
princeton univ. F’23 cos 521: Advanced Algorithm Design

Lecture 17: Distance Oracles

Lecturer: Huacheng Yu

Lecture notes are based on Virginia Vassilevska Williams’ lecture notes here:
http://theory.stanford.edu/ virgi/cs267/lecture8.pdf

In this lecture, we will talk about distance oracles. A distance oracle is a data structure
that stores (a compressed version of) a graph G supporting efficient (approximate) distance
queries.

1 t-approximate distance orcales

A t-approximate distance orcale is a data structure that is computed from an (undirected)
input graph G = (V,E) by a preprocessing algorithm such that given any two vertices
x, y ∈ V , a query algorithm can efficiently output an estimate D that is between d(x, y)
and t · d(x, y). The query algorithm may only access the distance oracle but not the input
graph G.

We want to construct, in low preprocessing time, a small data structure with fast query
time. One solution is to use the spanners from the last lecture. Recall that we proved the
following.

Theorem 1. For any G, there exists a (2k − 1)-spanner with O(n1+1/k) edges.

Thus, the distance oracle will have size Õ(n1+1/k). But the spanner does not tell us how
to compute the pairwise distances, we would need to run BFS or Dijkstra’s algorithm at
query. The query time is slow.

In this lecture, we will prove that the same space bound can be achieved with a much
faster query time.

Theorem 2 (Thorup, Zwick’01). For all integer k ≥ 1, there exists a (2k− 1)-approximate
distance oracle using Õ(n1+1/k) space, Õ(m ·n1/k) preprocessing time and O(k) query time.

2 3-approximate distance orcales

To begin with, we will first present a 3-approximate distance orcale (k = 2), which demon-
strates the main ideas. Here, the goal is to construct a n1.5-space data structure with
constant query time.

The main idea is that we will find a small set A of “hubs” in the graph, and route
through these hubs if the query pair is far. We will remember the (exact) distances to all
hubs from each vertex, which is cheap as |A| is small. We will also guarantee that there are
not too many close pairs, so that their distances can be remembered exactly in the data
structure. It turns out that a random set A works.

1

2

Preprocessing algorithms. We first sample a random set A ⊆ V of size O(
√
n log n).

Then let p(v) be the closest vertex to v in A. For each v, we will store the exact distance
d(v, x) for x such that

• d(v, x) < d(v, p(v)), or

• x ∈ A

using a hash table. Denote by the set of x that we store the distance to v by B(v).

Space. The preprocessing algorithm does not store distances for too many pairs of ver-
tices.

Lemma 3. For every v, there exists at most O(
√
n) x such that d(v, x) < d(v, p(v)) with

high prob.

Proof. Fix v, let N be the set of
√
n vertices closest to v (break ties arbitrarily). By the

same argument as in the spanner lecture, we have Pr[A ∩ N = ∅] ≤ 1/n2. On the other
hand, when A and N intersect, there can be at most

√
n x such that d(v, x) < d(v, p(v)).

By union bound over v, the lemma holds.

Therefore, we have |B(v)| ≤ O(
√
n log n) with high probability, which implies that the

space is Õ(n1.5).

Preprocessing. By running Dijkstra’s algorithm from every vertex x ∈ A, as well as from
every vertex v ∈ V and stopping when it hits any vertex in A, we can show that every edge
is used to update the distance only when one endpoint is in B(v) for the current v. Hence,
the total running time is Õ(m

√
n). The details are omitted.

Query algorithm. Given a query pair (u, v), we use the following algorithm to estimate
their distance.

1. if v ∈ B(u)
2. return d(u, v)
3. return D = d(u, p(u)) + d(p(u), v)

If v ∈ B(u), we return the exact distance. Otherwise, by the triangle inequality, we have
D ≥ d(u, v), and

D = d(u, p(u)) + d(p(u), v)

≤ d(u, p(u)) + d(p(u), u) + d(u, v)

≤ 3d(u, v),

where the last inequality uses the fact that v /∈ B(u), and hence d(u, v) ≥ d(u, p(u)).

3 (2k − 1)-approximate distance oracle

The idea for general k is to have multiple levels of hubs. We sample a large set of level-
1 hubs A1, then sample a subset of them to be level-2 hubs A2, etc. The preprocessing
algorithm will only store the distances to the “close” hubs in each level i, i.e., the ones that
are closer to the closest level i+ 1 hubs.

3

Preprocessing algorithm. More concretely, let A0 = V be the set of all vertices, and
sample Ai ⊆ Ai−1 of size O(|Ai−1| · n−1/k log n) = Õ(n1−i/k). Then let pi(v) denote the
closest vertex in Ai to v, and let Ai(v) be the set of vertices in Ai that are closer to v than
pi+1(v). Finally, we store for each v, the distance d(v, x) for all x in

B(v) := Ak−1 ∪

(
k−2⋃
i=0

Ai(v)

)

in a hash table.
By a similar argument to Lemma 3, we obtain the following bound on |Ai(v)|.

Lemma 4. For each v and i, |Ai(v)| ≤ Õ(n1/k) with high probability.

We omit the proof here. The lemma implies that for each v, |B(v)| ≤ Õ(k · n1/k). The
total size is at most Õ(k · n1+1/k) with high probability.

Query algorithm. To answer a query, we iteratively check if we can route through pi(v)
or pi(u).

1. for i = 1, . . . , k
2. if pi−1(u) ∈ B(v), return D = d(u, pi−1(u)) + d(pi−1(u), v)
3. if pi−1(v) ∈ B(u), return D = d(u, pi−1(v)) + d(pi−1(v), v)

Note that the algorithm will terminate when i = k, since pk−1(u) ∈ Ak−1 ⊆ B(v).
The error bound is guaranteed by the following lemma. Intuitively, it says that when

pi−1(u) /∈ B(v) and pi−1(v) /∈ B(u), u and v must be relatively far, thus, the distance to
the closest level i hub is not too large compared to d(u, v).

Lemma 5. If the algorithm is in iteration i, it must have

d(u, pi−1(u)) ≤ (i− 1) · d(u, v)
d(v, pi−1(v)) ≤ (i− 1) · d(u, v).

(1)

Moreover, if pi−1(u) ∈ B(v) or pi−1(v) ∈ B(u), D ≤ (2i − 1) · d(u, v). Otherwise,
d(u, pi(u)) ≤ i · d(u, v) and d(v, pi(v)) ≤ i · d(u, v).

In particular, the lemma implies that D ≤ (2k − 1) · d(u, v).

Proof. We prove (1) by induction. When i = 1, since p0(u) = u and p0(v) = v. The
inequalities hold.

Then if pi−1(u) ∈ B(v), the query algorithm returns D = d(u, pi−1(u))+d(pi−1(u), v) ≤
2d(u, pi−1(u)) + d(u, v) ≤ (2i− 1)d(u, v). The pi−1(v) ∈ B(u) case is similar.

Otherwise, d(v, pi−1(u)) ≥ d(v, pi(v)), and we have

d(v, pi(v)) ≤ d(v, pi−1(u)) ≤ d(u, v) + d(u, pi−1(u)) ≤ i · d(u, v).

It is similar to show that d(u, pi(u)) ≤ i · d(u, v). This proves the lemma.

	t-approximate distance orcales
	3-approximate distance orcales
	(2k-1)-approximate distance oracle

