PRINCETON UNIV. F’23 cos 521: ADVANCED ALGORITHM DESIGN
Lecture 20: Communication Complexity

Lecturer: Huacheng Yu

Lectures Notes sourced from Chapters 4 and 7 of “Communication Complex-
ity for Algorithm Designers” cited at end. I strongly recommend referring to
the original source for details - these are just posted to recall what was covered
in class.

1 Communication Complexity

In this class we’ll discuss communication problems. That is, we’ll imagine problems where
no single party holds the entire input and we’ll want to know how much communication the
parties need to possibly solve the problem. To be clear, we’ll forget about computational
complexity and only focus on the communication requirements.

Definition 1. A two-party communication problem consists of a boolean function f :
{0,1}% x {0,1}> — {0,1} (for this entire lecture, let a = b =n). Alice is given some input
A € {0,1}* (but doesn’t know anything about B), and Bob is given some input B € {0,1}
(but doesn’t know anything about A). Their goal is to compute f(A, B).

Definition 2. A deterministic communication protocol for f specifies for Alice, as a func-
tion of her input A and all messages sent so far ai,bi,...,ax, by, what message api1 to
send next. It also specifies for Bob, as a function of his input B and all messages sent so
far what message b1 to send next. We’ll be interested in the communication complexity
of a protocol: the mazximum number of bits ever sent in total between Alice and Bob.

Example 1 (Equality). f(A4, B) =1 if and only if A = B. One protocol to solve this is the
following: Alice and Bob both output their entire string in the first round, and declare 1 if
and only if their outputs match. A slightly more clever protocol might have Alice and Bob
each output the first bit of their string and see if they match. If so, continue. If not, output
0. If they make it all the way to the end without stopping, output 1.

Example 2 (Disjointness). For this problem, it will make more sense to think of A as
a subset of [n] (the coordinates which are 1), and B as a subset of [n]. Then consider
f(A,B) =1 if and only if AN B = (. One protocol to solve this is the following: Alice and
Bob both output their entire set, and declare 1 if and only if their outputs match.

Both examples are core problems for communication complexity. Interestingly, the nat-
ural procedures we posed seem to basically communicate the entire input in the worst case.
It turns out that this is because the protocols are (almost) optimal (among deterministic
protocols). We'll prove this using a generic type of argument, called a fooling set argument.
The main idea is the following: Imagine for instance that the complete transcript (that
is, all messages sent by Alice and all messages sent by Bob, in order) are identical for in-
puts (A1, B1) and (A, B2). Then we claim that the transcripts must also be identical for
(A1, Bg) and (AQ, Bl).

observation 1 (Rectangles). Let T(A, B) denote the complete transcript (all messages sent,
in order, and their final answers) produced by Alice and Bob using a communication protocol
on input (A, B). Then if T(A1, B1) = T(As, Bs), we also have T(A1,By) = T(As2,By) =
T(A1,By) = T(Ag, By). Therefore, the protocol gives the same answer on all four input
Pairs.

Proof. Assume for contradiction that this were not the case, and w.l.o.g. say that the
different transcript is T'(A1, B2) # T(Ag, B2). Because the protocol is deterministic, and
Bob has the same input in both instances, Bob will continue outputting the same message
every round until Alice sends a different message. Therefore, in order for T'(Aj, Bs) to
possibly not equal T'(Az, B2), it must be the case that Alice sends the first different message.
However, because T'(A1, By) = T'(Asg, Ba), we also have T'(A1, Bs) # T(A;, B1). By exactly
the same reasoning, Alice will only send a different message if Bob sends a different message
first. Since it is not possible for both Alice and Bob to wait for the other to send a different
message, one of the non-equalities must be violated. So all four transcripts must be the
same.]

The above is called a “rectangle argument” because if we were to draw a matrix where
the rows are Alice’s input and columns are Bob’s, it means that entries that share the same
transcript must form a rectangle (okay, not exactly, but for every transcript 7', there exists a
relabeling of the rows/columns so that the pairs that induce this transcript are a rectangle;
the formal name is “combinatorial rectangle”). It seems quite simple but is surprisingly
powerful because if protocols use limited communication, it must be the case that multiple
inputs have the same transcript, and the rectangle argument lets us conclude that other
inputs necessarily use the same transcript as well.

Definition 3. A fooling set for the function f is a set F' C {0,1}" x {0,1}" such that:
e f(A,B)=1 forall (A,B) € F.
o For every (A1, B1), (A2, Ba) € F, either f(A1,Ba) # 1 or f(Aa, B1) # 1 (or both).

Proposition 1. Let F' be a fooling set for f. Then the deterministic communication com-
plexity of f is at least logy(|F|).

Proof. Assume for contradiction that there exists a deterministic protocol with communica-
tion < logy(|F'|). Then by the pigeonhole principle, there exists some (A1, By), (A2, B2) € F
such that T(A1, B1) = T(Ag, Bs). By the rectangle argument, this necessarily implies
T(Ay,By) =T(As2,B1) = T(A1, By) as well. This means that if the protocol is correct, we
must have f(A1, Ba) = f(A2,B1) =1 as well.

However, this directly contradicts the second property of fooling sets. O

So if a function admits a large fooling set, it is provably impossible to have a short deter-
ministic communication protocol. The remaining work is just to show that both Equality
and Disjointness admit large fooling sets.

Proposition 2. Equality admits a fooling set of size 2".

Proof. Let F = (X, X), for all X C {0,1}". Then f(A,B) =1 for all (A,B) € F. But
F(Aj, By) =0 for all Aj # Bs. So the second property of the fooling set is satisfied. O

Notice that after unraveling all the definitions, the proof is essentially saying the fol-
lowing: if you had a deterministic protocol that used < n bits, there are two inputs of the
form (X, X), (Y,Y) that are treated exactly the same. This protocol must therefore also
treat (X,Y) and (Y, X) the same as (X, X), which Equality treats differently. That is,
the protocol is “fooled” into thinking the input is (X, X) or (Y,Y’) when it really could be
(X,Y) or (Y, X), and this matters.

Proposition 3. Disjointness admits a fooling set of size 2™.

Proof. Let F = (X, X), for all X C [n]. Then f(A,B) =1 for all (4, B) € F. But now
consider any (X, X), (Y,Y) € F. It cannot be the case that XNY = () and YNX =) unless
Y = X. The former implies that X C Y and the latter implies that Y C X. Therefore,
either f(X,Y)=0or f(V,X)=0. O

So both protocols necessarily require communication n to solve deterministically. It
turns out that both problems are also hard to solve nondeterministically. Disjointness
is also hard to solve with a randomized protocol, but Equality can be solved with high
probability with very low randomized communication (see readings for definitions).

2 Multi-party communication

We'll also talk about multi-party communication instead of just two parties - this will be
relevant when figuring out how good combinatorial auctions we should possibly hope for.
Here, there’s again a boolean function f but it takes as input Xy, ..., X,, (for now, all inputs
are k bits, or subsets of [k]). Various input models are studied, but we’ll only talk about
the number-in-hand model with blackboard communication, where player ¢« knows only X;
and nothing else, and each message is broadcast to all other players.

We'll also want a canonical hard problem to start with, multi-disjointness. It also
introduces a new concept, called a promise problem.

Example 3 (Multi-Disjointness). f(X1,...,X,) =1 iff X;nX; =0 for alli # j. Moreover,
we’ll be interested in the promise problem, where the protocol is promised that one of the
following is true about the input:

o X;NX; =0 forallij.
e N, X, #0 (3 e [k],Vi € [n],l € X;).

More clearly, we say that a communication protocol solves Multi-Disjointness if it outputs
1 whenever X; N X; = 0 for all i # j, 0 whenveer N;X; # 0, and is allowed to behave
arbitrarily if neither condition holds.

Theorem 4. Every deterministic protocol for multi-disjointness has communication com-
plexity Q(k/n).

Note that there is a simple deterministic protocol that achieves O(klogn/n + n) com-
munication: Every player checks if their input size is at most k/n, and announce it; if no
player has input size at most k/n, return 0; otherwise, let the first player with such an input

announce their input, and let the next player announce if their inputs intersect. If all sets
have sizes larger than k/n, they cannot be mutually disjoint. Otherwise, sending such a set
only takes O(log (kl;n)) = O(klogn/n) bits. Then if the next player’s input is disjoint from
it, there cannot be a single element in all sets; if they are not disjoint, then f cannot be 1.

Proof. First, observe that an analog of the rectangles argument holds in multi-party com-
munication as well: if T'(Xy,..., X,) =T (Y1,...,Y,), then T(Zy,...,Z,) = T(X1,..., Xp)
whenever Z; € {X;,Y;}. The proof is the same: if not, there must be some player who is
the first to send a different message. But their input matches their input in one of the two
cases (X1,...,Xn), (Y1,...,Y,), so this is a contradiction.

The fooling set argument also extends, but we’ll use the same concepts slightly differently
below. We'll first show that no protocol can use the same 1 transcript for more than n*
inputs. Consider some set F' of inputs that share the same transcript. Then F' does not
contain any O-input: V(Xi,...,X,) € F,V¢ € [k],3i € [n],¢ ¢ X,. However, using the
rectangle property, we can obtain a stronger claim: V¢ € [k],3i € [n],V(X1,...,X,) €
F,¢ ¢ X;. That is, the choice of i depends only on ¢ but not the input: there is a single
player ¢ such that no player ¢’s input in F' contains £. To see why this stronger claim holds,
assume for contradiction that there exists an ¢ such that for all ¢, there exists an input
(Xfl), . ,Xr(f)) € F with ¢ € X, Then by the rectangle argument, this same transcript

7

is used for the input X = (Xfl),...,Xy(Ln)), where £ € Xi(l) for all 4, ie., f(X) = 0,
contradicting the correctness of the protocol. This means that for every ¢, there must exist
a player who does not have element ¢ in any of their inputs in F'. So now we can count such
inputs: for every such input, define p(¢) to be the lowest-indexed player who never has item
¢. Then every input in F has ¢ ¢ Xp(e)- There are n — 1 other players who all may or may
not be interested in item /¢, but all sets are pairwise disjoint, so at most one player can have
¢ € X;. So there are n choices (one of the n — 1 players, or none at all) done independently
over k items, and there are at most n* instances covered by a single transcript.

Finally, we just want to show that there are (n + 1)* instances where the protocol must
output 1, meaning that there are at least log,((1 4 1/n)) different transcripts. To count
the number of instances where the protocol must output 1, observe that each such instance
can be selected by choosing, for each item, a player (or none at all) who has that item in
X;. There are n + 1 choices, independently for all items, so this is (n + 1),

So immediately we conclude a lower bound of nlogy(1 + 1/n) = O(k/n). O

The Q(k/n) hardness also holds against randomized communication and is known to be
tight. See references for more.

Finally, we want to use the above hardness to conclude a lower bound on the commu-
nication necessary to get very good approximations for combinatorial auctions (essentially
showing that the algorithms we saw in the previous two lectures are the best possible unless
we make some assumptions about the valuation functions).

Example 4 (Welfare Maximization). Instead of thinking of the input the players as sets,
think of these bitstrings as defining a valuation function for each bidder. Then Welfare-
Mazximization is the following promise problem:

o If for all partitions of the items, the welfare is at most 1, the protocol must output 1.

o [f there exists a partition of the items for which the welfare is at least n, the protocol
must output 0.

e Otherwise, the protocol can behave arbitrarily.

Theorem 5. The communication complexity of welfare mazximization is 20(m/n*) " Note
that this implies that exponential communication among the bidders is necessary in order
to guarantee that an allocation is within a factor of n of optimal when n = m'/2<.

Proof. First, assume that we have the following construction of partitions: {T%,...,T¢} k]
where for all £, T N Tf = (), but for all £ # ¢, sz NTY # 0. That is, we can assign each
bidder Tf for the same ¢, but not mix and match across different /s.

Now, consider the following class of valuations, called multi-minded, or coverage valu-
ations: bidder i has some subset X; C [k], and v;(S) = 1 if and only if 7/ C S for some
¢ € X; (and v;(S) = 0 otherwise). That is, bidder i “likes” all the sets T, for £ € X;, and
gets value 1 as long as they get some set they like.

Observe that if there exists a single £ € N; X;, then it is possible to achieve welfare n:
simply give each bidder set T} for the £ € N;X;. Also, observe that if it is possible for both
bidder ¢ and bidder j to get value 1, then the sets that they receive and are interested in
must be disjoint, and therefore must have the same ¢. So if for all 4, j, X; N X; = 0, then
there is no way for both bidder ¢ and bidder j to get non-zero welfare, and the maximum
possible welfare is 1. So by a direct reduction to MultiDisjointness, the communication
complexity of determining whether the welfare is > n or <1 is at least Q(k/n).

Now, we just need to figure out how big of a £ we can have while still guaranteeing a
construction of the following form. Consider k random partitions of [m]. That is, each item
is independently and uniformly awarded to a bidder, and Tf is the set of items awarded to
bidder ¢ in partition £. Clearly, this satisfies the first property: for all ¢, the Tfs indeed
form a partition, by definition. We just need to make sure we don’t take too many random
partitions so that we have bad luck and some Tf N Tf/ = (.

So consider a fixed Tf,Tf/. What is the probability that they don’t intersect? This is
the probability that for each item z, it is either not put into Tf or not put into Tf/. This
happens with probability 1 — 1/n2. So the probability that this happens for every item is
exactly (1 —1/n2)™ ~ e~™/"*. Now just take a union bound over all (kn)? sets, and we get
that the probability that any two sets happen to be disjoint by bad luck is ~ k2n2e="/ n?
Therefore, we can take k = 294/ n*) and get a non-zero probability of success (even if we
can’t find this instance efficiently, it exists, so we can use that for the construction and
proof).

So to wrap up: we need a construction of the form at the beginning of the proof for
large k. The argument above provides a construction for k = 22(m/ ”2), which completes the
proof. O

Quick side note: the proof approach above where we showed that a randomized pro-
cedure succeeds in providing a desired construction with non-zero probability is called the
probabilistic method. 1t’s very useful to show combinatorial structures exist when you only
care about existence and not about actually finding them (although there’s a ton of work
on “constructive” probabilistic method arguments too, not discussed in this class).

Bibliography

1. Communication Complexity (for Algorithm Designers). Tim Roughgarden, 2015.
http://theory.stanford.edu/~tim/w15/1/w15.pdf

	Communication Complexity
	Multi-party communication

