a linked list. If there are t such keys, then it takes O(t) to search through them.

The behavior of the hash function can be analysed under two kinds of assumptions:

1. Assume the input is the random.

2. Assume the input is arbitrary, but the hash function is random.

Assumption 1 may not be valid for many applications.
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Hashing is a concrete method towards Assumption 2. We designate a set of hash func-
tions H, and when it is time to hash S, we choose a random function h ∈ H and hope
that on average we will achieve good performance for S. This is a frequent benefit of a
randomized approach: no single hash function works well for every input, but the average
hash function may be good enough.

2 Hash Functions

What do we want out of a random hash function? Ideally, we would hope that h “evenly”
distributes the elements of S across the hash table. One option would be to map every
element in U to a random value in [n]. However, constructing such a “fully random” hash
function is very expensive: we would need to build a lookup table with |U | rows, each
storing log2(n) bits to specify the value of h(x) ∈ [n] for one x ∈ U . At this cost, we might
as well have just stored our original data in a |U | length array – it’s often simply impossible.

The goal in hashing is to find a cheaper function (fast and space efficient) that’s still
random enough to evenly distribute elements of S into our table. For a family of hash
functions H, and for each h ∈ H, h : U −→ [n]1, what we mean by “random enough”.

For any x1, x2, . . . , xm ∈ S (xi ̸= xj when i ̸= j), and any a1, a2, . . . , am ∈ [n], ideally a
random H should satisfy:

• Prh∈H[h(x1) = a1] =
1
n .

• Prh∈H[h(x1) = a1 ∧ h(x2) = a2] =
1
n2 . Pairwise independence.

• Prh∈H[h(x1) = a1 ∧ h(x2) = a2 ∧ · · · ∧ h(xk) = ak] =
1
nk . k-wise independence.

• Prh∈H[h(x1) = a1 ∧ h(x2) = a2 ∧ · · · ∧ h(xm) = am] = 1
nm . Full independence (note

that |U | = m).

Generally speaking, we encounter a tradeoff. The more random H is, the greater the
number of random bits needed to generate a function h from this class, and the higher the
cost of computing h. The challenge is to prove that, even when we use few random bits,
the hash stable still performs well in terms of insert/delete/query time.

2.1 Goal One: Bound expected number of collisions

As a first step, we want to understand the expected length of a single linked list. Note
that this is just the first step towards understanding the runtime of our desired operations.
Assume that H is a pairwise-independent hash family.

Now, we want to count the expected number of collisions. To do this, let the random
variable

Ixy =

{
1 if h(y) = h(x),

0 otherwise.
(2)

1We use [n] to denote the set {0, 1, . . . , n− 1}
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Observe that the number of collisions is exactly
∑

x ̸=y Ixy. By linearity of expectation, we
get:

E[# collisions] =
∑
x ̸=y

E[Ixy] =
∑
x ̸=y

1/n =

(
m

2

)
/n. (3)

Above, the second inequality follows as h(x) = h(y) with probability exactly 1/n when-
ever H is pairwise independent. Observe that if, for example, we take n ≥ m2, then we are
likely to have zero collisions. Similarly, observe that for a fixed x, even when n = 2m, that
x is unlikely to have any collisions.

3 2-Universal Hash Families

Definition 1 (Carter Wegman 1979). Family H of hash functions is 2-universal if for any
x ̸= y ∈ U ,

Pr
h∈H

[h(x) = h(y)] ≤ 1

n
(4)

Exercise: Convince yourself that this property is weaker than pairwise independence
– i.e. that every pairwise independent hash function also satisfies (4).

We can design 2-universal hash families in the following way. Choose a prime p ∈
{|U |, . . . , 2|U |},2 and let

fa,b(x) = ax+ b mod p (a, b ∈ [p], a ̸= 0) (5)

Then let
ha,b(x) = fa,b(x) mod n (6)

We now make a few observations about fa,b(·), before arguing that the family H =
{ha,b(·)}a,b∈[p],a̸=0 is 2-universal.

observation 1. If x1 ̸= x2, then fa,b(x1) ̸= fa,b(x2).

Proof. Assume for contradiction that fa,b(x1) = fa,b(x2) = s. Then:

ax1 + b = s mod p

ax2 + b = s mod p

⇒ a(x1 − x2) = 0 mod p.

But as p is prime, and a ̸= 0, this implies that x1 = x2, a contradiction.

Of course, it could still very well be the case that ha,b(x1) = ha,b(x2). So we have to
later analyze the probability of this.

2How do we know that such a prime exists? This is due to Bertrand’s Postulate, which exactly states
that such a prime exists. Second, how do we find such a prime? One option is to guess random numbers
between |U | and 2|U |, check if they’re prime, and continue until we find one. The Prime Number Theorem
states that each guess is likely to be prime with probability roughly 1/ log(|U |). Also, the AKS primality
test lets us test whether a number is in fact prime in time poly(log(|U |)). Alternatively, one could imagine
an online pre-computed database of primes that lie in the correct range.
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Lemma 1. For any x1 ̸= x2 and s ̸= t, the following system

ax1 + b = s mod p (7)

ax2 + b = t mod p (8)

has exactly one solution (i.e. one set of possible values for a, b). In that solution, a ̸= 0.

Proof. If you’re familiar with modular arithmetic, this is clear. Since p is a prime, the inte-
gers mod p constitute a finite field. This implies that any element in [p] has a multiplicative
inverse mod p, so we know that a = (x1 − x2)

−1(s− t) and b = s− ax1.

Figure 2: Modular arithmetic for prime p = 7.

It’s not to hard to see this directly with a little thought. We want to claim that

a(x1 − x2) = (s− t) mod p

has a unqiue solution a. Without loss of generality, assume that x1 > x2. When we multiply
(x1 − x2) by an integer, we’re moving around the circle pictured in Figure 2 in increments
of (x1 − x2). Since p is prime, at each step before the pth step, it better be that we hit a
new element of [p] on the circle. Otherwise, we would have found that (x1 − x2) (which is
< p) multiplies by some other number < p to equal a multiple of p. This of course can’t be
true when p is prime.

So, as we multiply (x1 − x2) by integers in [p], we hit (s− t) mod p exactly once.

By Lemma 1, since there are p(p− 1) different possible choices of a, b:

Pr
a,b←U({1,...,p−1}×{0,...,p−1})

[fab(x1) = s ∧ fab(x2) = t] =
1

p(p− 1)
(9)

Claim H = {ha,b : a, b ∈ [p] ∧ a ̸= 0} is 2-universal.
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Proof. For any x1 ̸= x2,

Pr[ha,b(x1) = ha,b(x2)] (10)

=
∑

s,t∈[p],s ̸=t

1[s = t mod n)] ·Pr[fa,b(x1) = s ∧ fa,b(x2) = t] (11)

=
1

p(p− 1)

∑
s,t∈[p],s ̸=t

1[s = t mod n] (12)

≤ 1

p(p− 1)

p(p− 1)

n
(13)

=
1

n
(14)

where 1 is an indicator function (that is, 1[x] = 1 if statement x is true, and 1[x] = 0
otherwise). Equation (13) follows because for each s ∈ [p], we have at most ⌈p/n⌉ t such
that s = t mod n, and one of these is s = t itself. So there are at most ⌈p/n⌉−1 ≤ (p−1)/n
different t such that s ̸= t and s = t mod n.

4 Perfect hashing

Can we design a collision free hash table then? This is usually referred to as perfect hashing.

Solution 1: Collision-free hash table in O(m2) space.

Say we have m elements, and the hash table is of size n. Since for any x1 ̸= x2, Prh[h(x1) =
h(x2)] ≤ 1

n , the expected number of total collisions is just

E[
∑

x1 ̸=x2

h(x1) = h(x2)] =
∑

x1 ̸=x2

E[h(x1) = h(x2)] ≤
(
m

2

)
1

n
(15)

Let’s pick n ≥ m2, then

E[number of collisions] ≤ 1

2
(16)

and so by Markov’s inequality,

Pr
h∈H

[∃ a collision] ≤ 1

2
(17)

So if the size the hash table is large enough, we can easily find a collision free hash
function. In particular, if we try a random hash function it will succeed with probability
1/2. If we see a collision when inserting elements of S into the table, we simply draw a new
random hash function and try again. The expected function of this proceedure is:

E[time to insert m items] = m+
1

2
m+

1

4
m+ . . . = 2m.
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Solution 2: Collision-free hash table in O(m) space (FKS hashing).

At this point, we have designed a hash table that has no collisions. The drawback is that
it is that our table must be large: m2 to store only m elements. But in reality, such a large
table is often unrealistic. We may use a two-layer hash table to avoid this problem.

0

1

n− 1

i

si elements

s2i locations

Figure 3: Two layer hash tables.

Specifically, let si denote the number of elements at location i. If we can construct a
second layer table of size s2i , we can easily find a collision-free hash table to store all the si
elements. Thus the total size of the second-layer hash tables is

∑m−1
i=0 s2i .

To bound the expected size of
∑m−1

i=0 s2i , we note that this sum is nearly equal to the
total number of hash collisions, which we bound in Equation (15)! Specifically,

E[
∑
i

s2i ] = E[
∑
i

si(si − 1)] + E[
∑
i

si] =
m(m− 1)

n
+m ≤ 2m (18)

Note that si(si−1)/2 is exactly the number of collisions at location i (because if there are
si elements at location i, there are

(
si
2

)
pairs which collide at i). Therefore, E[

∑
i si(si−1)/2]

is exactly the expected number of total collisions, which we bounded with
(
m
2

)
/n previously.

To construct the hash function, we will first sample a first-layer function h such that∑
i s

2
i ≤ 4m, then allocate a range of 2s2i for bucket i for the second layer.
Including the first layer, we have now designed a hash table of size O(m) to store m

elements (so some overhead, but much less than before).
FKS hashing is mostly used in the static setting, where the set S is given in advance

and does not change over time. However, it is also possible to support key insertions and
deletions by rebuilding. That is, when we insert some x to the hash table, if it remains
collision-free, then we just insert it to the corresponding entry; otherwise, we rebuild the
corresponding bucket with possibly larger space (as si increases). If

∑
i s

2
i becomes too large

after the insertion, we rebuild the whole hash table. It can be shown that the expected
insertion time is O(1), and it has the benefit that its lookup time is O(1) in worst-case.

Note that for perfect hashing, the hash function used is inevitably dependent on the set
S. For the above two-layer construction, it also takes O(m logU) bits to just encode the
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hash function, while it still only takes O(1) to compute the hash value of any x. A more
careful encoding can improve it to O(m) bits, but it has been shown that one cannot hope
to encode a perfect hash function using ≪ m bits, if the size of the hash table is linear.
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