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LP Duality is an extremely useful tool for analyzing structural properties of linear
programs. While there are indeed applications of LP duality to directly design algorithms,
it is often more useful to gain structural insight (such as approximation guarantees, etc.).

In this lecture, we’ll see statements of LP duality. We’ll practice applying it in the
homeworks.

1 Weak LP Duality

1.1 Standard form

A generic linear program involves variables x1, . . . , xn, and objective of form

max /min

n∑
i=1

ci · xi

and constraints for j = 1, . . . ,m

n∑
i=1

Ajixi ≤ (or ≥ or =)bj .

It turns out that any LP has an equivalent LP in the standard form:

max
∑
i

cixi∑
i

Ajixi ≤ bj , ∀j

xi ≥ 0, ∀i.

This can be done by observing that min
∑

i cixi is equivalent to max
∑

i(−cixi),
∑

iAjixi ≥
bj is equivalent to

∑
i−Ajixi ≤ −bj , and

∑
iAjixi = bj can be written as two constraints

with LHS ≤ bj and LHS ≥ bj . Finally, by replacing an xi ∈ R by (x′i − x′′i ) for x
′
i, x

′′
i ≥ 0,

we enforce all variables to be nonnegative.

1.2 Dual LP

Fix an LP, we’ll call this the primal LP. x⃗ is called a primal solution. Say it is a maximization
LP, then our goal is to find a primal solution that maximizes our objective, subject to the
feasibility constraints. On the other hand, instead of thinking about directly searching for
good primal solutions, we could alternatively think about searching for good upper bounds
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on how good a primal can possibly be. This is called the dual problem: How can we derive
an upper bound on how good a primal can possibly be?

Consider the following: if we have weights wj ≥ 0 for each inequality j, and take a
linear combination of the feasibility constraints, we may directly conclude that any feasible
x⃗ must satisfy:

∑
i

∑
j

wj ·Aji

xi ≤
∑
j

wj · bj .

Okay, so we can upper bound some linear function of any feasible x⃗, so what? Well, if
we happen to have chosen our wjs so that

∑
j wjAji = ci for all i, now we’re in business!

We’ll have directly shown that
∑

i cixi ≤
∑

j wj · bj . In fact, because xi ≥ 0, even if we only
have

∑
j wjAji ≥ ci we’re in business, as we’d have:

∑
i

cixi ≤
∑
i

∑
j

wjAji

 · xi ≤
∑
j

wj · bj .

Note that the first inequality is only true because xi ≥ 0. So now we can think of the
following “dual” approach: search over all weights wj to find the ones that induce the best
upper bound. Note that our search is constrained to find weights such that ci ≤

∑
j wjAji,

so this itself is a linear program:

min
∑
j

wj · bj∑
j

wj ·Aji ≥ ci,∀i

wj ≥ 0, ∀j.

This is called the dual LP.
For LPs of general form, we can also use this approach to bound its optimal value, which

gives its dual LP. For example, if a variable xi is an arbitrary real, then we must require∑
j wj · Aji = ci. If a constraint is equality

∑
iAjixi = bi, then its weight wi can be an

arbitrary real.
As an exercise, verify that the dual of the dual LP is itself the primal. Note that we

have already proved that every feasible solution of the dual provides an upper bound on
how good any primal solution can possibly be. Therefore, we have established what is called
weak LP duality:

Theorem 1 (Weak LP Duality). Let LP1 be any maximization LP and LP2 be its dual (a
minimization LP). Then if:

• The optimum of LP1 is unbounded (+∞), then the feasible region of LP2 is empty.

• The optimum of LP1 finite, it is less than or equal to the optimum of LP2, or the
feasible region of LP2 is empty.



3

Proof. We have already proven the second bullet. To see the first bullet, observe that if the
feasible region of LP2 is non-empty, then we have directly found a finite upper bound on
LP1. So if LP1 is unbounded, LP2 must be empty.

In fact, we will see a stronger claim later. Weak Duality is easy to prove, and it’s good
to remember this intuition. Strong Duality (later) is good to know, but the intuition is
largely captured by the proof of Weak Duality.

2 Strong Duality

(Proof adapted from Anupam Gupta’s scribed lecture notes here:
https://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15859-f11/www/notes/lecture05.pdf).

The previous section discussed weak duality: using dual solutions as upper bounds on
how good a primal solution could be. In fact, something quite strong is true: there is always
a dual witnessing that the optimal primal is optimal – we can obtain the tight upper bound
in this way.

Theorem 2 (Strong LP Duality). Let LP1 be any maximization LP and LP2 be its dual
(a minimization LP). Then:

• If the optimum of LP1 is unbounded (+∞), the feasible region of LP2 is empty.

• If the feasible region of LP1 is empty, the optimum of LP2 is either unbounded (−∞),
or also infeasible.

• If optimum of LP1 finite, then the optimum of LP2 is also finite, and they are equal.

The first bullet is covered in the weak duality. The second bullet holds, since if LP2
has finite optimum, then by the third bullet, and the fact that the dual of LP2 is LP1, LP1
would also have finite optimum, we get a contradiction. It remains to prove the last bullet.

2.1 Intuition

To understand intuitively why the two LPs have the same optimum, we will take the ge-
ometric view of LP. For simplicity, let us imagine an LP in 2D (figure below). We try to
maximize in the direction of c in the polygon (the objective is maximizing ⟨c, x⟩). First
observe that the extreme point must be achieved at a vertex. Intuitively, this is because
otherwise, we can always “slide” towards left or right, and one direction would allow us
to go further in the direction of c (the only exception is when an edge is perpendicular to
c, then the entire edge achieves OPT, in this case, one endpoint would also do). Suppose
the optimal point is x∗. Now, we notice that for this particular LP and its objective, all
constraints that do not go through x∗ are not important in terms of proving strong duality.
This is because, if we remove all those constraints, it does not affect x∗ being the optimal
solution (see figure on the right). Thus, if strong duality holds, then it holds for this new LP
with fewer constraints – there is a nonnegative linear combination of the constraints that
proves the optimality of x∗. In the other words, it is safe to ignore the other constraints for
now.
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Now, let us look at the two constraints in the figure that go through x∗. What does it
mean to take a nonnegative linear combination of the two. When we give weights w1, w2 ≥ 0
to them, and obtain a new inequality, first observe that if we multiply w1, w2 by the same
(positive) constant, we would get the same new inequality. Thus, without loss of generality,
let us assume that w1 = α and w2 = 1 − α for some α ∈ [0, 1]. Now, when α = 1, it is
exactly the first constraint, when α = 0, it is exactly the second constraint. When α goes
from 0 to 1, the slope gradually changes, and the new inequality always goes through x∗

(this is because x∗ achieves equality in both constraints, and by taking a linear combination,
equality should still be achieved). That is, the new inequality (constraint) rotates around
x∗. Suppose we can find an α ∈ (0, 1) in the middle, such that this new constraint is
perpendicular to c. Then this would be a proof of the optimality of x∗ – every point on this
constraint is as far in the direction of c as each other, and we can only go this far. We will
need to use the optimality of x∗ to show the existence of such an α (it is not too difficult to
see in 2D, since the direction of c must be between the two constraints, otherwise we could
slide along one edge to move further). This intuition holds in high dimensions, and we will
give a formal proof below.

2.2 Proof

The key ingredient in the proof will be what’s called the Separating Hyperplane Theorem.

Theorem 3 (Separating Hyperplane Theorem). Let P be a closed, convex region in Rn,
and x⃗ be a point not in P . Then there exists a w⃗ such that x⃗ · w⃗ > maxy⃗∈P {y⃗ · w⃗}.

Proof. Consider the point y⃗ ∈ P closest to x⃗ (that is, minimizing ||x⃗− y⃗||2 over all y⃗ ∈ P .
As distance is a positive continuous function, and P is a closed region, such a y⃗ exists. Now
consider the vector w⃗ = x⃗− y⃗. We claim that the chosen w⃗ is the desired witness.

Observe first that (x⃗ − y⃗) · w⃗ = ||w⃗||22 > 0, so indeed x⃗ · w⃗ > y⃗ · w⃗. We just need to
confirm that y⃗ = argmaxz⃗∈P {z⃗ · w⃗} and then we’re done.
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Assume for contradiction that z⃗ · w⃗ > y⃗ · w⃗ and z⃗ ∈ P . Then as P is convex, z⃗ε =
(1 − ε)y⃗ + εz⃗ ∈ P as well for all ε > 0. Observe that ||x⃗ − z⃗ε||22 = ||x⃗ − y⃗ + ε(y⃗ − z⃗)||22 =
||x⃗ − y⃗||22 − 2ε(x⃗ − y⃗) · (y⃗ − z⃗) + ε2||y⃗ − z⃗||22 = ||x⃗ − y⃗||22 − 2ε(w⃗) · (y⃗ − z⃗) + ε2||y⃗ − z⃗||22.
By hypothesis, w⃗ · (y⃗ − z⃗) < 0, and ||y⃗ − z⃗||22 is finite, so for sufficiently small ε, we get
||x⃗− z⃗ε||22 < ||x⃗− y⃗||22, a contradiction.

Now, consider the optimum x⃗ of LP1. Let S denote the j for which
∑

iAjixi = bj , and
S̄ the constraints for which

∑
iAjixi < bj . We claim that c⃗ can be written as a convex

combination of the vectors A⃗j , j ∈ S (up to possible scaling).

Lemma 4. Let x⃗ be the optimum of LP1, and let S denote the j for which
∑

iAjixi = bj.
Then there exist {λj ≥ 0}j∈S such that ci =

∑
j∈S λjAji for all i.

Proof. Assume for contradiction that this were not the case. Let X denote the space of all
vectors y⃗ for which there exists {λj ≥ 0}j∈S such that yi =

∑
j∈S λjAji for all i. Observe

that X is clearly closed and convex, so we can apply the separating hyperplane theorem.
Therefore, if c⃗ /∈ X (which we have assumed for contradiction), there exists some γ⃗ such
that c⃗ · γ⃗ > maxy⃗∈X{y⃗ · γ⃗}.

Now, we will consider the vector x⃗ + εγ⃗ for sufficiently small ε, and argue that it is a
strictly better solution to LP1, contradicting that x⃗ is optimal.

We first claim that for all j ∈ S,
∑

iAjiγi ≤ 0. Assume for contradiction that this is
not the case for some j. Then, observe that setting λj = +∞ and all other λj′ = 0 results

in a λ⃗ ∈ X such that λ⃗ · γ⃗ = +∞. In particular, this implies that maxy⃗∈X{y⃗ · γ⃗} = +∞,
contradicting that c⃗·γ⃗ > maxy⃗∈X{y⃗·γ⃗}. So we conclude that for all j ∈ S,

∑
iAji(xi+εγi) ≤

bj .
Moreover, for all i /∈ S,

∑
iAjixi < bj , and

∑
iAjiγi is finite. Therefore, there exists a

sufficiently small ε so that x⃗+ εγ⃗ is feasible for LP1.
Finally, observe that maxy⃗∈X{y⃗ · γ⃗} ≥ 0, as 0⃗ ∈ X. So c⃗ · γ⃗ > 0, and we have now

found a solution x⃗ + ε · γ⃗ such that: (a) for all j,
∑

iAji · (x⃗ + ε · γ⃗) ≤ bj , and (b)
c⃗ · (x⃗+ε · γ⃗) = c⃗ · x⃗+εc⃗ · γ⃗ > c⃗ · x⃗. Therefore, we have found a strictly better feasible solution
to LP1, contradicting that x⃗ was optimal.

Now with the lemma in hand, we want to show a dual whose value matches c⃗ · x⃗. Let
c⃗ =

∑
j∈S λjA⃗j with λj ≥ 0 as guaranteed by the lemma. Set wj = λj for all j ∈ S, and

wj = 0 for all j /∈ S. First, is it clear that w⃗ is feasible for LP2, as we have explicitly set
wj so that ci =

∑
j wjAij for all i. Now we just need to evaluate its value:

∑
j

bjwj =
∑
j∈S

bjwj +
∑
j /∈S

bj · 0 =
∑
j∈S

(
∑
i

Ajixi)wj =
∑
i

∑
j∈S

Ajiwj

xi =
∑
i

cixi.

So its objective value is exactly the same as LP1.
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