Modular Reasoning

COS 326: Functional Programming

November 7, 2012

1 What can type systems do?

1.1 Express invariance about values

 $\begin{array}{ll} \text{v: bool} & \text{then } \mathbf{v} = \text{true or } \mathbf{v} = \text{false} \\ \text{v: char} & \text{then } \mathbf{v} = \text{'a' or } \mathbf{v} = \text{'b' or...} \\ \text{v: list} & \text{then } \mathbf{v} = [] \text{ or } \mathbf{v} = \text{hd::tail and hd: T and tail: T list} \\ \text{v: } \mathbf{T}_1 \ ^* T_2 & \text{then } \mathbf{v} = (v_1, v_2) \text{ and } v_1 : T_1 \text{ and } v_2 : T_2 \\ \text{v: } \mathbf{T}_1 \ ^- > \mathbf{T}_2 \text{ then } \mathbf{v} \text{ is a function and if you assume its input } \mathbf{v}_1 \text{ satisfies the invariants of} \\ & \mathbf{T}_1 \text{ and } \mathbf{v} \mathbf{v}_1 \ ^- > \mathbf{v}_2 \text{ then } \mathbf{v}_2 : \mathbf{T}_2 \\ \end{array}$

1.2 Enable abstraction

Actually a series of bits, not "true". But actually actually wires and signals and such. Quarks and "what's that boson thing they just discovered."

1.2.1 Relationship

Abstraction is a relationship between two worlds, imaginary and concrete.

2 Boolean module

```
module B :BOOL = struct
  type b = int
  let tru = 1
  let fal = 0
  let not b =
    match b with
    | 0 -> 1
    | 1-> 0
    | _ -> raise BrokenRepInv
```

```
// satisfies because guaranteed only 0 or 1 will come in
;;
let and bs =
    match bs with
    | (0, 0) | (0, 1) | (1, 0) -> 0
    | (1, 1) -> 1
    | (_, _) -> raise BrokenRepInv
```

end

2.1 Invariant

v: B.b then v = 1 or v = 1defining a type b that will always be 1 or 0. claiming it's true; must check that everything satisfies it

2.2 Proof

truaccording to signature has type b; has to be either 1 or 0; is 1, so ok.falas abovenot: b -> b. pick input v_1 . Assume v_1 :b. Show $v v_1 -> v_2$ and v_2 satisfies the invariants of b.

and $b^*b \rightarrow b$. Assume arg v. Assume v: b^*b . Prove: and $v \rightarrow v'$ and v':b.

2.3 Moral of the story

To check that your module satisfies a representation invariant, for all operations assume the rep inv holds for all inpurs. Prove it holds for all outputs.

3 Sets

3.1 Representation 1: Duplicates

list. represents particular set if members of the list are the same as members of the set.

3.2 Representation 2: No Duplicates

Lists, but only those without duplicates. e.g. [1,1] is not a set.

3.3 Implementation 1: Duplicates

```
module Set1 : SET = struct
type 'a set = 'a list
let empty = []
```

```
let add x l = x::l
let size l =
   match l with
   [] -> 0
        | hd:: tl ->size tl + (if List.mem hd tl then 0 else 1)
   ...
end
```

3.4 Implementation 2: No Duplicates

```
module Set1 : SET = struct
type 'a set = 'a list
let empty = []
let add x l =
    if List.mem x l then l
    else x::l
let size l = List.length l \\ exploiting representation invariant
    ...
end
```

3.5 Proving stuff

The stronger the representation invariant, the more stuff you have to prove.

4 Protect from Client

module SET	client
type 'a set	set, set, set
v: 'a set	sets are abstract
	no way to inject bad code

5 Back to Bool

```
module S: BOOL = struct
type b = bool
let tru = true
let fal = false
let not b =
match b with
| true -> false
| false -> true
```

5.1 Mapping

Some concrete things represent imaginary ones. **not** maps an imaginary object to another imaginary object. We must make sure out implementation maps a related input to a related output.

5.2 Proof on our abstract types

Show that the abstraction function is correctly implemented. $C \rightsquigarrow a:b f \rightsquigarrow f: t1 \rightarrow t2$ Assume a pair of inputs c, a such that $c \rightsquigarrow a:t1$. Must prove f c \rightsquigarrow g a :t2

5.3 What?

To prove a module M1 faithfully implements a spec S, show that every element of the module is related like that (above).

5.4 Let's do it?

5.4.1 Step 1

 $\begin{array}{l} 1 & \rightsquigarrow \mbox{true :b} \\ 0 & \rightsquigarrow \mbox{false:b} \\ \mbox{tru} & \rightsquigarrow \mbox{tru:b} \\ \mbox{iff } 1 & \rightsquigarrow \mbox{tru : b} \\ \mbox{iff } 1 & \rightsquigarrow \mbox{true : b} \\ \mbox{iff } 1 & \rightsquigarrow \mbox{true : b} \\ \mbox{iff valid} \end{array}$

5.4.2 Step 2

Show: $f \rightsquigarrow fal: b$ iff $0 \rightsquigarrow false : b$ iff valid 5.4.3 Step 3 Show: not \rightsquigarrow not : b \rightarrow b Asume on inputs such that $c \rightsquigarrow a : b$ Must prove not c \leadsto not a : b case a = trueAssumption looks like: $c \rightsquigarrow true : b$ By definition of \rightsquigarrow Therefore c = 1Must prove n 1 \leadsto not true: b iff $0 \rightsquigarrow \text{not true:b}$ iff 0 \leadsto false :b iff valid! case a = falseAssumption looks like: $c \rightsquigarrow false$ therefore c = 0must prove: not 0 \leadsto not false $1 \rightsquigarrow true$ valid

5.4.4 Step 4

and \rightsquigarrow and : b * b \rightarrow b Assume we have an input c \rightsquigarrow a : b * b That means c = (c1, c2) a (a1, a2) and c1 \rightsquigarrow a1 : b and c2 \rightsquigarrow a2 : b Must prove: and (c1, c2) \rightsquigarrow and (a1, a2) : b Cases \rightarrow and applied to any combination gives a result related to the result that and produces.

6 Final morals

Reasoning about representation invariants and abstraction relations based on types.

6.1

c : Abs then we show $\mathrm{RI}(v)$ (module writer gets to pick) (representation invariant of v holds)

6.2

 $c \rightsquigarrow a$: Abs (module writer gets to pick the abstraction function)

6.3

f : Assume RI(inputs), Show RI(outputs)

6.4

f: Assume inputs are related, Show outputs are related

6.5 Logical Relations

From relation to implication. Assume input, show output.

6.6 Module Comments

In module comments, say what the abstraction relation is and what the representation invariant is.