
Princeton Univ Fall ’23 COS 521:Advanced Algorithms

Homework 4

Out: Oct 31 Due: Nov 19

Instructions:

• Upload your non-extra solutions to Gradescope in a single PDF file, and mark your
solution to each problem. Please make sure you are uploading the correct PDF! Please
anonymize your submission (i.e., do not list your name in the PDF), but if you forget,
it’s OK.

• If you choose to do extra credit, upload your solution to the extra credits as a single
separate PDF file to Gradescope. Please again anonymize your submission.

• You may collaborate with any classmates, textbooks, the Internet, etc. Please up-
load a brief “collaboration statement” listing any collaborators as a separate PDF on
Gradescope (if you forget, it’s OK). But always write up your solutions individ-
ually.

• For each problem, you should have a solid writeup that clearly states key, concrete
lemmas towards your full solution (and then you should prove those lemmas). A
reader should be able to read any definitions, plus your lemma statements, and quickly
conclude from these that your outline is correct. This is the most important part of
your writeup, and the precise statements of your lemmas should tie together in a
correct logical chain.

• A reader should also be able to verify the proof of each lemma statement in your
outline, although it is OK to skip proofs that are clear without justification (and it
is OK to skip tedious calculations). Expect to learn throughout the semester what
typically counts as ‘clear’.

• You can use the style of Lecture Notes and Staff Solutions as a guide. These tend
to break down proofs into roughly the same style of concrete lemmas you are ex-
pected to do on homeworks. However, they also tend to prove each lemma in slightly
more detail than is necessary on PSets (for example, they give proofs of some small
claims/observations that would be OK to state without proof on a PSet).

• Each problem is worth twenty points (even those with multiple subparts), unless
explicitly stated otherwise.

1

2

Problems:

§1 Given a data matrix X ∈ Rn×d with n rows (data points) x1, . . . , xn ∈ Rd, the k-
means clustering problem asks us to find a partition of our points into k disjoint sets
(clusters) C1, . . . Ck ⊆ {1, . . . , n} with

⋃k
j=1 Cj = {1, . . . , n}.

Let cj =
1

|Cj |
∑

i∈Cj xi be the centroid of cluster j. We want to choose our clusters to

minimize the sum of squared distances from every point to its cluster centroid. I.e.
we want to choose C1, . . . Ck to minimize:

fX(C1, . . . Ck) =
k∑

j=1

∑
i∈Cj

∥cj − xi∥22.

There are a number of algorithms for solving the k-means clustering problem. They
typically run more slowly for higher dimensional data points, i.e. when d is larger.
In this problem we consider what sort of approximation we can achieve if we instead
solve the problem using dimensionality reduced vectors in place of x1, . . . , xn.

Let OPTX = minC1,...Ck fX(C1, . . . Ck).
Suppose that Π is a Johnson-Lindenstrauss map into s = O(log n/ϵ2) dimensions and
that we select the optimal set of clusters for Πx1, . . . ,Πxn. Call these clusters them
C̃1, . . . C̃k. Show that they obtain objective value fX(C̃1, . . . C̃k) ≤ (1 + ϵ)OPTX , with
high probability.

Hint: reformulate the objective function to only involve ℓ2 distances between data
points.

§2 (a) Let m ≥ 1 be an integer, prove that there can be at most 2O(m) points in Rm such
that the distance between every pair of points is between 1 and 3.

(b) For any n ≥ 1, construct a set of n points in Rn such that the distance between
every pair of points is equal to 2.

(c) Prove that the new dimension in the JL lemma is optimal up to a constant factor
when ε = 0.1, i.e., in general, we cannot hope to map an arbitrary set of n points
in a high dimensional space to Rc logn while the pairwise distances are preserved
up to a 1± 0.1 factor, when c > 0 is a sufficiently small constant.

§3 Consider the following variant of online set cover. Offline, we are given a universe
U := {1, . . . , n} of n elements and a family S := {S1, . . . , Sm} of m sets where⋃

i Si = U . The algorithm starts with A = ∅ which denotes the collection of selected
sets.

In each time step t ∈ {1, . . . , T}, an adversary reveals an element et ∈ U , and the
online algorithm has to immediately ensure that et ∈

⋃
S∈A S, i.e., if et is already cov-

ered then the algorithm doesn’t need to select a new set, and otherwise the algorithm
has to select a set into A that contains et. The goal of the algorithm is to minimize
the size of A.

To be clear: it may be that not all elements of U are eventually revealed.

3

Show that every deterministic algorithm achieves a competitive ratio of at best Ω(log(mn)).

Hint: The staff solution considers instances where m and n are polynomially-related,
so that log n = Θ(logm). The staff solution also considers a class of sequences where
the optimal offline solution is always one, but for any deterministic algorithm, there
is always a sequence that requires Ω(log(mn)) sets.

Remark: The Ω(log(mn)) bound also holds against randomized online algorithms,
but you do not have to prove this.

§4 (Approximate LP Solving via Multiplicative Weights) This exercise develops an algo-
rithm to approximately solve Linear Programs.

Consider the problem of finding if a system of linear inequalities as below admits
a solution - i.e., whether the system is feasible. This is an example of a feasibility
linear program and while it appears restrictive, one can use it solve arbitrary linear
programs to obtain approximate solutions. For all subparts, you may assume
that |aij | ≤ 1 and |bi| ≤ 1 for all i, j.

a⊤1 x ≥ b1

a⊤2 x ≥ b2
...

a⊤mx ≥ bm

xi ≥ 0 ∀ i ∈ [n]
n∑

i=1

xi = 1. (1)

(a) Design a simple algorithm to solve the following linear program, which has only
two non-trivial constraints. Below, the weights w1, w2, . . . , wm are fixed (along
with the vectors a⊤j and numbers bj), and x1, . . . , xn are the variables.

max

m∑
j=1

wj(a
⊤
j x− bj)

xi ≥ 0 ∀i ∈ [n]
n∑

i=1

xi = 1. (2)

(b) Prove that if there exist non-negative weights w1, w2, . . . , wm such that the value
of the program above is negative, then the system (1) is infeasible.

(c) The above setting of finding weights that certify infeasibility of (1) might remind
you of the setting of weighting the experts via multiplicative weights update rule
discussed in the class. Use these ideas to obtain an algorithm that a) either finds
a set of non-negative weights certifying infeasibility of LP in (1) or b) finds a

4

solution x that approximately satisfies all the constraints in (1), i.e., for each
1 ≤ j ≤ m, a⊤j x − bj ≥ −ϵ, and for each 1 ≤ i ≤ n, xi ≥ 0, and

∑n
i=1 xi = 1.

Prove that your algorithm terminates after solving O(ln(m)/ε2) LPs of form (2)
(you do not need to analyze the remaining runtime).

(Hint: Identify m “experts” - one for each inequality constraint in (1) and main-
tain a weighting of experts (starting with the uniform weighting of all 1s, say)
for times t = 0, 1, . . . , - these are your progressively improving guesses for the
weights. Solve (2) using the weights at time t. If the value of (2) is negative,
you are done, otherwise think of the “cost” of the jth expert as a⊤j x

(t)− bj where

x(t) is the solution to the LP (2) at time t and update the weights.)

§5 The standard Cauchy distribution has the following probability density function

p(x) =
1

π(1 + x2)
,

for x ∈ R. It has the following property: Let X1, X2, X be independent standard
Cauchy random variables, then for any a, b ∈ R, aX1+ bX2 has the same distribution
as (|a|+ |b|)X (you don’t need to prove it!). That is, any weighted sum of independent
standard Cauchy random variables is still a Cauchy random variable, scaled by the
sum of absolute values of the weights.

Design an LSH for ℓ1 distance: Fix r1 < r2, design a random function f : Rn → Z
such that there exists p1 > p2,

• for any ∥x− y∥1 ≤ r1, we have Prf [f(x) = f(y)] > p1, and

• for any ∥x− y∥1 ≥ r2, we have Prf [f(x) = f(y)] < p2,

where ∥x− y∥1 =
∑n

i=1 |xi − yi|.
Note: You don’t need to specify the values of p1, p2 given r1, r2, it suffices to show
that they exist.

Hint: Consider the inner product of x and a vector with random Cauchy coordinates.

Extra Credit:

§1 (Extra credit, follows “Given a data matrix...”) Instead, suppose we reduce our points
to k dimensions using the SVD. I.e. let Vk ∈ Rd×k have the first k right singular
vectors of X. Show that, if C̃1, . . . C̃k are the optimal clusters for V T

k x1, . . . , V
T
k xn,

then fX(C̃1, . . . C̃k) ≤ 2OPTX .

Hint: show that for every set of clusters, there is an orthonormal matrix C ∈ Rn×k

such that fX(C1, . . . Ck) = ∥X − CCTX∥2F . I.e. reformulate k-means as a k-rank
approximation problem.

