Simple Data

COS 326
David Walker
Princeton University

What is the single most important mathematical concept ever developed in human history?

What is the single most important mathematical concept ever developed in human history?

An answer: The mathematical variable

Why is the mathematical variable so important?

The mathematician says:
"Let x be some integer, we define a polynomial over x ..."

Why is the mathematical variable so important?

The mathematician says:
"Let x be some integer, we define a polynomial over x ..."

What is going on here? The mathematician has separated a definition (of x) from its use (in the polynomial). This is the most primitive kind of abstraction.

Abstraction is the key to controlling complexity and without it, modern mathematics, science, and computation would not exists.

O'CAML BASICS: LET DECLARATIONS

Abstraction

- Good programmers identify repeated patterns in their code and factor out the repetition into meaning components
- In O'Caml, the most basic technique for factoring your code is to use let expressions
- Instead of writing this expression:

```
(2+3) * (2+3)
```


Abstraction \& Abbreviation

- Good programmers identify repeated patterns in their code and factor out the repetition into meaning components
- In O'Caml, the most basic technique for factoring your code is to use let expressions
- Instead of writing this expression:

```
(2+3)* (2+3)
```

- We write this one:

```
let x = 2 + 3 in
x * x
```


A Few More Let Expressions

```
let x = 2 in
let squared = x * x in
let cubed = x * squared in
squared * cubed
```


A Few More Let Expressions

```
let x = 2 in
let squared = x * x in
let cubed = x * squared in
squared * cubed
```

```
let a = "a" in
let b = "b" in
let as = a ^ a ^ a in
let bs = b ^ b ^ b in
as ^ bs
```


How do let expressions operate?

```
let x = 2 + 1 in x * x
```


How do let expressions operate?

$$
\text { let } x=2+1 \text { in } x * x
$$

-->

$$
\text { let } x=3 \text { in } x * x
$$

How do let expressions operate?

$$
\text { let } x=2+1 \text { in } x * x
$$

-->

$$
\text { let } x=3 \text { in } x * x
$$

$$
-->
$$

$$
3 * 3
$$

How do let expressions operate?

$$
\text { let } x=2+1 \text { in } x * x
$$

-->

$$
\text { let } x=3 \text { in } x * x
$$

$$
-->
$$

-->

How do let expressions operate?

```
let x = 2 + 1 in x * x
```

-->

```
let x = 3 in x * x
```

-->

-->

Note: I write e1 --> e2
when e1 evaluates to e2 in one step

Another Example

```
let x = 2 in
let y = x + x in
y * x
```


Another Example

Another Example

Another Example

Another Example

Abstraction \& Abbreviation

- Two kinds of let:

let ... in ... is an expression that
declares a local variable for temporary use and produce a value

Abstraction \& Abbreviation

- Two kinds of let:

let ... in ... is an expression that can appear inside any other expression

The scope of x does not extend outside the enclosing "in"

let ... ;; is a top-level declaration that appears at the top-level only.

Variables x and y may be exported; used by other modules

Typing Simple Let Expressions

x granted type of e1 for use in e2

overall expression takes on the type of e2

Typing Simple Let Expressions

x granted type of e1 for use in e2

overall expression takes on the type of e2
x has type int for use inside the let body
overall expression has type string

Defining functions

- Non-recursive functions:

```
let add_one (x:int) : int = 1 + x ;;
```


Defining functions

- Non-recursive functions:
;; terminates let
let keyword

argument name

Defining functions

- Non-recursive functions:
;; terminates let
let keyword

argument name

Note: recursive functions with begin with "let rec"

Defining functions

- Non-recursive functions:

```
let add_one (x:int) : int = 1 + x ; ;
let add_two (x:int) : int = add_one (add_one x) ;;
```


Defining functions

- Non-recursive functions:

```
let add_one (x:int) : int = 1 + x ; ;
let add_two (x:int) : int = add_one (add_one x) ;;
```

- With a local definition:
local function definition hidden from clients

I left off the types. O'Caml figures them out

Good style: types on top-level definitions

Types for Functions

- Some functions:

```
let add_one (x:int) : int = 1 + x ; ;
let add_two (x:int) : int = add_one (add_one x) ;;
let add (x:int) (y:int) : int = x + y ;;
```

- Types for functions:
function with two arguments

```
add_one : int -> int
add_two : int -> int
add : int -> int -> int
```


Rule for type-checking functions

General Rule:

If a function $f: T 1->T 2$
and an argument e:T1 then fe : T2

Example:

```
add_one : int -> int
3 + 4 : int
add_one (3 + 4) : int
```


Rule for type-checking functions

- Recall the type of add:

Definition:
let add (x:int) (y:int) : int = $x+y$
; ;

Type:
add : int -> int -> int

Rule for type-checking functions

- Recall the type of add:

Definition:
let add (x:int) (y:int) : int = $x+y$
; ;

Type:
add : int -> int -> int

Same as:

```
add : int -> (int -> int)
```


Rule for type-checking functions

General Rule:

If a function f : T1 -> T2 and an argument e:T1 then fe:T2

Example:

```
add : int -> int -> int
```

$3+4$: int
add $(3+4): ~ ? ? ?$

Rule for type-checking functions

General Rule:

If a function $\mathrm{f}: \mathrm{T} 1$-> T2
and an argument e:T1
then fe:T2

Remember:

A -> B -> C
is the same as
$A \rightarrow(B->C)$

Example:

```
add : int -> (int -> int)
3 + 4 : int
add (3 + 4) :
```


Rule for type-checking functions

General Rule:

If a function $\mathrm{f}: \mathrm{T} 1$-> T2
and an argument e:T1
then fe:T2

Remember:

A -> B -> C
is the same as
$A \rightarrow(B->C)$

Example:

```
add : int -> (int -> int)
3+4 : int
add (3 + 4) : int -> int
```


Rule for type-checking functions

General Rule:

If a function f : T1 -> T2 and an argument e:T1 then fe:T2

Remember:

A -> B -> C
is the same as
$A \rightarrow(B->C)$

Example:

```
add : int -> int -> int
3 + 4 : int
add (3 + 4) : int -> int
(add (3 + 4)) 7 : int
```


Rule for type-checking functions

General Rule:

If a function f : T1 -> T2
and an argument e:T1
then fe:T2

Remember:

A -> B -> C
is the same as
$A \rightarrow(B->C)$

Example:

```
add : int -> int -> int
3 + 4 : int
add (3 + 4) : int -> int
add (3 + 4) 7 : int
```


Rule for type-checking functions

Example:

```
let munge (b:bool) (x:int) : ?? =
    if not b then
        string_of_int x
    else
        "hello"
;;
let y = 17;;
```

```
munge (y > 17) : ??
munge true (f (munge false 3)) : ??
    f : ??
munge true (g munge) : ??
    g : ??
```


Rule for type-checking functions

Example:

```
let munge (b:bool) (x:int) : ?? =
    if not b then
        string_of_int x
    else
        "hello"
;;
let y = 17;;
```

```
munge (y > 17) : ??
munge true (f (munge false 3)) : ??
    f : string -> int
munge true (g munge) : ??
    g : (bool -> int -> string) -> int
```


One key thing to remember

- If you have a function f with a type like this:
A -> B ->C -> D ->E -> F
- Then each time you add an argument, you can get the type of the result by knocking off the first type in the series

$$
\begin{array}{ll}
\text { f a1: B -> C -> D ->E ->F } & \text { (if a1:A) } \\
\text { f a1 a2 :C }->D->E->F & \text { (if a2:B) } \\
\text { f a1 a2 a3:D ->E ->F } & \text { (if a3:C) } \\
\text { f a1 a2 a3 a4 a5:F } & \text { (if a4:D and a5:E) }
\end{array}
$$

Binding Variables to Values

- Each O'Caml variable is bound to 1 value
- The value to which a variable is bound to never changes!

```
let x = 3 ; ;
let add_three (y:int) : int = y + x ; ;
```


Binding Variables to Values

- Each O'Caml variable is bound to 1 value
- The value to which a variable is bound to never changes!

Binding Variables to Values

- Each O'Caml variable is bound to 1 value
- The value a variable is bound to never changes!
a distinct
variable that "happens to be spelled the same"

Binding Variables to Values

- Since the 2 variables (both happened to be named x) are actually different, unconnected things, we can rename one of them
rename x
to zzz
if you want to, replacing its uses

```
let x = 3 ;;
```

let add_three (y:int) : int $=y+x$; ;
let $z z z=4$; ;
let add_four (y:int) : int $=y+z z z$; ;
let add_seven (y:int) : int =
add_three (add_four y)
; ;

Binding Variables to Values

- Each O'Caml variable is bound to 1 value
- O'Caml is a statically scoped language
we can use add_three without worrying about the second definition of x


```
let x = 3 ;;
let add_three (y:int) : int = y + x ; ;
let x = 4 ;;
let add_four (y:int) : int = y + x ; ;
let add_seven (y:int) : int =
    add_three (add_four y)
;;
```


OUR FIRST* COMPLEX DATA STRUCTURE! THE TUPLE

* it is really our second complex data structure since functions are data structures too!

Tuples

- A tuple is a fixed, finite, ordered collection of values
- Some examples with their types:

```
(1, 2)
    ("hello", 7 + 3, true) : string * int * bool
    ('a', ("hello", "goodbye")) : char * (string * string)
```


Tuples

- To use a tuple, we extract its components
- General case:
let (id1, id2, ..., idn) = e1 in e2
- An example:

$$
\text { let }(x, y)=(2,4) \text { in } x+x+y
$$

Tuples

- To use a tuple, we extract its components
- General case:
let (id1, id2, ..., idn) = e1 in e2
- An example:

$$
\text { let }(x, y)=(2,4) \text { in } x+x+y>\text { substitute! }
$$

Tuples

- To use a tuple, we extract its components
- General case:

$$
\text { let }(i d 1, i d 2, \ldots, i d n)=e 1 \text { in e2 }
$$

- An example:

$$
\begin{aligned}
& \text { let }(x, y)=(2,4) \text { in } x+x+y \\
& -->2+2+4
\end{aligned}
$$

Rules for Typing Tuples

if e1: t1 and e2: t2
then (e1, e2) : t1 * t2

Rules for Typing Tuples

if e1: t1 and e2: t2 then (e1, e2) : t1 * t2
if e1: t 1 * t 2 then
x 1 : t1 and x 2 : t2
inside the expression e2

overall expression takes on the type of e2

Distance between two points

$$
c^{2}=a^{2}+b^{2}
$$

($x 1, y 1$)

Problem:

- A point is represented as a pair of floating point values.
- Write a function that takes in two points as arguments and returns the distance between them as a floating point number

Writing Functions Over Typed Data

- Steps to writing functions over typed data:

1. Write down the function and argument names
2. Write down argument and result types
3. Write down some examples (in a comment)
4. Deconstruct input data structures

- the argument types may suggest how to do it

5. Build new output values

- the result type may suggest how you do it

6. Clean up by identifying repeated patterns

- define and reuse helper functions
- your code should be elegant and easy to read

Distance between two points

a type abbreviation

Distance between two points

type point $=$ float * float

let distance (p1:point) (p2:point) : float =

write down function name argument names and types

Distance between two points

Distance between two points

type point = float * float

let distance (p1:point) (p2:point) : float =
let $(x 1, y 1)=p 1$ in
let $(x 2, y 2)=p 2$ in
...
; ;
deconstruct
function inputs

Distance between two points

type point $=$ float * float

let distance (p1:point) (p2:point) : float =

$$
\text { let }(x 1, y 1)=p 1 \text { in }
$$

$$
\text { let }(x 2, y 2)=p 2 \text { in }
$$

$$
\text { sqrt }((x 2-. x 1) * \cdot(x 2-. x 1)+.
$$

$$
\left.\left(y^{2}-. y 1\right){ }^{*} \cdot\left(y^{2}-\dot{x} y\right)\right)
$$

; ;
 floats have a "." in them

Distance between two points

type point $=$ float * float

let distance (p1:point) (p2:point) : float = let square $\mathrm{x}=\mathrm{x}$ *. x in
let $(x 1, y 1)=p 1$ in
let $(x 2, y 2)=p 2$ in
sqrt (square (x2 -. xi)) +.
square (y2 -. y1))
define helper functions to avoid repeated code

Distance between two points

type point $=$ float * float

let distance (p1:point) (p2:point) : float = let square $\mathrm{x}=\mathrm{x}$ *. x in
let ($\mathrm{x} 1, \mathrm{y} 1$) $=\mathrm{p} 1$ in
let $(x 2, y 2)=p 2$ in
sqrt (square (x2 -. x1) +. square (y2 -. y1))
; ;
let pt1 = (2.0,3.0); ;
let pt2 = (0.0,1.0); ;
let dist12 = distance pt1 pt2; ;

SUMMARY:
 BASIC FUNCTIONAL PROGRAMMING

Writing Functions Over Typed Data

- Steps to writing functions over typed data:

1. Write down the function and argument names
2. Write down argument and result types
3. Write down some examples (in a comment)
4. Deconstruct input data structures

- the argument types may suggest how to do it

5. Build new output values

- the result type may suggest how you do it

6. Clean up by identifying repeated patterns

- define and reuse helper functions
- your code should be elegant and easy to read

Writing Functions Over Typed Data

- Steps to writing functions over typed data:

1. Write down the function and argument names
2. Write down argument and result types
3. Write down some examples (in a comment)
4. Deconstruct input data structures
5. Build new output values
6. Clean up by identifying repeated patterns

- For tuples:
- when the input has type t1 * t2
- use let (x, y) = ... to deconstruct
- when the output has type t1 * t2
- use (e1, e2) to construct
- We will see this paradigm repeat itself over and over

END

