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1. INTRODUCTION

Compilers that manipulate statically typed intermediate languages have compelling
advantages over traditional compilers that manipulate untyped program represen-
tations. An optimizing compiler for a high-level language such as ML may make
as many as 20 passes over a single program, performing sophisticated analyses and
transformations such as CPS conversion, closure conversion, unboxing, subsump-
tion elimination, or region inference. Many of these optimizations require type
information in order to succeed, and even those that do not, often do benefit from
the additional structure supplied by a typing discipline. Moreover, the essence of
many of these program transformations can be specified by the corresponding type
translation. Types provide concise and yet precise documentation of the compila-
tion process that can be automatically verified by a type checker. In practice, this
technique has been invaluable for debugging new transformations and optimiza-
tions [Tarditi et al. 1996; Morrisett et al. 1996].

Today a small number of compilers work with typed intermediate languages in
order to realize some or all of these benefits [Leroy 1992; Peyton Jones et al. 1993;
Birkedal et al. 1993; Tarditi et al. 1996; Lindholm and Yellin 1996; Shao 1997;
Dimock et al. 1997]. However, in all of these compilers, there is a conceptual line
where types are lost. For instance, the TIL/ML compiler preserves type information
through approximately 80% of compilation, but the remaining 20% is untyped. We
show how to recode the untyped portions of a compiler to maintain type information
through all phases of compilation and, in so doing, extend the paradigm of compiling
with typed intermediate languages to compiling with typed target languages.

The target language in this article is a strongly typed assembly language (TAL)
based on a generic RISC instruction set. The type system for TAL is surprisingly
standard; supporting tuples, polymorphism, existential packages, and a restricted
form of function pointer, yet it is sufficiently powerful that we can automatically
generate well-typed code from high-level ML-like languages.

The TAL framework admits most conventional low-level optimizations such as
global register allocation, copy propagation, constant folding, and dead-code elim-
ination. Except for a small number of atomic code patterns, TAL also supports
code motion optimizations such as instruction scheduling, common-subexpression
elimination, and loop-invariant removal. Some more advanced implementation tech-
niques are not supported by the simple typed assembly language we present here,
including run-time code generation, intensional polymorphism, and array bounds
check elimination. In Section 8 we discuss how to extend the type system presented
here to support such techniques.

TAL not only allows us to reap the benefits of types throughout a compiler, but it
also enables a practical system for executing untrusted code safely and efficiently.
For example, as suggested by the SPIN project [Bershad et al. 1995], operating
systems could allow users to download TAL extensions into the kernel. The kernel
would type check the TAL extension, thereby ensuring that it never accesses hidden
resources within the kernel, always calls kernel routines with the right number and
types of arguments, and so forth. After the type checker has verified the extension,
the kernel can safely assemble it and dynamically link it in. Such a TAL-based
system has a number of advantages. Currently, SPIN requires that extensions be
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written in a single high-level language (Modula-3) and use a single trusted compiler
(along with cryptographic signatures) in order to ensure their safety. In contrast,
a kernel based on a typed assembly language could support extensions written in
a variety of high-level languages using a variety of untrusted compilers, since the
safety of the resulting assembly code can be checked independently of the source
code or the compiler. Furthermore, critical inner loops could be hand-written in
assembly language in order to achieve better performance. TAL could also be used
to support extensible Web browsers, extensible servers, active networks, or any
other extensible system where security, performance, and language independence
are desired. Of course, while type safety implies many important security properties
such as memory safety, neither SPIN nor TAL can enforce other important security
properties, such as termination, that do not follow from type safety.

Another framework for verifying safety properties in low-level programs, pro-
posed by Necula and Lee, is called proof-carrying code (PCC) [Necula and Lee
1996; Necula 1997; 1998]. Necula and Lee encode the relevant operational content
of simple type systems using extensions to first-order predicate logic, and auto-
matically verify proofs of security properties such as memory safety [Necula 1997].
Because Necula and Lee use a general-purpose logic, they can encode more ex-
pressive security properties and permit some optimizations that are impossible in
TAL. TAL, on the other hand, provides compiler writers with a higher-level set
of abstractions than PCC. These abstractions make compiling languages with fea-
tures such as higher-order functions and data types simpler. In order to do the
same, a PCC programmer must build such abstractions from the low-level logical
primitives, and it is not always obvious how to obtain a compact logical encoding
of these language constructs that preserves the necessary security properties. An-
other benefit of the TAL abstractions is that they make it possible to automatically
reconstruct the proof of type safety; TAL binaries can be more compact than PCC
binaries because they do not need to contain a complete proof. Clearly, however,
the ideal system contains both the compiler support and compact annotations of
TAL and the flexibility of PCC. We leave this long-term goal to future research;
here we focus on the theoretical framework for automatic compilation of high-level
languages to type-safe assembly language.

2. OVERVIEW

The goals of this work are twofold: first, to define a type system for a conventional
assembly language and to prove its soundness, and, second, to demonstrate the
expressiveness of the resulting language by showing how to automatically compile
a high-level language to type-correct assembly code. In this section, we give a brief
overview of our typed assembly language and the structure of our compiler.

2.1 TAL

The primary goal of the TAL type system is to provide a fully automatic way to
verify that programs will not violate the primitive abstractions of the language.
In a conventional untyped assembly language, all values are represented as word-
sized integers, and the primitive operations of the language apply to any such
values. That is, in an untyped assembly language, there is only one abstraction:
the machine word. In contrast, TAL provides a set of built-in abstractions, such



4 · G. Morrisett et al.

as (word-sized) integers, pointers to tuples, and code labels, for each of which
only some operations are applicable. For example, arithmetic is only permitted
on integer values; dereferencing is only permitted for pointer values; and control
transfer is only permitted for code labels. We say that a program becomes stuck if
it attempts to perform an unpermissible operation. Hence, the primary goal of the
TAL type system is to ensure that well-typed programs do not become stuck.

Because TAL treats integers as a separate abstraction from pointers or code
labels, and because arithmetic is only permitted on integers, it is possible to show,
that, in addition to never becoming stuck, a well-typed TAL program satisfies a
number of important safety policies relevant to security. For instance, it is possible
to conclude that programs cannot manufacture pointers to arbitrary objects, or
that programs cannot jump to code that has not been verified.

In addition to providing a set of built-in abstractions, TAL provides a set of
type constructors that may be used by programmers or compilers to build new
abstractions. For example, in the functional language compiler that we sketch,
closures (a high-level language abstraction) are encoded as TAL-level abstractions
using the existential type constructor. In the high-level language, it is impossible
for a program to apply any primitive operation to a closure except for function
application. For instance, it is impossible for a program to inspect the environment
of the closure. At the TAL level, closures are represented as a pair of a label (to
some code) and an environment data structure (intended to hold the free variables
of the code). We use an existential type to hide the type of the environment data
structure and to connect it to the code. The resulting object prevents malicious
or faulty code from reading the environment, or passing anything but the closure’s
environment to the closure’s code.

In other work, we have extended the type system to support many more abstrac-
tions, such as modules [Glew and Morrisett 1999] and the run-time stack [Morrisett
et al. 1998]. Here, we have attempted to keep the type system simple enough that
the formalism may be understood and proven sound, yet powerful enough that we
can demonstrate how a high-level ML-like language may be compiled to type-correct
TAL code automatically.

The typed assembly language we present here is based on a conventional RISC-
style assembly language. In particular, all but two of the instructions are standard
assembly operations. In an effort to simplify the formalism, we have omitted many
typical instructions, such as a jump-and-link, that may be synthesized using our
primitives. Figure 1 gives an example TAL program that, when control is trans-
ferred to the label l main, computes 6 factorial and then halts with the result in
register r1. The code looks and behaves much like standard assembly code, except
that each label is annotated with a code precondition that associates types with
registers. The precondition specifies, that, before control can be transferred to the
corresponding label, the registers must contain values of the specified types. Hence,
before allowing a jump to l fact as in l main, the type checker ensures that an
integer value resides in register r1.

2.2 A Type-Preserving Compiler

In order to motivate the typing constructs in TAL and to justify our claims about
its expressiveness, we spend a large part of this article sketching a compiler from a
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l main:

code[ ]{}. % entry point
mov r1,6

jmp l fact

l fact:

code[ ]{r1:int}. % compute factorial of r1
mov r2,r1 % set up for loop

mov r1,1

jmp l loop

l loop:

code[ ]{r1:int,r2:int}. % r1: the product so far,

% r2: the next number to be multiplied
bnz r2,l nonzero % branch if not zero

halt[int] % halt with result in r1

l nonzero:

code[ ]{r1:int,r2:int}.
mul r1,r1,r2 % multiply next number

sub r2,r2,1 % decrement the counter
jmp l loop

Fig. 1. A TAL program that computes 6 factorial.

variant of the polymorphic lambda-calculus to TAL. Our compiler is structured as
five translations between six typed calculi:

λF -
conversion
CPS

λK -
conversion
Closure

λC -
Hoisting

λH -
Allocation

λA -
generation
Code

TAL

Each calculus is a first-class programming language in the sense that each trans-
lation operates correctly on any well-typed program of its input calculus. The
translations do not assume that their input is the output from the preceding trans-
lation. This fact frees a compiler to optimize code aggressively between any of
the translation steps. The inspiration for the phases and their ordering is derived
from SML/NJ [Appel and MacQueen 1991; Appel 1992] (which is in turn based on
the Rabbit [Steele 1978] and Orbit [Kranz et al. 1986] compilers) except that our
compiler uses types throughout compilation.

The rest of this article proceeds by describing each of the languages and trans-
lations in our compiler in detail. We give the syntax and static semantics of each
language as well as type-preserving translations between them. The middle calculi
(λK, λC, λH, and λA) have many features in common. Therefore, we only describe
λK in full, and each successive calculus is defined in terms of its differences from
the preceding one.

We begin by presenting the compiler’s source language, λF, in Section 3. Section 4
describes the first intermediate language, λK, and gives a typed CPS translation to
it based on Harper and Lillibridge [1993]. The CPS translation fixes the order of
evaluation and names intermediate computations. Section 5 presents λC and gives
a typed closure translation to it based on, but considerably simpler than, that of
Minamide et al. [1996]. The closure translation makes the construction of functions’
environments and closures explicit, thereby rendering all data structures explicit.
This is followed by a simple hoisting translation that lifts the (now closed) code to
the top level.
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Section 6 presents λA, in which the allocation and initialization of data struc-
tures is made explicit, and gives a translation from λH to λA. At this point in
compilation, the intermediate code is essentially in a lambda-calculus syntax for
assembly language (following the ideas of Wand [1992]). Section 7 presents the
formal details of our typed assembly language. We show type safety for TAL, and
also define a translation from λA to TAL. Finally, in Section 8 we discuss exten-
sions to TAL to support additional language constructs and optimizations. We also
describe our current implementation of TAL and discuss some directions for future
investigation.

3. SYSTEM F

The source language for our compiler, λF, is a variant of System F [Girard 1971;
1972; Reynolds 1974] (the polymorphic λ-calculus) augmented with integers, prod-
ucts, and recursion on terms. The syntax for λF appears below:

types τ, σ ::= α | int | τ1→ τ2 | ∀α.τ | 〈~τ 〉
annotated terms e ::= uτ

terms u ::= x | i | fixx(x1:τ1):τ2.e | e1e2 | Λα.e | e[τ ] |
〈~e〉 | πi(e) | e1 p e2 | if0(e1, e2, e3)

primitives p ::= + | − | ×
type contexts ∆ ::= α1, . . . , αn

value contexts Γ ::= x1:τ1, . . . , xn:τn

Integers, the only base type, are introduced by integer literals (i), operated on by by
arithmetic primitives p, and eliminated by a conditional expression if0. The term
if0(e1, e2, e3) evaluates to e2 when e1 evaluates to zero, and otherwise evaluates to
e3. We use the notation ~E to refer to a vector of syntactic objects drawn from
the syntactic class E. For example, 〈~e 〉 is shorthand for a tuple 〈e1, . . . , en〉. The
elimination form for tuples, πi(e), evaluates to the ith field of the tuple e. Recursive
functions are written fix x(x1:τ1):τ2.e, where x is the name of the recursive function
and may appear free in the body; x1 is its argument (with type τ1); and e is
its body (with type τ2). Polymorphic functions are written Λα.e, where α is the
abstracted type, and e is the body of the polymorphic function. For example, the
polymorphic identity function may be written as Λα. fixid(x:α):α.x. Instantiation
of a polymorphic expression e is written e [τ ]. As usual, we consider types and
expressions that differ only in the names of bound variables to be identical. We
write the capture-avoiding substitution of E for X in E′ as E′[E/X].

We interpret λF with a conventional call-by-value operational semantics (which
is not presented here). The static semantics (given in Figure 2) is specified as a set
of inference rules for concluding judgments of the form ∆; Γ `F e : τ , where ∆ is a
context containing the free type variables of Γ, e, and τ ; Γ is a context that assigns
types to the free variables of e; and τ is the type of e. A second judgment ∆ `F τ
asserts that type τ is well-formed under type context ∆. In later judgments, we
will use ∅ to denote an empty type or value context.

To simplify the presentation of our translations, we use type-annotated terms (e),
which are unannotated terms (u) marked with their types. This decision allows us
to present our translations in a simple, syntax-directed fashion, rather than making
them dependent on the structure of typing derivations. The typing rules ensure that
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∆ `F τ
(FTV (τ ) ⊆ ∆)

∆; Γ `F u : τ

∆; Γ `F uτ : τ

∆; Γ `F x : τ
(Γ(x) = τ )

∆; Γ `F i : int

∆ `F τ1 ∆ `F τ2 ∆; Γ, x:τ1→ τ2, x1:τ1 `F e : τ2

∆; Γ `F fix x(x1:τ1):τ2.e : τ1→ τ2
(x, x1 6∈ Γ)

∆; Γ `F e1 : τ1→ τ2 ∆; Γ `F e2 : τ1

∆; Γ `F e1e2 : τ2

∆, α; Γ `F e : τ

∆; Γ `F Λα.e : ∀α.τ
(α 6∈ ∆)

∆ `F τ ∆; Γ `F e : ∀α.τ ′

∆; Γ `F e[τ ] : τ ′[τ/α]

∆; Γ `F ei : τi

∆; Γ `F 〈e1, . . . , en〉 : 〈τ1, . . . , τn〉
∆; Γ `F e : 〈τ1, . . . , τn〉

∆; Γ `F πi(e) : τi
(1 ≤ i ≤ n)

∆; Γ `F e1 : int ∆; Γ `F e2 : int

∆; Γ `F e1 p e2 : int

∆; Γ `F e1 : int ∆; Γ `F e2 : τ ∆; Γ `F e3 : τ

∆; Γ `F if0(e1, e2, e3) : τ

Fig. 2. Static Semantics of λF.

all annotations in a well-formed term are correct. In the interest of clarity, however,
we will omit the type annotations in informal discussions and examples.

As a running example, we will consider compiling a term that computes 6 facto-
rial:

(fix f(n:int):int . if0(n, 1, n× f(n − 1))) 6

4. CPS CONVERSION

The first compilation stage is conversion to continuation-passing style (CPS). This
stage names all intermediate computations and eliminates the need for a control
stack. All unconditional control transfers, including function invocation and return,
are achieved via function call. The target calculus for this phase is called λK:

types τ, σ ::= α | int | ∀[~α].(~τ)→ void | 〈τ1, . . . , τn〉
annotated values v ::= uτ

values u ::= x | i | fix x[~α](x1:τ1, . . . , xn:τn).e | 〈~v〉
primitives p ::= + | − | ×
declarations d ::= x = v | x = πi v | x = v1 p v2

terms e ::= let d in e
| v[~τ ](~v)
| if0(v, e1, e2)
| halt[τ ]v

type contexts ∆ ::= α1, . . . , αn

value contexts Γ ::= x1:τ1, . . . , xn:τn

Code in λK is nearly linear: it consists of a series of let bindings followed by a func-
tion call. The exception to this is the if0 construct, which forms a tree containing
two subexpressions.

In λK there is only one abstraction mechanism (fix), which abstracts both type
and value variables, thereby simplifying the rest of the compiler. The corresponding
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∆ `K τ
(FTV (τ ) ⊆ ∆)

∆; Γ `K u : τ

∆; Γ `K uτ : τ

∆; Γ `K x : τ
(Γ(x) = τ )

∆; Γ `K i : int

∆, ~α `K τi (∆, ~α); (Γ, x:∀[~α].(τ1, . . . , τn)→ void , x1:τ1, . . . , xn:τn) `K e

∆; Γ `K fix x[~α](x1:τ1, . . . , xn:τn).e : ∀[~α].(τ1, . . . , τn)→ void
(~α /∈ ∆ ∧ x, ~x /∈ Γ)

∆; Γ `K vi : τi

∆; Γ `K 〈v1, . . . , vn〉 : 〈τ1, . . . , τn〉

∆; Γ `K v : τ ∆; Γ, x:τ `K e

∆; Γ `K let x = v in e
(x 6∈ Γ)

∆; Γ `K v : 〈τ1, . . . , τn〉 ∆; Γ, x:τi `K e

∆; Γ `K let x = πi v in e
(x 6∈ Γ ∧ 1 ≤ i ≤ n)

∆; Γ `K v1 : int ∆; Γ `K v2 : int ∆; Γ, x:int `K e

∆; Γ `K let x = v1 p v2 in e
(x 6∈ Γ)

∆ `K σi ∆; Γ `K v : ∀[α1, . . . , αm].(τ1, . . . , τn)→ void ∆; Γ `K vi : τi[~σ/~α]

∆; Γ `K v[σ1, . . . , σm](v1, . . . , vn)

∆; Γ `K v : int ∆; Γ `K e1 ∆; Γ `K e2

∆; Γ `K if0(v, e1, e2)

∆; Γ `K v : τ

∆; Γ `K halt[τ ]v

Fig. 3. Static Semantics of λK.

∀ and → types are also combined. We abbreviate ∀[ ].(~τ)→ void as (~τ )→ void ; we
abbreviate fix f [~α](x1:τ1, . . . , xn:τn).e as λ[~α](x1:τ1, . . . , xn:τn).e, when f does not
appear free in e; and we omit empty type argument brackets in both the fix and λ
forms and in applications.

In λK, unlike λF, functions do not return values, so function calls are just jumps.
The function notation “→ void” is intended to suggest this fact. If control is to be
returned to the caller, the caller must pass the callee a continuation function for it
to invoke. Execution is completed by the construct halt[τ ]v, which accepts a result
value v of type τ and terminates the computation. Typically, this construct is used
by the top-level continuation.

Since expressions never return values, only typing judgments for values state
types. The new judgment ∆; Γ `K e indicates that the term e is well formed under
type and value contexts ∆ and Γ. Aside from these issues, the static semantics for
λK is standard and appears in Figure 3.

4.1 Translation

The CPS translation that takes λF to λK is based on that of Harper and Lillib-
ridge [1993] and appears in Figure 4. The type translation is written K[[ · ]]. The
principal translation for terms, Kexp[[e]], takes a continuation k, computes the value
of e and hands that value to k. A second term translation for full programs,
Kprog[[e]], calls the principal translation with a special top-level continuation that
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K[[α]]
def
= α

K[[int ]]
def
= int

K[[τ1 → τ2]]
def
= (K[[τ1]],Kcont[[τ2]])→ void

K[[∀α.τ ]]
def
= ∀[α].(Kcont[[τ ]])→ void

K[[〈τ1, . . . , τn〉]] def
= 〈K[[τ1]], . . . ,K[[τn]]〉

Kcont[[τ ]]
def
= (K[[τ ]])→ void

Kprog[[uτ ]]
def
= Kexp[[uτ ]](λx:K[[τ ]].halt[K[[τ ]]]xK[[τ]])Kcont[[τ]]

Kexp[[yτ ]]k
def
= k(yK[[τ]])

Kexp[[iτ ]]k
def
= k(iK[[τ]])

Kexp[[(fixx(x1:τ1):τ2.e)
τ ]]k

def
= k((fix x(x1:K[[τ1]], c:Kcont[[τ2]]).Kexp[[e]]cKcont [[τ2 ]])K[[τ]])

Kexp[[(uτ1
1 uτ2

2 )τ ]]k
def
= Kexp[[uτ1

1 ]](λx1:K[[τ1]].
Kexp[[uτ2

2 ]](λx2:K[[τ2]].

x
K[[τ1 ]]
1 (x

K[[τ2]]
2 , k))Kcont[[τ2]])Kcont[[τ1 ]]

Kexp[[(Λα.uτ )τ′
]]k

def
= k((λ[α](c:Kcont[[τ ]]).Kexp[[uτ ]]cKcont[[τ]])K[[τ′ ]])

Kexp[[(uτ [σ])τ′
]]k

def
= Kexp[[uτ ]](λx:K[[τ ]].xK[[τ]][K[[σ]]](k))Kcont[[τ]]

Kexp[[〈uτ1
1 , . . . , uτn

n 〉τ ]]k
def
= Kexp[[uτ1

1 ]](λx1:K[[τ1]]. · · ·
Kexp[[uτn

n ]](λxn:K[[τn]].

k(〈xK[[τ1 ]]
1 , . . . , x

K[[τn ]]
n 〉K[[τ]]))Kcont[[τn ]] · · ·)Kcont[[τ1 ]]

Kexp[[πi(u
τ )τ′

]]k
def
= Kexp[[uτ ]](λx:K[[τ ]]. let y = πi(x) in k(yK[[τ′ ]]))Kcont[[τ]]

Kexp[[e1 p e2
τ ]]k

def
= Kexp[[e1]](λx1:int .

Kexp[[e2]](λx2:int.

let y = x1 p x2 in k(yint ))Kcont[[int ]])Kcont[[int ]]

Kexp[[if0(e1, e2, e3)τ ]]k
def
= Kexp[[e1]](λx:int.

if0(xint ,Kexp[[e2]]k,Kexp[[e3]]k))Kcont[[int ]]

Fig. 4. Translation from λF to λK.

accepts a final answer and halts. In the translation, the variables c and x are
assumed to be fresh in order to avoid variable capture.

An important property of the translation is that it translates well-formed λF

expressions to well-formed λK expressions:

Lemma (CPS Conversion Type Correctness). If ∅; ∅ `F e : τ then ∅; ∅ `K

Kprog[[e]].

In this translation, and in those that follow, no particular effort is made to op-
timize the resulting code. A realistic compiler based on these type systems, such
as the one we discuss in Section 8, would integrate optimizations into these trans-
lations. For instance, a realistic CPS-converter would eliminate “administrative”
redices and optimize tail recursion [Danvy and Filinski 1992].

The factorial example coded in λK is given below. This code would be obtained
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by Kprog[[ · ]] in conjunction with two optimizations mentioned above.

(fix f (n:int, k:(int)→ void).
if0(n, k(1),

let x = n− 1 in
f(x, λ(y:int ). let z = n× y in k(z))))

(6, λ(n:int). halt[int]n)

5. SIMPLIFIED POLYMORPHIC CLOSURE CONVERSION

The second compilation stage is closure conversion, which makes closures explicit,
thereby separating program code from data. This is done in two steps. The first
and main step, closure conversion proper, rewrites all functions so that they contain
no free variables. Any variables that appear free in a function must be taken as
additional arguments to that function. Those additional arguments are collected
in an environment that is paired with the (now closed) code to create a closure.
Function calls are performed by extracting the code and the environment from the
closure, and then calling that code with the environment as an additional argument.

In the second step, hoisting, the code blocks are lifted to the top of the program,
achieving the desired separation between code and data. Since those code blocks are
closed, hoisting can be done without difficulty. We begin with closure conversion
proper; the hoisting step is considered in Section 5.2.

Although the operational explanation of closure conversion is quite simple, there
are a number of subtle issues involved in type-checking the resulting code. In the
absence of polymorphic functions, our approach to typing closure conversion is
based on Minamide et al. [1996], who observe that if two functions with the same
type but different free variables (and therefore different environment types) were
naively typed after closure conversion, the types of their closures would not be
the same. To prevent this, they use existential types [Mitchell and Plotkin 1988]
to abstract the types of environments, thereby hiding the fact that the closures’
environments have different types.

In the presence of polymorphism, functions may have free type variables as well
as free value variables, and, just as for free value variables, closure conversion must
rewrite functions to take free type variables as additional arguments. Our approach
for dealing with this issue diverges from that of Minamide et al., who desire a type-
passing interpretation of polymorphism in which types are constructed and passed
as data at run time. In such a type-passing interpretation, those additional type
arguments must be collected in a type environment, which is the type-level equiva-
lent of the value environment discussed earlier. Type environments necessitate two
complex mechanisms: abstract kinds, to hide the differences between type environ-
ments, and translucent types, to ensure that code blocks are called with the correct
type environments.

We propose a considerably simpler approach to polymorphic closure conversion.
To avoid the complexities of type environments, we adopt a type-erasure interpre-
tation of polymorphism as in The Definition of Standard ML [Milner et al. 1997].
In a type-erasure interpretation, we need not save the contents of free type vari-
ables in a type environment; instead, we substitute them directly into code blocks.
Semantically, this amounts to making copies of code blocks in which the relevant
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Additional syntactic constructs:

types τ, σ ::= . . . | ∃α.τ

values u ::= . . . | v[τ ] | pack [τ1, v] as τ2

declarations d ::= . . . | [α,x] = unpack v

terms e ::= . . . | replace v[~τ ](~v) by v(~v)

The typing rule for fix x[~α](x1:τ1, . . . , xn:τn).e is replaced by:

~α `C τi ~α; x:∀[~α](τ1, . . . , τn)→ void , x1:τ1, . . . , xn:τn `C e

∆; Γ `C fix x[~α](xn:τ1, . . . , xn:τn).e : ∀[~α](τ1, . . . , τn)→ void

The typing rule for v[~τ ](~v) is replaced by:

∆; Γ `C v : (τ1, . . . , τn)→ void ∆; Γ `C vi : τi

∆; Γ `C v(v1, . . . , vn)

Additional typing rules:

∆ `C σ ∆; Γ `C v : ∀[α, ~β].(~τ)→ void

∆; Γ `C v[σ] : (∀[~β].(~τ [σ/α])→ void)

∆ `C τ1 ∆; Γ `C v : τ2[τ1/α]

∆; Γ `C pack [τ1, v] as ∃α.τ2 : ∃α.τ2

∆; Γ `C v : ∃α.τ (∆, α); (Γ, x:τ ) `C e

∆; Γ `C let [α,x] = unpack v in e
(α /∈ ∆ ∧ x /∈ Γ)

Shorthand:

v[ ]
def
= v

u∀[α,~β].(~σ)→void [τ, ~τ ]
def
= (u∀[α,~β].(~σ)→void [τ ])∀[~β].(~σ[τ/α])→void [~τ ]

Fig. 5. Changes from λK to λC.

substitutions have been performed. However, as types will ultimately be erased,
these “copies” are represented by the same term at run time, resulting in no run-
time cost.

Formally this means, that, in a type-erasure interpretation, we consider the par-
tial application of a function to a type argument to be a value. For example,
suppose v has the type ∀[~α, ~β].(~τ)→ void where the type variables ~α stand for the
function’s free type variables, and the type variables ~β are the function’s ordinary
type arguments. If ~σ are the contents of those free type variables, then the partial
instantiation v[~σ] is considered a value and has type ∀[~β].(~τ [~σ/~α])→ void . This
instantiation takes the place of the construction of a type environment.

The work of Minamide et al. arose from the TIL compiler [Morrisett et al. 1996],
which uses run-time type information to optimize data layout [Tarditi et al. 1996].
At first, it seems that a type-erasure semantics precludes these optimizations. How-
ever, recent work of Crary et al. [1998; 1999] shows how to encode run-time type
information in a type-erasure language. Rather than manipulating types directly,
programs manipulate values that represent types. Using this device, the type envi-
ronment can become part of the value environment, and closure conversion may be
performed in a similar fashion as described here. These mechanisms can be added
to TAL, and the optimizations above can be used in a compiler targeting it.

Figure 5 presents the differences between λC and λK. The principal difference is
that the body of a function must type check in a context containing only its formal
arguments. In other words, code blocks must be closed, as desired. As discussed
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above, we also make type instantiation a value form. Finally, we add existential
types [Mitchell and Plotkin 1988] to support the typing of closures. Note that in a
type-erasure interpretation, the type portion of an existential package (all but v of
pack [τ, v] as ∃α.τ ′) is erased at run time, and hence the creation of such a package
has no run-time cost.

5.1 Translation

The closure conversion algorithm is formalized in Figure 6. The translation for
types is denoted by C[[ · ]], the only interesting rule of which is the one for function
types:

C[[∀[~α].(τ1, . . . , τn)→ void ]] = ∃β.〈∀[~α].(β, C[[τ1]], . . . , C[[τn]])→ void , β〉
The existentially quantified variable β represents the type of the value environment
for the closure. The closure itself is a pair consisting of a piece of code instantiated
with types for its free type variables, and a value environment. The instantiated
code takes as arguments its original type and value arguments, as well as the value
environment. Closures are invoked by extracting the code and environment from
the closure and then applying the code to the environment and the function’s
arguments.

The term translation has three parts: one for terms, Cexp[[· ]], one for declarations,
Cdec[[ · ]], and one for values, Cval[[ · ]]. For uniformity with other translations, we also
provide a whole program translation (Cprog[[ · ]]), which in this case simply invokes
the term translation. To avoid variable capture, the variables z and γ are assumed
to be fresh.

Again, we may show that the translation preserves well-formedness of programs:

Lemma (Closure Conversion Type Correctness). If ∅; ∅ `K e then
∅; ∅ `C Cprog[[e]].

5.2 Hoisting

After closure conversion, all functions are closed and may be hoisted out to the top
level without difficulty. In a real compiler, these two phases would be combined, but
we have separated them here for simplicity. The target of the hoisting translation
is the calculus λH, in which fix is no longer a value form. Instead, code blocks are
defined by a letrec prefix, which we call a heap in anticipation of the heaps of λA

and TAL. This change is made precise in Figure 7.
Programs are translated from λC to λH by replacing all fix expressions with fresh

variables and binding those variables to the corresponding code expressions in the
heap. This translation, denoted by Hprog[[ · ]], is straightforward to formalize, so we
omit the formalization in the interest of brevity.

Lemma (Hoisting Type Correctness). If ∅; ∅ `C e then `H Hprog[[e]].

Some examples of closure conversion and hoisting appear in Figures 8 and 9.
Figure 8 gives the factorial example after closure conversion, hoisting, and few
simplifying optimizations (beta reduction and copy propagation). To illustrate
polymorphic closure conversion we consider another example in Figure 9, the poly-
morphic, higher-order function twice that takes a function and composes it with
itself. The twice function contains two nested functions, twicef and oncef , each
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C[[α]]
def
= α

C[[int ]]
def
= int

C[[∀[~α].(τ1, . . . , τn)→ void ]]
def
= ∃β.〈∀[~α].(β,C[[τ1]], . . . , C[[τn]])→ void , β〉

C[[〈τ1, . . . , τn〉]] def
= 〈C[[τ1]], . . . , C[[τn]]〉

Cprog[[e]]
def
= Cexp[[e]]

Cexp[[let d in e]]
def
= let Cdec[[d]] in Cexp[[e]]

Cexp[[uτ [σ1, . . . , σm](v1, . . . , vn)]]
def
= let [γ, z] = unpack Cval[[uτ ]] in

let zcode = π1(z
〈τcode ,γ〉) in

let zenv = π2(z
〈τcode ,γ〉) in

(zcode
τcode [C[[σ1]], . . . , C[[σm]]])

(zenv
γ , Cval[[v1]], . . . ,Cval [[vn]])

where

C[[τ ]] = ∃γ.〈τcode, γ〉
Cexp[[if0(v, e1, e2)]]

def
= if0(Cval[[v]], Cexp[[e1]], Cexp[[e2]])

Cexp[[halt[τ ]v]]
def
= halt[C[[τ ]]]Cval[[v]]

Cdec[[x = v]]
def
= x = Cval[[v]]

Cdec[[x = πi(v)]]
def
= x = πi(Cval[[v]])

Cdec[[x = v1 p v2]]
def
= x = Cval[[v1]] p Cval[[v2]]

Cval[[xτ ]]
def
= xC[[τ]]

Cval[[iτ ]]
def
= iC[[τ]]

Cval[[〈v1, . . . , vn〉τ ]]
def
= 〈Cval[[v1]], . . . , Cval[[vn]]〉C[[τ]]

Cval[[(fix x[~α](x1:τ1, . . . , xn:τn).e)τ ]]
def
= (pack [τenv , 〈vcode [~β], venv 〉〈τcode,τenv 〉] as C[[τ ]])C[[τ]]

where yσ1
1 , . . . , yσm

m = FV (fix x[~α](x1:τ1, . . . , xn:τn).e)
~β = FTV (fixx[~α](x1:τ1, . . . , xn:τn).e)

τenv = C[[〈σ1, . . . , σm〉]]
τrawcode = ∀[~β, ~α].(τenv ,C[[τ1]], . . . , C[[τn]])→ void
τcode = ∀[~α].(τenv ,C[[τ1]], . . . , C[[τn]])→ void

vcode = (fix zcode [~β, ~α](zenv :τenv , x1:C[[τ1]], . . . , xn:C[[τn]]).

let x = pack [τenv , 〈zcodeτrawcode [~β], zenv
τenv 〉〈τcode,τenv 〉]

as C[[τ ]] in

let y1 = π1(zenv
τenv ) in

..

.
let ym = πm(zenv

τenv ) in Cexp[[e]])τrawcode

venv = 〈y1
C[[σ1]], . . . , ym

C[[σm]]〉τenv

Fig. 6. Translation from λK to λC.

of which contains the free type variable α, and therefore, after closure conversion,
α becomes part of the type environment for these functions. Consequently, the
type argument to twicecode is an ordinary type argument, but the type arguments
to the code blocks twicef code and oncef code stand for free type variables and are
instantiated appropriately whenever closures are formed from those code blocks.
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Syntax changes:

values u ::= delete fix x(x1:τ1, . . . , xn:τn).e
heap values h ::= code[~α](x1:τ1, . . . , xn:τn).e

programs P ::= letrec x1 7→ h1, . . . , xn 7→ hn in e

The typing rule for fix is replaced by a heap value rule for code:

~α `H τi ~α; (Γ, x1:τ1, . . . , xn:τn) `H e

Γ `H code[~α](x1:τ1, . . . , xn:τn).e : ∀[~α](τ1, . . . , τn)→ void hval
(x1, . . . , xn 6∈ Γ)

New typing rule:

∅ `H τi x1:τ1, . . . , xn : τn `H hi : τi hval ∅;x1:τ1, . . . , xn : τn `H e

`H letrec x1 7→ h1, . . . , xn 7→ hn in e
(xi 6= xj for i 6= j)

Fig. 7. Changes from λC to λH.

letrec fcode 7→ (* main factorial code block *)

code[ ](env :〈〉, n:int , k:τk).

if0(n, (* true branch: continue with 1 *)

let [β, kunpack ] = unpack k in

let kcode = π1(kunpack ) in
let kenv = π2(kunpack ) in

kcode(kenv , 1),
(* false branch: recurse with n− 1 *)

let x = n− 1 in
fcode(env , x, pack [〈int , τk〉, 〈contcode, 〈n, k〉〉] as τk))

cont code 7→ (* code block for continuation after factorial computation *)

code[ ](env :〈int , τk〉, y:int).

(* open the environment *)
let n = π1(env ) in

let k = π2(env) in
(* compute n! into z *)

let z = n × y in
(* continue with z *)

let [β, kunpack ] = unpack k in
let kcode = π1(kunpack) in

let kenv = π2(kunpack ) in
kcode(kenv , z)

haltcode 7→ (* code block for top-level continuation *)

code[ ](env :〈〉, n:int). halt[int ]n

in
fcode(〈〉,6,pack [〈〉, 〈haltcode, 〈〉〉] as τk)

where τk is ∃α.〈(α, int)→ void , α〉

Fig. 8. Factorial in λH.

6. EXPLICIT ALLOCATION

The λH intermediate language still has an atomic constructor for forming tuples, but
machines must allocate space for a tuple and fill it out field by field; the allocation
stage makes this process explicit. To do so, we eliminate the value form for tuples,
and introduce new declaration forms for allocating and initializing tuples, as shown
in Figure 10. The creation of an n-element tuple becomes a computation that is
separated into an allocation step and n initialization steps. For example, if v1 and
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λF source:

twice = Λα. λf :α→ α.λx:α. f(fx)

λK source:
twice =

λ[α](f :τf , c:(τf )→ void).
let twicef =

λ(x :α, c′:(α)→ void).
let oncef = λ(z :α). f (z , c′) in

f (x , oncef )
in

c[ ](twicef )

where τf = (α, (α)→ void)→ void

λH translation:
letrec twicecode[α](env :〈〉, f :τf , c:∃ρ3.〈(ρ3, τf)→ void , ρ3〉).

let twicef = pack [〈τf〉, 〈twicefcode [α], 〈f 〉〉] as τf in (* create closure *)

let [ρ3, cunpack ] = unpack c in

let ccode = π1(cunpack) in

let cenv = π2(cunpack ) in
ccode(cenv , twicef )

twicefcode[α](env:〈τf 〉, x :α, c′:ταc).
let f = π1(env) in

let oncef = pack [〈τf , ταc〉, 〈oncefcode [α], 〈f , c′〉〉] as ταc in (* create closure *)

let [ρ1, funpack ] = unpack f in

let fcode = π1(funpack ) in
let fenv = π2(funpack ) in

fcode(fenv , x , oncef )
oncefcode [α](env : 〈τf , ταc〉, z : α).

let f = π1(env) in
let c′ = π2(env ) in

let [ρ1, funpack ] = unpack f in
let fcode = π1(funpack ) in

let fenv = π2(funpack ) in
fcode(fenv , z , c′)

in · · ·

where τf = ∃ρ1.〈(ρ1, α, ταc)→ void , ρ1〉
ταc = ∃ρ2.〈(ρ2, α)→ void , ρ2〉

Fig. 9. Polymorphic example.

v2 are integers, the pair 〈v1, v2〉 is created as follows (where types have been added
for clarity):

let x1:〈int0, int0〉 = malloc[int, int]
x2:〈int1, int0〉 = x1[1]← v1

x :〈int1, int1〉 = x2[2]← v2

...

The “x1 = malloc[int, int ]” step allocates an uninitialized tuple and binds x1 to the
address of the tuple. The “0” superscripts on the types of the fields indicate that
the fields are uninitialized, and hence no projection may be performed on those
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Syntax changes:

types τ, σ ::= . . . | replace 〈~τ〉 by 〈τϕ1
1 , . . . , τϕn

n 〉
initialization flags ϕ ::= 1 | 0
values u ::= delete 〈~v〉
declarations d ::= . . . | x = malloc[~τ ] | x = v1[i]← v2

heap values h ::= . . . | 〈~v〉
The typing rule for projection is replaced by:

∆; Γ `A v : 〈τϕ1
1 , . . . , τϕn

n 〉 ∆; Γ, x:τi `A e

∆; Γ `A let x = πi(v) in e
(x /∈ Γ ∧ 1 ≤ i ≤ n ∧ ϕi = 1)

The typing rule for tuples is replaced by a heap value rule:

∅; Γ ` vi : τi

Γ `A 〈v1, . . . , vn〉 : 〈τ1
1 , . . . , τ1

n〉 hval

New typing rules:

∆ `A τi ∆; Γ, x:〈τ0
1 , . . . , τ0

n〉 `A e

∆; Γ `A let x = malloc[τ1, . . . , τn] in e
(x /∈ Γ)

∆; Γ `A v1 : 〈τϕ1
1 , . . . , τϕn

n 〉 ∆; Γ `A v2 : τi

∆; Γ, x:〈τϕ1
1 , . . . , τ

ϕi−1
i−1 , τ1

i , τ
ϕi+1
i+1 , . . . , τ

ϕn
n 〉 `A e

∆; Γ `A let x = v1[i]← v2 in e
(x /∈ Γ ∧ 1 ≤ i ≤ n)

Shorthand:

let ε in e
def
= e

let d, ~d in e
def
= let d in let ~d in e

Fig. 10. Changes from λH to λA.

fields. The “x2 = x1[1] ← v1” step updates the first field of the tuple with the
value v1 and binds x2 to the address of the tuple. Note that x2 is assigned a type
where the first field has a “1” superscript, indicating that this field is initialized.
Finally, the “x = x2[2]← v2” step initializes the second field of the tuple with v2

and binds x to the address of the tuple, which is assigned the fully initialized type
〈int1, int1〉. Hence, both π1 and π2 are allowed on x.

The code sequence above need not be atomic; it may be rearranged or interleaved
with projections in any well-typed manner. The initialization flags on the types en-
sure that a field cannot be projected unless it has been initialized. Moreover, a
syntactic value restriction ensures there is no unsoundness in the presence of poly-
morphism. Operationally, the declaration x[i] ← v is interpreted as an imperative
operation, and thus at the end of the sequence, x1, x2, and x are all aliases for the
same location, even though they have different types. Consequently, the initializa-
tion flags do not prevent a field from being initialized twice. It is possible to use
monads [Wadler 1990a; Launchbury and Peyton Jones 1995] or linear types [Girard
1987; Wadler 1990b; 1993] to ensure that a tuple is initialized exactly once, but we
have avoided these approaches in the interest of a simpler type system. The pres-
ence of uninitialized values also raises some garbage collection issues; in Section 8
we discuss how our implementation deals with these issues.
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6.1 Translation

The translation of types from λH to λA is simple; it amounts to adding initialization
flags to each field of tuple types:

A[[〈τ1, . . . , τn〉]] def= 〈A[[τ1]]
1
, . . . ,A[[τn]]1〉

The term translation is formalized in Figure 11 as five translations: full programs
(Aprog[[·]]), heap values (Ahval[[·]]), expressions (Aexp[[·]]), declarations (Adec[[·]]), and
values (Aval[[ · ]]). The focus of the translation is on the last rule, which generalizes
the informal translation of tuples given in the previous section. This rule returns the
sequence of declarations to allocate and initialize a tuple. Although the other (non-
tuple) values are more or less unchanged by the translation, they too must return
sequences of declarations needed to construct those values. Such sequences will
be empty unless the value in question contains a tuple. Similarly, the declaration
translation produces a sequence of declarations. To avoid variable capture, the
variable y is assumed to be fresh.

Lemma (Allocation Type Correctness). If `H P then `A Aprog[[P ]].

The factorial example after application of the explicit allocation translation ap-
pears in Figure 12.

7. TYPED ASSEMBLY LANGUAGE

The final compilation stage, code generation, converts λA to TAL. All of the major
typing constructs in TAL are present in λA and, indeed, code generation is largely
syntactic. To summarize the type structure at this point, there is a combined
abstraction mechanism that may simultaneously abstract a type environment, a
set of type arguments, and a set of value arguments. Values of these types may
be partially applied to type environments and remain values. There are existential
types to support closures and other data abstractions. Finally, there are n-tuples
with flags on the fields indicating whether the field has been initialized.

A key technical distinction between λA and TAL is that λA uses alpha-varying
variables, whereas TAL uses register names, which, like labels on records, do not
alpha-vary.1 We assume an infinite supply of registers. Mapping to a language with
a finite number of registers may be performed by spilling registers into a tuple and
reloading values from this tuple when necessary.

One of the consequences of this aspect of TAL is that a calling convention must
be used in code generation, and calling conventions must be made explicit in the
types. Hence TAL includes the type ∀[~α].{r1:τ1, . . . , rn:τn}, which is used to de-
scribe entry points of code blocks and is the TAL analog of the λA function type,
∀[~α].(τ1, . . . , τn)→ void . The key difference is that we assign fixed registers to the
arguments of the code. Intuitively, to jump to a block of code of this type, the
type variables ~α must be suitably instantiated, and registers r1 through rn must
contain values of type τ1 through τn, respectively.

Another distinction between λA and TAL is, that, while λA has one mechanism
(variables) for identifying values, TAL follows real machines and distinguishes be-
tween labels (which may be thought of as pointers) and registers. Registers may

1Indeed, the register file may be viewed as a record, and register names as field labels.
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A[[α]]
def
= α

A[[int ]]
def
= int

A[[∀[~α].(τ1, . . . , τn)→ void ]]
def
= ∀[~α].(A[[τ1]], . . . ,A[[τn]])→ void

A[[〈τ1, . . . , τn〉]] def
= 〈A[[τ1]]

1, . . . ,A[[τn]]1〉
A[[∃α.τ ]]

def
= ∃α.A[[τ ]]

Aprog[[letrec x1 7→ h1, . . . , xn 7→ hn in e]]
def
= letrec x1 7→ Ahval[[h1]], . . . , xn 7→ Ahval [[hn]] in Aexp[[e]]

Ahval [[code[~α](x1:τ1, . . . , xn:τn).e]]
def
= code[~α](x1:A[[τ1]], . . . , xn:A[[τn]]).Aexp[[e]]

Aexp[[let d in e]]
def
= letAdec[[d]] in Aexp[[e]]

Aexp[[v(v1, . . . , vn)]]
def
= let ~d, ~d1, . . . , ~dn in v′(v′1, . . . , v′n)

where 〈~d, v′〉 = Aval [[v]] and 〈~di, v
′
i〉 = Aval [[vi]]

Aexp[[if0(v, e1, e2)]]
def
= let ~d in if0(v′,Aexp[[e1]],Aexp[[e2]])

where 〈~d, v′〉 = Aval [[v]]

Aexp[[halt[τ ]v]]
def
= let ~d in halt[A[[τ ]]]v′

where 〈~d, v′〉 = Aval [[v]]

Adec[[x = v]]
def
= ~d, x = v′ where 〈~d , v′〉 = Aval [[v]]

Adec[[x = πi(v)]]
def
= ~d, x = πi(v

′) where 〈~d, v′〉 = Aval [[v]]

Adec[[x = v1 p v2]]
def
= ~d1, ~d2, x = v′1 p v′2 where 〈~di, v

′
i〉 = Aval [[vi]]

Adec[[[α,x] = unpack v]]
def
= ~d, [α,x] = unpack v′ where 〈~d, v′〉 = Aval [[v]]

Aval [[x
τ ]]

def
= 〈ε, xA[[τ]]〉

Aval [[i
τ ]]

def
= 〈ε, iA[[τ]]〉

Aval [[(v[σ])τ ]]
def
= 〈~d, (v′[A[[σ]]])A[[τ]]〉 where 〈~d, v′〉 = Aval [[v]]

Aval [[(pack [τ, v] as τ ′)τ′′
]]

def
= 〈~d, (pack [A[[τ ]], v′] as A[[τ ′]])A[[τ′′ ]]〉

where 〈~d, v′〉 = Aval [[v]]

Aval [[〈u1
τ1 , . . . , un

τn〉τ ]]
def
= 〈(~d1, . . . , ~dn, y0 = malloc[A[[τ1]], . . . ,A[[τn]]],

y1 = y
(τ(0))
0 [1]← v′1,

.

.

.

yn = y
(τ(n−1) )
n−1 [n]← v′n),

y
A[[τ]]
n 〉

where 〈~di, v
′
i〉 = Aval[[ui

τi ]]

and τ (i) = 〈A[[τ1]]
1, . . . ,A[[τi]]

1,A[[τi+1]]
0, . . . ,A[[τn]]0〉

Fig. 11. Translation from λH to λA.

contain only word values, which are integers or pointers. As in λA, tuples and code
blocks are large values and must be heap allocated. Heap objects are identified by
labels, which may reside in registers. In this manner, TAL makes the layout of data
in memory explicit.

In the remainder of this section, we present the syntax of TAL (Section 7.1), its
dynamic semantics (Section 7.2), and its full static semantics (Section 7.3). Finally,
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letrec fcode 7→ (* main factorial code block *)

code[ ](env :〈〉, n:int , k:τk).
if0(n, (* true branch: continue with 1 *)

let [β, kunpack ] = unpack k in
let kcode = π1(kunpack ) in

let kenv = π2(kunpack ) in
kcode(kenv , 1),

(* false branch: recurse with n− 1 *)

let x = n− 1 in

let y1 = malloc[int , τk] in
let y2 = y1[1]← n in

let y3 = y2[2]← k in (* 〈n, k〉 *)
let y4 = malloc[(〈int, τk〉, int)→ void , 〈int , τk〉] in

let y5 = y4[1]← contcode in
let y6 = y5[2]← y3 in (* 〈cont code, 〈n, k〉〉 *)
fcode(env , x, pack [〈int, τk〉, y6] as τk))

cont code 7→ (* code block for continuation after factorial computation *)

code[ ](env :〈int , τk〉, y:int).
(* open the environment *)

let n = π1(env ) in

let k = π2(env) in
(* continue with n × y *)

let z = n × y in
let [β, kunpack ] = unpack k in

let kcode = π1(kunpack) in
let kenv = π2(kunpack ) in

kcode(kenv , z)
haltcode 7→ (* code block for top-level continuation *)

code[ ](env :〈〉, n:int). halt[int ]n
in

let y7 = malloc[ ] in (* 〈〉 *)
let y8 = malloc[ ] in (* 〈〉 *)
let y9 = malloc[(〈〉, int)→ void , 〈〉] in
let y10 = y9[1]← halt code in

let y11 = y10[2]← y8 in (* 〈haltcode , 〈〉〉 *)
fcode(y7, 6,pack [〈〉, y11] as τk)

where τk is ∃α.〈(α, int)→ void , α〉

Fig. 12. Factorial in λA.

we present the translation from λA to TAL (Section 7.4).

7.1 TAL Syntax

We present the syntax of TAL in Figure 13. A TAL abstract machine state, or
program, is a triple consisting of a heap (H), a register file (R), and a sequence of
instructions (I). The heap is a mapping of labels (`) to heap values (tuples and
code blocks). The register file is a mapping of registers (r) to word values. Heaps,
register files, and their respective types are not syntactically correct if they repeat
labels or registers. When r appears in R, the notation R{r 7→ w} represents the
register file R with the r binding replaced with w; if r does not appear in R, the
indicated binding is simply added to R. Similar notation is used for heaps, register
file types, and heap types.
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types τ, σ ::= α | int | ∀[~α].Γ | 〈τϕ1
1 , . . . , τϕn

n 〉 | ∃α.τ

initialization flags ϕ ::= 0 | 1
heap types Ψ ::= {`1:τ1, . . . , `n:τn}
register file types Γ ::= {r1:τ1, . . . , rn:τn}
type contexts ∆ ::= α1, . . . , αn

registers r ::= r1 | r2 | r3 | · · ·
word values w ::= ` | i | ?τ | w[τ ] | pack [τ,w] as τ ′

small values v ::= r | w | v[τ ] | pack [τ, v] as τ ′

heap values h ::= 〈w1, . . . , wn〉 | code[~α]Γ.I
heaps H ::= {`1 7→ h1, . . . , `n 7→ hn}
register files R ::= {r1 7→ w1, . . . , rn 7→ wn}

instructions ι ::= add rd, rs, v | bnz r, v | ld rd, rs[i] | mallocrd[~τ ] | movrd, v |
mul rd, rs, v | st rd[i], rs | sub rd, rs, v | unpack[α, rd], v

instruction sequences I ::= ι; I | jmp v | halt[τ ]
programs P ::= (H,R, I)

Fig. 13. Syntax of TAL.

Although heap values are not word values, the labels that point to them are. The
other word values are integers, instantiations of word values, existential packages,
and junk values (?τ), which are used by the operational semantics to represent
uninitialized data. A small value is either a word value, a register, or an instantiated
or packed small value. We draw a distinction between word values and small values
because a register must contain a word, not another register. Code blocks are
linear sequences of instructions that abstract a set of type variables and state their
register assumptions. The sequence of instructions is always terminated by a jmp
or halt instruction. Expressions that differ only by alpha-variation of bound type
variables are considered identical, as are expressions that differ only in the order of
the fields in a heap, a register file, or a heap or register file type.

7.2 TAL Operational Semantics

The operational semantics of TAL is presented in Figure 14 as a deterministic
rewriting system P 7−→ P ′ that maps programs to programs. Although, as dis-
cussed above, we ultimately intend a type-erasure interpretation, we do not erase
the types from the operational semantics presented here, so that we may more
easily state and prove a subject reduction theorem (Lemma 1). If we erase the
types from the instructions, then their meaning is intuitively clear, and there is a
one-to-one correspondence with conventional assembly language instructions. The
two exceptions to this are the unpack and malloc instructions, which are discussed
below.

Intuitively, the ld rd, rs[i] instruction loads the ith component (counting from 0)
of the tuple bound to the label in rs, and places this word value in rd. Conversely,
st rd[i], rs places the word value in rs into the ith position of the tuple bound to
the label in rd. The instruction jmp v, where v is a value of the form `[~τ ], transfers
control to the code bound to the label `, instantiating the abstracted type variables
of that code with ~τ . The bnz r, v instruction tests the value in r to see if it is zero.
If so, control continues with the next instruction; otherwise control is transferred
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(H,R, I) 7−→ P where

if I = then P =

addrd, rs, v; I′ (H,R{rd 7→ R(rs) + R̂(v)}, I′)
and similarly for mul and sub

bnzr, v; I′ (H,R, I′)
when R(r) = 0

bnzr, v; I′ (H,R, I′′[~τ/~α])

when R(r) = i and i 6= 0 where R̂(v) = `[~τ ] and H(`) = code[~α]Γ.I′′

jmpv (H,R, I′[~τ/~α])

where R̂(v) = `[~τ ] and H(`) = code[~α]Γ.I′

ld rd, rs[i]; I′ (H,R{rd 7→ wi}, I′)
where R(rs) = ` and H(`) = 〈w0, . . . , wn−1〉 with 0 ≤ i < n

mallocrd[τ1, . . . , τn]; I′ (H{` 7→ 〈?τ1, . . . , ?τn〉},R{rd 7→ `}, I′)
where ` 6∈ H

movrd, v; I′ (H,R{rd 7→ R̂(v)}, I′)
st rd[i], rs; I′ (H{` 7→ 〈w0, . . . , wi−1, R(rs), wi+1, . . . , wn−1〉},R, I′)

where R(rd) = ` and H(`) = 〈w0, . . . , wn−1〉 with 0 ≤ i < n

unpack[α, rd], v; I′ (H,R{rd 7→ w}, I′[τ/α])

where R̂(v) = pack [τ,w] as τ ′

Where R̂(v) =

8>><
>>:

R(r) when v = r

w when v = w

R̂(v′)[τ ] when v = v′[τ ]

pack [τ, R̂(v′)] as τ ′ when v = pack [τ, v′] as τ ′

Fig. 14. Operational semantics of TAL.

to v as with the jmp instruction.
The instruction unpack[α, rd], v, where v is a value of the form pack [τ ′, v′] as τ ,

is evaluated by substituting τ ′ for α in the remainder of the sequence of instructions
currently being executed and by binding the register rd to the value v′. If types are
erased, the unpack instruction reduces to a simple mov instruction.

As in λA, malloc rd[τ1, . . . , τn] allocates a fresh, uninitialized tuple in the heap
and binds rd to the address of this tuple. Of course, real machines do not provide a
primitive malloc instruction. Our intention is, that, when types are erased, malloc
is expanded into a fixed instruction sequence that allocates a tuple of the appro-
priate size. Because this instruction sequence is abstract, it prevents optimization
from reordering and interleaving these underlying instructions with the surrounding
TAL code. However, this is the only instruction sequence that is abstract in TAL.

7.3 TAL Static Semantics

The purpose of the static semantics is to specify when programs are well formed
and to ensure that well-formed programs do not get stuck. As programs are closed
and self-contained, this is expressed by the judgment `TAL P . The well-formedness
of a program is defined by the well-formedness of its three components: the heap,
the register file, and the instruction stream. Consequently, formation judgments are
required for heaps, register files, and instruction sequences, which in turn require
judgments for the various sorts of values and types. The static semantics for TAL
appears in Figures 16–18 and consists of 13 judgments, summarized in Figure 15
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Judgment Meaning

∆ `TAL τ τ is a well-formed type
`TAL Ψ Ψ is a well-formed heap type

∆ `TAL Γ Γ is a well-formed register file type
∆ `TAL τ1 ≤ τ2 τ1 is a subtype of τ2

∆ `TAL Γ1 ≤ Γ2 Γ1 is register file subtype of Γ2

`TAL H : Ψ H is a well-formed heap of heap type Ψ
Ψ `TAL R : Γ R is a well-formed register file of register file type Γ

Ψ `TAL h : τ hval h is a well-formed heap value of type τ
Ψ; ∆ `TAL w : τ wval w is a well-formed word value of type τ

Ψ; ∆ `TAL w : τϕ w is a well-formed word value of flagged type τϕ

(i.e., w has type τ or w is ?τ and ϕ is 0)

Ψ; ∆; Γ `TAL v : τ v is a well-formed small value of type τ

Ψ; ∆; Γ `TAL I I is a well-formed instruction sequence
`TAL P P is a well-formed program

Fig. 15. TAL static semantic judgments.

and elaborated on below. The large number of judgments is a reflection more of
the large number of syntactic classes, than of any inherent semantic complexity.
The static semantics is inspired by and follows the conventions of Morrisett and
Harper’s [1997] λ→∀

gc .
The first five judgments in Figure 15 specify the well-formedness conditions for

types and define subtyping relationships. Four of the five judgments include a type
context that indicates which type variables are in scope. Heaps and heap types
must be closed, and as a result, their judgments do not include type contexts.

The subtyping judgments are not intended to support subtyping in the usual
generality, although they could be expanded to do so. Instead, they are used to
allow the forgetting of information. The judgment ∆ `TAL τ1 ≤ τ2, for instance,
makes it possible to forget that a field of a tuple has been initialized. This is used
in the subject reduction argument (Lemma 1) where it is sometimes necessary that
references to an initialized tuple be given the old uninitialized type. The register
file subtyping judgment makes it possible to forget about the contents of some
registers. This makes it possible to jump to a code block when too many registers
are defined.

The rest of the judgments check the well-formedness of the term constructs.
Neither heaps nor register files may contain free type variables, so their judgments
do not include a type context. Since values in the heap are mutually recursive, the
heap’s own type is used while typing the heap; to make this sound we separately
require that heap types be well formed. The next four judgments are for assigning
types to values. In addition to one judgment for each sort of value, there is a
judgment for assigning flagged types to word values: the junk value ?τ may not be
assigned any regular type, but it may be assigned the flagged type τ0. Each sort of
value may contain references to the heap; all but heap values may contain free type
variables, but only small values may contain registers. Consequently, heap value
formation requires only a heap type; word value formation adds a type context;
and small value formation adds a type context and a register file type.

The central result is the type safety of TAL programs: well-formed programs
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∆ `TAL τ `TAL Ψ ∆ `TAL Γ

(type) FTV (τ) ⊆ ∆

∆ `TAL τ
(htype) ∅ `TAL τi

`TAL {`1:τ1, . . . , `n:τn}

(rftype) ∆ `TAL τi

∆ `TAL {r1:τ1, . . . , rn:τn}
∆ `TAL τ1 ≤ τ2 ∆ `TAL Γ1 ≤ Γ2

(reflex) ∆ `TAL τ

∆ `TAL τ ≤ τ
(trans) ∆ `TAL τ1 ≤ τ2 ∆ `TAL τ2 ≤ τ3

∆ `TAL τ1 ≤ τ3

(0-1)
∆ `TAL τi

∆ `TAL 〈τϕ1
1 , . . . , τ

ϕi−1
i−1 , τ1

i , τ
ϕi+1
i+1 , . . . , τϕn

n 〉 ≤ 〈τϕ1
1 , . . . , τ

ϕi−1
i−1 , τ0

i , τ
ϕi+1
i+1 , . . . , τϕn

n 〉

(weaken)
∆ `TAL τi (for 1 ≤ i ≤ m)

∆ `TAL {r1 : τ1, . . . , rm : τm} ≤ {r1 : τ1, . . . , rn : τn} (m ≥ n)

`TAL P `TAL H : Ψ Ψ `TAL R : Γ

(prog) `TAL H : Ψ Ψ `TAL R : Γ Ψ; ∅; Γ `TAL I

`TAL (H, R, I)

(heap) `TAL Ψ Ψ `TAL hi : τi hval

`TAL {`1 7→ h1, . . . , `n 7→ hn} : Ψ
(Ψ = {`1:τ1, . . . , `n:τn})

(reg)
Ψ; ∅ `TAL wi : τi wval (for 1 ≤ i ≤ m)

Ψ `TAL {r1 7→ w1, . . . , rm 7→ wm} : {r1 7→ τ1, . . . , rn 7→ τn} (m ≥ n)

Fig. 16. Static semantics of TAL (miscellaneous).

never get “stuck.” The well-formed terminal configurations of the operational se-
mantics have the form (H, R{r1 7→ w}, halt[τ ]). All other terminal configurations
are considered stuck. Type safety follows from the usual Subject Reduction and
Progress theorems. Their proofs are given in the Appendix.

Theorem (Subject Reduction). If `TAL P and P 7−→ P ′, then `TAL P ′.

Theorem (Progress). If `TAL P , then either there exists P ′ such that P 7−→
P ′ or P is of the form (H, R{r1 7→ w}, halt[τ ]).

Corollary (Type Safety). If `TAL P , then there is no stuck P ′ such that
P 7−→∗ P ′.

7.4 Code Generation

The translation from λA to TAL appears in Figures 19 and 20. The type translation,
T[[·]], from λA to TAL is straightforward. The only point of interest is the translation
of function types, which must assign registers to value arguments:

T[[∀[~α](τ1, · · · , τn)→ void ]] def= ∀[~α]{r1:T[[τ1]], . . . , rn:T[[τn]]}
The most interesting part of the term translation is the translation of declara-
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Ψ `TAL h : τ hval Ψ; ∆ `TAL w : τ wval Ψ; ∆ `TAL w : τϕ Ψ; ∆; Γ `TAL v : τ

(tuple)
Ψ; ∅ `TAL wi : τϕi

i

Ψ `TAL 〈w1, . . . ,wn〉 : 〈τϕ1
1 , . . . , τ

ϕn
n 〉 hval

(code) ~α `TAL Γ Ψ; ~α; Γ `TAL I

Ψ `TAL code[~α]Γ.I : ∀[~α].Γ hval

(label) ∆ `TAL τ ′ ≤ τ

Ψ; ∆ `TAL ` : τ wval
(Ψ(`) = τ ′) (int)

Ψ; ∆ `TAL i : int wval

(tapp-word)
∆ `TAL τ Ψ; ∆ `TAL w : ∀[α, ~β].Γ wval

Ψ; ∆ `TAL w[τ ] : ∀[~β].Γ[τ/α] wval

(pack-word)
∆ `TAL τ Ψ; ∆ `TAL w : τ ′[τ/α] wval

Ψ; ∆ `TAL pack [τ, w] as ∃α.τ ′ : ∃α.τ ′ wval

(init) Ψ; ∆ `TAL w : τ wval

Ψ; ∆ `TAL w : τϕ
(uninit) ∆ `TAL τ

Ψ; ∆ `TAL ?τ : τ0

(reg-val)
Ψ; ∆; Γ `TAL r : τ

(Γ(r) = τ ) (word-val) Ψ; ∆ `TAL w : τ wval

Ψ; ∆; Γ `TAL w : τ

(tapp-val)
∆ `TAL τ Ψ; ∆; Γ `TAL v : ∀[α, ~β].Γ′

Ψ; ∆; Γ `TAL v[τ ] : ∀[~β].Γ′[τ/α]

(pack-val)
∆ `TAL τ Ψ; ∆; Γ `TAL v : τ ′[τ/α]

Ψ; ∆; Γ `TAL pack [τ, v] as ∃α.τ ′ : ∃α.τ ′

Fig. 17. Static semantics of TAL (values).

tions. Informally, declarations are translated to instruction sequences as follows:

— x = v is mapped to mov rx, v.
— x = πi(v) is mapped to the sequence mov rx, v ; ld rx, rx[i− 1].
— x = v1 p v2 is mapped to the sequence mov rx, v1 ; arith rx, rx, v2, where arith

is the appropriate arithmetic instruction.
— [α, x] = unpack v is mapped to unpack[α, rx], v.
— x = malloc[~τ ] is mapped to malloc rx[~τ ].
— x = v[i] ← v′ is mapped to the sequence

mov rx, v ; mov rtemp, v
′ ; st rx[i− 1], rtemp.

— v(v1 , . . . , vn) is mapped to the sequence

mov rtemp, v ; mov rtemp1
, v1 ; . . . ; mov rtempn

, vn ;
mov r1, rtemp1

; . . . ; movrn, rtempn
; jmp rtemp

.

Note that the arguments cannot be moved immediately into the registers r1, . . . ,
rn because those registers may be used in later arguments.

— if0(v, e1 , e2) is mapped to the sequence

mov rtemp, v ; bnz rtemp, `[~α] ; I1
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Ψ; ∆; Γ `TAL I

(s-arith)

Ψ; ∆; Γ `TAL rs : int Ψ; ∆; Γ `TAL v : int

Ψ; ∆; Γ{rd:int} `TAL I

Ψ; ∆; Γ `TAL arith rd, rs, v; I
(arith ∈ {add, mul,sub})

(s-bnz)

Ψ; ∆; Γ `TAL r : int Ψ; ∆; Γ `TAL v : ∀[ ].Γ′

∆ `TAL Γ ≤ Γ′ Ψ; ∆; Γ `TAL I

Ψ; ∆; Γ `TAL bnz r, v; I

(s-ld)
Ψ; ∆; Γ `TAL rs : 〈τϕ0

0 , . . . , τ
ϕn−1
n−1 〉 Ψ; ∆; Γ{rd:τi} `TAL I

Ψ; ∆; Γ `TAL ld rd, rs[i]; I
(ϕi = 1,0 ≤ i < n)

(s-malloc)
∆ `TAL τi Ψ; ∆; Γ{rd:〈τ0

1 , . . . , τ0
n〉} `TAL I

Ψ; ∆; Γ `TAL mallocrd[τ1, . . . , τn]; I

(s-mov) Ψ; ∆; Γ `TAL v : τ Ψ; ∆; Γ{rd : τ} `TAL I

Ψ; ∆; Γ `TAL mov rd, v; I

(s-sto)

Ψ; ∆; Γ `TAL rd : 〈τϕ0
0 , . . . , τ

ϕn−1
n−1 〉 Ψ; ∆; Γ `TAL rs : τi

Ψ; ∆; Γ{rd:〈τϕ0
0 , . . . , τ

ϕi−1
i−1 , τ1

i , τ
ϕi+1
i+1 , . . . , τ

ϕn−1
n−1 〉} `TAL I

Ψ; ∆; Γ `TAL st rd[i], rs; I
(0 ≤ i < n)

(s-unpack) Ψ; ∆; Γ `TAL v : ∃α.τ Ψ; ∆, α; Γ{rd:τ} `TAL I

Ψ; ∆; Γ `TAL unpack[α, rd], v; I
(α 6∈ ∆)

(s-jmp) Ψ; ∆; Γ `TAL v : ∀[ ].Γ′ ∆ `TAL Γ ≤ Γ′

Ψ; ∆; Γ `TAL jmp v

(s-halt) Ψ; ∆; Γ `TAL r1 : τ

Ψ; ∆; Γ `TAL halt[τ ]

Fig. 18. Static semantics of TAL (instructions).

where ` is bound in the heap to code[~α]Γ.I2; the translation of ei is Ii; the free
type variables of e2 are contained in ~α; and Γ is the register file type corresponding
to the free variables of e2.

— halt[τ ]v is mapped to the sequence movr1, v ; halt[τ ]

The formal translation uses a mapping γ that tracks what label or register is used
to implement each term variable. As discussed above, if0 terms are implemented by
a conditional branch to a new code block representing the else-clause. These new
code blocks must be heap allocated, so translations of terms (and translations of
heap values, which can contain terms) must return an addition to the heap as well
as an instruction sequence. Also, the translation of terms must track the current
type context ∆ and register file type Γ in order to place that information into new
code blocks resulting from if0 terms.

Lemma (Code Generation Type Correctness). If `A P then
`TAL Tprog[[P ]].

By composing the five translations (CPS conversion, closure conversion, hoisting,
allocation, and code generation), we obtain a translation from λF to TAL. The type
correctness of the composite translation follows from the preceding type correctness
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T[[α]]
def
= α

T[[int ]]
def
= int

T[[∀[~α].(τ1, . . . , τn)→ void ]]
def
= ∀[~α].{r1:T[[τ1]], . . . ,rn:T[[τn]]}

T[[〈τϕ1
1 , . . . , τ

ϕn〉
n ]]

def
= 〈T[[τ1]]

ϕ1 , . . . ,T[[τn]]ϕn 〉
T[[∃α.τ ]]

def
= ∃α.T[[τ ]]

Tprog[[letrec x1 7→ h1, . . . , xn 7→ hn in e]]
def
= (H,∅, I)

where γ = {x1 7→ `1, . . . , xn 7→ `n}
〈Hi, h

′
i〉 = T γ

hval [[hi]]

〈Hexp , I〉 = T γ,∅,∅
exp [[e]]

Hroot = {`1 7→ h′
1, . . . , `n 7→ h′

n}
H = HrootH1 · · ·HnHexp

`i are distinct

T γ
hval [[code[~α](x1:τ1, . . . , xn:τn).e]]

def
= 〈H,code[~α]Γ.I〉

where Γ = {r1:T[[τ1]], . . . , rn:T[[τn]]}
γ′ = γ{x1 7→ r1, . . . , xn 7→ rn}
〈H, I〉 = T γ′,~α,Γ

exp [[e]]

T γ
hval [[〈v1, . . . , vn〉]] def

= 〈∅, 〈T γ
val[[v1]], . . . , T γ

val [[vn]]〉〉

T γ
val [[x

τ ]]
def
= γ(x)

T γ
val [[i

τ ]]
def
= i

T γ
val [[(v[σ])τ ]]

def
= T γ

val [[v]][T[[σ]]]

T γ
val [[(pack [τ1, v] as τ2)

τ ]]
def
= pack [T[[τ1]], T γ

val [[v]]] as T[[τ2]]

Fig. 19. Translation from λA to TAL (except expressions).

lemmas.

Corollary (Compiler Type Correctness). If `F e : τ then `TAL (Tprog ◦
Aprog ◦ Hprog ◦ Cprog ◦ Kprog)[[e]].

7.5 TAL Factorial

The factorial computation translated into TAL appears in Figure 21. To obtain the
code shown, a few standard optimizations were applied; in particular, a clever (but
automatable) register allocation and the removal of redundant moves. Were the
efficiency of this version unsatisfactory, a more efficient version could be obtained
by improving the λF source program (e.g., by using tail recursion), by optimizing
intermediate language programs (e.g., by eliminating unnecessary closure creation),
or by hand-coding a highly optimized version directly in TAL, such as the one in
Figure 1.

8. EXTENSIONS AND PRACTICE

The previous sections provide a theoretical basis for compiling high-level languages
to typed assembly language. In this section we discuss some issues that arise when
putting this technology into practice.
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T γ,∆,Γ
exp [[let x = uτ in e]]

def
= 〈H, (movr, T γ

val [[u
τ ]]; I)〉

where 〈H, I〉 = T γ{x7→r},∆,Γ{r:T[[τ]]}
exp [[e]]

r is fresh

T γ,∆,Γ
exp [[let x = πi(u

〈τϕ1
1 ,...,τϕn

n 〉) in e]]
def
= 〈H, (movr, T γ

val [[u
〈τϕ1

1 ,...,τϕn
n 〉]];

ld r, r[i− 1]; I)〉
where 〈H, I〉 = T γ{x7→r},∆,Γ{r:T[[τi ]]}

exp [[e]]
r is fresh

T γ,∆,Γ
exp [[let x = v1 p v2 in e]]

def
= 〈H, (movr, T γ

val [[v1]];
arithp r, r, T γ

val [[v2]]; I)〉
where 〈H, I〉 = T γ{x7→r},∆,Γ{r:int}

exp [[e]]
arith+ = add

arith− = sub

arith× = mul

r is fresh

T γ,∆,Γ
exp [[let [α,x] = unpack u∃α.τ in e]]

def
= 〈H, (unpack[α, r], T γ

val [[u
∃α.τ ]]; I)〉

where 〈H, I〉 = T γ{x7→r},∆{α},Γ{r:T[[τ]]}
exp [[e]]

α, r are fresh

T γ,∆,Γ
exp [[let x = malloc[τ1, . . . , τn] in e]]

def
= 〈H, (mallocr[T[[τ1]], . . . , T[[τn]]]; I)〉

where
〈H, I〉 = T γ{x7→r},∆,Γ{r:〈T[[τ1 ]]0,...,T[[τn ]]0〉}

exp [[e]]

r is fresh

T γ,∆,Γ
exp [[let x = u〈τϕ1

1 ,...,τϕn
n 〉[i]← v in e]]

def
= 〈H, (movr, T γ

val [[u
〈τϕ1

1 ,...,τϕn
n 〉]];

movr′, T γ
val [[v]];

st r[i− 1], r′; I)〉
where
〈H, I〉 = T γ{x7→r},∆,Γ′

exp [[e]]

Γ′ = Γ{r:T[[〈τϕ1
1 , . . . , τ

ϕi−1
i−1 , τ1

i ,

τ
ϕi+1
i+1 , . . . , τϕn

n 〉]]}
r, r′ are fresh

T γ,∆,Γ
exp [[v(v1, . . . , vn)]]

def
= 〈∅, (movr′0, T γ

val [[v]];

movr′1, T γ
val [[v1]]; . . . ;

movr′n, T γ
val [[vn]];

movr1, r′1; . . .
movrn, r′n;
jmpr′0)〉

where r′i are fresh and r′i 6∈ {r1, . . . , rn}
T γ,∆,Γ
exp [[if0(v, e1, e2)]]

def
= 〈H1H2{` 7→ h}, (movr, T γ

val [[v]];
bnzr, `[∆]; I1)〉

where 〈Hi, Ii〉 = T γ,∆,Γ
exp [[ei]]

h = code[∆]Γ.I2
`, r are fresh

T γ,∆,Γ
exp [[halt[τ ]v]]

def
= 〈∅, (movr1, T γ

val [[v]];

halt[T[[τ ]]])〉

Fig. 20. Translation of expressions from λA to TAL.
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(H, {}, I) where
H =

l fact:

code[ ]{r1:〈〉,r2:int,r3:τk}.
bnz r2,l nonzero

unpack [α,r3],r3 % zero branch: call k (in r3) with 1
ld r4,r3[0] % project k code
ld r1,r3[1] % project k environment
mov r2,1

jmp r4 % jump with {r1 = env, r2 = 1}
l nonzero:

code[ ]{r1:〈〉,r2:int,r3:τk}.
sub r4,r2,1 % n − 1
malloc r5[int, τk] % create environment for cont in r5

st r5[0],r2 % store n into environment
st r5[1],r3 % store k into environment
malloc r3[∀[ ].{r1:〈int1, τ1

k 〉,r2:int}, 〈int1, τ1
k 〉] % create cont closure in r3

mov r2,l cont

st r3[0],r2 % store cont code
st r3[1],r5 % store environment 〈n, k〉
mov r2,r4 % arg := n − 1
mov r3,pack [〈int1, τ1

k 〉,r3] as τk % abstract the type of the environment
jmp l fact % call fact(env, n − 1, l cont)

l cont:

code[ ]{r1:〈int1, τ1
k 〉,r2:int}. % r2 contains (n − 1)!

ld r3,r1[0] % retrieve n
ld r4,r1[1] % retrieve k
mul r2,r3,r2 % n × (n − 1)!
unpack [α,r4],r4 % unpack k
ld r3,r4[0] % project k code
ld r1,r4[1] % project k environment
jmp r3 % jump to k with {r1 = env, r2 = n!}

l halt:

code[ ]{r1:〈〉,r2:int}.
mov r1,r2

halt[int] % halt with result in r1

and I =

malloc r1[ ] % create an empty environment (〈〉)
malloc r2[ ] % create another empty environment
malloc r3[∀[ ].{r1:〈〉,r2:int}, 〈〉] % create halt closure in r3

mov r4,l halt

st r3[0],r4 % store halt code
st r3[1],r2 % store halt environment 〈〉
mov r2,6 % load argument (6)
mov r3,pack [〈〉,r3] as τk % abstract the type of the environment
jmp l fact % call fact(〈〉, 6, l halt)

and τk = ∃α.〈∀[ ].{r1:α,r2:int}1, α1〉

Fig. 21. Typed assembly code for factorial.



From System F to Typed Assembly Language · 29

8.1 Implementation

In order to investigate the applicability of our approach to realistic modern pro-
gramming languages, we have implemented a version of TAL for the Intel 32-bit
Architecture (IA32) [Intel 1996], and have compilers for a number of different source
languages including a safe C-like language [Morrisett et al. 1999] and a higher-order,
dynamically typed language (a subset of Scheme). Compilers for Standard ML and
a small object-oriented language are also in development.

TALx86, the target language for our compilers, is a strongly typed version of the
IA32 assembly language. Our type checker verifies standard MASM assembly code
in which type annotations and complex instructions such as malloc are assembly
language macros. The MASM assembler processes this annotated code as it would
any other assembly code, expanding the instruction macros as their definitions
dictate and erasing types as it translates the assembly code into concrete machine
instructions. We have also implemented our own assembler and are extending it
to produced typed object files. Such typed object files include code/data segments
and a type segment similar to Necula and Lee’s code and proof segments in their
PCC binaries [Necula 1997]. We have implemented a tool that reads TALx86 files,
type checks them, and assembles them into object files or invokes MASM.

The TALx86 type system is based on the type system described in this article
but enriched with a variety of standard constructs including floats, sums, arrays,
references, recursive types, and higher-order type constructors. In order to deal
with floating-point values correctly in the presence of polymorphism, we use a kind
structure that distinguishes types of objects that are 32 bits wide (such as pointers
and integers) from types of objects possibly of other sizes. If a polymorphic type
variable α has the 32-bit kind, then objects of type α can be passed in general-
purpose registers, and tuple offsets may be computable for fields appearing after
a field of type α. If, on the other hand, α has the more general kind “Type,” the
type checker cannot tell how large objects of type α are, and these operations are
disallowed.

To support separate compilation and type-safe linking, we have also augmented
our typed assembly language with a module system [Glew and Morrisett 1999]. A
TAL interface file specifies the types and terms that a TAL implementation file
defines. The types may either be opaque to support information hiding and mod-
ularity, or transparent to allow information sharing and admit some cross-module
optimizations. Our system performs a series of checks to ensure that implementa-
tions are well formed and that their interfaces are compatible and complete. Once
interface compatibility and completeness have been verified, we assemble the code
as described above and invoke a standard untyped linker.

To deal with the creation and examination of exception packets TALx86 includes
a type-tagging mechanism [Glew 1999]. The basic idea is that freshly created heap
pointers may be associated with a type, and that a tag for an unknown type α can
be tested against a tag for a known type τ . If the test succeeds, the unknown type
is refined to the known type. Using these tags, we implement an exception packet
as an existentially packaged pair containing a tag of the hidden type (serving as
the exception name) and a value of that type.

TALx86 also contains some support for compiling objects. The type system



30 · G. Morrisett et al.

has a more general notion of subtyping than this article that includes the usual
contravariant rule for code, right-extension and depth subtyping for tuples, and a
variance mechanism for arrays and references. Furthermore, the type-tagging mech-
anism can also be used to tag objects with their class. This mechanism provides
us with a way to implement down-casting. However, while TALx86 contains the
necessary constructs to admit some simple object encodings, we are still developing
the theoretical and practical tools we need to admit efficient object encodings.

Although this article describes a CPS-based compiler, all of the compilers we
have built use a stack-based compilation model. Both standard continuations and
exceptions are allocated on the stack, and the stack is also used to store spilled
temporary values. The details of our stack typing discipline are discussed in Mor-
risett et al. [1998]. The primary mechanisms are as follows. The size of the stack
and the types of its contents are specified by stack types, and code blocks indicate
stack types describing the state of the stack they expect. Since code is typically
expected to work with stacks of varying size, functions may quantify over stack type
variables, resulting in stack polymorphism. The combination of stack types and our
register typing discipline allows us to model almost any standard calling conven-
tion. Arguments, results, and continuations (or return addresses) may be placed
in registers, on the stack, or both, and the implementer may specialize conventions
for known functions for better register allocation.

Real machines also have a finite amount of heap space. It is straightforward
to link TALx86 to a conservative garbage collector [Boehm and Weiser 1988] and
reclaim dead heap values. It is worth noting that our use of conservative collection
is sound. Conservative collectors make assumptions about the way pointers can be
used in programs that untyped assembly language programs can violate. However,
the TAL type system guarantees that these assumptions do hold because labels are a
strong abstraction; labels cannot be synthesized out of integers, and operations like
pointer arithmetic are disallowed. TAL guarantees that other GC constraints hold
because values that disobey the constraints cannot be constructed. For example,
TAL disallows pointers into the middle of objects and ensures alignment constraints
are obeyed.

Support for an accurate collector would require introducing tags so that we may
distinguish pointers from integers, or else require a type-passing interpretation [Tol-
mach 1994; Morrisett and Harper 1997]. In the former case, we would have to ensure
that all values are properly tagged and fully initialized at every potential garbage
collection site. We believe that it is feasible to devise a type system to ensure these
constraints, but we have not seriously investigated this option.

8.2 Future Work

There remain several directions in which TAL could be improved. One of the
most important is to make array manipulation efficient. In order to ensure safe
access to arrays, TALx86 uses complex instructions (which expand into three real
instructions) that perform subscript and update operations after checking that the
array offset is in bounds. These bounds checks cannot be eliminated in the cur-
rent TAL framework. As a result, array-intensive applications will suffer the same
performance penalties that they do in Java just-in-time compilers where there is
no time to perform analyses to eliminate the checks. However, Xi [1999] and Xi
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and Pfenning [1998; 1999] have shown how to eliminate array bounds checks ef-
fectively using dependent types. TALx86 can be extended with similar constructs.
We have implemented a prototype version in which these checks can be eliminated,
but we have not yet added compiler support for generating code with unchecked
array subscripts.

Another important direction is to augment our compiler with data-layout opti-
mizations such as those used in the TIL compiler [Tarditi et al. 1996]. As discussed
in Section 5, such optimizations require programs to have the ability to analyze
types at run-time, which is not directly compatible with the type-erasure interpre-
tation adopted here. To make such optimizations permissible, we are augmenting
the TALx86 language so that TAL programs can construct values that represent
types and analyze those values when necessary, following the work of Crary et
al. [1998; 1999].

Although we believe our translations are operationally correct, we are still search-
ing for robust proofs of correctness. Similar CPS [Danvy and Filinski 1992] and
closure conversion [Minamide et al. 1996] translations have already been proven cor-
rect, but these results do not easily extend to languages that include recursive types
or objects. The principal problem is that these arguments are based on inductively
defined, type-indexed logical relations between source and target language terms.
Extending this framework so that it supports recursive types or objects is difficult
because the relations can no longer be constructed in a simple inductive fashion. A
syntactic proof of correctness seems possible (we have constructed such arguments
for the CPS and closure conversion phases), but the proofs are overly specific to the
details of the translation. Moreover, security-conscious applications might require
translations that are not only operationally correct but also fully abstract. We hope
further research on the proof theory of similar systems will eventually allow us to
construct these arguments.

Other avenues of future research include extension of our type system to the
same level of generality as PCC through the use of a dependent type theory, an
investigation of the support required to compile Java classes and objects into TAL,
and an exploration of type-theoretic mechanisms for performing explicit memory
management.

9. SUMMARY

We have given a compiler from System F to a statically typed assembly language.
The type system for the assembly language ensures that source-level abstractions
such as closures and polymorphic functions are enforced at the machine-code level.
Furthermore, although the type system may preclude some advanced optimiza-
tions, many common compiler-introduced, low-level optimizations, such as register
allocation, instruction selection, or instruction scheduling, are largely unaffected.
Furthermore, programmers concerned with efficiency can hand-code routines in as-
sembly, as long as the resulting code passes the type checker. Consequently, TAL
provides a foundation for high-performance computing in environments where un-
trusted code must be checked for safety before being executed.

APPENDIX

Lemma (Context Strengthening). If ∆ ⊆ ∆′ then
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(1 ) If ∆ `TAL τ then ∆′ `TAL τ

(2 ) If ∆ `TAL τ1 ≤ τ2 then ∆′ `TAL τ1 ≤ τ2.

Proof. Part 1 is immediate by (type). Part 2 is by induction on derivations.

Lemma (Subtyping Regularity). If ∆ `TAL τ ≤ τ ′ then ∆ `TAL τ and
∆ `TAL τ ′.

Proof. By induction on derivations.

Lemma (Heap Extension). If `TAL H : Ψ, ∅ `TAL τ , Ψ{` : τ} `TAL h : τ hval,
and ` 6∈ H then

(1 ) `TAL Ψ{` : τ}
(2 ) `TAL H{` 7→ h} : Ψ{` : τ}
(3 ) If Ψ `TAL R : Γ then Ψ{` : τ} `TAL R : Γ
(4 ) If Ψ; ∆; Γ `TAL I then Ψ{` : τ}; ∆; Γ `TAL I

(5 ) If Ψ `TAL h : σ hval then Ψ{` : τ} `TAL h : σ hval
(6 ) If Ψ; ∆ `TAL w : σϕ then Ψ{` : τ}; ∆ `TAL w : σϕ

(7 ) If Ψ; ∆ `TAL w : σ wval then Ψ{` : τ}; ∆ `TAL w : σ wval
(8 ) If Ψ; ∆; Γ `TAL v : σ then Ψ{` : τ}; ∆; Γ `TAL v : σ.

Proof. Part 1 is immediate by (htype). Part 2 follows from parts 1 and 5. Parts
3–8 are by induction on derivations.

Lemma (Heap Update). If `TAL H : Ψ, ∅ `TAL τ ≤ Ψ(`), and Ψ{` : τ} `TAL

h : τ then

(1 ) `TAL Ψ{` : τ}
(2 ) `TAL H{` 7→ h} : Ψ{` : τ}
(3 ) If Ψ `TAL R : Γ then Ψ{` : τ} `TAL R : Γ
(4 ) If Ψ; ∆; Γ `TAL I then Ψ{` : τ}; ∆; Γ `TAL I

(5 ) If Ψ `TAL h : σ hval then Ψ{` : τ} `TAL h : σ hval
(6 ) If Ψ; ∆ `TAL w : σϕ then Ψ{` : τ}; ∆ `TAL w : σϕ

(7 ) If Ψ; ∆ `TAL w : σ wval then Ψ{` : τ}; ∆ `TAL w : σ wval
(8 ) If Ψ; ∆; Γ `TAL v : σ then Ψ{` : τ}; ∆; Γ `TAL v : σ.

Proof. Part 1 is immediate by (htype) and Subtyping Regularity. Part 2 follows
from parts 1 and 5. Parts 3–8 are by induction on derivations. The only interesting
case is the case for the rule (label). The derivation must end with the following:

∆ `TAL σ′ ≤ σ

Ψ; ∆ `TAL `′ : σ wval
(Ψ(`′) = σ′)

If ` 6= `′ then clearly the inference also holds for Ψ{` : τ}. Suppose ` = `′.
By hypothesis and Context Strengthening, we deduce ∆ `TAL τ ≤ σ′. Then the
conclusion may be proven with the (trans) rule, as follows:

∆ `TAL τ ≤ σ′ ∆ `TAL σ′ ≤ σ

∆ `TAL τ ≤ σ

Ψ{` : τ}; ∆ `TAL ` : σ wval
(Ψ{` : τ}(`) = τ )
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Lemma (Register File Update). If Ψ `TAL R : Γ and Ψ; ∅ `TAL w : τ wval
then Ψ `TAL R{r 7→ w} : Γ{r : τ}.

Proof. Suppose R is {r1 7→ w1, . . . , rn 7→ wn} and Γ is {r1 7→ τ1, . . . , rm 7→ τm}
where r may or may not be in {r1, . . . , rn}. Since Ψ `TAL R : Γ, by the rule (reg) it
must be the case that n ≥ m and Ψ; ∅ `TAL wi : τi wval (for all 1 ≤ i ≤ n and some
τm+1 , . . . , τn). So certainly for i such that ri 6= r, we have Ψ; ∅ `TAL wi : τi wval,
and by hypothesis we have Ψ; ∅ `TAL w : τ wval; so by rule (reg) Ψ `TAL R{r 7→
w} : Γ{r 7→ τ}.

Lemma (Canonical Heap Forms). If Ψ `TAL h : τ hval then

(1 ) If τ = ∀[~α].Γ then
(a) h = code[~α]Γ.I
(b) Ψ; ~α; Γ `TAL I.

(2 ) If τ = 〈τϕ0
0 , . . . , τ

ϕn−1
n−1 〉 then

(a) h = 〈w0, . . . , wn−1〉
(b) Ψ; ∅ `TAL wi : τϕi

i .

Proof. By inspection.

Lemma (Canonical Word Forms). If `TAL H : Ψ and Ψ; ∅ `TAL w : τ wval
then

(1 ) If τ = int then w = i.
(2 ) If τ = ∀[β1, . . . , βm].Γ then

(a) w = `[σ1, . . . , σn]
(b) H(`) = code[α1, . . . , αn, β1, . . . , βm]Γ′.I
(c) Γ = Γ′[~σ/~α]
(d) Ψ; α1, . . . , αn, β1, . . . , βm; Γ′ `TAL I.

(3 ) If τ = 〈τϕ0
0 , . . . , τ

ϕn−1
n−1 〉 then

(a) w = `
(b) H(`) = 〈w0, . . . , wn−1〉
(c) Ψ; ∅ `TAL wi : τϕi

i .
(4 ) If τ = ∃α.τ then w = pack [τ ′, w′] as ∃α.τ and Ψ; ∅ `TAL w′ : τ [τ ′/α] wval.

Proof. (1) By inspection.
(2) By induction on the derivation of Ψ; ∅ `TAL w : τ wval: The derivation must

end with either the (label) or the (tapp-word) rule. Suppose the former. Then
we have w = `, Ψ(`) = τ ′, and ∅ `TAL τ ′ ≤ ∀[~β].Γ. Inspection of the subtyping
rules then reveals that τ ′ = ∀[~β].Γ. Since `TAL H : Ψ, we may deduce that
Ψ `TAL H(`) : ∀[~β].Γ hval. The conclusion follows by Canonical Heap Forms.

Alternatively, suppose the derivation ends with (tapp-word). Then w = w′[σ]
and Ψ; ∅ `TAL w′ : ∀[α, ~β].Γ′ wval with Γ = Γ′[σ/α]. The conclusion follows by
induction.

(3) The derivation Ψ; ∅ `TAL w : τ wval must be shown by use of the (label) rule.
Thus, w = `, Ψ(`) = τ ′, and ∅ `TAL τ ′ ≤ 〈τϕ0

0 , . . . , τ
ϕn−1
n−1 〉. Let us say that

ϕ ≤ ϕ and 1 ≤ 0. Then inspection of the subtype rules reveals that τ ′ must
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be of the form 〈τϕ′
0

0 , . . . , τ
ϕ′

n−1
n−1 〉 with ϕ′

i ≤ ϕi (for each 0 ≤ i ≤ n − 1). Since

`TAL H : Ψ, we may deduce that Ψ `TAL H(`) : 〈τϕ′
0

0 , . . . , τ
ϕ′

n−1
n−1 〉 hval. Thus

H(`) = 〈w0, . . . , wn−1〉 and Ψ; ∅ `TAL wi : τ
ϕ′

i

i by Canonical Heap Forms. It
remains to show that Ψ; ∅ `TAL wi : τϕi

i for all 0 ≤ i ≤ n − 1. Suppose ϕ′
i = 1

and ϕi = 0 (otherwise the conclusion is immediate). Then Ψ; ∅ `TAL wi : τ1
i is

shown by the (init) rule, which also permits the deduction of Ψ; ∅ `TAL wi : τ0
i .

(4) By inspection.

Lemma (R̂ Typing). If Ψ `TAL R : Γ and Ψ; ∅; Γ `TAL v : τ then Ψ; ∅ `TAL

R̂(v) : τ wval.

Proof. The proof is by induction on the syntax of v. Consider the cases for v:

Case v = w. Immediate.
Case v = r. The only rule that can type v is (reg-val), and this rule requires

τ = Γ(r). The only rule that can type R is (reg), and this rule requires Ψ; ∅ `TAL

R(r) : τ wval. The conclusion follows, since R̂(r) = R(r).

Case v = v′[σ]. The only rule that can type v is (tapp-val), so τ = ∀[~β].Γ′[σ/α]
and Ψ; ∅; Γ `TAL v′ : ∀[α, ~β].Γ′. By induction we deduce Ψ; ∅ `TAL R̂(v′) : ∀[α, ~β].Γ′

wval, and then the rule (tapp-word) proves Ψ; ∅ `TAL R̂(v′)[σ] : ∀[~β].Γ′[σ/α] wval.
The result follows, since R̂(v′[σ]) = R̂(v′)[σ].

Case v = pack [σ, v′] as ∃α.τ ′. The only rule that can type v is (pack-val), so
τ = ∃α.τ ′ and Ψ; ∅; Γ `TAL v′ : τ ′[σ/α]. By induction we deduce Ψ; ∅ `TAL R̂(v′) :
τ ′[σ/α] wval, and then the rule (pack-word) proves Ψ; ∅ `TAL pack [σ, R̂(v′)] as
∃α.τ ′ : ∃α.τ ′ wval. The result follows, since R̂(pack [σ, v′] as ∃α.τ ′) = pack [σ, R̂(v′)]
as ∃α.τ ′.

Lemma (Canonical Forms). If `TAL H : Ψ hval, Ψ `TAL R : Γ, and
Ψ; ∅; Γ `TAL v : τ then

(1 ) If τ = int then R̂(v) = i.
(2 ) If τ = ∀[β1, . . . , βm].Γ then

(a) R̂(v) = `[σ1, . . . , σn]
(b) H(`) = code[α1, . . . , αn, β1, . . . , βm]Γ′.I
(c) Γ = Γ′[~σ/~α]
(d) Ψ; α1, . . . , αn, β1, . . . , βm; Γ′ `TAL I.

(3 ) If τ = 〈τϕ0
0 , . . . , τ

ϕn−1
n−1 〉 then

(a) R̂(v) = `
(b) H(`) = 〈w0, . . . , wn−1〉
(c) Ψ; ∅ `TAL wi : τϕi

i .

(4 ) If τ = ∃α.τ then R̂(v) = pack [τ ′, w] as ∃α.τ and Ψ; ∅ `TAL w : τ [τ ′/α] wval.

Proof. Immediate from R̂ Typing and Canonical Word Forms.

Lemma (Type Substitution). If ~β `TAL τi then

(1 ) If Ψ; ~α, ~β; Γ `TAL I then Ψ; ~β; Γ[~τ/~α] `TAL I[~τ/~α]
(2 ) If Ψ; ~α, ~β; Γ `TAL v : τ then Ψ; ~β; Γ[~τ/~α] `TAL v[~τ/~α] : τ [~τ/~α]
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(3 ) If Ψ; ~α, ~β `TAL w : τ wval then Ψ; ~β `TAL w[~τ/~α] : τ [~τ/~α] wval
(4 ) If ~α, ~β `TAL Γ1 ≤ Γ2 then ~β `TAL Γ1[~τ/~α] ≤ Γ2[~τ/~α]
(5 ) If ~α, ~β `TAL τ1 ≤ τ2 then ~β `TAL τ1[~τ/~α] ≤ τ2[~τ/~α]
(6 ) If ~α, ~β `TAL τ then ~β `TAL τ [~τ/~α].

Proof. By induction on derivations. The only interesting case is the case for
the rule (type):

FTV (τ ) ⊆ {~α, ~β}
~α, ~β `TAL τ

The hypothesis must also be proven with the rule (type), so FTV (τi) ⊆ {~β}.
Consequently

FTV (τ [~τ/~α]) ⊆ FTV (τ ) \ {~α} ∪ (
⋃

i
FTV (τi))

⊆ {~α, ~β} \ {~α} ∪ {~β}
= {~β}.

Hence we may prove ~β `TAL τ [~τ/~α] using the (type) rule.

Lemma (Register File Weakening). If ∆ `TAL Γ1 ≤ Γ2 and Ψ; ∆ `TAL R :
Γ1 then Ψ; ∆ `TAL R : Γ2.

Proof. By inspection of the rules (weaken) and (reg).

Theorem (Subject Reduction). If `TAL P and P 7−→ P ′ then `TAL P ′.

Proof. P has the form (H, R, ι; I) or (H, R, jmpv). Let TD be the derivation
of `TAL P . Consider the following cases for jmp or ι:

Case jmp. TD has the form

`TAL H : Ψ Ψ `TAL R : Γ
Ψ; ∅; Γ `TAL v : ∀[ ].Γ′ ∅ `TAL Γ ≤ Γ′

Ψ; ∅; Γ `TAL jmp v

`TAL P .

By the operational semantics, P ′ = (H, R, I[~σ/~α]) where R̂(v) = `[~σ] and H(`) =
code[~α]Γ′′.I. Then
(1) `TAL H : Ψ is in TD.
(2) From ∅ `TAL Γ ≤ Γ′ and Ψ `TAL R : Γ it follows by Register File Weakening

that Ψ `TAL R : Γ′.
(3) By Canonical Forms it follows from Ψ; ∅; Γ `TAL v : ∀[ ].Γ′ that Γ′ = Γ′′[~σ/~α]

and Ψ; ~α; Γ′′ `TAL I. By Type Substitution we conclude Ψ; ∅; Γ′ `TAL I[~σ/~α].
Case add, mul, sub. TD has the form

`TAL H : Ψ Ψ `TAL R : Γ

Ψ; ∅; Γ `TAL rs : int Ψ; ∅; Γ `TAL v : int
Ψ; ∅; Γ′ `TAL I

Ψ; ∅; Γ `TAL arithp rd, rs, v; I
`TAL P

where Γ′ = Γ{rd : int}. By the operational semantics, P ′ = (H, R′, I) where
R′ = R{rd 7→ R(rs) p R̂(v)}. Then
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(1) `TAL H : Ψ is in TD.
(2) By Canonical Forms it follows that R(rs) and R̂(v) are integer literals, and

therefore Ψ; ∅ `TAL R(rs) p R̂(v) : int wval. We conclude Ψ `TAL R′ : Γ′ by
Register File Update.

(3) Ψ; ∅; Γ′ `TAL I is in TD.
Case bnz. TD has the form

`TAL H : Ψ Ψ `TAL R : Γ

Ψ; ∅; Γ `TAL r : int Ψ; ∅; Γ `TAL v : ∀[ ].Γ′

∅ `TAL Γ ≤ Γ′ Ψ; ∅; Γ `TAL I

Ψ; ∅; Γ `TAL bnz r, v; I
`TAL P .

If R(r) = 0 then P ′ = (H, R, I) and `TAL P ′ follows, since Ψ; ∅; Γ `TAL I is in TD.
Otherwise the reasoning is exactly as in the case for jmp.

Case ld. TD has the form

`TAL H : Ψ Ψ `TAL R : Γ

0 ≤ i ≤ n− 1 ϕi = 1
Ψ; ∅; Γ `TAL rs : 〈τϕ0

0 , . . . , τ
ϕn−1
n−1 〉

Ψ; ∅; Γ′ `TAL I

Ψ; ∅; Γ `TAL ld rd, rs[i]; I
`TAL P

where Γ′ = Γ{rd : τi}. By the operational semantics, P ′ = (H, R′, I) where R′ =
R{rd 7→ wi}, R(rs) = `, H(`) = 〈w0, . . . , wm−1}, and 0 ≤ i < m. Then
(1) `TAL H : Ψ is in TD.
(2) By Canonical Forms it follows from Ψ; ∅; Γ `TAL rs : 〈τϕ0

0 , . . . , τ
ϕn−1
n−1 〉 that

m = n and Ψ; ∅ `TAL wj : τ
ϕj

j for 0 ≤ j < n. Since ϕi = 1 it must be the case
(by inspection of the (init) rule) that Ψ; ∅ `TAL wi : τi wval. By Register File
we conclude Ψ `TAL R′ : Γ′.

(3) Ψ; ∅; Γ′ `TAL I is in TD.
Case malloc. TD has the form

`TAL H : Ψ Ψ `TAL R : Γ
∅ `TAL τi Ψ; ∅; Γ′ `TAL I

Ψ; ∅; Γ `TAL malloc rd[τ1, . . . , τn]; I
`TAL P

where σ = 〈τ0
1 , . . . , τ0

n〉, Ψ′ = Ψ{` : σ}, and Γ′ = Γ{rd : σ}. By the operational
semantics, P ′ = (H ′, R′, I) where H ′ = H{` 7→ 〈?τ1, . . . , ?τn〉}, R′ = R{rd 7→ `},
and ` 6∈ H . Then
(1) By the (tuple) and (uninit) rules we may deduce Ψ′ `TAL 〈?τ1, . . . , ?τn〉 : σ hval.

By Heap Extension it follows that `TAL H ′ : Ψ′.
(2) By the (type), (reflex), and (label) rules we may deduce that Ψ′; ∅ `TAL ` :

σ wval. By Heap Extension we deduce that Ψ′ `TAL R : Γ, and it follows by
Register File Update that Ψ′ `TAL R′ : Γ′.

(3) By Heap Extension, Ψ′; ∅; Γ′ `TAL I.
Case mov. TD has the form

`TAL H : Ψ Ψ `TAL R : Γ
Ψ; ∅; Γ `TAL v : τ Ψ; ∅; Γ′ `TAL I

Ψ; ∅; Γ `TAL mov r, v; I
`TAL P
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where Γ′ = Γ{r : τ}. By the operational semantics, P ′ = (H, R′, I) where R′ =
R{r 7→ R̂(v)}. Then
(1) `TAL H : Ψ is in TD.
(2) By R̂ Typing it follows from Ψ; ∅; Γ `TAL v : τ that Ψ; ∅ `TAL R̂(v) : τ wval.

Using Register File Update we conclude that Ψ `TAL R′ : Γ′.
(3) Ψ; ∅; Γ′ `TAL I is in TD.

Case st. TD has the form

`TAL H : Ψ Ψ `TAL R : Γ

0 ≤ i ≤ n− 1 Ψ; ∅; Γ `TAL rd : σ0

Ψ; ∅; Γ `TAL rs : τi Ψ; ∅; Γ′ `TAL I

Ψ; ∅; Γ `TAL st rd[i], rs; I
`TAL P

where

σ0 = 〈τϕ0
0 , . . . , τ

ϕn−1
n−1 〉

σ1 = 〈τϕ0
0 , . . . , τ

ϕi−1
i−1 , τ1

i , τ
ϕi+1
i+1 , . . . , τ

ϕn−1
n−1 〉

Γ′ = Γ{rd : σ1}.

By the operational semantics, P ′ = (H ′, R, I) where

H ′ = H{` 7→ 〈w0, . . . , wi−1, R(rs), wi+1, . . . , wm−1〉}

and R(rd) = `, H(`) = 〈w0, . . . , wm〉, and 0 ≤ i < m. Then
(1) Since Ψ; ∅; Γ `TAL rd : σ0, it must be the case that Γ(rd) = σ0, and thus since

Ψ `TAL R : Γ and R(rd) = ` we may deduce Ψ; ∅ `TAL ` : σ0 wval. The latter
judgment must be proven with the (label) rule; hence ∅ `TAL σ′

0 ≤ σ0 where
Ψ(`) = σ′

0. Note that it follows from Subtyping Regularity and the definition
of σ0 that ∅ `TAL τj for each 0 ≤ j < n.
Let us say that ϕ ≤ ϕ and 1 ≤ 0. Inspection of the subtyping rules reveals that
σ′

0 must be of the form 〈τϕ′
0

0 , . . . , τ
ϕ′

n−1
n−1 〉 with ϕ′

j ≤ ϕj . Let

σ′
1 = 〈τϕ′

0
0 , . . . , τ

ϕ′
i−1

i−1 , τ1
i , τ

ϕ′
i+1

i+1 , . . . , τ
ϕ′

n−1
n−1 〉.

Then ∅ `TAL σ′
1 ≤ σ′

0 and ∅ `TAL σ′
1 ≤ σ1. Since `TAL H : Ψ, we may deduce

that m = n and Ψ; ∅ `TAL wj : τ
ϕ′

j

j for 0 ≤ j < n. Let Ψ′ = Ψ{` : σ′
1}. By

Heap Update it follows that Ψ′; ∅ `TAL wj : τ
ϕ′

j

j .
Using R̂ Typing and Heap Update, we may deduce that Ψ′; ∅ `TAL R(rs) :
τi wval, and by applying the (init) and (tuple) rules we may conclude that

Ψ′ `TAL 〈w0, . . . , wi−1, R(rs), wi+1, . . . , wm−1〉 : σ′
1 hval.

Hence `TAL H ′ : Ψ′ by Heap Update.
(2) By Heap Update we may deduce that Ψ′ `TAL R : Γ. Recall that ∅ `TAL σ′

1 ≤
σ1. Thus, Ψ′; ∅ `TAL ` : σ1 wval, and by Register File Update we may conclude
that Ψ′ `TAL R : Γ′ (since R = R{rd 7→ `}).

(3) By Heap Update, Ψ′; ∅; Γ′ `TAL I.
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Case unpack. TD has the form

`TAL H : Ψ Ψ `TAL R : Γ
Ψ; ∅; Γ `TAL v : ∃α.τ ′ Ψ; α; Γ{r:τ ′} `TAL I

Ψ; ∅; Γ `TAL unpack[α, r], v; I
`TAL P .

By the operational semantics, P ′ = (H, R′, I′) where R′ = R{r 7→ w}, I′ = I[τ/α]
and R̂(v) = pack [τ, w] as ∃α.τ ′. Then
(1) `TAL H : Ψ is in TD.
(2) By Canonical Forms it follows from Ψ; ∅; Γ `TAL v : ∃α.τ ′ that Ψ; ∅ `TAL w :

τ ′[τ/α] wval. Let Γ′ = Γ{r : τ ′[τ/α]}. By Register File Update if follows that
Ψ `TAL R′ : Γ′.

(3) By Type Substitution it follows from Ψ; α; Γ{r:τ ′} `TAL I that Ψ; ∅; Γ′ `TAL I′.

Theorem (Progress). If `TAL P then either there exists P ′ such that P 7−→
P ′, or P is of the form (H, R{r1 7→ w}, halt[τ ]) (and, moreover, Ψ; ∅ `TAL w :
τ wval for some Ψ such that `TAL H : Ψ).

Proof. Suppose P = (H, R, Ifull). Let TD be the derivation of `TAL P . The
proof is by cases on the first instruction of Ifull .

Case halt TD has the form

`TAL H : Ψ Ψ; ∅ `TAL R : Γ
Ψ; ∅; Γ `TAL r1 : τ

Ψ; ∅; Γ `TAL halt[τ ]
`TAL (H, R, halt[τ ]) .

By R̂ Typing we may deduce that R̂(r1) is defined and Ψ; ∅ `TAL R̂(r1) : τ wval.
In other words, R = R′{r1 7→ w} and Ψ; ∅ `TAL w : τ wval.

Case add, mul, sub TD has the form

`TAL H : Ψ Ψ; ∅ `TAL R : Γ
Ψ; ∅; Γ `TAL rs : int Ψ; ∅; Γ `TAL v : int · · ·

Ψ; ∅; Γ `TAL arithp rd, rs, v; I
`TAL (H, R, Ifull) .

By Canonical Forms, R(rs) and R(v) each represent integer literals. Hence P 7−→
(H, R{rd 7→ R(rs) p R̂(v)}, I).

Case bnz TD has the form

`TAL H : Ψ Ψ; ∅ `TAL R : Γ
Ψ; ∅; Γ `TAL r : int Ψ; ∅; Γ `TAL v : ∀[ ].Γ′ · · ·

Ψ; ∅; Γ `TAL bnz r, v; I
`TAL (H, R, Ifull) .

By Canonical Forms, R(r) is an integer literal and R̂(v) = `[σ1, . . . , σn] with H(`) =
code[α1, . . . , αn].Γ′′.I′. If R(r) = 0 then P 7−→ (H, R, I). If R(r) 6= 0 then P 7−→
(H, R, I′[~σ/~α]).

Case jmp TD has the form

`TAL H : Ψ Ψ; ∅ `TAL R : Γ
Ψ; ∅; Γ `TAL v : ∀[ ].Γ′ · · ·

Ψ; ∅; Γ `TAL jmp v

`TAL (H, R, Ifull) .
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By Canonical Forms, R̂(v) = `[σ1, . . . , σn] with H(`) = code[α1, . . . , αn].Γ′′.I′.
Hence P 7−→ (H, R, I′[~σ/~α]).

Case ld TD has the form

`TAL H : Ψ Ψ; ∅ `TAL R : Γ

Ψ; ∅; Γ `TAL rs : 〈τϕ0
0 , . . . , τ

ϕn−1
n−1 〉 · · ·

Ψ; ∅; Γ `TAL ld rd, rs[i]; I
(1 ≤ i < n)

`TAL (H, R, Ifull) .

By Canonical Forms, R(rs) = ` with H(`) = 〈w0, . . . , wn−1〉. Hence P 7−→
(H, R{rd 7→ wi}, I).

Case malloc Suppose that Ifull is of the form malloc r[τ1, . . . , τn]; I. Then P 7−→
(H{` 7→ 〈?τ1, . . . , ?τn〉}, R{r 7→ `}, I) for some ` 6∈ H .

Case mov TD has the form

`TAL H : Ψ Ψ; ∅ `TAL R : Γ
Ψ; ∅; Γ `TAL v : τ · · ·
Ψ; ∅; Γ `TAL mov r, v; I

`TAL (H, R, Ifull) .

By R̂ Typing, R̂(v) is defined. Hence P 7−→ (H, R{r 7→ R̂(v)}, I).
Case st TD has the form

`TAL H : Ψ Ψ; ∅ `TAL R : Γ

Ψ; ∅; Γ `TAL rd : 〈τϕ0
0 , . . . , τ

ϕn−1
n−1 〉

Ψ; ∅; Γ `TAL rs : τi · · ·
Ψ; ∅; Γ `TAL st rd[i], rs; I

(1 ≤ i < n)

`TAL (H, R, Ifull) .

By Canonical Forms, R(rd) = ` with H(`) = 〈w0, . . . , wn−1〉. By R̂ Typing, R(rs)
is defined. Hence P 7−→ (H{` 7→ 〈w0, . . . , wi−1, R(rs), wi+1, . . . , wn−1〉}, R, I).

Case unpack TD has the form

`TAL H : Ψ Ψ; ∅ `TAL R : Γ
Ψ; ∅; Γ `TAL v : ∃α.τ · · ·

Ψ; ∅; Γ `TAL unpack[α, r], v; I
`TAL (H, R, Ifull) .

By Canonical Forms, R̂(v) = pack [τ ′, w] as ∃α.τ . Hence P 7−→ (H, R{r 7→
w}, I[τ ′/α]).
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