
princeton univ. F’23 cos 521: Advanced Algorithm Design

Lecture 10: Distinct Elements and Frequency Moments

Lecturer: Huacheng Yu

1 Distinct Elements

We will continue our topic on streaming algorithms. The first problem we will talk about
today is the Distinct Elements problem. The input is a stream of elements (a1, . . . , an) where
each ai ∈ [U]. Let F denote the number of distinct elements in the input, e.g., (1, 3, 4, 1, 3)
has three distinct elements {1, 3, 4}, and (1, 1, 1, 4) has two {1, 4}. The problem asks to
process the stream using small space and output an estimate F̃ = (1±ε)F with probability
1− δ.

The naive algorithm simply stores all distinct elements it has seen so far. In worst-case,
all elements of the stream may be distinct, i.e., the algorithm must use O(n) space. When
there is a space restriction of S ≪ n, one other natural thought is to sample a subset of
the stream, count how many distinct elements there are, and scale properly. However, it
has low accuracy: consider a stream where (1− γ)-fraction is the same element x (for some
very tiny γ), and the rest are all distinct. We are likely to only sample x, which means
the algorithm does not even know the existance of the rest of the elements. In particular,
it cannot distinguish between such an input, which has very large F , and an all-x input,
which has F = 1. Today, we are going to talk about an algorithm that uses Oε,δ(logU)
bits of space and solves the problem. Note that this space bound for constant ε and δ is
(asymptotically) the same as just storing one element from [U].

The following fact about random variables will guide our algorithm design, although it
is not directly used.

Fact 1. Let X1, . . . , XF be independent uniform random variables taking values in [0, 1].
Let X be their minimum, we have

E[X] = 1/(F + 1).

Let X(k) be the k-th minimum, its expectation is

E[X(k)] = k/(F + 1).

We will assign each distinct element we saw a random number in [0, 1], observe a concrete
value of the k-th minimum, and use the above relation to estimate the number of variables
F .

1.1 An “ideal” algorithm

Now we describe an ideal algorithm that assuming it has access to random hash functions
h : [U] → [0, 1], and we are able to “store” real numbers. Later, we will remove the
assumptions.

Consider the following algorithm, which is referred to the KMV algorithm (k-minimum
value).

1

2

1. fix a parameter k ≥ 1
2. set S ← ∅ (maintain the smallest k numbers we see)
3. for i = 1, . . . , n
4. S ← S ∪ {h(ai)}
5. if |S| > k, remove max(S) from S

6. if |S| < k, return |S|; otherwise, return F̃ := k/max(S)
If we see less than k distinct hashes, we return the exact number of distinct numbers.
Otherwise, we use the above fact to estimate #distinct (note that following the above
formula, we should have returned k/max(S) − 1, but it is already sufficiently accurate
without the “−1”, and this makes the analysis cleaner).

Analysis Suppose we have F distinct numbers, and their hash values are V1, . . . , VF

respectively. Then V1, . . . , VF are independent random numbers in [0, 1].
Note that F̃ > (1 + ε)F , if and only if max(S) < k/(1 + ε)F , if and only if there are

at least k numbers in (V1, . . . , VF) that are < k/(1 + ε)F . Below, we upper bound the
probability of this event via Chebyshev’s inequality.

For i = 1, . . . , F , let Xi indicate if Vi < k/(1 + ε)F . We have that Pr[Xi = 1] =
k/(1 + ε)F . Let X = X1 + · · · + XF . By linearity of expectation, we have the following
claim.

Claim 2. We have E[X] = k/(1 + ε).

We can also bound its variance.

Claim 3. We have Var[X] ≤ k.

Proof. Since Xi are independent, we have

Var[X] = F ·Var[X1] = F · (k/(1 + ε)F − (k/(1 + ε)F)2) < k.

By Chebyshev’s inequality, we have

Pr[X ≥ k] ≤ Pr[|X − k/(1 + ε)| ≥ εk/(1 + ε)] ≤ k/ (εk/(1 + ε))2 ≤ O(1/ε2k).

Since X ≥ k if and only if F̃ > (1+ε)F , by setting k = Cε−2 for a large constant C, we have
Pr[F̃ > (1 + ε)F] < 1/8 Similarly, we can also prove the same bound on Pr[F̃ < (1− ε)F].
Therefore, the algorithm outputs an accurate estimate with constant probability by storing
O(k) = O(ε−2) real numbers.

1.2 Median

Similar to what we covered in the last lecture, by repeating the algorithm O(log(1/δ)) times
in parallel, and return the median of the estimates, we will have success probability at least
1− δ. The overall space usage is O(ε−2 log(1/δ)) numbers.

3

1.3 Remove the assumptions

The first assumption that we can store real numbers can be removed by discretization. It
is not hard to verify that by taking values on the set {1/M, 2/M, . . . , (M − 1)/M, 1}, we
will have a rounding error of ±1/M . By setting M = U , the above algorithm still succeeds
with the same probability. Now we only need the hash functions to take values in [M].

The second assumption is that h is a random hash function [U] → [M]. Observe that
in the proof the only step that uses the independence of the hash values is “Var[X] =
F · Var[X1]”. In fact, this step holds when h is pairwise independent (see Lecture Note
2). It is known that pairwise independent hash families of size poly(U,M) exist. That is,
a hash function can be represented using O(log(U + M)) bits. Therefore, the total space
usage is O(ε−2 log(1/δ) logU).

2 Frequency moments

Consider a stream (a1, . . . , an) where ai ∈ [U]. For any x ∈ [U], let fx be the number of
occurrences of x in the input. Then the p-th frequency moment is

Fp =
∑
x

fp
x .

The two streaming algorithms we saw so far solve the p = 0 case (distinct elements if we
treat 00 = 0) and p = 1 case (estimate the length of the stream).

Next, we are going to show that F2 can also be estimated using small space. Consider
the following algorithm, which is usually referred to as the AMS sketch.

1. assume we have access to a random hash function σ : [U]→ {−1, 1}
2. set X ← 0
3. for i = 1, . . . , n
4. X ← X + σ(ai)
5. return X2

Let us first see why this algorithm reasonably estimates F2. Fix the input stream, which
determines the frequencies fx, and the hash function σ. Then the value of X is simply

X =
∑
x

σ(x) · fx.

Now the value we return X2 is equal to

X2 =

(∑
x

σ(x) · fx

)2

=
∑
x1,x2

σ(x1)σ(x2)fx1fx2

=
∑
x

σ(x)2f2
x + 2

∑
x1<x2

σ(x1)σ(x2)fx1fx2 .

4

First note that σ(x)2 = 1, hence, the first term is equal to F2. On the other hand, the
second term has expectation 0, since for x1 ̸= x2, σ(x1) and σ(x2) are independent, and we
have

E[σ(x1)σ(x2)fx1fx2] = 0.

This is stated as the following claim.

Claim 4. E[X2] = F2.

We can also bound its variance.

Claim 5. Var[X2] ≤ O(F 2
2).

Proof. We have Var[X2] = E[X4]− E[X2]2.

E[X4] =
∑

x1,x2,x3,x4

E[σ(x1)σ(x2)σ(x3)σ(x4)]fx1fx2fx3fx4 .

Note that this expectation is nonzero only when x1 = x2 = x3 = x4 or they form two
distinct pairs, in which case it is equal to 1. Thus, it is equal to∑

x

f4
x + 6

∑
x1<x2

f2
x1
f2
x2
≤ 3(

∑
x

f2
x)

2.

The claim holds.

Note that the above analysis only requires h to be 4-wise independent, which can be
stored using O(log n) bits. Thus, by doing “median-of-means”, we can estimate F2 with a
(1± ε)-approximation with probability 1− δ using O(ε−2 log(1/δ) log n) space.

	Distinct Elements
	An ``ideal'' algorithm
	Median
	Remove the assumptions

	Frequency moments

