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Abstract

A transient hardware fault occurs when an energetic particle strikes a transistor, causing it to change
state. Although transient faults do not permanently damage the hardware, they may corrupt computa-
tions by altering stored values and signal transfers. In this paper, we propose a new scheme for provably
safe and reliable computing in the presence of transient hardware faults. In our scheme, software com-
putations are replicated to provide redundancy while special instructions compare the independently
computed results to detect errors before writing critical data. In stark contrast to any previous efforts
in this area, we have analyzed our fault tolerance scheme from a formal, theoretical perspective. To be
specific, first, we provide an operational semantics for our assembly language, which includes a precise
formal definition of our fault model. Second, we develop an assembly-level type system designed to
detect reliability problems in compiled code. Third, we provide a formal specification for program fault
tolerance under the given fault model and prove that all well-typed programs are indeed fault tolerant.
In addition to the formal analysis, we evaluate our detection scheme and show that it only takes 34%
longer to execute than the unreliable version.

1 Introduction

A transient fault or soft error is a temporary hardware failure that alters a signal transfer, a register value,
or some other processor component. While transient faults are temporary, they corrupt computations and
have led to costly failures in high-end systems in recent years. For example, in 2000 there were reports that
transient faults caused crashes at a number of Sun’s major customer sites, including America Online and
eBay [2]. Later, Hewlett Packard admitted multiple problems in the Los Alamos Labs supercomputers due
to transient faults [7]. Finally, Cypress Semiconductor has confirmed “The wake-up call came in the end of
2001 with a major customer reporting havoc at a large telephone company. Technically, it was found that a
single soft fail. . . was causing an interleaved system farm to crash” [27].

Unfortunately, while soft errors can already cause substantial reliability problems, current trends in
hardware design suggest that fault rates will increase in the future. More specifically, faster clock rates,
increasing transistor density, decreasing voltages and smaller feature sizes all contribute to increasing fault
rates [1, 11, 20]. Due to a combination of these factors, fault rates in modern processors have been increasing
at a rate of approximately 8% per generation [3].
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These trends are well known in the architecture and compiler communities, and, consequently, many
solutions to the threat of soft errors have been proposed. At a high level, all of these solutions involve adding
redundancy to computations in one way or another, but the specifics vary substantially. For instance, there
are proposals involving hardware-only solutions such as error-correcting codes, watchdog co-processors [6]
and redundant hardware threads [4, 9, 15, 24] as well as software-only techniques that use both single and
multiple cores [12, 13, 16, 17, 19, 23]. Broadly speaking, if the technique can scale, hardware-only solutions
are more efficient for a single, fixed reliability policy, but software-only solutions are more flexible (they may
be deployed exactly when, where, and to the degree needed) and less costly in terms of hardware. In an
attempt to gain some of the best of both worlds, researchers have also recently proposed hybrid software-
hardware solutions involving strong fault tolerance mechanisms implemented in hardware but controlled by
the software running on the processor [18].

Software-only and hybrid hardware-software techniques also possess at least one further, little-mentioned
drawback — they may not actually work. To be fair, many of these techniques appear extremely promising.
However, as far as we are aware, the published transient fault-tolerance techniques come with no rigorous
proofs that they guarantee any particular reliability properties. In general, researchers satisfy themselves
with presenting an algorithm for fault-tolerance and leave the audience to judge for themselves whether or
not the algorithm is correct. In fact, the literature does not even precisely define what it might mean for an
assembly-level program to be fault tolerant. This paper tackles this gaping hole in the existing literature by
defining a new hybrid hardware-software technique for tolerating transient faults, and, unlike any previous
work, actually proving it has strong fault-tolerance properties.

The specification and proof of fault tolerance comes in several stages. First, before proving any particular
properties, it is necessary to define a fault model precisely. Most of the current literature uses the Single
Event Upset (SEU) Model, which states that only one fault may occur during execution [15, 18, 25]. However,
the details of exactly where and when faults may occur are usually given in English. We also assume the
SEU model, but we specify exactly where by including faulty transitions as formal rules in the operational
semantics of our assembly language.

Second, it is necessary to state precisely what “fault tolerance” actually means. Abstractly, a program is
fault-tolerant if no fault can change the observable behavior of a program. More concretely, we assume our
system operates in the presence of a memory-mapped output device, and hence a program is not fault-tolerant
if a fault can cause a deviation in the sequence of values written to memory. We formalize this property
more precisely as a mathematical theorem that relates faulty and non-faulty executions of a program.

Third, it is necessary to provide a technique for actually proving that specific programs are fault tolerant
relative to the fault model. Our proof technique is presented in the form of a type system. All well-typed
programs satisfy variants of the standard progress and preservation lemmas, even in the presence of transient
faults, as well as the stronger fault tolerance property mentioned above. In addition to being theoretically
important as a proof technique for fault tolerance, the type system can be used to debug compilers that intend
to generate reliable code. If the output from these compilers type check, their code will have strong fault
tolerance guarantees. In the past, researchers have proposed testing compiler outputs using fault injection
techniques that randomly insert errors into programs. However, using a type checker in this case is a much
better idea. In principle, a conventional testing technique would need to test all combinations of features in
conjunction with all combinations of faults, causing an explosion in the number of test cases, and yet still
failing to achieve perfect fault coverage in practice. By using the type checker we have designed, one achieves
perfect fault coverage relative to the fault model without needing to increase the compiler test suite.

The rest of this paper presents the details of our hybrid hardware-software fault-tolerance technique.
Section 2 presents the syntax and operational semantics of the new, idealized assembly language we have
designed for fault tolerance. It is a RISC-based architecture with special instructions to facilitate reliable
communication with memory and to detect control-flow faults. Section 3 presents the key principles and
formal definitions for the fault-tolerant assembly language type system (TALFT for short). Though the typing
rules are specific to our particular setting, the underlying principles are more general; we believe many of
these principles will apply to reasoning about related fault-tolerant systems. Our innovative combination of
a TAL-like type-theory with concepts from classical Hoare Logics is a particularly general and important
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technical contribution. Section 4 describes the key theorems we have proven including Progress, Preservation,
“No False Positives,” and Fault Tolerance. Section 5 provides empirical evidence that our new hybrid solution
to fault tolerance is feasible for many applications by measuring performance results on simulated hardware.
Related work is discussed in more detail in Section 6.

2 The Faulty Hardware

The faulty hardware is based on a simple RISC architecture, extended with features to support detection of
control-flow faults and safe interaction with memory-mapped output devices. Correct use of these features
makes it possible to detect all faults that might change a program’s observable behavior. Most practical
systems also need a fault recovery mechanism of some kind. However, since recovery is largely orthogonal
to detection, we omit the former, focusing only on the latter in this paper.

The general strategy of every fault-tolerant program is to maintain two redundant and independent
threads of computation, a green (G) computation and a blue (B) computation. The green computation
generally leads slightly, and the blue computation generally trails, though there is a fair amount of flexibility
in how the instructions in each computation may be interleaved. Prior to writing data out to a memory-
mapped output device, the results of the two computations are checked for equivalence. If the results are
not equivalent, the machine will signal that a fault has been detected. The arguments to any control-flow
transfer must also be checked for faults. This methodology has been show in the literature as an effective
implementation of fault tolerance [13, 17], and we expand on this style of implementation by formalizing the
fault model and coverage.

The execution of assembly programs is specified using a small-step operational semantics that maps
machine states (Σ) to other machine states. These machine states are made up of a number of components.
The first component is the machine’s register bank R, which is a total function that maps register names
to the values contained therein. The meta variable a ranges over all sorts of registers, and meta variable
r ranges only over general-purpose registers (r1, r2, ...). In addition to general-purpose registers, there are
two program counter registers (pcG and pcB), which contain the same value unless there has been the fault.
There is one additional special register, the destination register, d . Its role in control-flow checking will be
explained later.

To facilitate proofs of certain theorems, the value in each register is tagged with the color (either green
or blue) of the computation to which it belongs. However, these tags have no effect on the run-time behavior
of programs.1

In addition to a register bank, the machine state includes a code memory C, which we model as a
function mapping integer addresses n to instructions.2 The machine also has a value memory M , which
maps addresses to integer values. In between the value memory and the processor is a special store queue,
Q, which is used to detect faults before data is written to a memory-mapped output device. The store queue
is a queue of address-value pairs. We will discuss the role of the queue in greater detail later.

Overall, an abstract machine state (Σ) may have the form fault , indicating the hardware has detected a
transient fault, or the ordinary state (R, C, M, Q, ir), where the first four components are as discussed above,
and ir is either an instruction i to be executed, or “·” indicating the next instruction should be fetched from
code memory. Figure 1 summarizes the syntax of machine states. Here and elsewhere in the paper, we use
overbar notation to indicate a sequence of objects.

2.1 The Fault Model

The operational semantics is designed both to model proper execution of machine instructions and to make
perfectly explicit, precise, and transparent all of our assumptions about when and where faults may occur.
The central operational judgment has the form Σ1 −→s

k Σ2, which expresses a single step transition from
state Σ1 to state Σ2 while incurring k faults and writing data s to a memory-mapped output device. We

1In contrast, the tags on instruction opcodes, to be introduced momentarily, do have an effect on evaluation.
2Address 0 is not considered a valid code address.
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colors c ::= G | B
colored values v ::= c n
registers r ::= rn

general regs a ::= r | d | pcc

register file R ::= · | R, a → v
code memory C ::= · | C, n → i
value memory M ::= · | M, n → n

store queue Q ::= (n, n)
ALU ops op ::= add | sub | mul
instructions i ::= op rd, rs, rt | op rd, rs, v

| ldc rd, rs | stc rd, rs | mov rd, v
| bzc rz , rd | jmpc rd

inst register ir ::= i | ·
state Σ ::= (R, C, M, Q, ir) | fault

Figure 1: Syntax of instructions and machine states.

will work under the standard assumption of a single upset event and hence k will always be either 0 or 1.
The data s is a (possibly empty) sequence of address-value pairs. While the operational semantics models
the internal workings of the machine, the only externally observable behavior of the machine is the sequence
of writes s to the output device or the signaling of a hardware-detected fault. If faults cause the processor
to have drastically different internal behavior, but the externally observable sequence s is unchanged, we
consider the program to have executed successfully.

Different fault-tolerance techniques protect different components of machines. In the literature, the
protected areas are usually inside the Sphere of Replication (SoR) [15]. In our case, we target faults that
may occur in data manipulated within the processor. We assume that both code memory C and value
memory M are fully protected. This is often the case since error-correcting codes can very efficiently protect
memory. To make these assumptions explicit, the following three operational rules specify exactly how faults
may occur within our system.

R(a) = c n

(R, C, M, Q, ir) −→1 (R[a 7→ c n′], C, M, Q, ir)
(reg-zap)

Q1 = (n1, n′
1), (m1, m

′), (n2, n′
2)

Q2 = (n1, n′
1), (m2, m

′), (n2, n′
2)

(R, C, M, Q1, ir) −→1 (R, C, M, Q2, ir)
(Q-zap1)

Q1 = (n1, n′
1), (m, m′

1), (n2, n′
2)

Q2 = (n1, n′
1), (m, m′

2), (n2, n′
2)

(R, C, M, Q1, ir) −→1 (R, C, M, Q2, ir)
(Q-zap2)

Rule reg-zap nondeterministically introduces a fault into any register by replacing the value in that register
with some other arbitrary value. There are no restrictions on how the underlying value might be changed.
For instance, code pointers can be changed to arbitrary integer values; references may no longer be in bounds.
However, the color tag is preserved to facilitate fault-tolerance proofs. Since the color tag is fictional (has
no effect on run-time behavior), this poses no limitation on the fault model. Rules Q1-zap and Q2-zap alter
the contents of the store queue in similar ways.

Formally, these are the only faults that can occur. However, notice that since the program counters and
targets of indirect jumps are susceptible to the reg-zap rule, we effectively capture many forms of “control-flow
faults” studied previously. Notice also that we do not explicitly consider faults that occur during execution
of an instruction. However, many such faults may easily be shown equivalent to correct execution of an
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Instruction Fetch:

Rval(pcG) = Rval(pcB) Rval(pcG) ∈ Dom(C)

(R, C, M, Q, ·) −→0 (R, C, M, Q, C(Rval(pcG)))
(fetch)

Rval(pcG) 6= Rval(pcB)

(R, C, M, Q, ·) −→0 fault
(fetch-fail)

Basic Instructions:

(R, C, M, Q, op rd, rs, rt) −→0 (R++[rd 7→ Rcol(rt) (Rval(rs) op Rval(rt))], C, M, Q, ·)
(op2r)

(R, C, M, Q, op rd, rs, c n) −→0 (R++[rd 7→ c (Rval(rs) op n)], C, M, Q, ·)
(op1r)

(R, C, M, Q, mov rd, v) −→0 (R++[rd 7→ v], C, M, Q, ·)
(mov)

Figure 2: Operational rules for basic instructions

instruction composed with a fault either immediately before or afterwards. For example, consider a simple
register-to-register add instruction. Any fault within the adder hardware during execution of the add is
equivalent to a correct add followed by a fault in the destination register.

An important benefit of our formal model is that there is actually some precise, concrete specification to
analyze. Moreover, if a researcher wants to reason about the consequences of some fault that lives outside
the formal model, this may be done by adding a new operational rule to the system and studying its semantic
effect.

2.2 Instruction Semantics

The syntax of machine instructions was presented along with the rest of the components of our abstract
machine in Figure 1. The semantics is described formally by the inference rules in Figures 2, 3, and 4, and
explained informally below. The formal rules use several notational conventions. For instance, if R is a
register file then R(a) is the contents of register a and R[a 7→ v] is the updated register file with register a
mapped to v. R++ is the register file that results from incrementing both pcG and pcB by 1. If R(a) is the
colored value c n, we write Rval(a) to denote n and Rcol(a) to denote c. The function find(Q, n) produces
the first pair (n, n′) that appears in Q, or () if no pair (n, n′) appears in Q.

Instruction Fetch. The machine operates by alternatively fetching an instruction from code memory
and executing that instruction. When there is no current instruction to execute (i.e. ir = ·), the fetch
rule should fire. This rule tests for equality of the two program counters to check for faults and loads the
appropriate instruction from code memory. If pcG and pcB are the same but Rval(pcG) is not a valid address
in code memory, execution “gets stuck” (no rule fires). Fortunately, however, well-typed programs never get
stuck, even when a single fault occurs. On the other hand, a fault can render the two program counters
inequivalent. In this case, rule fetch-fail fires and causes a transition to the fault state. Abstractly, this
transition represents hardware detection of a transient fault. Controlled program termination or perhaps
recovery may follow. Fault recovery is an orthogonal issue to fault detection, so we leave it unspecified here.
The fault model does not allow for the instruction itself to be corrupted.
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Basic Instructions. The arithmetic and move instructions (rules op2r, op1r, and mov) are completely
standard. The first arithmetic operation op rd, rs, rt performs op on the values in rs and rt, storing the result
in rd. The second arithmetic operation uses a constant operand v in addition to rs and rd. All constants
are annotated with the color of the computation they belong to. Likewise, the mov instruction loads an
annotated constant into a register.

Memory Instructions. Transient faults are problematic only when they change the results of computa-
tions and those results are observed by an external user. In our model, the only way a result can be observed
is for a program to write it to memory, where a memory-mapped output device may read and process it.

Without special hardware it appears impossible to guarantee that storage operations guard access to
memory properly. No matter what sophisticated software checking is performed just before a conventional
store instruction, it will be undone if a fault strikes between the check and execution of the store instruction.
This is the conundrum of the Time-Of-Check-Time-Of-Use (TOCTOU) fault.

To avoid TOCTOU faults, our machine possesses a modified store buffer (the queue Q), which is similar
to the store buffer used in previous hardware [15] and hybrid [18] fault tolerant systems. In addition, there
are two special storage instructions, each tagged with a color. The green store instruction stG rd, rs places the
address-value pair (Rval(rd), Rval(rs)) on the front of the queue (rule stG-queue). The blue store instruction
stB rd, rs retrieves the pair (nl, n

′
l) on the back of the queue, checks that it equals (Rval(rd), Rval(rs)),

and then stores it in memory (rule stB-mem). If the pairs are different, the hardware signals a fault (rule
stB-mem-fail). Since green stores must always come before blue stores, instruction scheduling is somewhat
constrained. As we will show later in Section 5, we have evaluated the performance both with and without
this scheduling constraint and show that its performance impact is negligible.

As an example, consider the following straight-line sequence:

1 mov r1, G 5

2 mov r2, G 256

3 stG r2, r1

4 mov r3, B 5

5 mov r4, B 256

6 stB r4, r3

These six instruction have the effect of storing 5 into memory address 256. Moreover, a fault at any point
in execution, to either blue or green values or addresses, will be caught by the hardware when the blue store
(instruction 6) compares its operands to those in the queue. In addition, our instruction set gives a compiler
the freedom to allocate registers however it chooses (e.g., reusing registers 1 and 2 in instructions 4-6 instead
of registers 3 and 4) and to change the instruction schedule in various ways (e.g., moving instruction 3 to a
position between instructions 5 and 6).

Interestingly, however, not all conventional optimizations are sound, and, of course, this is why type
checking generated code can be so helpful in detecting compiler errors. For example, common subexpression
elimination might result in the following code:

1 mov r1, G 5

2 mov r2, G 256

3 stG r2, r1

4 stB r2, r1

In this case, a fault in r1 after instruction 1, or a fault in r2 after instruction 2 will cause both instructions
3 and 4 to manipulate the same, but incorrect, address-value pair. The result would be to store an incorrect
value at the correct location or a correct value at an incorrect location. Fortunately, the TALFT type system
catches reliability errors like this one.

As mentioned in Section 2.1, many ”intra-instruction” faults can be modeled by modifying the register file
before or after the instruction. However, this is not the case for a fault that occurs during the execution of the
stB-mem rule in between the comparisons and the store. The hardware designer must implement structures
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Σ −→s
k Σ′

(R, C, M, Q, stG rd, rs) −→0 (R++, C, M, ((Rval(rd), Rval(rs)), Q), ·)
(stG-queue)

Rval(rd) = nl Rval(rs) = n′
l

(R, C, M, ((n, n′), (nl, n
′
l)), stB rd, rs) −→

(nl,n
′

l)
0 (R++, C, M [nl 7→ n′

l], (n, n′), ·)
(stB-mem)

Rval(rd) 6= nl or Rval(rs) 6= n′
l

(R, C, M, ((n, n′), (nl, n
′
l)), stB rd, rs) −→0 fault

(stB-mem-fail)

find(Q, Rval(rs)) = (Rval(rs), n)

(R, C, M, Q, ldG rd, rs) −→0 (R++[rd 7→ G n], C, M, Q, ·)
(ldG-queue)

find(Q, Rval(rs)) = () Rval(rs) ∈ Dom(M)

(R, C, M, Q, ldG rd, rs) −→0 (R++[rd 7→ G M(Rval(rs))], C, M, Q, ·)
(ldG-mem)

find(Q, Rval(rs)) = () Rval(rs) /∈ Dom(M)

(R, C, M, Q, ldG rd, rs) −→0 fault
(ldG-fail)

Rval(rs) ∈ Dom(M)

(R, C, M, Q, ldB rd, rs) −→0 (R++[rd 7→ B M(Rval(rs))], C, M, Q, ·)
(ldB-mem)

Rval(rs) /∈ Dom(M)

(R, C, M, Q, ldB rd, rs) −→0 fault
(ldB-fail)

find(Q, Rval(rs)) = () Rval(rs) /∈ Dom(M)

(R, C, M, Q, ldG rd, rs) −→0 (R++[rd 7→ G n], C, M, Q, ·)
(ldG-rand)

Rval(rs) /∈ Dom(M)

(R, C, M, Q, ldB rd, rs) −→0 (R++[rd 7→ B n], C, M, Q, ·)
(ldB-rand)

Figure 3: Selected operational rules for memory instructions.
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that detect or mask any faults that occur here. If the hardware designer cannot meet the specification given
by the operational semantics, he acknowledges there may be a vulnerability.

The load instructions also come in pairs: ldB and ldG. The only difference in their semantics is that ldG

checks for a pending store in the queue before loading its value from memory, whereas ldB goes directly to
memory, ignoring the queue. This wrinkle increases the freedom in instruction scheduling by allowing the
green computation to load a value it may have recently stored before the blue computation has necessarily
committed the store. Rules ldG-queue, ldG-mem, and ldB-mem specify these behaviors.

Notice that there is no mechanism for verifying the address used in loads. Hence, a fault can result in
an invalid address. In practice such a load might induce a hardware exception such as a segmentation fault
(rules ldG-fail and ldB-fail) or might result in loading some arbitrary value (rules ldG-rand and ldB-rand).

Control-Flow Instructions. Any change in the control-flow of a program may cause a different sequence
of values to be stored and observed by an external user. Consequently, the hardware contains mechanisms
to detect faults in addresses that serve as jump targets. Intuitively, these mechanisms mirror the solution to
faults in stored data in that execution of a control-flow transfer is accomplished through two instructions. Our
solution uses a combination of software and hardware control-flow protection that is similar to watchdog
processors [6], but that makes both versions of the control flow explicit as in software-only control flow
protection [12, 17].

To achieve an unconditional jump, one executes a jmpG instruction first and a related jmpB instruction
at some point in the future. A jmpG r1 moves the destination address from r1 into the special destination
register d (rule jmpG). Like the store queue, the destination register stores a programmer intention, initiated
by the green computation. Later, when the blue computation attempts to commit the jump by executing a
jmpB r2 instruction, the contents of r2 are compared to the contents of the destination register and if they
are equal, control jumps to that location (rule jmpB). If the addresses are different, the hardware detects a
fault (see rule jmpB-fail). Similar to the constraint for the store queue, forcing green control flow instructions
to be executed before the corresponding blue version constrains the instruction schedule. Section 5 will show
that this scheduling constraint has only a minimal performance impact.

The following code illustrates a typical control-flow transfer.

1 ldG r1, r2

3 ldB r3, r4

2 jmpG r1

4 jmpB r3

Initially, registers r2 and r4 should point to the same memory location, which contains a code pointer to
jump to. The example illustrates some of the flexibility in scheduling jump instructions.

Conditional jumps are more complex, but follow the same principles. The green conditional bzG rz, rd

tests rz and if it is 0, moves the contents of rd into destination register d (rules bz-untaken and bzG-taken).
No control-flow transfer occurs until a blue conditional bzB r′z, r′d tests the contents of its r′z register. If r′z is
0 then r′d must equal the contents of d, and if so, the control flow transfer occurs (rule bzB-taken). If r′z is not
0, it is not good enough merely to fall through — the contents of r′z might be faulty. To avoid this possibility,
the instruction examines the destination register. If it is 0 (and hence a prior bzG instruction did not store an
address), the fall-through occurs (rule bz-untaken). Our metatheory will show that this mechanism suffices
to detect faults either in the green computation (registers rz and rd) or the blue computation (registers r′z
and r′d).

3 Typing

The primary goal of the TALFT type system is to ensure that well-typed programs exhibit fail-safe behavior
in the presence of transient faults. In other words, well-typed programs must guarantee that a memory-
mapped output device can never read a corrupt value and make it visible to a user. We call this property
“fault tolerance.”
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Σ −→s
k Σ′

Rval(d) = 0

(R, C, M, Q, jmpG rd) −→0 (R++[d 7→ R(rd)], C, M, Q, ·)
(jmpG)

Rval(d) 6= 0

(R, C, M, Q, jmpG rd) −→0 fault
(jmpG-fail)

Rval(d) 6= 0 Rval(rd) = Rval(d)

(R, C, M, Q, jmpB rd) −→0 (R[pcG 7→ R(d)][pcB 7→ R(rd)][d 7→ G 0], C, M, Q, ·)
(jmpB)

Rval(rd) 6= Rval(d) or Rval(d) = 0

(R, C, M, Q, jmpB rd) −→0 fault
(jmpB-fail)

Rval(d) = 0 Rval(rz) 6= 0

(R, C, M, Q, bzc rz , rd) −→0 (R++, C, M, Q, ·)
(bz-untaken)

Rval(rz) 6= 0 Rval(d) 6= 0

(R, C, M, Q, bzc rz , rd) −→0 fault
(bz-untaken-fail)

Rval(d) = 0 Rval(rz) = 0

(R, C, M, Q, bzG rz , rd) −→0 (R++[d 7→ R(rd)], C, M, Q, ·)
(bzG-taken)

Rval(rz) = 0 Rval(d) 6= 0

(R, C, M, Q, bzG rz , rd) −→0 fault
(bzG-taken-fail)

Rval(d) 6= 0 Rval(rz) = 0 Rval(rd) = Rval(d)

(R, C, M, Q, bzB rz, rd) −→0 (R[pcG 7→ R(d)][pcB 7→ R(rd)][d 7→ G 0], C, M, Q, ·)
(bzB-taken)

Rval(rz) = 0 (Rval(rd) 6= Rval(d) or Rval(d) = 0)

(R, C, M, Q, bzB rz , rd) −→0 fault
(bzB-taken-fail)

Figure 4: Selected operational rules for control flow instructions.
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Static Expressions
exp kinds κ ::= κint | κmem

exp contexts ∆ ::= · | ∆, x : κ
exps E ::= x | n | E op E | sel Em En | emp | upd Em En1 En2

substitutions S ::= · | S, E/x

Types
zap tags Z ::= · | c
basic types b ::= int | Θ → void | b ref
reg types t ::= 〈c, b, E〉 | E′ = 0 ⇒ 〈c, b, E〉
reg file types Γ ::= · | Γ, a → t
result types RT ::= Θ | void

Contexts
heap typing Ψ ::= · | Ψ, n : b

static context Θ ::= ∆; Γ; (Ed, Es); Em

Figure 5: TALFT type syntax.

In the following sections, we explain the intuitions and principles behind the various elements of the type
system. Throughout the discussion, the reader will notice that our typing rules are not syntax-directed.
Of course, as with other sorts of typed assembly language or proof-carrying code, this fact presents no
particular difficulty in practice — it is easy for a compiler to generate sufficient “typing hints” to make
type reconstruction trivial. For the reader’s reference, the objects used in the type system are presented in
Figure 5.

3.1 Static Expressions

Our “type system” is actually a combination of two theories, one being a relatively simple type theory for
assembly, inspired by previous work on TAL [8], and the second being a Hoare Logic, designed to enforce
the more precise invariants required for strong fault tolerance. The latter component requires we define a
language of static expressions for reasoning about values and storage.

For the purposes of this paper, the static expressions are drawn from the standard theory of arithmetic
and arrays used in many classical Hoare Logics (c.f., Necula’s thesis [10]). These static expressions are
classified as either integers (kind κint) or memories (kind κmem). The integer expressions include variables,
constants, simple arithmetic operations, and values from a memory (sel Em En is the integer located at
address En in Em). The memory expressions include variables, the empty memory (emp), and memory
updates (upd Em En1 En2 is a memory Em updated so that address En1 stores value En2).

The context ∆ is a mapping from variables to kinds, and the judgment ∆ ` E : κ classifies expression E
as having kind κ. The judgment ∆ ` S : ∆′ holds when the substitution S maps variables in Dom(∆′) to
values well-formed in ∆ with types in Rng(∆′). The judgment ∆ ` E1 = E2 is valid when E1 and E2 are
equal objects in the standard model. The function [[E]] supplies the denotation of the closed static expression
E as either an integer or a memory, depending on its kind. These definitions are shown in Figure 6.

3.2 Value Typing

Since faults strike values, corrupting their bit patterns in arbitrary ways, the subtleties of value typing are
a key concern. Informally, the type system maintains three key pieces of information about every value:

1. A color (green or blue). The type system is organized to ensure that when a value is known to be green,
its contents can only depend on the contents of other green values not blue ones, and likewise, blue
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∆ ` E : κ

x ∈ Dom(∆)

∆ ` x : ∆(x)
(E-var-t)

∆ ` n : κint

(E-int-t)
∆ ` E1 : κint ∆ ` E2 : κint

∆ ` E1 op E2 : κint

(E-op-t)

∆ ` emp : κmem
(E-emp-t)

∆ ` Em : κmem ∆ ` En : κint

∆ ` sel Em En : κint
(E-sel-t)

∆ ` Em : κmem ∆ ` En1 : κint ∆ ` En2 : κint

∆ ` upd Em En1 En2 : κmem

(E-upd-t)

∆ ` S : ∆′

∆ ` · : ·
(sub-emp-t)

∆ ` S : ∆′ ∆ ` E : κ x /∈ Dom(∆) ∪ Dom(∆′)

∆ ` S, E/x : ∆′, x : κ
(sub-t)

[[E]]

[[n]] = n
[[emp]] = ·
[[E1 op E2]] = [[E1]] op [[E2]]
[[sel Em En]] = [[Em]]([[En]])
[[upd Em E1 E2]] = [[Em]][ [[E1]] 7→ [[E2]] ]

∆ ` E1 = E2

∆ ` E1 : κint ∆ ` E2 : κint

∀S. · ` S : ∆ =⇒ [[S(E1)]] = [[S(E2)]]

∆ ` E1 = E2
(E-eq)

∆ ` E1 : κint ∆ ` E2 : κint

∀S. · ` S : ∆ =⇒ [[S(E1)]] 6= [[S(E2)]]

∆ ` E1 6= E2
(E-neq)

∆ ` E1 : κmem ∆ ` E2 : κmem

∀` ∈ Dom([[S(E1)]]) ∪ Dom([[S(E2)]]). [[S(E1)]](`) = [[S(E2)]](`)

∆ ` E1 = E2
(E-mem-eq)

Figure 6: Semantics of Static Expressions.
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Ψ ` n : b

Ψ ` n : int
(int-t)

Ψ ` n : Ψ(n)
(base-t)

Ψ; ∆ `Z v : t

Ψ ` n : b ∆ ` E = n

Ψ; ∆ `Z c n : 〈c, b, E〉
(val-t)

n 6= 0 Ψ; ∆ `Z c n : 〈c, b, E〉 ∆ ` E′ = 0

Ψ; ∆ `Z c n : E′ = 0 ⇒ 〈c, b, E〉
(cond-t)

∆ ` E′ 6= 0

Ψ; ∆ `Z c 0 : E′ = 0 ⇒ 〈c, b, E〉
(cond-t-n0)

∆ ` E : κint

Ψ; ∆ `c c n : 〈c, b, E〉
(val-zap-t)

∆ ` E : κint

Ψ; ∆ `c c n : E′ = 0 ⇒ 〈c, b, E〉
(val-zap-cond)

Figure 7: Value Typing.

can only depend upon blue. Hence, while a fault in a green value can eventually corrupt arbitrarily
many other green values, it cannot corrupt any blue values, and vice versa.

2. A “basic type”. When no fault has occurred in the value’s color, the value’s basic type describes its
shape. Values with type int may have any bit pattern. Values with type Θ → void are pointers to
code (continuations). One must satisfy the precondition Θ before jumping to them. Values with type
b ref are pointers to values with type b.

3. A static expression. When there has been no fault in a value’s color, the value exactly equals the static
expression. Static expressions are used to guarantee that in the absence of faults, the green and blue
computations produce equal values, and hence, dynamic fault detection checks always succeed.

To summarize, every value is typed using a triple 〈c, b, E〉, where c is a color, b is a basic type, and E is a
static expression. The presence of the static expression makes this type a kind of singleton type.

Value Typing Judgment. The value typing judgment has the form Ψ; ∆ `Z v : t, where Ψ maps heap
addresses to basic types, and ∆ contains the free expression variables. In the rule val-t, a colored value c n
is given the type 〈c, b, E〉 when the static expression E is equal to n, and Ψ ` n : b. The judgment Ψ ` n : b
allows n to be given either the basic type int or the type of the address n in memory.

The two rules cond-t and cond-t-n0 are used to type the conditional type (E′ = 0 ⇒ 〈G, Θ → void , E′
r〉).

When the static expression E′ is equal to zero, values of this type also have type 〈G, Θ → void , E′
r〉. When

E′ is not equal to zero, values with this type must be 0.
The final two rules for Ψ; ∆ `Z v : t make use of the zap tag Z, which is either empty or a color c. If the

zap tag is a color c, then there may have been a fault affecting data of that color. Data colored the same as
the zap tag can be given any type, as it may have been arbitrarily corrupted. The static expression used in
this type may not contain any free expression variables.

Value Subtyping. There is also a subtyping relation ∆ ` t ≤ t′ that allows all types 〈c, b, E1〉 to be
subtypes of 〈c, int , E2〉 when ∆ ` E1 = E2. This relation is extended to register file subtyping ∆ ` Γ1 ≤ Γ2,
by requiring that the type of each general-purpose register in Γ2 be a supertype of the corresponding register
in Γ1. Note that here is no required relationship between the special registers d, pcG, and pcB. The rules
for these judgments appear in Figure 8.
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∆ ` t ≤ t′

∆ ` E1 = E2

∆ ` 〈c, b, E1〉 ≤ 〈c, b, E2〉
(subtp-triple)

∆ ` E1 = E2

∆ ` 〈c, b, E1〉 ≤ 〈c, int , E2〉
(subtp-int)

∆ ` t ≤ t′ ∆ ` E = E′

∆ ` (E = 0 ⇒ t) ≤ (E′ = 0 ⇒ t′)
(subtp-cond)

∆ ` Γ1 ≤ Γ2

∀r ∈ Dom(Γ2). Γ1(r) ≤ Γ2(r)

∆ ` Γ1 ≤ Γ2
(reg-file-comp)

Figure 8: Subtyping.

3.3 Instruction Typing

While many of the instruction typing rules are quite complex, the essential principles guiding their construc-
tion may be summarized as follows.

1. In the absence of faults, standard type theoretic principles should be valid. In order to guarantee basic
safety properties, the type system checks standard properties in much the same manner as previous
typed assembly languages [8]. For example, jump targets must have code types, while loads and stores
must operate over values with reference types.

2. Green values only depend on other green values, and blue values only depend on blue values. When
this invariant is maintained, a fault in a blue value can never corrupt a green value and vice versa.

3. Both green and blue computations have equal say in any dangerous actions. Dangerous actions include
storing values to memory-mapped output devices and executing control-flow operations. When both
blue and green computations are involved, a fault in just one color is insufficient to deceive the hardware
fault detection mechanisms.

4. In the absence of faults, green and blue computations must compute identical values. To be more
precise, green and blue computations must store identical values to identical storage locations and
must issue orders to transfer control to identical addresses. If not, the hardware will claim to detect
faults when there have been none, or alternatively, might exhibit incorrect behaviors when there is a
fault.

The first three principles are relatively straightforward to enforce. The fourth principle leads to the most
technical challenges as it requires we check equality constraints between values. Moreover, since construction
of these values depends on storage, the type system must maintain a relatively accurate static representation
of storage. We accomplish this latter challenge using techniques drawn from Hoare Logics. The former
challenge (testing values for equality) is achieved through the use of the singleton types described earlier.

The Instruction Typing Judgment. The judgment for typing instructions has the form Ψ; Θ ` ir ⇒
RT . Unlike the context Ψ, which only contains invariant heap typing assumptions, Θ contains fine-grained
context-sensitive information about the current state of memory and the register file. More specifically, Θ
consists of the following subcontexts: (1) ∆, which describes the free expression variables appearing in the
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Ψ; Θ ` ir ⇒ RT

Ψ; (∆; Γ; (Ed, Es); Em) ` · ⇒ (∆; Γ; (Ed, Es); Em)
(·-t)

Γ(rs) = 〈c, int , E′
s〉 Γ(rt) = 〈c, int , E′

t〉

Ψ; (∆; Γ; (Ed, Es); Em) ` op rd, rs, rt ⇒ (∆; Γ++[rd 7→ 〈c, int , E′
s op E′

t〉]; (Ed, Es); Em)
(op2r-t)

Γ(rs) = 〈c, int , E′
s〉

Ψ; (∆; Γ; (Ed, Es); Em) ` op rd, rs, c n ⇒ (∆; Γ++[rd 7→ 〈c, int , E′
s op n〉]; (Ed, Es); Em)

(op1r-t)

Ψ; ∆ ` v : t

Ψ; (∆; Γ; (Ed, Es); Em) ` mov rd, v ⇒ (∆; Γ++[rd 7→ t]; (Ed, Es); Em)
(mov-t)

Γ(rs) = 〈G, b ref , E′
s〉 E = sel (upd Em (Ed, Es)) E′

s

Ψ; (∆; Γ; (Ed, Es); Em) ` ldG rd rs ⇒ (∆; Γ++[rd 7→ 〈G, b, E〉]; (Ed, Es); Em)
(ldG-t)

Γ(rs) = 〈B, b ref , E′
s〉 E = sel Em E′

s

Ψ; (∆; Γ; (Ed, Es); Em) ` ldB rd rs ⇒ (∆; Γ++[rd 7→ 〈B, b, E〉]; (Ed, Es); Em)
(ldB-t)

Γ(rd) = 〈G, b ref , E′
d〉 Γ(rs) = 〈G, b, E′

s〉

Ψ; (∆; Γ; (Ed, Es); Em) ` stG rd rs ⇒ (∆; Γ++; (E′
d, E

′
s), (Ed, Es); Em)

(stG-t)

Γ(rd) = 〈B, b ref , E′′
d 〉 Γ(rs) = 〈B, b, E′′

s 〉
∆ ` E′

d = E′′
d ∆ ` E′

s = E′′
s

Ψ; (∆; Γ; (Ed, Es), (E
′
d, E

′
s); Em) ` stB rd rs ⇒ (∆; Γ++; (Ed, Es); upd Em E′

d E′
s)

(stB-t)

Figure 9: Instruction Typing Rules for Basic Instructions and Memory Instructions
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Ψ; Θ ` ir ⇒ RT

Γ(d) = 〈G, int , 0〉
Γ(rz) = 〈G, int , Ez〉

Γ(rd) = 〈G, Θ → void , E′
d〉

Θ = (∆′; Γ′; (E′
d, E

′
s); E

′
m)

Γ′(d) = 〈G, int , 0〉

Ψ; (∆; Γ; (Ed, Es); Em) ` bzG rz rd ⇒ (∆; Γ++[d 7→ Ez = 0 ⇒ 〈G, Θ → void , E′
d〉]; (Ed, Es); Em)

(bzG-t)

Γ(rz) = 〈B, int , Ez〉

Γ(rd) = 〈B, (∆′; Γ′; (E′
d, E

′
s); E

′
m) → void , Er〉

Γ(d) = E′
z = 0 ⇒ 〈G, (∆′; Γ′; (E′

d, E
′
s); E

′
m) → void , E′

r〉
∆ ` Ez = E′

z

∆ ` Er = E′
r

∃S.∆ ` S : ∆′

S(Γ′)(d) = 〈G, int , 0〉
S(Γ′)(pcG) = 〈G, int , E′

r〉
S(Γ′)(pcB) = 〈B, int , Er〉

∆ ` Γ ≤ S(Γ′)

∆ ` (Ed, Es) = S((E′
d, E

′
s))

∆ ` Em = S(E′
m)

Ψ; (∆; Γ; (Ed, Es); Em) ` bzB rz rd ⇒ (∆; Γ++; (Ed, Es); Em)
(bzB-t)

Γ(d) = 〈G, int , 0〉
Γ(rd) = 〈G, Θ → void , Erd′〉

Θ = (∆′; Γ′; (E′
d, E

′
s); E

′
m)

Γ′(d) = 〈G, int , 0〉

Ψ; (∆; Γ; (Ed, Es); Em) ` jmpG rd ⇒ (∆; Γ++[d 7→ 〈G, Θ → void , Erd′〉]; (Ed, Es); Em)
(jmpG-t)

Γ(d) = 〈G, (∆′; Γ′; (E′
d, E

′
s); E

′
m) → void , E′

r〉

Γ(rd) = 〈B, (∆′; Γ′; (E′
d, E

′
s); E

′
m) → void , Er〉

∆ ` Er = E′
r

∃S.∆ ` S : ∆′

S(Γ′)(d) = 〈G, int , 0〉
S(Γ′)(pcG) = 〈G, int , E′

r〉
S(Γ′)(pcB) = 〈B, int , Er〉

∆ ` Γ ≤ S(Γ′)

∆ ` (Ed, Es) = S((E′
d, E

′
s))

∆ ` Em = S(E′
m)

Ψ; (∆; Γ; (Ed, Es); Em) ` jmpB rd ⇒ void
(jmpB-t)

Figure 10: Instruction Typing Rules for Control Flow Instructions.
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other context-sensitive objects, (2) Γ, which describes the mapping of register names to types for register
values, (3) (Ed, Es), which describes the values in the queue, and (4) Em, which describes memory, as one
does in Hoare Logic.

The “result” of checking an instruction is a result type RT . A result type may either be void , indicating
control does not proceed past the instruction (it is a jump), or a postcondition Θ′, which describes the state
of memory and the register file after execution of the instruction.

The typing rules are defined using several notational abbreviations. The notation Γ++ adds one to the
static expression associated with each program counter register in Γ. The expression upd Em (Ed, Es) is
(upd (...(upd Em Edk

Esk
)...) Ed1 Es1 ) when (Ed, Es) = ((Ed1 , Es1), ..., (Edk

, Esk
)). Figures 9 and 10

presents the typing rules for instructions, and the following paragraphs explain the main points of interest.

Typing Basic Instructions. Basic arithmetic operations are not “dangerous” to execute, so the defini-
tions of their typing rules are driven by principles 1 and 2, mentioned earlier. Consider, for example, rule
op2r-t for an arithmetic operation op. This rule requires that the operand registers contain integers with
the same color c in accordance with principal 2 (green depends on green, blue depends on blue). The result
register rd has a type colored c as well. In accordance with principle 1, the result has integer type. The
rule also states that the static expression describing the result register is E′

s op E′
t and that the state of the

queue and memory are unchanged by evaluation of the instruction.

Typing Memory Instructions. Store operations are “dangerous” — they make computed values ob-
servable by the outside world — so we must be particularly careful in the formulation of their typing rules.
In accordance with principle 1, both green and blue store instructions (rules stG-t and stB-t) require that
the address register has the basic type b ref and the value register has the corresponding basic type b.
Intuitively, the store queue is a green object, and in accordance with principle 2, the green store instruction
may push an address-value pair onto the front the queue as long as both values are green. In accordance
with principle 4, the rule for the blue store checks that the address-value pair to be stored is exactly equal to
the address-value pair at the end of the queue. Since the arguments to the blue store have a blue type and
the queue always contains green objects, both blue and green computations contribute to the actual storage
operation (in accordance with principle 3).

The load operations are somewhat simpler than the store instructions since they are not “dangerous” in
our model. However, like the store instructions, the operands of blue loads must be blue and the operands
of green loads must be green. Once again, in accordance with principle 2, the result of a blue load is value
with a blue type and likewise for a green load.

Typing Control-Flow Instructions. While the typing rules for control-flow instructions have many
premises, they continue to follow the same four principles as the other instructions. Much of the complexity
is inherently due to principle 1, which mandates checking all the usual constraints associated with jumps in
any typed assembly language.

The simplest rule involves the green unconditional jump. This instruction is just a move from register
rd to the special destination register d. The type of register d is updated to the type of rd (obeying both
principles 1 and 2). The rule contains constraints that d must be equal to 0 in both Γ and Γ′ since the
hardware resets the destination register to 0 after a jump.

The blue unconditional jump is a true jump. According to principle 1, it checks the standard typing
invariants needed to ensure safety in any typed assembly language, including (1) that the jump target has
code type (see the first two premises), and (2) that the current state, including register file, memory, and
queue, matches the expected state at the jump target, modulo some substitution S of static expressions for
universally quantified variables ∆ from the code type (see the final seven premises).

The typing of the conditional branches is quite similar to that of unconditional jumps. One difference is
that the bzG instruction is now a conditional move as opposed to an unconditional move. Hence, to represent
the result of the move (unknown at compile time) the conditional type (E′

z = 0 ⇒ 〈G, Θ → void , E′
r〉) is

16



used. In addition, since the conditional branch may fall through, the result of typing the bzG instruction is
a proper postcondition as opposed to void , like jmpG.

3.4 Machine State Typing

In order to prove various properties of the type system, we need to specify the invariants of machine states
that are preserved during execution. The judgments for typing a machine state Σ are shown in Figure 11
and explained below.

Register File Typing. The judgment Ψ `Z R : Γ states that the register file R has the register file
type Γ under heap typing Ψ and a zap tag Z. The contents of each register must have the type given to
that register by Γ. Each program counter must have the appropriate color, and the program counters must
compute equal values. (In the case where one program counter is corrupted, the zap tag Z in the first
premise allows its actual value to differ from the expected computed value.)

Code Typing. The judgment Ψ ` C states that code memory C is well-formed with respect to heap
typing Ψ. The address 0 is not a valid code address. Each address must have a code type, and the code
type must contain the precondition for the instruction at that address. If the instruction typing results in
a postcondition Θ′ (meaning that control may fall through to the next instruction) then the subsequent
instruction must be well typed using Θ′ as its precondition.

Memory Typing. The judgment Ψ ` M : Em states that given heap typing Ψ the value memory M is
well-formed and can be described by the static expression Em. The static expression Em must have kind
κmem, and M must be the denotation of Em. Each location in the domain of M must have a type b ref and
the contents of that location must have type b.

Queue Typing. The judgment Ψ `Z Q : (Ed, Es) means that queue Q can be described by the sequence
of static expressions (Ed, Es) given heap typing Ψ and zap tag Z. When the queue is empty, it is described
by the empty sequence. When the zap tag Z is not G, the first pair (n1, n2) must consist of an address n1

with type b ref and a value n2 with type b. This pair is described by the static expression pair (Ed, Es) when
Ed evaluates to n1 and Es evaluates to n2. The remainder of the queue must be described by the remainder
of the static expression sequence. All values in the queue are considered to be green, so when the zap tag
is G, these values may have been arbitrarily corrupted. Accordingly in this case, the only requirements are
that each static expression must have kind κint and the length of the queue must be the same as the length
of the static expression sequence.

Machine State Typing. The judgment `Z Σ states that a machine state Σ is well-typed under zap tag
Z. This judgment holds when Σ is a five-tuple (R, C, M, Q, ir), and these elements are each well-typed and
consistent with each other. Note that Σ is not well-typed when it is the fault state fault .

The domain of the heap typing Ψ must be the union of the domains of the code memory C and the value
memory M . When Z is not equal to G, the queue has not been corrupted, and so each address in Q is also
a valid address in M . The code memory C must be well-formed with respect to the heap typing Ψ.

The zap tag Z must be either empty or colored blue or green. At least one of the program counters, and
possibly both, will not be colored by Z, and therefore must not be corrupted. If ir is an instruction, these
correct program counters must point to an address that contains ir. The heap typing Ψ gives this address
a code type (∆; Γ; (Ed, Es); Em) → void .

The context ∆ contains the free variables in Γ, (Ed, Es), and Em. There must be some substitution S
that gives values to each of the variables in ∆. Value memory M must be well-formed and described by the
static expression S(Em). The queue Q must be described by S(Ed, Es). The register file R must have type
S(Γ).
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Ψ `Z R : Γ

∀a. Ψ; · `Z R(a) : Γ(a)
· ` Γ(pcG) ≤ 〈G, int, EG〉 · ` Γ(pcB) ≤ 〈B, int, EB〉 · ` EG = EB

Ψ `Z R : Γ
(R-t)

Ψ ` C

0 6∈ Dom(C)
∀n ∈ Dom(C). Ψ(n) = Θ → void ∧ Ψ; Θ ` C(n) ⇒ RT ∧ (RT = Θ′ implies Ψ(n + 1) = Θ′ → void)

Ψ ` C
(C-t)

Ψ ` M : Em

· ` Em : κmem [[Em]] = M ∀` ∈ Dom(M). Ψ ` ` : b ref ∧ Ψ ` M(`) : b

Ψ ` M : Em
(M-t)

Ψ `Z Q : (Ed, Es)

Ψ `Z () : ()
(Q-emp-t)

Z 6= G
Ψ ` n1 : b ref Ψ ` n2 : b · ` Ed = n1 · ` Es = n2

Ψ `Z (n′
1, n

′
2) : (E′

d, E
′
s)

Ψ `Z (n1, n2), (n′
1, n

′
2) : (Ed, Es), (E′

d, E
′
s)

(Q-t)

· ` Ed : κint · ` Es : κint Ψ `G (n′
1, n

′
2) : (E′

d, E
′
s)

Ψ `G (n1, n2), (n′
1, n

′
2) : (Ed, Es), (E′

d, E
′
s)

(Q-zap-t)

`Z (R, C, M, Q, ir)

Dom(Ψ) = Dom(C) ∪ Dom(M)
Z 6= G =⇒ Dom(Q) ⊆ Dom(M)

Ψ ` C
∀c 6= Z. ir 6= · =⇒ C(Rval(pcc)) = ir

∀c 6= Z. Ψ(Rval(pcc)) = (∆; Γ; (Ed, Es); Em) → void
∃S. · ` S : ∆

Ψ ` M : S(Em)

Ψ `Z Q : S(Ed, Es)
Ψ `Z R : S(Γ)

`Z (R, C, M, Q, ir)
(Σ-t)

Figure 11: Machine State Typing.
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4 Formal Results

In this section, we present our formal results, including sketches of the corresponding proofs. We have carried
through all proof details on paper, but have elected not to type set them. The following sketches should
suffice for the reader to reconstruct the full details.

Section 4.1 discusses useful lemmas used throughout the proofs. Section 4.2 proves the standard notions
of type safety. Section 4.3 defines a multistep operation semantics and some associated lemmas, including the
No False Positives Corollary. Section 4.4 contains the Fault Tolerance Theorem and its associated lemmas.
Each lemma and theorem is preceeded by a brief English explanation of its role in the proof, and followed
by details on how the proof was constructed.

4.1 Lemmas

The proofs of the theorems in the remainder of this section rely on the lemmas discussed below.

4.1.1 Properties of Static Expressions

When an expression is closed, applying substitutions to that expression results in a syntactically equivalent
expression.

Lemma 1 (Substituting Closed Expressions)
1. If · ` E : κ then ∀S. S(E) = E

Proof. By induction on the structure of · ` E : κ.

Even though [[E]] is a partial function, it is always defined over well-kinded closed expressions.

Lemma 2 (Expression Denotation)
1. If · ` E : κint then ∃ n. [[E]] = n.

2. If · ` E : κmem then ∃ M. [[E]] = M .

Proof. By induction on the structure of · ` E : κ.

The equality of expressions is transitive.

Lemma 3 (Expression Equality Transitivity)
If ∆ ` E1 = E2 and ∆ ` E2 = E3 then ∆ ` E1 = E3.

Proof. By inspection of the definition of ∆ ` E1 = E2.

Substituting an expression of kind κ for a free variable of type κ preserves typing.

Lemma 4 (Substitution Lemma)
1. If ∆, x : κ ` E′ : κ′ and ∆ ` E : κ then ∆ ` E′[E/x] : κ′.

2. If ∆, x : κ ` E1 = E2 and ∆ ` E : κ then ∆ ` E1[E/x] = E2[E/x].

3. If ∆, x : κ ` E1 6= E2 and ∆ ` E : κ then ∆ ` E1[E/x] 6= E2[E/x].

4. If Ψ; ∆, x : κ `Z v : t and ∆ ` E : κ then Ψ; ∆ `Z v : t[E/x].
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5. If Ψ; (∆, x : κ; Γ; (Ed, Es); Em) `Z ir ⇒ RT and ∆ ` E : κ
then Ψ; (∆; Γ[E/x]; (Ed, Es)[E/x]; Em[E/x]) `Z ir ⇒ RT [E/x].

6. If · ` S : ∆ and Ψ; ∆ `Z v : t then Ψ; · `Z v : S(t).

7. If · ` S : ∆ and Ψ; (∆; Γ; (Ed, Es); Em) `Z ir ⇒ (∆; Γ′; (E′
d, E

′
s); E

′
m)

then Ψ; (·; S(Γ); S((Ed, Es)); S(Em)) `Z ir ⇒ (·; S(Γ′); S((E′
d, E′

s)); S(E′
m)).

Proof. Parts 1, 4, and 5 – by induction on the respective typing derivation. Parts 2 and 3 – by inspection
of the equality judgment definition. Parts 6 and 7 – by induction on the size of ∆, using parts 4 and 5
respectively.

4.1.2 Properties of Well-Typed Values

Well-typed values are described by static expressions denoting integers and not memories.

Lemma 5 (Value Kinding)
1. If Ψ; ∆ `Z v : 〈c, b, E〉 then ∆ ` E : κint.

2. If Ψ; ∆ `Z v : (E′ = 0) ⇒ 〈c, b, E〉 then ∆ ` E : κint.

Proof. By case analysis on the value typing judgment.

The type of a value gives us information about the shape of the value.

Lemma 6 (Canonical Forms)
If Ψ; · `Z c n : t and Dom(Ψ) = Dom(C) ∪ Dom(M) and Ψ ` M : Em and Ψ ` C, then

1. If t = 〈c, b, E〉 or t = (E′ = 0) ⇒ 〈c, b, E〉 and c = Z then no particular properties of n are known.

2. If t = 〈c, int, E〉 and c 6= Z then · ` E = n.

3. If t = 〈c, Θ → void , E〉 and c 6= Z then Ψ(n) = Θ → void and n ∈ Dom(C) and · ` E = n and n 6= 0.

4. If t = 〈c, b ref , E〉 and c 6= Z then Ψ(n) = b ref and n ∈ Dom(M) and · ` E = n.

5. If t = (E′ = 0) ⇒ t′ and c 6= Z and · ` E′ = 0 then n 6= 0.

6. If t = (E′ = 0) ⇒ t′ and c 6= Z and · ` E′ 6= 0 then n = 0.

Proof. By induction on the structure of Ψ; · `Z c n : t.

If a value has a type, and this type has a supertype, then the value also has the supertype.

Lemma 7 (Subtyping)
If Ψ; ∆ `Z v : t and ∆ ` t ≤ t′then Ψ; ∆ `Z v : t′.

Proof. By induction on the derivation of Ψ; ∆ `Z v : t.

If a value is well-typed under the empty zap tag, then that value is well-typed under all colors.

Lemma 8 (Color Weakening)
If Ψ; · ` v : t then ∀c. Ψ; · `c v : t.
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Proof. By induction on the value typing judgment.

Color weakening extends to register files.

Lemma 9 (Register File Color Weakening)
If Ψ ` R : Γ then ∀c. Ψ `c R : Γ.

Proof. By inversion of the register file typing rule R-t and the Color Weakening Lemma.

4.1.3 Properties of Well-typed Memories

Well-typed programs with no faults only load values from valid locations.

Lemma 10 (Well-typed Domain)
If ` (R, C, M, Q, ldG rd, rs) then Rval(rd) ∈ Dom(M).

Proof. By inversion of ` (R, C, M, Q, ir), inversion of the ldG-t typing rule, and the Canonical Forms
lemma.

When looking up a value in a memory with an update, if the updated location is not the requested location,
then this is equivalent to looking up the location in the memory without the update.

Lemma 11 (Irrelevant Update)
If E = sel (upd Em Ed Es) En and · ` Ed 6= En then E = sel Em En.

Proof. By inspection of the denotation of sel and upd.

4.1.4 Properties of Well-typed Queues

The length of the queue is the same as the length of the sequence that describes it. When the zap tag is
not green, then each item in the queue is described by the corresponding expression. In addition, the first
element of each pair has type b ref and its value has type b.

Lemma 12 (Queue)
1. If Ψ `Z Q : (Ed, Es) then length(Q) = length((Ed, Es)).

2. If Ψ `Z (n1, n2) : (Ed, Es) and Z 6= G then for all k from 1 to length((n1, n2)), · ` Edk = n1k and

· ` Esk = n2k and there is some base type b such that Ψ ` n1k : b ref and Ψ ` n2k : b.

Proof. By induction on the structure of Ψ `Z Q : (Ed, Es).

If the find function returns no match on an address n1, and the queue is described by the sequence of
address-value pairs (Ed, Es), then none of the address expressions are equal to n1.

Lemma 13 (Find)
If find(Q, n1) = () and Ψ ` Q : (Ed, Es) then for k from 1 to length(Q), · ` Edk 6= n1.
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Proof. By definition of the find function and the queue typing judgment.

If a queue is well-typed under the empty zap tag, then it is also well-typed under any colored zap tag.

Lemma 14 (Queue Color Weakening)
If Ψ ` Q : (Ed, Es) then ∀c. Ψ `c Q : (Ed, Es).

Proof. By induction on the queue typing judgment.

4.2 Type Safety

Progress states that well-typed states can take a step. In particular, a machine state that is well-typed under
the empty zap tag can take a non-faulty step to another ordinary, non-faulty machine state. A machine state
that is well-typed under a zap tag of color c can take a step, but the result of that step may either be another
ordinary machine state or the fault state.

Theorem 1 (Progress)
1. If ` Σ then Σ −→s

0 Σ′ and Σ′ 6= fault .

2. If `c Σ then Σ −→s
0 Σ.

Proof. By case analysis on the instruction ir in state Σ.
Part 1 uses inversion on the typing rules to determine that the preconditions hold for the appropriate

operational rule. For example, Figure 12 shows the case for stB. By inverting various typing rules, we gather
enough information to conclude that the last pair in the queue is equal to the contents of the two registers.
Notice that step 9 inverts the val-t rule. This can only be done because we know that Z = ·, and so the
val-zap-t rule cannot apply instead. (And similarly, step 12 inverts rule Q-t.) Once we have these equalities,
we can apply the operational rule stB-mem. Other cases are similar, although the cases for ldG and bzB

subdivide further based on the result of the find function and the value in the branch register.
Part 2 is simpler than part 1. Instead of using typing rules to gather as much information, we just further

subdivided based on properties needed to apply the rules. These subcases take either the normal operation
rule, or the corresponding failure rule as necessary. Some inversion may be done on the typing rules to show
that the case does not get stuck. Again, Figure 12 shows the case for stB. From the typing information,
we know that the Q is not empty. Then either the last pair in the queue is equal to the registers (rule stB

applies) or it is not (rule stB-fail applies).

According to Preservation, if a machine state is well-typed under a zap tag Z, and it takes a non-faulty
step to another machine state, then that resulting state will also be well-typed under Z. Additionally, if a
state is well-typed under the empty zap tag, and it takes a faulty step, then there is some color c such that
the resulting state is well-typed under c.

Theorem 2 (Preservation)
1. If `Z Σ and Σ −→s

0 Σ′ and Σ′ 6= fault then `Z Σ′.

2. If ` Σ and Σ −→s
1 Σ′ then ∃ c. `c Σ′.

Proof. By case analysis of the structure of the derivation Σ −→s
k Σ′.

Part 1 only applies to cases where Σ′ is not fault . We use inversion to take apart the judgment for `Z Σ,
modify it as necessary, and build the judgment `Z Σ′. Each case is subdivided based on the actual value of
the zap tag. In subcases where the zap tag is not the same as the color of a value, we can invert rule val-t
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Part 1 Example Case: stB

a1. ` (R,C, M, Q, stB rd, rs) [ assumption ]

1. Ψ ` C [ Inversion of Σ-t, a1 ]
2. ∀c. C(Rval(pcc)) = stB rd, rs [ Inversion of Σ-t, a1 ]

3. Ψ; (∆; Γ; (Ed, Es), (E
′

d, E′

s); Em) ` stB rd rs [ Inversion of C-t, 1, 2, inspection of stB-t ]

⇒ (∆; Γ++; (Ed, Es); upd Em E′

d E′

s)
4. ∃S. · ` S : ∆ [ Inversion of Σ-t, a1 ]

5. Ψ; (·; S(Γ); S((Ed, Es), (E
′

d, E′

s)); S(Em)) ` stB rd rs [ Lemma 4 (Substitution), 4, 3 ]

⇒ (·; S(S(Γ)++; S((Ed, Es)); upd S(Em E′

d E′

s))

6. Ψ ` R : S(Γ) [ Inversion of Σ-t, a1 ]
7. S(Γ)(rd) = 〈B, b ref , E′′

d 〉 [ Inversion of stB-t, 5 ]
S(Γ)(rs) = 〈B, b, E′′

s 〉
8. Ψ; · ` R(rd) : 〈B, b ref , E′′

d 〉 [ Inversion of R-t, 6, 7 ]
Ψ; · ` R(rs) : 〈B, b, E′′

s 〉
9. · ` Rval(rd) = E′′

d [ Inversion of val-t, 8 ]
· ` Rval(rs) = E′′

s

10. · ` S(E′

d) = E′′

d [ Inversion of stB-t, 5 ]
· ` S(E′

s) = E′′

s

11. Ψ ` Q : S((Ed, Es), (E
′

d, E
′

s)) [ Inversion of Σ-t, a1 ]

12. Q = ((n, n′), (nl, n
′

l)) [ Lemma 12 (Queue), 11 ]
· ` S(E′

d) = nl and · ` S(E′

s) = n′

l

13. Rval(rd) = nl and Rval(rs) = n′

l [ Lemma 3 (Exp Eq Transitivity), 9, 10, 12 ]

14. (R,C, M, ((n, n′), (nl, n
′

l)), stB rd, rs) −→
(nl,n′

l)

0 [ stB-mem, 14 ]

(R++, C, M [nl 7→ n′

l], (n, n′), ·)
Case complete.

Part 2 Example Case: stB

a1. `c (R, C, M, Q, stB rd, rs) [ assumption ]

1. Ψ `c Q : S((Ed, Es), (E
′

d, E
′

s)) [ Inversion of Σ-t, a1 ]

2. Q = ((n, n′), (nl, n
′

l)) [ Lemma 12 (Queue), 1 ]

Case on whether Rval(rd)
?
= nl and Rval(rs)

?
= n′

l

subcase a: rd and rs are the same as the last pair in the queue
a4a. Rval(rd) = nl and Rval(rs) = n′

l [ subcase assumption ]

3a. (R, C, M, Q, stB rd, rs) −→
(nl,n

′

l)
0 (R++, C, M [nl 7→ n′

l], (n, n′), ·) [ stB-mem, a4a ]
Subcase complete.

subcase b: either rs or rd or the last pair in the queue has been corrupted
a4b. Rval(rd) 6= nl or Rval(rs) 6= n′

l [ subcase assumption ]
3b. (R, C, M, Q, stB rd, rs) −→0 fault [ stB-mem-fail, a4b ]
Subcase complete.

Case complete.

Figure 12: Example Cases of Theorem 1 (Progress).
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on the typing of a value and use that information to construct a typing derivation for Σ′. In cases where the
zap tag has the same color as the value, modified values in Σ′ can be trivially typed using rules val-zap-t and
Q-zap-t. Figures 13 and 14 show an example case for rule stB-mem.

Part 2 chooses c to be the color of the zapped value. It uses rules val-zap-t, val-zap-cond or Q-zap-t to
show that the zapped value can be typed under zap tag c. The remainder of the state can be typed as before
using the Color Weakening Lemmas 8, 9, and 14. Figure 15 shows an example case for rule reg-zap.

The Progress and Preservation Theorems define the usual notion of type safety.

4.3 Multistep Transitions

In order to prove properties of our type system, we extend our single-step transition Σ1 −→s
k Σ2 from

Section 2 to a sequence of n transitions containing exactly k faults Σ1
n

−−→
s

kΣ2, where n is greater than or
equal to zero, and k is still either 0 or 1.

Σ
0

−−→
()

0 Σ

(multi-base)
Σ −→s1

k1
Σ′′ Σ′′ (n−1)

−−→
s2

k2
Σ′

Σ
n

−−→
(s1,s2)

k1+k2
Σ′

(multi-compose)

4.3.1 No False Positives

By combining part one of Progress with part one of Preservation, we get the following important corollary:
The hardware never claims to have detected a fault when no fault has occurred during execution of a
well-typed program.

Corollary 3 (No False Positives)
If ` Σ then ∀ n. Σ

n
−−→

s

0Σ
′ and ` Σ′.

Proof. By Progress Part 1, Preservation Part 1, and induction on the derivation of Σ
n

−−→
s

0Σ
′.

4.3.2 Multistep Split and Combine

The following two lemmas about the multistep relation let us take apart and put together different sequences
of steps.

If a machine state evaluates in a sequence of steps with no faults to a final state, then this computation can
be divided into a sequence of non-faulty steps reaching an intermediate state, and a sequence of non-faulty
steps from this intermediate state to the final state.

Lemma 15 (Multistep Split)
If Σ

n
−−→

s

0Σ
′ then there exists n1, n2, Σ′′, s1, and s2 such that n = n1 + n2 and s = (s1, s2) and Σ

n1−−→
s1

0 Σ′′

and Σ′′ n2−−→
s2

0 Σ′.

Proof. By induction on the structure of Σ
n

−−→
s

0Σ
′.

If a machine state evaluates in a sequence of n1 non-faulty steps to another state, that state faults to a third
state, and the third state evaluates in n2 non-faulty steps to a final state, then the original state can reach
the faulty state in a sequence of n1 + 1 + n2 steps including exactly one fault step.
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Example Case: stB-mem

Rval(rd) = nl Rval(rs) = n′

l

(R,C, M, ((n, n′), (nl, n
′

l)), stB rd, rs) −→
(nl,n

′

l)

0 (R++, C, M [nl 7→ n′

l], (n, n′), ·)
(stB-mem)

a1. `Z (R,C, M, Q, stB rd, rs) [ assumption ]
p1. Rval(rd) = nl [ premise ]
p2. Rval(rs) = n′

l [ premise ]

1. Dom(Ψ) = Dom(C) ∪ Dom(M) [ Inversion of Σ-t, a1 ]

2. Z 6= G =⇒ Dom((n, n′), (nl, n
′

l)) ⊆ Dom(M) [ Inversion of Σ-t, a1 ]
3. Ψ ` C [ Inversion of Σ-t, a1 ]
4. ∀c 6= Z. C(Rval(pcc)) = stB rd, rs [ Inversion of Σ-t, a1 ]

5. ∀c 6= Z. Ψ(Rval(pcc)) = (∆; Γ; (Ed, Es); Em) → void [ Inversion of Σ-t, a1 ]
6. ∃S. · ` S : ∆ [ Inversion of Σ-t, a1 ]
7. Ψ ` M : S(Em) [ Inversion of Σ-t, a1 ]

8. Ψ `Z ((n, n′), (nl, n
′

l)) : S((Ed, Es), (E
′

d, E
′

s)) [ Inversion of Σ-t, a1 ]

9. Ψ `Z R : S(Γ) [ Inversion of Σ-t, a1 ]

10. Ψ; (∆; Γ; (Ed, Es), (E
′

d, E
′

s); Em) ` stB rd rs ⇒ Θ′ [ Inversion of C-t, 3, 4 ]

11. Θ′ = (∆;Γ++; (Ed, Es); upd Em E′

d E′

s) [ 10, inspection of stB-t ]
12. ∀c 6= Z. C(Rval(pcc) + 1) = Θ′ 7→ void [ Inversion of C-t, 3, 4, 10, 11 ]
5’. ∀c 6= Z. C(R++val(pcc)) = Θ′ 7→ void [ 12, def of R++ ]

9’. Ψ `Z R++ : S(Γ)++ [ 9, def of R++ and Γ++ ]

13. Ψ; (·; S(Γ); S((Ed, Es), (E
′

d, E
′

s)); S(Em)) ` stB rd rs [ Lemma 4 (Substitution), 10, 11, 6 ]

⇒ (·; S(S(Γ)++; S((Ed, Es)); upd S(Em E′

d E′

s))
14. S(Γ)(rd) = 〈B, b ref , E′′

d 〉 [ Inversion of stB-t, 5 ]
15. S(Γ)(rs) = 〈B, b, E′′

s 〉 [ Inversion of stB-t, 5 ]
16. · ` S(E′

d) = E′′

d [ Inversion of stB-t, 5 ]
17. · ` S(E′

s) = E′′

s [ Inversion of stB-t, 5 ]

Case on Z

Subcase a1: Z = G

a2a. Z = G [ subcase assumption ]

18a. Ψ `Z (n, n′) : S((Ed, Es)) [ Repeated Inversion of Q-zap-t, a2a, 8, Q-zap-t ]

Subcase b1: Z = · or Z = B

a2b. Z = · or Z = B [ subcase assumption ]

18b. Ψ `Z (n, n′) : S((Ed, Es)) [ Repeated Inversion of Q-t, a2a, 8, Q-t ]

Merge subcases a1 and b1:

8’. Ψ `Z (n, n′) : S((Ed, Es)) [ 18a/18b ]

2’. Z 6= G =⇒ Dom((n, n′)) ⊆ Dom(M) [ 2 ]

Continued in Figure 14...

Figure 13: Example Case from Theorem 2 (Preservation) Part 1.
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Example Case: stB-mem (...continued from Figure 13)

Case on Z

Subcase a2: Z = B (the queue is correct)
a3a. Z = B [ subcase assumption ]

19a. · ` S(E′

d) = nl [ Inversion of Q-t, a3a, 8 ]
20a. Ψ ` nl : b ref [ Inversion of Q-t, a3a, 8 ]
21a. Ψ; · `B n′

l : 〈B, b ref , E′′

d 〉 [ val-t, 19a, 20a ]
22a. nl ∈ Dom(M) [ Lemma 6 (Canonical Forms), 7, 3, 21a

23a. · ` S(E′

s) = n′

l [ Inversion of Q-t, a3a, 8 ]
24a. Ψ ` n′

l : b [ Inversion of Q-t, a3a, 8 ]

25a. [[S(E′

d)]] = nl and [[S(E′

s)]] = n′

l [ Inversion of E-eq, 19a, 23a ]

Subcase b2: Z = · or Z = G (rd and rs are correct)
a3b. Z = · or Z = G [ subcase assumption ]

19b. Ψ; · `Z Rval(rd) : 〈B, b ref , E′′

d 〉 [ Inversion of R-t, 9, 14 ]
20b. Ψ; · `Z nl : 〈B, b ref , S(E′

d)〉 [ 19b, p1, Lemma 3 (Exp Eq Transitivity), 16 ]
21b. nl ∈ Dom(M) [ Lemma 6 (Canonical Forms), 7, 3, 20b
22b. Ψ ` nl : b ref [ Inversion of val-t, a3b, 20b ]

23b. Ψ; · `Z Rval(rs) : 〈B, b, E′′

s 〉 [ Inversion of R-t, 9, 15 ]
24b. Ψ; · `Z n′

l : 〈B, b, S(E′

s)〉 [ 23b, p2, Lemma 3 (Exp Eq Transitivity), 17 ]
25b. Ψ ` n′

l : b [ Inversion of val-t, a3b, 24b ]

26b. · ` S(E′

d) = nl and · ` S(E′

s) = n′

l [ Inversion of val-t, a3b, 20b, 24b ]
27b. [[S(E′

d)]] = nl and [[S(E′

s)]] = n′

l [ Inversion of E-eq, 26b ]

Merge subcases a2 and b2:
30. ∀` ∈ Dom(M). Ψ ` ` : b ref ∧ Ψ ` M(`) : b [ Inversion of M-t, 7 ]
31. ∀` ∈ Dom(M [nl 7→ n′

l]). Ψ ` ` : b ref ∧ Ψ ` M(`) : b [ 30, 20a/22b, 24a/25b ]

32. [[S(Em)]] = M [ Inversion of M-t, 7 ]
33. [[upd S(Em) S(E′

d) S(E′

s)]] = [[S(Em)]][ [[S(E′

d)]] 7→ [[S(E′

s)]] ] [ def of [[E]] ]
34. [[upd S(Em) S(E′

d) S(E′

s)]] = M [nl 7→ n′

l] [ 33, 32, 25a/27b ]

35. · ` S(Em) : κmem [ Inversion of M-t, 7 ]
36. · ` S(E′

d) : κint and · ` S(E′

s) : κint [ Lemma 5 (Value Kinding), Inversion of R-t, 9, 14, 15 ]
37. · ` upd S(Em) S(E′

d) S(E′

s) : κmem [ E-upd-t, 35, 36 ]

7’. Ψ ` M [nl 7→ n′

l] : S(Em E′

d E′

s) [ M-t, 31, 34, 37 ]

1’. Dom(Ψ) = Dom(C) ∪ Dom(M [nl 7→ n′

l]) [ 1, 22a/21b ]

38. `Z (R++, C, M [nl 7→ n′

l], (n, n′), ·) [ Σ-t, 1’, 2’, 3, ir = ., 5’, 6, 7’, 8’, 9’

Figure 14: Example Case from Theorem 2 (Preservation) Part 1.
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Example Case: reg-zap

R(a) = c n

(R, C, M, Q, ir) −→1 (R[a 7→ c n′], C, M, Q, ir)
(reg-zap)

a1. ` (R, C, M, Q, ir) [ assumption ]

1. Dom(Ψ) = Dom(C) ∪ Dom(M) [ Inversion of Σ-t, a1 ]
2. Dom(Q) ⊆ Dom(M) [ Inversion of Σ-t, a1 ]
3. Ψ ` C [ Inversion of Σ-t, a1 ]
4. ∀c. ir 6= · =⇒ C(Rval(pcc)) = ir [ Inversion of Σ-t, a1 ]

5. ∀c. Ψ(Rval(pcc)) = (∆; Γ; (Ed, Es); Em) → void [ Inversion of Σ-t, a1 ]
6. ∃S. · ` S : ∆ [ Inversion of Σ-t, a1 ]
7. Ψ ` M : S(Em) [ Inversion of Σ-t, a1 ]

8. Ψ ` Q : S(Ed, Es) [ Inversion of Σ-t, a1 ]
9. Ψ ` R : S(Γ) [ Inversion of Σ-t, a1 ]

Case on the shape of S(Γ)(a)

Subcase a: S(Γ)(a) is a triple 〈c, b, E〉
a2a. Let 〈c, b, E〉 = S(Γ)(a) [ subcase assumption ]

10a. · ` E : κint [ Lemma 5 (Value Kinding), Inversion of R-t, 9, a2a ]
11a. Ψ; · `c c n′ : 〈c, b, E〉 [ val-zap-t, 10a ]
12a. Ψ; · `c R[a 7→ c n′](a) : S(Γ)(a) [ 11a, a2a, def of R[ ] ]

Subcase b: S(Γ)(a) is a conditional type E′ = 0 ⇒ 〈c, b, E〉
a2b. Let (E′ = 0 ⇒ 〈c, b, E〉) = S(Γ)(a) [ subcase assumption ]

10b. · ` E : κint [ Lemma 5, Inversion of R-t, 9, a2b ]
11b. Ψ; · `c c n′ : E′ = 0 ⇒ 〈c, b, E〉 [ val-zap-cond, 10b ]
12b. Ψ; · `c R[a 7→ c n′](a) : S(Γ)(a) [ 11b, a2b, def of R[ ] ]

Merge subcases a and b:
9’. Ψ `c R[a 7→ c n′] : S(Γ) [ R-t, 9, Lemma 9 (Reg File Color Weakening), 12a/12b ]

8’. Ψ `c Q : S(Ed, Es) [ Lemma 14 (Queue Color Weakening), 8 ]

2’. Z 6= G =⇒ Dom(Q) ⊆ Dom(M) [ 2 ]

4’. ∀c 6= Z. ir 6= · =⇒ C(Rval(pcc)) = ir [ 4 ]

5’. ∀c 6= Z. Ψ(Rval(pcc)) = (∆; Γ; (Ed, Es); Em) → void [ 5 ]

13. `c (R[a 7→ c n′], C, M, Q, ir) [ Σ-t, 1, 2’, 3, 4’, 5’, 6, 7, 8’, 9’ ]

Case complete.

Figure 15: Example Case of Theorem 2 (Preservation) Part 2.
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v1 simZ v2

C n simZ C n
(sim-val)

C n simC C n′
(sim-val-zap)

R simZ R′

∀a. R(a) simZ R′(a)

R simZ R′
(sim-R)

Q simZ Q′

· simZ ·
(sim-Q-empty)

G n1 simZ G n′
1 G n2 simZ G n′

2 Q simZ Q′

((n1, n2), Q) simZ ((n′
1, n

′
2), Q

′)
(sim-Q)

Σ1 simZ Σ2

R simZ R′ Q simZ Q′

(R, C, M, Q, ir) simZ (R′, C, M, Q′, ir)
(sim-Σ)

Figure 16: Similarity of Machine States.

Lemma 16 (Multistep Combine)
If Σ

n1−−→
s1

0 Σ′ and Σ′ −→1 Σ′
f and Σ′

f

n2−−→
s2

0 Σ′′ then Σ
n′

−−→
(s1,s2)

1 Σ′′ where n′ = n1 + 1 + n2.

Proof. By induction on the structure of Σ
n1−−→

s1

0 Σ′.

4.4 Fault Tolerance

A program is fault tolerant when all the faulty executions of that program simulate fault-free executions of
the program. More precisely, the sequence of outputs from the faulty executions are required either to be
identical to the fault-free execution or, in the case the hardware detects the fault, a prefix of the fault-free
execution.

4.4.1 Simulation Relation

In order to reason about pairs of faulty and fault-free executions, we define similarity relations between
values, register files, queues and machine states. Each of these relations is defined relative to the zap tag
Z. Intuitively, if Z is empty, the related objects must be identical. If Z is a color c, the objects must be
identical modulo values colored c. In the latter case, values colored c may be corrupted, and there is no hope
they satisfy any particular relation. The formal definitions of these relations are shown in Figure 16.

4.4.2 Singlestep Fault Detection

We begin by defining fault detection for a single step in the execution of a program. It essentially says that
if we have two similar computations, one with a fault and one without, then either the faulty computation
can take a step indistinguishable from that of the the non-faulty version, or the faulty computation reaches
the fault state.
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Lemma 17 (Singlestep Fault Detection)
If ` Σ and Σ simc Σf and Σ −→s

0 Σ′ then Σf −→
sf

0 Σ′
f and either

1. Σ′ simc Σ′
f and s = sf , or

2. Σ′
f = fault and sf = ().

Proof. By case analysis of Σ −→s
0 Σ′. Each case is handled in one of three ways.

Failure Cases. Rules where Σ steps to fault are not applicable because Σ is well typed under the
empty zap tag, and so Progress 1 tells us that Σ′ is not fault .

Random Cases. Rules ldB-rand and ldG-rand only apply when loading from an invalid address that is
not in the domain of memory. According to Lemma 10 (Well-typed Domain), states that are well-typed
under the empty zap tag only load from valid addresses, so these cases can be ruled out.

Standard Cases. The remaining rules are all handled in approximately the same way.

Each rule has a handful of premises. These relationships may or may not hold in the faulty computation.
It will depend on what exactly has been corrupted. The proof divides into subcases based on these
relationships. Some subcases may further divide based on whether c is G or B.

Figure 17 shows the case for stB-mem. There are two premises relating the two registers to the last
pair in the queue. If one of these premises does not hold in the faulty computation, then it will step to
fault using the stB-fail rule with no output.

However, if both equalities hold then the proof further subdivides based on the color c. If c is B, then
we know that the faulty and non-faulty queues are equal because they contain green values and simulate
each other under color B. From there, we can determine that the faulty computation also steps using
stB, the resulting state is similar to Σ′, and the outputs are equal.

If c is G, then we use the fact that Σ is well-typed to show that the registers rd and rs are colored
blue, and so both the faulty and non-faulty registers are correct and equal to each other. And since the
registers are assumed to be equal to the ends of the queues, we also know that the ends of the queues
are equal. From there, we continue as in the previous subcase.

4.4.3 Multistep Fault Detection

The Multistep Fault Detection Lemma extends the Singlestep Fault Detection Lemma for n steps. If a fault
has occurred and the non-faulty computation takes n steps to a state Σ′, then the faulty computation with
either take n steps to a state that simulates Σ′, or it will terminate in the fault state fault during this time.

Lemma 18 (Multistep Fault Detection)
If ` Σ and Σ simc Σf and Σ

n
−−→

s

0Σ
′ then either

1. Σf
n

−−→
sf

0 Σ′
f and Σ′ simc Σ′

f and sf = s, or

2. Exists m ≤ n. Σf
m

−−→
sf

0 fault and sf is a prefix of s.

Proof. By induction on the structure of Σ
n

−−→
s

0Σ
′. The base case for multi-base is immediate.

In the case for multi-compose, we know from the premises that Σ takes a single step to some Σ′′. Using
this and the Singlestep Fault Detection Lemma, we know that Σf either takes a single step with no output to
fault or takes a single step to some state Σ′′

f that simulates Σ′′ while generating equal output.
In the former case, we can immediately prove the second possibility with m = 1 and () as a prefix of s.
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Example Case: stB-mem

Rval(rd) = nl Rval(rs) = n′

l

(R, C, M, ((n, n′), (nl, n′

l)), stB rd, rs) −→
(nl,n′

l
)

0 (R++, C, M [nl 7→ n′

l], (n, n′), ·)

(stB-mem)

a1. ` (R, C, M, ((n, n′), (nl, n′

l)), stB rd, rs) [ assumption ]

a2. (R, C, M, ((n, n′), (nl, n′

l)), stB rd, rs) simc Σf [ assumption ]

a3. (R, C, M, ((n, n′), (nl, n′

l)), stB rd, rs) −→
(nl,n′

l
)

0 (R++, C, M [nl 7→ n′

l], (n, n′), ·) [ assumption ]
p1. Rval(rd) = nl [ premise ]
p2. Rval(rs) = n′

l [ premise ]

1. Σf = (Rf , C, M, Qf , ir) [ a2, definition of sim-Σ ]
2. R simc Rf [ a2, 1, inversion of sim-Σ ]

3. ((n, n′), (nl, n′

l)) simc Qf [ a2, 1, inversion of sim-Σ ]

4. Qf = (nf , n′

f
), (nlf , n′

lf ) [ 3, definition of sim-Q ]

Case on whether Rf val
(rd)

?
= nlf and Rf val

(rs)
?
= n′

lf and the color c

subcase a: either rs or rd or the last pair in the queue has been corrupted
a4a. Rf val

(rd) 6= nlf or Rf val
(rs) 6= n′

lf [ subcase assumption ]
6a. (Rf , C, M, Qf , stB rd, rs) −→0 fault [ stB-fail, 4, a4a ]

7a. Σf −→
sf
0 fault and sf = () [ 6a ]

subcase complete.

subcase b: blue values are corrupted, but not rs or rd

a4b. Rf val
(rd) = nlf and Rf val

(rs) = n′

lf [ subcase assumption ]
a5b. c = B [ subcase assumption ]

6b. G nl simB G nlf [ 3, inversion of sim-Q ]
7b. nl = nlf [ 6b, inversion of sim-val, a5b ]

8b. G n′

l simB G n′

lf [ 3, inversion of sim-Q ]
9b. n′

l = n′

lf [ 8b, inversion of sim-val, a5b ]

10b. M [nl 7→ n′

l] = M [nlf 7→ n′

lf ] [ 7b, 9b, a5b]

11b. R++ simB Rf++ [ 2, definition of R++, sim-val, sim-R, a5b ]

12b. (n, n′) simB (nf , n′

f
) [ 3, 4, inversion of sim-Q, a5b ]

13b. (R++, C, M [nl 7→ n′

l], (n, n′), ·) simB (Rf++, C, M [nlf 7→ n′

lf ], (nf , n′

f
), ·) [ 10b, 11b, 12b ]

14b. Σf −→
(nlf ,n′

lf
)

0 (Rf++, C, M [nlf 7→ n′

lf ], (nf , n′

f
), ·) [ stB-mem, a4b, 1, 4 ]

15b. (nlf , n′

lf ) = (nl, n′

l) [ 7b, 9b ]

16b. Σf −→
sf
0 Σ′

f and Σ′ simc Σ′

f and sf = s [ 14b, 13b, 15b ]
subcase complete.

subcase c: green values are corrupted, but not the last pair in the queue
a4c. Rf val

(rd) = nlf and Rf val
(rs) = n′

lf [ subcase assumption ]
a5c. c = G [ subcase assumption ]
6c. Rcol(rd) = Rcol(rs) = B [ a1, inversion of Σ-t, inversion of stB-t ]

7c. R(rd) simG Rf (rd) [ 2, inversion of sim-R, a5c ]

8c. R(rs) simG Rf (rs) [ 2, inversion of sim-R, a5c ]
9c. Rval(rd) = Rf val

(rd) [ 7c, 6c, inversion of sim-val ]
10c. Rval(rs) = Rf val

(rs) [ 8c, 6c, inversion of sim-val ]
11c. nl = nlf [ 9c, a4c, p1 ]
12c. n′

l = n′

lf [ 10c, a4c, p2 ]

13c. M [nl 7→ n′

l] = M [nlf 7→ n′

lf ] [ 11c, 12c ]

14c. R++ simG Rf++ [ 2, definition of R++, sim-val, sim-R, a5c ]

15c. (n, n′) simG (nf , n′

f
) [ 3, 4, inversion of sim-Q, a5c ]

16c. (R++, C, M [nl 7→ n′

l], (n, n′), ·) simG (Rf++, C, M [nlf 7→ n′

lf ], (nf , n′

f
), ·) [ 13c, 14c, 15c ]

17c. Σf −→
(nlf ,n′

lf
)

0 (Rf++, C, M [nlf 7→ n′

lf ], (nf , n′

f
), ·) [ stB-mem, a4c ]

18c. (nlf , n′

lf ) = (nl, n′

l) [ 11c, 12c ]

19c. Σf −→
sf
0 Σ′

f and Σ′ simc Σ′

f and sf = s [ 17c, 16c, 18c ]
subcase complete.

case complete.

Figure 17: Example Case of Lemma 17.
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In the latter case, we call the Induction Hypothesis, which tells us that either Σ′′
f takes n − 1 steps to a

state that simulates Σ′ generating equal output, or it reaches fault in no more than n− 1 steps with a prefix
of the output. In the first case, where fault is never reached, we use multi-compose to conclude that Σf takes
n steps to Σ′

f and the total output is equal. In the second case, where a fault is reached later in execution,
we use multi-compose to show that Σf reaches fault in no more than n steps, and its output is a prefix of
the non-faulty output.

4.4.4 Fault Similarity

The Fault Similarity Lemma states that if a non-faulty machine state takes a single faulty step, then the
resulting machine state is similar to the original state under some color c.

Lemma 19 (Fault Similarity)
If Σ −→1 Σf , then ∃ c. Σ simc Σ′.

Proof. By case analysis on the definition of Σ −→1 Σ′. In each case, c is assigned the color of the value
that is zapped. The zapped value is similar to the original value by sim-val-zap. The remainder of the state
is equal, and is similar using sim-val.

4.4.5 Fault Tolerance Theorem

By using the three previous lemmas, we can state and prove the fault tolerance theorem for well-typed
programs. Assume that machine state Σ is well-typed under the empty zap tag, and non-faulty execution
of Σ for n steps results in a state Σ′ and outputs a sequence of value-address pairs s. If somewhere during
that execution a single fault is encountered, the faulty execution will either run for n + 1 steps or terminate
in the fault state during that time. If the faulty execution takes n+ 1 steps and reaches the non-faulty state
Σ′

f , then Σ′ simulates Σ′
f and the sequence of output pairs is identical the original execution. Alternatively,

if the faulty execution reaches the fault state then the output pairs will be a prefix of the non-faulty output
pairs.

Theorem 4 (Fault Tolerance)
If ` Σ and Σ

n
−−→

s

0Σ
′ then either Σ

(n+1)
−−→

s′

1 Σ′
f or ∃m ≤ (n+1) . Σ

m
−−→

s′

1 fault , and

1. For all derivations Σ
(n+1)
−−→

s′

1 Σ′
f where Σ′

f 6= fault . s′ = s and ∃ c. Σ′ simc Σ′
f .

2. For all derivations Σ
m

−−→
s′

1 fault where m ≤ (n+1). s′ is a prefix of s.

Proof. By case analysis on the definition of Σ
n

−−→
s

0Σ
′.

In the base case for multi-base, we can easily prove result 1 by having Σ take a faulty step to Σf and
using the Fault Similarity Lemma to show that ∃ c. Σ simc Σf .

In the recursive case multi-compose, we use the Multistep Split Lemma to divide the computation into
two pieces with an intermediate state Σ′′. Σ′′ can take a faulty step to Σf , and we can again use the Fault
Similarity Lemma to show that they are similar. We then call the Multistep Fault Detection Lemma with
the execution from Σ′′ to Σ′ and the similarity between Σ′′ and Σf . This tells us that Σf can either step to
a state Σ′

f that is similar to Σ′ or reaches a fault before that point. Finally, we use the Multistep Combine
Lemma to combine the first part of the non faulty execution, the fault step, and the resulting execution from

the Multistep Fault Detection Lemma, to show that either Σ
(n+1)
−−→

s′

1 Σ′
f or Σ

m
−−→

s′

1 fault . The length of the
faulty computation is at most n + 1 because of the addition of the single fault step. Since the Multistep Split
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Figure 18: Performance Normalized to Unprotected Version.

Lemma chooses some unspecified division of the original computation, the result hold regardless of exactly
where the fault is injected.

5 Performance

To better understand how TALFT can be applied to real world situations, we simulated the TALFT hardware
in the framework of a current computer architecture, the Intel Itanium 2 ISA. The instruction set of the
Itanium 2 contains many more types of instructions than those specified in TALFT. While not an exact rep-
resentation of the performance of TALFT, simulating the performance of TALFT applied to this architecture
will give guidance as to the feasibility of this system in a real architecture.

To evaluate the performance impact of our techniques, a version of the VELOCITY compiler [22] was
modified to add the reliability techniques of TALFT and was used to compile the SPEC CINT2000 and
MediaBench benchmark suites. These executions were compared against binaries generated by the original
VELOCITY compiler, which have no fault detection. The reliability transformation was compiled into the
low level code immediately before register allocation and scheduling. To simulate the new hardware structures
of TALFT, extra instructions were inserted to emulate the timing and dependences of the hardware structure
accesses.

Performance metrics were obtained by running the resulting binaries with reference inputs on an HP
workstation zx6000 with 2 900Mhz Intel Itanium 2 processors running Redhat Advanced Workstation 2.1
with 4Gb of memory. The perfmon utility was used to measure the CPU time.

Figure 18 presents the execution time of the fault-tolerant code relative to baseline binaries with no fault
detection. Näıvely, one might expect the fault-tolerant code to run twice as slowly as the fault intolerant code
since the number of instructions is essentially doubled. However, we find that smart instruction scheduling
and efficient allocation of resources reduces the execution time to only 34% more than the fault-intolerant
baseline average. These simulations are in line with previously published software-only reliability performance
experiments [17] that show the degradation due to redundant code to be less than double.

As alluded to in Section 2.2, Figure 18 compares the performance degradation both with and without
the scheduling constraint that green memory and control flow instructions must be executed before the
corresponding blue versions. In order to perform the second set of experiments, our compiler was modified
to produce code that had more flexibility in the scheduling of the green and blue versions. We then simulated a
more aggressive hardware implementation that could correlate the original and redundant memory operations
regardless of the executed order. As expected, this version has better performance (in most cases) than the
unconstrained code. Comparing both to the unprotected code, the version without the ordering constraint
increases execution time by 30% while the version with the ordering increases execution time by 34%.
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Although the colored ordering restriction of TALFT may seem costly, removing this restriction provides only
a small improvement.

6 Related Work

Fault tolerance based on software replication is a well-populated field with decades of history. TALFT differs
from previous approaches in that it provides a type-theoretic framework for obtaining strong guarantees
about the reliability of machine code.

Most closely related to TALFT is our previous work on λzap, a highly abstract type-theoretic model
for studying the basic principles of fault tolerance in the lambda calculus [25]. There are two important
distinctions between TALFT and λzap. First, λzap, working at the level of the lambda calculus, is very far
removed from real machine code. For instance, it lacks a program counter, a register file, memory, and load
or store instructions. Memory references in particular constitute a key challenge in the current technical
work. Second, the properties of the λzap type system are relatively weak compared with the properties of
the current type system. The “end-to-end” fault tolerance property proven for λzap depends not only on
the type system but also the nature of the translation from the ordinary simply-typed lambda calculus. In
contrast, the type system of TALFT is much stronger, capable of ensuring a strong fault tolerance property
independently of the process that compiles the code.

Also closely related to TALFT is the original TAL system, which first applied strong type checking to
machine code to guarantee its safety [8]. TAL operates under the assumption of nonfaulty hardware and
therefore ignores the major issues of reliability on which this paper has focused.

There have been various implementations of software-only, hardware-only, and hybrid techniques for
transient fault mitigation. Hardware techniques have a long history of using very localized bit-level techniques
like error correcting codes or parity bits additions. These techniques are efficient for storage structures like
memory, but are costly or impossible to apply to other processor elements like pipeline latches or arithmetic
units. Higher level techniques are used when protection is necessary for larger segments of the processor.
These techniques include the duplication of coarse-grained structures such as functional units, processor
cores [5, 21, 26], or hardware contexts [9, 15, 24].

To provide protection when the hardware costs of these approaches are prohibitive, software-only ap-
proaches have been proposed as alternatives [12, 13, 16, 17, 19, 23]. While software-only systems are cheaper
to deploy and can be configured after deployment, they cannot achieve the same performance or reliability
as hardware-based techniques, since they have to execute additional instructions and are unable to examine
microarchitectural state. Despite these limitations, software-only techniques have shown promise, in the
sense that they can significantly improve reliability with reasonable performance overhead [12, 13, 17].

TALFT attempts to exploit the benefits of both sorts of systems by using a hybrid approach to fault
tolerance. There have been previous hybrid approaches to transient fault tolerance, some focusing solely on
control-flow protection [14] and recently others looking at full processor protection [18]. This work differs
from those previous approaches because regardless of the type of implementation, software, hardware, or
hybrid, none of those previous approaches have given rigorous formal proofs of the correctness of their
systems.

7 Conclusions

In conclusion, transient faults are already a significant cause for concern at major semiconductor manufac-
turers and threaten to be more so in the coming years and decades. This paper takes one step forward for
the science of fault tolerance by presenting a principled and practical hybrid software-hardware scheme for
detecting transient faults. More specifically, we identify four general principles for verifying correctness of
fault tolerant systems and capture these in an assembly language type system. From a theoretical perspec-
tive, the type system acts as a sound proof technique for verifying reliability properties of programs. From a
practical perspective, it can be used as a debugging aid within a compiler, strictly dominating any conven-
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tional testing technique. Our two main formal results show that a single fault affecting observable behavior
in a well-type program will always be detected, and that the system will not claim to have detected a fault
when none has occurred. Despite the fact that well-typed programs essentially duplicate all computation,
we provide simulation results showing a performance overhead of 1.34x.
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