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Figure 1: Where people draw lines. Average images composed of 107 drawings show where artists most commonly drew lines in our study.

Abstract

This paper presents the results of a study in which artists made line
drawings intended to convey specific 3D shapes. The study was de-
signed so that drawings could be registered with rendered images
of 3D models, supporting an analysis of how well the locations of
the artists’ lines correlate with other artists’, with current computer
graphics line definitions, and with the underlying differential prop-
erties of the 3D surface. Lines drawn by artists in this study largely
overlapped one another (75% are within 1mm of another line), par-
ticularly along the occluding contours of the object. Most lines
that do not overlap contours overlap large gradients of the image
intensity, and correlate strongly with predictions made by recent
line drawing algorithms in computer graphics. 14% were not well
described by any of the local properties considered in this study.
The result of our work is a publicly available data set of aligned
drawings, an analysis of where lines appear in that data set based
on local properties of 3D models, and algorithms to predict where
artists will draw lines for new scenes.

1 Introduction

The goal of our work is to characterize the mathematical properties
of line drawings made by human artists. Specifically, we aim to
draw relationships between the locations of lines drawn by artists
and properties of the surface geometry, lighting, and viewing con-
ditions at those locations. This type of analysis can both guide the
future development of line drawing algorithms in computer graph-
ics, and provide artists and observers with a precise vocabulary for
characterizing and discussing where lines on a model are drawn.

This paper describes a study in which art students were asked to
make line drawings that “convey the shape” of 3D models shown to
them as rendered images. The study balances the competing con-
cerns of allowing the artists to draw freely and of acquiring useful
data. Specifically, the artists were asked to draw in two steps: first to
draw in a blank area, then to register their drawing to a faint, photo-
realistic image of the model. The registered drawings can then be
used to study correlations between the locations of human-drawn
and computer-generated lines (Section 4.2), characterize the differ-
ences between specific artists (Section 4.3), and provide training
data for synthesis of new line drawings (Section 4.4).

We provide a statistical analysis of the locations where artists drew
lines with the geometric, viewpoint, and lighting characteristics
of the underlying 3D scene. The analysis supports several con-
clusions. First, human line drawings, made under our controlled
conditions, are quite consistent with each other. Second, most of
the areas where artists consistently drew lines can be described by
well-known, simple mathematical properties, such as the locations
of occluding contours and large gradients of image intensity. Third,
current line drawing definitions can help explain many of the lines
that do not lie in those areas, but cannot explain all the artists’ lines.

We believe that this paper in no way exhausts the possible inves-
tigations that can be performed with this data. We therefore make
our drawings and models freely available, in hopes that other re-
searchers continue in this line of inquiry.

Overall, the paper makes the following contributions:

• A study methodology that supports registration of human line
drawings with rendered images of 3D models.

• A dataset of 208 line drawings provided by 29 skilled artists
covering a dozen 3D models, with two viewpoints and two
lighting conditions for each model.

• Results of correlating local properties of 3D surfaces and ren-
dered images with the locations of lines in artists drawings.

• Characterization of which pixels drawn by recent automatic
line drawing algorithms are found in human line drawings.

• A method for predicting the probability of an artist drawing
at a particular location in an image and using that image to
generate new line drawings.



2 Background and Related Work

Principles of Drawing. Artists have for centuries studied the prin-
ciples of how to make drawings. Books codifying these principles
line the shelves of any major bookstore (e.g., [Guptill 1976; Meyer
and Avillez 1985; Ruskin 1895]). Although these texts tend to em-
phasize the more artistically salient concerns of composition, mo-
tion, passion, and mystery, some also offer advice on using lines
to convey texture, bulk, and shading, noting that even sparse line
drawings are sufficient for the viewer to identify shape. Some ex-
plicitly identify known line types as candidates for drawing (e.g.,
contours and ridges [Smith 1997], or specific feature lines on a
known shape such as the nose [Peck 1982]) . Nevertheless, little
more is said about where on a figure to place lines in order to best
convey shape – this decision making process seems to be learned
through trial and error over years of practice by individual artists.

Algorithmic Line Drawing. Inspired by the effectiveness and aes-
thetic appeal of human line drawings, scientists have investigated
algorithms for generating line drawings. The mathematician Felix
Klein reportedly [Hilbert and Cohn-Vossen 1999] asked his stu-
dents to draw parabolic lines (lines of zero Gaussian curvature)
over a bust of Apollo, believing they would expose some aspects
of the aesthetics of the sculpture. Feature lines play a critical role
in some of the early work in non-photorealistic rendering (NPR),
for example the work on technical illustrations by Saito and Taka-
hashi [1990] and on on pen-and-ink illustration by Winkenbach and
Salesin [1994; 1996]. These early examples of NPR, as well as
many that follow, make drawings that also include hatching lines or
stippling. These effects greatly facilitate the viewer’s understanding
of shape by providing diffuse shading, and sometimes by following
isoparametric lines or curvatures in the shape. This paper neglects
such shading effects in order to focus on how more basic, sparse
line drawings are used to convey shape.

More recently, interest has shifted to algorithms for drawing lines
on smooth surfaces. Examples include smooth silhouettes [Hertz-
mann and Zorin 2000], suggestive contours and highlights [De-
Carlo et al. 2003; DeCarlo and Rusinkiewicz 2007], geometric
ridges and valleys [Ohtake et al. 2004], apparent ridges [Judd et al.
2007], and lines from diffuse shading [Lee et al. 2007]. Each al-
gorithm has strengths and weaknesses. Silhouette lines (more pre-
cisely, occluding contours) are obviously important, but alone they
tend to leave a drawing too sparse. Suggestive contours connect to
occluding contours and often lie in naturally important areas, but
do not exist at all on convex shapes. Geometric ridges help define
convex shapes, but often seem to exaggerate curvature. Apparent
ridges use a more sophisticated view dependent curvature metric,
but still seem to exaggerate curvature in some cases and tend to be
noisy. Lines from diffuse shading [Lee et al. 2007] are robust and
smooth, and respond to changes in lighting, but are difficult to styl-
ize. Finally, while not explicitly designed as a line drawing method,
intensity edge detection in shaded images by algorithms like that of
Canny [1986] is so straightforward that it is common in image edit-
ing software like Photoshop. These lines are surprisingly effective
for many applications but require tuning intensity thresholds, are
brittle in the face of image noise, and can break and bifurcate.

With the myriad line drawing options now available, it is natural to
ask which are appropriate for a specific situation, or which more
closely resembles what a human would draw. Recent efforts ([Judd
et al. 2007; Lee et al. 2007; DeCarlo and Rusinkiewicz 2007])
include direct comparisons between their results and artists’ ren-
derings. However, these comparisons are informal and generally
intended to illustrate the inspiration for the work, not to evalu-
ate the results of the algorithm. In contrast, the dataset presented
here makes possible formal comparisons by directly associating 3D
models, lighting, and camera angles with human drawings.

NPR by example. The use of human input to drive NPR algo-
rithms has been previously explored by several research teams.
Hamel and Strothotte [Hamel and Strothotte 1999] found the pa-
rameters of an NPR renderer to match an example rendering. The
introduction of “image analogies” by Hertzmann et al. [2001] en-
abled a user to transfer certain stylistic properties of an image to
another image, and the analogous approach was also developed for
curves [Hertzmann et al. 2002]. The WYSIWYG NPR system of
Kalnins et al. [2002] allowed an artist to draw directly onto a model
and then transfered that stylization to other views of the model. Our
synthesis approach described in Section 4.4 is most similar to that
of Lum and Ma [2005], which also used a machine learning algo-
rithm to classify lines based on a user’s input. However, Lum and
Ma focus on an interactive system for specifying a subset of known
lines, whereas we focus on synthesizing lines from learned relation-
ships between surface properties and human line drawings.

Evaluation Studies. Experimental psychologists have long used
computer generated imagery to study the human visual system,
including the study of shape cues given by line drawings [Koen-
derink et al. 1996]. Objective evaluation studies are difficult to
design for NPR imagery, where there is not an obvious ground
truth. Nevertheless, there has been substantial work in percep-
tual studies of lines and NPR algorithms. For example, Gir-
shick et al. [2000] showed that “line direction matters” when de-
picting shape. Gooch et al. [Gooch et al. 2004] evaluated people’s
ability to recognize faces from caricature drawings versus photos.
Several recent methods focus on directing the viewer’s attention,
and used an eye-tracker to evaluate success [DeCarlo and Santella
2002; Cole et al. 2006; Santella and DeCarlo 2004]. When NPR is
used to improve human comprehension, algorithms can be directly
compared against each other [Winnemöller et al. 2007], but this ap-
proach can only evaluate relative effectiveness between algorithms,
not how much such methods could improve.

Two recent studies used drawings by human artists alongside com-
puter renderings of the same models. Isenberg et al. [2006]
compared viewers’ perceptions of hand-drawn versus computer-
generated pen-and-ink illustrations. Phillips et al. [2005] conducted
a study similar to ours, in which artists were asked to draw syn-
thetic, blobby shapes from a range of prompt types. Among other
differences from that work, our study includes a separate tracing
and registration step that allows greater accuracy in the analysis of
artists’ lines.

3 Study Design

The study is designed to capture the relationships between the loca-
tions where human artists draw lines and the mathematical proper-
ties of the of the model’s surface and appearance at those locations.
To achieve this goal in a way that supports detailed analysis, several
important choices must be made: what drawing style to consider,
what models, views, and lighting conditions to use as prompts, how
to present these prompts to the artists, what instructions to give the
artists, and how to scan and process the drawings. The following
sections describe each of our design decisions in detail.

3.1 Artistic Style

The first challenge in designing the study is to decide on a style
of drawing that is narrow enough that all artists have roughly sim-
ilar intentions while drawing, yet flexible enough for each artist to
exercise individual ingenuity.

We balance these goals by focusing on line drawing that includes
only feature lines, with no hatching or shading (examples appear in
Figure 4). This choice of style was made for two reasons. First,



it is a simple style that is familiar to most artists and yet expres-
sive enough to depict shape. Second, it matches the style gener-
ated by several NPR rendering algorithms recently proposed in the
computer graphics literature (e.g., [DeCarlo et al. 2003; Judd et al.
2007]). By asking the artists to draw in the same style as the com-
puter algorithms, we can learn both about the human drawings (by
using the vocabulary of the algorithms) and the computer drawings
(by using statistical correlations with human tendencies).

We give each artist verbal and written instructions to make drawings
with “lines that convey the shape” of an object. We do not provide
instructions about whether lines should represent shape features,
lighting features, or anything else. However, we specifically ask the
artists to refrain from including lines that represent area shading or
tone features, such as stippling or hatching.

3.2 Prompt Selection

A second design decision is to select 3D models and rendering pa-
rameters to use when producing prompts (images depicting a shape
for the artists to draw). In making this choice, we use the following
design criteria:

• Comprehension: our first concern is to provide images
from which the artists can easily infer shape. This consid-
eration rules out overly abstract 3D surfaces (i.e., shapes un-
like anything in common experience), complicated concave
shapes (e.g., with lots of occluded surfaces), and surfaces with
spatially-varying BRDFs (e.g., textures). It also suggests that
multiple views of the shape be provided as prompts, so that
ambiguities in one view are resolved by another. Finally,
prompt images should be photorealistic, to avoid confusing
artists that are not familiar with classic CG rendering artifacts
such as hard shadows and lack of indirect illumination.

• Coverage: the set of prompts presented to each artist should
have pixels that cover a wide variety of mathematical proper-
ties (e.g., high image gradients, surface critical points, etc.).
This consideration rules out objects containing only large, pla-
nar facets (few interesting surface features), convex objects
(no concave surface features), and other surfaces with few in-
flections. Rather, it suggests blobby objects with many curved
surfaces.

• Separation: the prompt images should have mathematical
features of particular interest (e.g., suggestive contours, ap-
parent ridges) in clearly distinguishable positions within the
image. This consideration rules out using headlights (a point
light centered at the viewer’s eye), since many interesting im-
age features line up directly with object-space features in that
case (e.g., suggestive contours and image intensity valleys).

• Familiarity: the objects shown in prompts must be famil-
iar to the artist (so that he/she can understand it), but not
so familiar to the that he/she applies domain-specific knowl-
edge when drawing. This consideration rules out objects with
strong semantic features (e.g., human faces) and ones com-
monly drawn in art classes (e.g., fruit).

• Simplicity: the objects must be relatively simple, without
much fine scale detail. Otherwise, the artists may be tempted
to abstract or simply omit important features.

Based on these criteria, we select 12 models of four object types
for our study: (a) 4 bones, (b) 2 tablecloths, (c) 4 mechanical parts,
and (d) 2 synthetic shapes (Figure 2). We synthesize four prompt
images for each model, one for each combination of two different
viewpoints and two lighting conditions. The two viewpoints are al-
ways 30◦ apart (so that large parts of each model can be seen from

vertebra cervical tooth femur
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(a) 4 Bones

(b) 4 Mechanical Parts

(d) 2 Synthetic Shapes(c) 2 Tablecloths

Figure 2: Prompt models. The twelve models from our study,
shown with one of two views and one of two lighting conditions.
Groups (a) and (b) are scanned meshes, (c) and (d) are synthetic.

both viewpoints) and are carefully chosen to distribute surface fea-
tures across the image. By providing prompts with different light-
ing and different viewpoints for the same model, we can analyze
image-space properties in isolation from object-space ones.

We generate our images using YafRay [2008], a free raytracing
package capable of global illumination using monte carlo pathtrac-
ing. The models are rendered using a fully diffuse, gray material,
and thus take on the color of the lighting environment. For lighting,
we use the Eucalyptus Grove and Grace Cathedral high dynamic
range environment maps captured by Debevec [1998].

3.3 Line Drawing Registration

The final and most difficult part of the study design is to engineer a
system that is able to register line drawings made by artists to pixels
of a prompt image with great accuracy.

Designing such a system is challenging because there is a trade-off
between allowing the artist to draw in a natural manner (e.g., with
pencil on a blank sheet of paper) versus including constraints that
facilitate accurate registration between prompts and line drawings.
On one hand, the drawing process surely must not bias the loca-
tions of lines made by the artist, and thus it is not a good idea to
have the artist compose a drawing directly over the image prompt.
On the other hand, the process must provide enough registration ac-
curacy to distinguish between important mathematical properties at
nearby pixels in the prompt. This problem is particularly difficult
since free-hand drawings can be geometrically imprecise, and the
intended location of every line is only known by the artist.

Our design balances these trade-offs with a simple two step pro-
cess. In the first step, the artist is given a pencil and a blank sheet of
paper and then asked to make a free-hand line drawing that “con-
veys the shape” of the surface in the prompt. In the second step, the
artist is asked to re-create the same line drawing by tracing over a
faint copy of the prompt, being careful to redraw every line of the
free-hand drawing at the position corresponding to its originally in-
tended location.



Figure 3: Making a drawing. With the drawing page folded in half,
the artist makes a free-hand drawing while refering to the prompt
page (left). The completed drawing page (right) contains a free-
hand drawing and a registered drawing.

Specifically, the artist is given two sheets of paper for each line
drawing (Figure 3). The prompt page (shown on the left) con-
tains multiple full color views of the prompt shape, one of which
is large across the top and is called the main view. The drawing
page (shown on the right) contains two boxes, each the same size
as the main view. The top box is initially blank, while the bottom
box contains a faint version of the main view.

The artist is asked to complete the drawing page by first folding
the page vertically in half so that only the blank space at the top
is visible (left of Figure 3). Using the viewing page for reference,
the artist draws the prompt shape in the blank space, just as if they
were making a normal sketch. When finished, the artist unfolds
the drawing page and copies their freehand drawing onto the faint
image on the bottom of the same page. During the copying step, the
artist is asked to change the shape of their lines to match the target
rendering, but not to change the number or relative position of the
lines. In effect, the artist is asked to perform a non-linear warp
of their original drawing onto the target shape. A typical result is
shown on the right side of Figure 3.

We scan the drawing page with a flat-bed scanner, locate fiducials
included in the corners of the page, and then use the fiducials to
register the traced lines with the 3D model rendered from the main
viewpoint. An adaptive thresholding method is used to convert the
scanned gray-scale image into a binary image so that all the artist’s
lines, regardless of strength, are included in the binary image. We
then use a thinning operator to narrow the lines in the binary image
down to the width of one pixel. The final result is a 1024×768 pixel
binary image containing a single pixel wide approximation of the
human artist’s lines.

While this procedure takes up to twice as long as a single drawing
(e.g., it requires the artist to draw every line twice), it achieves a
nice balance between the design trade-offs: the line drawings are
composed in a free-hand manner familiar to artists, while the in-
tended locations of every line on the 3D surface can be inferred
with great accuracy.

3.4 Data Collection

This line drawing and registration procedure was repeated for 29
artists, most of whom were enrolled in one of four art classes (two
composed of middle and high school students, one of adult evening
students, and another of college students). Two of the participants
were professional artists. Each artist completed up to 12 prompts.

Every participant completed a questionnaire listing his/her gender,
age, and number of years of art training. In all, there were 22 fe-
males and 7 males. The ages ranged from 10 to 54 years, with an

Figure 4: Example drawings. Three drawings of the screwdriver
model from the same view (a,b,c), and the average of 14 drawings
of the same view (d).

average of 22; and the participants reported an average of 6 years
of art training (this number should be taken with a grain of salt, as
some participants reported only training at the college level, while
others reported all art classes).

Every artist was provided a folder with one page of instructions,
twelve prompt pages, and twelve corresponding drawing pages (one
for each model). The folders were arranged such that no artist could
draw the same model more than once, and prompts for models,
viewpoints, and lighting conditions were arranged in shuffled or-
der to reduce effects of training on our analysis.

The artists were given brief verbal instructions (“draw lines that
convey shape” and “be sure to copy every line from your free-hand
drawing over the faded image below”) and then told to complete
line drawings at their own pace for as long as they had time. Most
of the art classes were scheduled for a two hour block, and each line
drawing took 10-15 minutes, on average (with time split around 2/3
for drawing free-hand and 1/3 for tracing lines over the faded im-
age). Each participant completed an average of 7.5 drawings – only
one participant (a professional artist) completed all twelve available
in his folder.

In all, 208 line drawing images were collected. Generally speaking,
the artists followed the directions well, produced line drawings that
convey shape effectively, and were careful when tracing lines over
the faded image (some example line drawings are shown in Fig-
ure 4). However, in some cases, the artists clearly were not careful
in the registration step, failing to follow even the exterior outline
of the shape. Since accurate registration of lines to image features
is essential for meaningful results, we cull these tracings from our
analysis. To do this in an unbiased way, we assume that inclusion
of the exterior outline is common to all human line drawings, and
eliminate from our data set any drawings where less than 90% of
the exterior is within 1mm of a human-drawn line. The remaining
170 line drawings form the basis for our analysis.

4 Results

We can investigate a number of questions by comparing how our
captured line drawings overlap with the synthetic images provided
as prompts to the artists.

We ask not only how artists’ drawings overlap with one another,
but also how they overlap with lines generated by computer graph-
ics algorithms, and how they can be predicted from local proper-
ties of the underlying surface and rendered image. The latter two
topics are of particular interest for computer graphics, as they pro-



vide a characterization of artist line drawings in terms of line defini-
tions (e.g., this drawing is X% occluding contours, Y% suggestive
contours, Z% apparent ridges, and so on) and differential proper-
ties commonly used in the field (e.g., there is a high propensity for
lines when the view dependent curvature is large and its derivative
is zero). We believe that characterizing the relationships between
artists’ drawings and these terms is the most interesting aspect of
our study.

All comparisons between drawings are based on overlaps of pix-
els, rather than strokes or lines. This approximation is made for
two practical reasons. First, since artists’ drawings are scanned af-
ter they are complete, we have no robust method to tell where line
strokes begin and end (an artist may make several small strokes
that merge together into a single line). Second, since it is difficult
to establish correspondences between lines robustly, there is no ob-
viously good measure of the overlap between sets of lines. Rather,
we compare line drawings based on proximity of pixels, an approx-
imation that is both simple and robust.

4.1 How similar are the artists’ drawings?

The first and most basic analysis we perform is to measure the sim-
ilarity between artists’ drawings of the same prompts.

We can show consistency between artists qualitatively by super-
posing drawings on top of each other and visualizing how much
they overlap (Figure 1). For example, Figure 5a shows each artist’s
drawing in a separate color. In this example, the artists agree very
closely with each other in most areas, especially along obvious fea-
tures such as boundaries and occluding contours, but differ in ex-
actly where they place lines in the right part of the rockerarm.

In order to quantify consistency, we compute a histogram of pair-
wise distances between artists’ drawings (Figure 5b). For every
pixel in every drawing, we record the distance to the closest pixel in
every other drawing of the same prompt, and then observe how of-
ten these distances lie within the tolerance of the tracing procedure
(1mm). Across all prompts, approximately 75% of human drawing
pixels are within 1mm of a drawn pixel in all other drawings for
that prompt.
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Figure 5: Consistency of artists’ lines. a) Five superimposed draw-
ings by different artists, each in a different color, showing that
artists’ lines tend to lie near each other. b) a histogram of pair-
wise closest distances between pixels for all 48 prompts. Note that
approximately 75% of the distances are less than 1mm.

4.2 Do known CG lines describe artists’ lines?

A natural question to ask is how well currently known line drawing
algorithms can describe the human artists’ lines. In our analysis,
we consider the following line drawing algorithms: image inten-
sity edges [Canny 1986], geometric ridges and valleys (as defined
by [Ohtake et al. 2004]), suggestive contours [DeCarlo et al. 2003],
and apparent ridges [Judd et al. 2007]. For the object space methods
(ridges and valleys, suggestive contours, and apparent ridges), we
always include the exterior boundary and interior occluding con-
tours in the generated drawing. For Canny edge detection we al-
ways include the exterior, but not the interior contours, since they
are not necessarily image intensity edges.

Quantifying comparisons between drawings

In order to compare an artist’s drawing and a computer generated
drawing quantitatively, we use the standard information retrieval
statistics of precision and recall (PR). Here, precision is defined as
the fraction of pixels in the CG drawing that are near any pixel of
the human drawing. Recall is defined as the fraction of pixels in the
human drawing that are near any line of the CG drawing. We define
“near” by choosing a distance threshold – we use 1mm.

As an example, consider comparing the set of five human drawings
shown in Figure 5a with the lines generated by the apparent ridges
algorithm (Figure 6). The output of the apparent ridges algorithm
is not only a set of lines, but also a “strength” value at each line
point. In general, we expect stronger lines to be more important
and thus more likely to match the artists’ lines. We thus generate a
series of binary apparent ridges images, each consisting of all points
with strength above a given threshold. The PR of each drawing
compared with this set of images is shown as a dotted pink line
in Figure 6. As the strength threshold is lowered more lines are
produced, typically causing recall to increase and precision to go
down, yielding a sloping line in the PR graph. For completeness,
we allow the PR plot to extend to P = 1.0, R = 0.0 (defined as a
blank image), and directly downward to P = 0.0 from the highest
recall obtained by the algorithm. Since each PR curve is defined for
P = [0,1], we can compute an average curve by combining points
along lines of fixed precision. The PR values for occluding contours
alone are plotted as black dots, and are not averaged.

While computing precision and recall for the other object space
definitions is performed similarly, computing PR for the Canny
algorithm is slightly more complicated. Canny also has a natural
“strength” value (the intensity of the filter response), but the algo-
rithm has three free parameters: the size of the image filter, and the
low and high thresholds (l and h). For our analysis, we fix the fil-
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Figure 6: Precision and recall example. Left: apparent ridges are
compared with five artist drawings. Solid line (highlighted) is the
average PR for the set of drawings. Black dots indicate contours
only. Right: an example drawing with overlapping apparent ridges
(widened by 1mm on each side). PR of the example is circled.
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Figure 7: Average precision and recall. Lines further to the upper
right represent better matches between the artists’ and CG lines.
The black dots represent occluding contours only, and are not aver-
aged. The slope of the curve generally falls off rapidly after 80%
precision. Red dotted line indicates theoretical maximum recall.
Note: axes begin at 20% recall and 40% precision.

ter σ at 2 pixels (a value we find produces reasonable results) and
set l = 0.4h. We then vary h to control the number of line pixels
produced by the edge detector.
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In choosing the distance threshold, there is
tension between achieving high recall and
causing nearby, but distinct, line definitions to
overlap. The figure inset right shows the cu-
mulative recall over all drawings of lines ex-
plained by distinct (colored, as in Figure 7)
versus overlapping (gray) definitions, as a
function of threshold distance. We find that
the threshold of 1mm provides a good balance
between high recall and low overlap. Impor-
tantly, we find that while the exact recall num-
bers change somewhat with the distance threshold, the qualitative
behavior and relative rankings of the CG lines do not.

Comparing CG lines individually

Figure 7 shows the average precision and recall for four repre-
sentative models. The lines drawn on mechanical models such as
the flange are classified readily into ridge-like features (green and
pink), and are also explained well by Canny edges (yellow). The
lines drawn on the cloth and bone models are largely occluding con-
tours (black dots), though suggestive contours (blue) explain rela-
tively more of the lines on these smooth models than on the other
sets. The cubehole is almost completely explained by the CG meth-
ods. The tightness of the group of occluding contour dots gives a
measure of how similar each drawing’s PR is to the others, since the
unaveraged PR lines (with the exception of Canny) pass through the
contour dots.

We find that overall, Canny edges, apparent ridges, and geometric
ridges and valleys best match the human lines when taken individ-
ually. No single definition matches the artists’ drawings perfectly.
Even in theory, however, no single CG algorithm with a single free
parameter could match all the drawings, because the drawings are
different from one another.

To gauge how far the CG algorithms could possibly improve, we
imagine a computer algorithm to create an optimal CG drawing for
a set of artists’ drawings. The optimal drawing has the highest recall
for a given precision of any possible CG drawing (dotted red in
Figure 7). Thus, it both describes how closely the original drawings
match each other, and puts a conservative ceiling on how well any
CG algorithm can match the human drawings.

The optimal CG drawing for precision P is created by the following
procedure: for each of n binary, thinned drawing images, make an
image that contains all the pixels within 1mm of any drawn pixel.
Add these images to create an overlap image with values in the
range [0,n]. Sort the pixels of this overlap image, and choose pixels
with the highest value until precision falls below P. The blank im-
age is defined to have P = 1.0, so this procedure always produces a
drawing. Since the value of a pixel in the overlap image is exactly
the precision of that pixel if added to the optimal drawing (times
n), this procedure will choose a drawing with the largest possible
number of pixels for a given precision.

Comparing CG lines in combination

Even with the theoretical ceiling imposed by the optimal CG draw-
ing, the individual CG algorithms do not match the artists’ lines
particularly closely. In almost all human drawings, however, there
are examples of multiple classes of lines. For example, an artist
might draw mostly along image intensity edges, but still draw other
semantically important features. It is thus interesting to consider
how different line definitions might explain the human drawings in
combination.

In order to combine line definitions fairly, we use computer gener-
ated drawings with a fixed 80% precision. We then classify each
pixel in each human drawing by the nearby CG lines. Pixels that
lie near a single line definition are considered to be explained only
by that definition, while pixels that lie near multiple definitions are
considered explained by all the nearby definitions.

To visualize the results we create bar charts that partition the lines
into object space definitions (blue), image intensity edges (green),
or both (brown). Looking at the results in Figure 8a, we find that
the large majority of lines are described by both image intensity
edges (Canny edges) and an object space definition. Of the remain-
der, slightly more lines are explained by the combined object space
approaches than by image edges alone.

Lines that are explained only by image edges account for at most
5% of all classified lines at 80% precision. We can therefore learn
a good amount by examining the object space lines alone. Ana-
lyzing object space lines is also more informative than analyzing
image edges, since the different definitions correspond to familiar
geometric concepts. For example, we can break down the human
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Figure 8: Categorizing artists’ lines. a) fraction of all lines ex-
plained by image based lines only, object based lines only, and
both. b) fraction of all lines explained by the exterior contours,
interior occluding contours, and all other object space lines. Dotted
red indicates theoretical maximum recall.
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Figure 9: Non-contour lines. Categorization of artists’ lines that
are not exterior or interior occluding contours: geometric ridges
and valleys (RV), apparent ridges (AR), suggestive contours (SC),
and combinations.

lines by intuitive categories, such as exterior and interior occluding
contours, and everything else (Figure 8b). Across all model groups,
the exterior boundary alone accounts for between 35-50% of all
classified pixels. Occluding contours account for between 10-20%
of all classified pixels, while all other definitions make up 20-35%.

If we look at the object space lines that are not exterior or inte-
rior contours, we see that in the mechanical and synthetic models,
ridge and valley like features dominate the remaining lines (green,
yellow, and pink in Figure 9). Both apparent ridges and geometric
ridges and valleys contribute alone, but the majority of ridge like
features are classified both as apparent and geometric.

For the bone and cloth models, ridges and valleys are less impor-
tant, though the overall total of non-contour lines is approximately
half that of the mechanical and synthetic models. One particularly
interesting combination of object space lines is suggestive contours
and apparent ridges (purple in Figure 9). Both suggestive contours
and apparent ridges extend contours, but are largely disjoint else-
where. Lines that are classified as both suggestive contours and
apparent ridges, therefore, are likely to be extensions of occluding
contours. As might be expected, the folds in the synthetic cloth lead
to a disproportionately high amount of this combination.

4.3 Can CG lines characterize artists’ tendencies?

Given a way of describing an artist’s drawing in terms of CG line
types, it is possible to investigate whether those descriptions can
characterize the similarities and difference between artists’ styles or
tendencies. For example, it may be possible to characterize whether
certain artists tend to draw certain geometric features (e.g., ridges)
more than other artists do. In such cases, the CG line definitions
provide a vocabulary to discuss features of human line drawings.

0.0 0.1 0.2 0.30.0 0.1 0.2 0.3

SC & ARARRV & ARRVOther Overlap SC

Artist A Artist B

Recall

Figure 10: Comparison of two drawings by different artists. Two
drawings of the same prompt show significant visual differences.
These differences are reflected in the statistics, especially in the use
of ridge-like lines (green).

Figure 10 shows a simple example of this type. Two drawings of
the same prompt (twoboxcloth with Grace Cathedral lighting) are
compared by the composition of CG line types. As in Figure 9, the
colored bars indicate the fraction of the drawing made up by each
line type. In this case, however, each set of bars represents a single
drawing. One immediate difference between the drawings is that
artist A drew more lines besides the contours. Non-contour lines
account for 26% of artist A’s drawing, and only 13% of artist B’s
drawing. The bulk of the difference between the artists is in the
use of ridge-like lines (green, yellow, and pink bars). Artist A drew
ridge-like lines along the top of the shape, while artist B did not.
This visual difference is evident from the statistics, which show a
large fraction of geometric ridges and apparent ridges in artist A’s
drawing, and almost none in artist B’s drawing.

While this analysis is instructive in some cases, we find that some
individual artists appear to have consistent tendencies that are not
well explained by the CG lines examined here. For example, artist
C made seven drawings, in which 16% of the lines are unexplained
by the tested CG definitions at 80% precision. Over the same seven
prompts, all other artists averaged only 8% unexplained lines. As
shown by the examples in Figure 11, artist C made consistently
distinct drawings. Artists with different styles, such as artist C,
may provide valuable data for future research on line definitions
and shape perception.

Artist C

others

Figure 11: Unusual drawings by an individual artist. CG defini-
tions explain fewer lines in artist C’s drawings than other artists’
drawings of the same prompts. However, artist C’s drawings are
careful and consistent.

4.4 Can combined local properties explain lines?

While it is interesting to investigate the relationship between artists’
lines and the lines commonly used in computer graphics, a more
fundamental question is how artists’ lines relate to differential prop-
erties of images and surfaces. The analysis above addresses this
question indirectly, since each CG definition is based on a set of
local properties, but it is restricted to the relationships suggested by
the known line drawing algorithms.

To address this question, we take a classic data mining approach.
For every pixel of every prompt, we compute: 1) a feature vector
(x) of properties derived from the 3D surface and 2D rendered im-
age, and 2) an estimated probability that a line will be included at
the corresponding location in an artist’s line drawing. Our goals
are to learn a function f (x) that estimates the probability p of an
artist drawing at a point (regression) and to understand which com-
binations of properties are most useful for building such a function
(feature importance).



Choosing local properties

To build the feature vector for each pixel, we compute 15 lo-
cal properties of three types commonly used in image processing,
computer graphics, and differential geometry. First, we consider
four image-space properties of the photorealistically-rendered im-
age prompt: the luminance, the gradient magnitude after a Gaus-
sian blur with σ=2 pixels (ImgGradMag), and the minimum and
maximum eigenvalues of the image Hessian (corresponding to the
minimum and maximum directional second derivative of luminance
(ImgMinCurv and ImgMaxCurv, respectively). In general, we ex-
pect that lines are more likely near image edges (ImgGradMag is
large) and at ridges and valleys of luminance (where ImgMinCurv
and ImgMaxCurve are large).

Second, we consider view-independent, differential properties of
the visible point on the 3D surface, including the maximum (κ1),
minimum (κ2), mean ((κ1 + κ2)/2), and Gaussian (κ1κ2) curva-
tures (SurfMaxCurv, SurfMinCurv, SurfMeanCurv, and SurfGaus-
sianCurv, respectively). In most cases, we expect lines to occur
in areas where these expressions are large, though it has also been
observed that lines are drawn near parabolic lines (κ1κ2 = 0).

Third, we consider view-dependent properties that correspond to
specific definitions for computer-generated lines. Corresponding to
the definition of ridges and valleys, we take the derivative of the
largest principal curvature in the corresponding principal direction
(SurfMaxCurvDeriv), which is zero at ridges and valleys. Corre-
sponding to occluding contours, we compute the dot product be-
tween normal and view vectors (N ·V ). Corresponding to apparent
ridges and valleys, we compute the largest view-dependent princi-
pal curvature (ViewDepCurv) and its derivative in the correspond-
ing apparent principal direction (ViewDepCurvDeriv), which are
large and zero, respectively, at apparent ridges. Corresponding to
suggestive contours, we compute the radial curvature (RadialCurv)
and its derivative in the radial direction (RadialCurvDeriv), which
are zero and large, respectively, at suggestive contours. Finally,
corresponding to principal highlights, we compute radial torsion,
which is zero at principal highlights.

Finally, we estimate the probability, p, of an artist drawing at a
pixel by averaging the registered drawings of all artists for the same
prompt and blurring with a Gaussian filter to account for tracing
errors (σ = 0.5mm).

Predicting lines by regression

While several of the computed properties clearly can be used to
distinguish pixels where artists draw from where they do not (Fig-
ure 12), the interesting question is whether combinations of those
properties can be used to predict where artists will draw more ac-
curately than any of them alone. To investigate this question we
have experimented with several regression models, including lin-
ear regression, radial basis functions, regression trees, and several
others.

As an example, Figure 13a shows a regression tree built with the
M5P package in Weka [Witten and Frank 2005] to predict the set
of line drawings for one view of the twoboxcloth model shown in
Figure 2. In this visualization, branches of the tree are shown as
conditionals proceeding down the tree (indentation indicates level
of the tree). If the conditional at a branch is TRUE, then its de-
scendent on the next line is evaluated; otherwise, the one lower in
the tree and connected by vertical bars is visited. Leaves are drawn
with two text strings, the first one (colored) indicates a predicted
value of p, while the second provides the count of pixels mapping
to that leaf during training. The two images to the right of the tree
show how the tree is used for regression – every pixel is sorted into
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Figure 12: Example local surface features. Top: the relative fre-
quencies of pixels near artists’ lines (blue), and away from artists’
lines (green). Bottom: the same data, but shown as probabilities.

the tree based on its properties and assigned the value stored at the
leaf. Figure 13a shows the prediction of p resulting from this sim-
ple tree, while Figure 13b provides a visualization of which pixels
sort into which leaves of the tree (pixels in the image are colored to
match the text of the leaf).

In this example, several properties are combined by the deci-
sion tree to predict p, including ImgGradMag, RadialCurvDeriv,
ViewDepCurvDeriv, SurfGaussianCurv, ViewDepCurv, N ·V , Surf-
MaxCurvDeriv, and SurfMinCurv. The set of properties chosen is
instructive, as it suggests that they provide the highest incremen-
tal value in predicting p (at the start of tree building). Of course,
many properties are correlated, and the decision tree may be non-
optimal, so an alternative tree may have produced similar or better
predictions. None the less, it is interesting to see how non-trivial
combinations of local properties can be used to make predictions
– even though the tree was purposely kept small in this example,
it still is able to provide a plausible (albeit coarse) prediction for
where artists draw lines (Figure 13a). If we consider deeper trees
or other regression models, we are able to predict p from x more
accurately.

It is also possible to use image processing tools to find ridges in
the predicted probability distribution to produce a new line draw-
ing. In the case shown in Figure 14a, we predict the image p (top
left) using linear regression. We observe that this synthesis quali-
tatively resembles the composite of artists’ drawings (Figure 14b).
We then extract lines with a ridge finding algorithm to produce the
line drawing in Figure 14d. This line drawing is comparable to
a sample artist’s drawing from the data set (Figure 14e) and con-

Figure 13: Decision tree for predicting where artists will draw. (a)
decision tree learned from prompts of bones, (b) predicted proba-
bilities of where artists will draw for this view (black is high proba-
bility), and (c) a visualization of which pixels fall into which leaves
of the tree. Note that this tree was purposely kept small for didactic
purposes, which causes the prediction to be coarse.



(a) Drawing likelihood (b) User composite

(d) Extracted lines (e) Sample drawing

(c) Suggestive contours

(f ) Canny edges

Figure 14: Synthesis. Linear regression on the cervical model,
trained on drawings of other bone models, estimates the likelihood
of an artist’s line appearing at each pixel (a). The likelihood image
resembles the overlaid artists’ drawings of the same prompt (b). To
synthesize a line drawing, ridges are extracted from the likelihood
image(d). This synthesis qualitatively compares with a sample hu-
man drawing (e). Note that the synthesis could not have emerged
from independently analyzing the CG lines shown in (c),(f)

tains elements from multiple CG line definitions. For comparison,
the right two images (Figure 14c,f) show suggestive contours and
Canny edges for the same prompt with parameter settings tuned to
produce approximately the same line density as the artist’s drawing.
Since the probability predicted by our model combines the differ-
ential properties that lay the foundations of these other algorithms,
the fact that it exhibits features from more than one of them is not
surprising. However, it provides a practical way to combine fea-
tures from many automatic line drawing algorithms into a single
framework where thresholds are learned automatically.

4.5 Which local properties are most important?

In our data mining framework, it is not only possible to predict
where artists will draw, but also to examine which local features
are most important when building such a regression model. For ex-
ample, Random Forests [Breiman 2001] estimate the importance of
every feature to its model by building a large number of decision
trees trained on different subsets of the data [Breiman 2001]. For
each feature m of each built tree, the error observed in predictions
for the “out of bag” data (the part held out of training) is computed
and compared to the error that is observed when values of feature
m are permuted. The difference between these errors, averaged and
normalized, is reported as the “importance” of feature m. Of course,
the importance only measures an average over many trees, and so
it does not capture the importance of any single feature at any sin-
gle branch in the tree. Yet, it is interesting to use importance esti-
mates to study how much low-level features contribute on average
to predictions of line drawing locations. For this analysis, we make
the assumption that almost all occluding contours (N ·V = 0) are
drawn by artists (Figure 12),and so exclude any pixel within 1mm
of a contour from the training set.

Table 1 shows the relative feature importance as computed with
the Random Forest implementation of Breiman and Cutler in R [R
2005] for the remaining pixels of all drawings in our study. The first
four columns report the importance of features (rows) estimated
when training on models from each of one type (bones, cloth, me-
chanical, and synthetic), while the rightmost column reports the
average over the whole dataset.

The results indicate that image-space intensity gradient magnitude
is the feature amongst the tested set that is most useful in predicting
the probability that an artist will draw at a particular location in our
study (e.g., the average prediction error is largest if values of the
image-space gradient magnitude are randomized). While image-
space discontinuities often appear at the same place as boundary
contours and occluding contours (N ·V = 0), the locations where
those contours appear have been excluded from this study. So, this
result suggests that image-space intensity gradients away from the
contours are also highly correlated with artist line locations. Of
course, this is not surprising, as ridges, valleys, and shadow bound-
aries are commonly drawn by artists. However, it is a bit surprising
how all the simple image-space features (which do not require a
3D model to compute) are so important relative to the other more
complex properties that have been the focus of recent research in
computer graphics.

Feature Bone Cloth Mech Synth Avg
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e ImgGradMag 31.3 36.0 73.8 147.8 72.2

ImgMaxCurv 38.0 15.8 55.5 64.4 43.4
ImgMinCurv 15.1 15.3 23.4 56.6 27.6
ImgLuminance 20.2 19.8 33.9 33.6 26.9
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N ·V 23.6 13.9 31.3 36.9 26.4
ViewDepCurv 21.5 17.2 49.8 10.1 24.7
ViewDepCurvDeriv 22.8 14.4 31.9 9.5 19.7
RadialCurvDeriv 19.2 15.0 29.8 8.0 18.0
RadialTorsion 14.6 10.3 27.8 7.2 15.0
RadialCurv 14.8 10.3 26.2 7.2 14.6
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t SurfMaxCurvDeriv 16.9 11.0 27.3 8.9 16.0
SurfMaxCurv 13.9 8.8 25.1 7.6 13.9
SurfMinCurv 13.9 8.1 27.0 5.1 13.5
SurfMeanCurv 14.1 8.9 22.5 7.0 13.1
SurfGaussianCurv 13.1 8.5 25.7 4.9 13.1

Table 1: Property “importance.” This table shows the relative im-
portance of local properties in predicting the probability of an artist
drawing at a particular location. Columns show results for Random
Forests trained on different subsets of the data.

4.6 Which CG lines are most important?

We can also use Random Forests to compute importance of the
computer graphics line definitions studied in Section 4.2 for pre-
dicting where artists draw lines. For this analysis, we compute a
new feature vector for every pixel storing the strength for every CG
line definition. Note that strength is only defined at pixels where
the algorithm would draw a line (e.g., zeros of maximum curva-
ture derivative for ridges). At all other pixels, strength is always
zero. We then recompute the Random Forests with the new feature
vectors.

From the results in Table 2, we see that strong image-space gradi-
ents in illumination (Canny edges) still provide the strongest cues
for artists to draw lines, even in relation to other computer graphics
line definitions.

Feature Bone Cloth Mech Synth Avg
Canny edges 18.2 37.2 50.9 145.0 53.4
Apparent Ridges 8.7 11.2 21.2 77.9 24.8
Ridges & valleys 6.8 7.4 24.4 77.1 24.5
Suggestive Contours 9.8 11.9 17.4 1.6 11.3

Table 2: CG line definition “importance.” This table shows results
similar to thoe ones in Table 1, but for features derived directly from
CG line definitions.



5 Conclusion

Overall, we make the following conclusions from this study, some
of which are obvious and others of which are not.

First, we observe that artists in our study draw nearly 75% of their
lines at a location that is within 1mm of all other artists drawing
from the same prompt. The overlaps appear mainly at exterior and
interior occluding contours, which comprise 57% of all lines drawn.

Amongst the other lines, large gradients in image intensity (as mea-
sured by image-space gradient magnitude) provide the best single
predictor for where artists will draw under the conditions of our
study. Lines generated by Canny edge detection on a prompt image
cover 76% of artists’ lines with 80% precision. These lines are al-
most entirely overlapped (95%) by lines predicted by object-space
line definitions commonly found in computer graphics. The three
object space definitions together cover 81% of the artists’ lines at
the same precision. We find that each of the four CG line definitions
we considered explains some artists’ lines that the others do not.

The cumulative output of the four line drawing algorithms consid-
ered in this paper cover only 86% of artists lines. We believe that
some of the remaining lines could be explained by other line defini-
tions based on local properties (e.g., lines from diffuse shading [Lee
et al. 2007], or a new definition net yet described), or by clever com-
binations of current line definitions.

In some cases, however, it appears that artists select lines using cri-
teria beyond the local features we examine here. For example, Fig-
ure 15 shows two cases where artists chose to draw lines on locally
weak ridge and valley features, while omitting lines along locally
stronger ridges and valleys. This choice is consistent between sev-
eral artists.

While it may be that local surface features that we have not exam-
ined (or a combination of them) could explain the artists’ choices
in these cases, we believe it is more likely that the artists used non-
local criteria for selecting these lines. Indeed, several artists men-
tioned that, for the flange drawing (Figure 15a), they omitted lines
that were “implied.” Since implied features depend on context, they
are not describable with local properties alone.

Limitations and Future Work

We identify the following limitations of our study, which suggest
topics for further work:

Potential bias. The possibility exists that our results carry some
bias due to the way we collected data. We believe that artists gen-
erally followed the given instructions and faithfully copied their
drawings from the drawing area to the tracing area, but it is pos-
sible that they altered their lines when tracing over a faint version
of the prompt. Such alteration could contribute to the relatively
high importance of image-space features noted in our analysis (Sec-
tions 4.5 and 4.6). Note, however, that the same image-space fea-
tures in the faint images also appear in the prompt images.

Limited data. This paper draws a number of conclusions from
the limited data set we have acquired to date. Of course, those
conclusions are limited to the conditions of our study and the artists
participating. In the future, we hope to expand this study to provide
more drawings per prompt and cover a greater range of subjects.
More data would reduce noise in the analysis, support a greater
range of analyses, and offer greater predictive power in machine-
learning approaches to synthesis.

This paper does not exhaust the possible analyses that could be per-
formed with the data presented here. Other possibilities include:

(a) (b)

(c) (d)

Figure 15: Artists’ sophisticated line selection. The red lines (solid
boxes) in this composite (a) are unexplained at 80% precision,
but can be characterized as geometric valleys. However, several
artists have omitted locally stronger valley features (dotted boxes),
as shown by the maximum curvature of the model (b). The red lines
in (c) are also ridge like features, but the curvature strength in the
area is very low relative to the rest of the model (d).

Local per-pixel analysis. Our analysis has to date only studied
per pixel properties of the strokes. We believe that studying such
properties along the lengths of strokes will be both challenging and
fruitful. Moreover, it is known that humans generally need a global
view of a line drawing in order to fully understand it [Waltz 1975].
Likewise, Figure Figure 15 suggests a global analysis might yield a
better model for the human lines.

View-dependence of lines. The two viewpoints selected for our
prompts are close enough to allow analysis of how lines move with
changing views. One possible way to approach this question would
be to reproject lines drawn from one view to compare with lines
drawn in the other view.

In addition, our results suggest two areas for future studies:

Perception. As mentioned in Section 2, perception of drawings is
an area of active research. This study would be greatly comple-
mented by a companion study that showed what shape percepts are
induced by the drawings presented herein.

Shading and Stylization. Thus far, we have considered only
sparse, simple line drawings. Artists use a variety of other effects
such as shading and varying line qualities to achieve greater visual
impact. We believe that it would be fruitful to use the framework
described in this paper to acquire and study such data.
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