
Simple Data

COS 326

David Walker

Princeton University

What is the single most important mathematical
concept ever developed in human history?

What is the single most important mathematical
concept ever developed in human history?

An answer: The mathematical variable

Why is the mathematical variable so important?

The mathematician says:

“Let x be some integer, we define a polynomial over x ...”

Why is the mathematical variable so important?

The mathematician says:

“Let x be some integer, we define a polynomial over x ...”

What is going on here? The mathematician has separated a
definition (of x) from its use (in the polynomial). This is the most
primitive kind of abstraction.

Abstraction is the key to controlling complexity and without it,
modern mathematics, science, and computation would not
exists.

O’CAML BASICS:
LET DECLARATIONS

Abstraction

• Good programmers identify repeated patterns in their code
and factor out the repetition into meaning components

• In O’Caml, the most basic technique for factoring your code is
to use let expressions

• Instead of writing this expression:

(2 + 3) * (2 + 3)

Abstraction & Abbreviation

• Good programmers identify repeated patterns in their code
and factor out the repetition into meaning components

• In O’Caml, the most basic technique for factoring your code is
to use let expressions

• Instead of writing this expression:

• We write this one:

(2 + 3) * (2 + 3)

let x = 2 + 3 in

x * x

A Few More Let Expressions

let x = 2 in

let squared = x * x in

let cubed = x * squared in

squared * cubed

A Few More Let Expressions

let a = "a" in

let b = "b" in

let as = a ^ a ^ a in

let bs = b ^ b ^ b in

as ^ bs

let x = 2 in

let squared = x * x in

let cubed = x * squared in

squared * cubed

let two = 2.0 in

let zero = 0.0 in

two *. zero

How do let expressions operate?

let x = 2 + 1 in x * x

How do let expressions operate?

let x = 2 + 1 in x * x

-->

let x = 3 in x * x

How do let expressions operate?

let x = 2 + 1 in x * x

-->

let x = 3 in x * x

-->

 3 * 3

substitute
3 for x

How do let expressions operate?

let x = 2 + 1 in x * x

-->

let x = 3 in x * x

-->

 3 * 3

-->

 9

substitute
3 for x

How do let expressions operate?

let x = 2 + 1 in x * x

-->

let x = 3 in x * x

-->

 3 * 3

-->

 9

substitute
3 for x

Note: I write
e1 --> e2
when e1 evaluates
to e2 in one step

Another Example

let x = 2 in

let y = x + x in

y * x

Another Example

let x = 2 in

let y = x + x in

y * x

-->

substitute
2 for x

let y = 2 + 2 in

y * 2

Another Example

let x = 2 in

let y = x + x in

y * x

-->

-->

substitute
2 for x

let y = 2 + 2 in

y * 2

let y = 4 in

y * 2

Another Example

let x = 2 in

let y = x + x in

y * x

-->

-->

-->

substitute
2 for x

let y = 2 + 2 in

y * 2

let y = 4 in

y * 2

4 * 2

substitute
4 for y

Another Example

let x = 2 in

let y = x + x in

y * x

-->

-->

-->

substitute
2 for x

let y = 2 + 2 in

y * 2

let y = 4 in

y * 2

4 * 2
-->

8

substitute
4 for y

Moral: Let
operates by
substituting

computed values
for variables

Abstraction & Abbreviation

• Two kinds of let:

let … in … is an expression that
declares a local variable for temporary
use and produce a value

if tuesday() then

 let x = 2 + 3 in

 x + x

else

 0

;;

Abstraction & Abbreviation

• Two kinds of let:

let … in … is an expression that
can appear inside any other expression

The scope of x does not extend outside
the enclosing “in”

let x = 2 + 3 ;;

let y = x + 17 / x ;;

let … ;; is a top-level declaration
that appears at the top-level only.

Variables x and y may be exported;
used by other modules

if tuesday() then

 let x = 2 + 3 in

 x + x

else

 0

;;

Typing Simple Let Expressions

let x = e1 in

e2

overall expression
takes on the type of e2

x granted type of e1 for use in e2

Typing Simple Let Expressions

let x = e1 in

e2

x granted type of e1 for use in e2

let x = 3 + 4 in

string_of_int x

overall expression
takes on the type of e2

x has type int
for use inside the
let body

overall expression
has type string

let add_one (x:int) : int = 1 + x ;;

Defining functions

• Non-recursive functions:

let add_one (x:int) : int = 1 + x ;;

Defining functions

• Non-recursive functions:

function name

argument name

type of argument

type of result
expression
that computes
value produced
by function

;; terminates let

let keyword

let add_one (x:int) : int = 1 + x ;;

Defining functions

• Non-recursive functions:

function name

argument name

type of argument

type of result
expression
that computes
value produced
by function

;; terminates let

let keyword

Note: recursive functions with begin with "let rec"

let add_one (x:int) : int = 1 + x ;;

let add_two (x:int) : int = add_one (add_one x) ;;

Defining functions

• Non-recursive functions:

Defining functions

• Non-recursive functions:

• With a local definition:

let add_one (x:int) : int = 1 + x ;;

let add_two (x:int) : int = add_one (add_one x) ;;

let add_two' (x:int) : int =

 let add_one x = 1 + x in

 add_one (add_one x)

;;

local function definition
hidden from clients

I left off the types.
O'Caml figures them out

Good style: types on
top-level definitions

Types for Functions

• Some functions:

• Types for functions:

let add_one (x:int) : int = 1 + x ;;

let add_two (x:int) : int = add_one (add_one x) ;;

let add (x:int) (y:int) : int = x + y ;;

add_one : int -> int

add_two : int -> int

add : int -> int -> int

function with two arguments

Rule for type-checking functions

add_one : int -> int

3 + 4 : int

add_one (3 + 4) : int

If a function f : T1 -> T2
and an argument e : T1
then f e : T2

General Rule:

Example:

Rule for type-checking functions

• Recall the type of add:

let add (x:int) (y:int) : int =

 x + y

;;

Definition:

add : int -> int -> int

Type:

Rule for type-checking functions

• Recall the type of add:

let add (x:int) (y:int) : int =

 x + y

;;

Definition:

add : int -> int -> int

Type:

add : int -> (int -> int)

Same as:

Rule for type-checking functions

add : int -> int -> int

3 + 4 : int

add (3 + 4) : ???

If a function f : T1 -> T2
and an argument e : T1
then f e : T2

General Rule:

Example:

A -> B -> C
is the same as
A -> (B -> C)

Remember:

Rule for type-checking functions

add : int -> (int -> int)

3 + 4 : int

add (3 + 4) :

If a function f : T1 -> T2
and an argument e : T1
then f e : T2

General Rule:

Example:

A -> B -> C
is the same as
A -> (B -> C)

Remember:

Rule for type-checking functions

add : int -> (int -> int)

3 + 4 : int

add (3 + 4) : int -> int

If a function f : T1 -> T2
and an argument e : T1
then f e : T2

General Rule:

Example:

A -> B -> C
is the same as
A -> (B -> C)

Remember:

Rule for type-checking functions

add : int -> int -> int

3 + 4 : int

add (3 + 4) : int -> int

(add (3 + 4)) 7 : int

If a function f : T1 -> T2
and an argument e : T1
then f e : T2

General Rule:

Example:

A -> B -> C
is the same as
A -> (B -> C)

Remember:

Rule for type-checking functions

add : int -> int -> int

3 + 4 : int

add (3 + 4) : int -> int

add (3 + 4) 7 : int

If a function f : T1 -> T2
and an argument e : T1
then f e : T2

General Rule:

Example:

A -> B -> C
is the same as
A -> (B -> C)

Remember:

Rule for type-checking functions

let munge (b:bool) (x:int) : ?? =

 if not b then

 string_of_int x

 else

 "hello"

;;

let y = 17;;

Example:

munge (y > 17) : ??

munge true (f (munge false 3)) : ??

 f : ??

munge true (g munge) : ??

 g : ??

Rule for type-checking functions

let munge (b:bool) (x:int) : ?? =

 if not b then

 string_of_int x

 else

 "hello"

;;

let y = 17;;

Example:

munge (y > 17) : ??

munge true (f (munge false 3)) : ??

 f : string -> int

munge true (g munge) : ??

 g : (bool -> int -> string) -> int

One key thing to remember

• If you have a function f with a type like this:

• Then each time you add an argument, you can get the type of
the result by knocking off the first type in the series

A -> B -> C -> D -> E -> F

f a1 : B -> C -> D -> E -> F (if a1 : A)

f a1 a2 : C -> D -> E -> F (if a2 : B)

f a1 a2 a3 : D -> E -> F (if a3 : C)

f a1 a2 a3 a4 a5 : F (if a4 : D and a5 : E)

Binding Variables to Values

• Each O'Caml variable is bound to 1 value

• The value to which a variable is bound to never changes!

let x = 3 ;;

let add_three (y:int) : int = y + x ;;

Binding Variables to Values

• Each O'Caml variable is bound to 1 value

• The value to which a variable is bound to never changes!

let x = 3 ;;

let add_three (y:int) : int = y + x ;;

It does not
matter what
I write next.
add_three
will always
add 3!

Binding Variables to Values

• Each O'Caml variable is bound to 1 value

• The value a variable is bound to never changes!

let x = 3 ;;

let add_three (y:int) : int = y + x ;;

let x = 4 ;;

let add_four (y:int) : int = y + x ;;

a distinct
variable that
"happens to
be spelled the
same"

Binding Variables to Values

• Since the 2 variables (both happened to be named x) are
actually different, unconnected things, we can rename one of
them

let x = 3 ;;

let add_three (y:int) : int = y + x ;;

let zzz = 4 ;;

let add_four (y:int) : int = y + zzz ;;

let add_seven (y:int) : int =

 add_three (add_four y)

;;

rename x
to zzz
if you want
to, replacing
its uses

Binding Variables to Values

• Each O'Caml variable is bound to 1 value

• O'Caml is a statically scoped language

let x = 3 ;;

let add_three (y:int) : int = y + x ;;

let x = 4 ;;

let add_four (y:int) : int = y + x ;;

let add_seven (y:int) : int =

 add_three (add_four y)

;;

we can use
add_three
without worrying
about the second
definition of x

OUR FIRST* COMPLEX DATA STRUCTURE!
THE TUPLE

* it is really our second complex data structure since functions
are data structures too!

• A tuple is a fixed, finite, ordered collection of values

• Some examples with their types:

Tuples

(1, 2) : int * int

("hello", 7 + 3, true) : string * int * bool

('a', ("hello", "goodbye")) : char * (string * string)

• To use a tuple, we extract its components

• General case:

• An example:

Tuples

let (id1, id2, …, idn) = e1 in e2

let (x,y) = (2,4) in x + x + y

• To use a tuple, we extract its components

• General case:

• An example:

Tuples

let (id1, id2, …, idn) = e1 in e2

let (x,y) = (2,4) in x + x + y

--> 2 + 2 + 4
substitute!

• To use a tuple, we extract its components

• General case:

• An example:

Tuples

let (id1, id2, …, idn) = e1 in e2

let (x,y) = (2,4) in x + x + y

--> 2 + 2 + 4

--> 8

Rules for Typing Tuples

 if e1 : t1 and e2 : t2
then (e1, e2) : t1 * t2

Rules for Typing Tuples

let (x1,x2) = e1 in

e2

if e1 : t1 * t2 then
x1 : t1 and x2 : t2
inside the expression e2

overall expression
takes on the type of e2

 if e1 : t1 and e2 : t2
then (e1, e2) : t1 * t2

Distance between two points

c2 = a2 + b2
(x1, y1)

(x2, y2)

a

b
c

Problem:
• A point is represented as a pair of floating point values.
• Write a function that takes in two points as arguments and returns
the distance between them as a floating point number

Writing Functions Over Typed Data

• Steps to writing functions over typed data:

1. Write down the function and argument names

2. Write down argument and result types

3. Write down some examples (in a comment)

4. Deconstruct input data structures

• the argument types may suggest how to do it

5. Build new output values

• the result type may suggest how you do it

6. Clean up by identifying repeated patterns

• define and reuse helper functions

• your code should be elegant and easy to read

Distance between two points

type point = float * float

a type abbreviation (x1, y1)

(x2, y2)

a

b
c

Distance between two points

type point = float * float

let distance (p1:point) (p2:point) : float =

;;

write down function name
argument names and types

(x1, y1)

(x2, y2)

a

b
c

Distance between two points

type point = float * float

(* distance (0.0,0.0) (0.0,1.0) == 1.0

 * distance (0.0,0.0) (1.0,1.0) == sqrt(1.0 + 1.0)

 *

 * from the picture:

 * distance (x1,y1) (x2,y2) == sqrt(a^2 + b^2)

 *)

let distance (p1:point) (p2:point) : float =

;;

(x1, y1)

(x2, y2)

a

b
c examples

Distance between two points

type point = float * float

let distance (p1:point) (p2:point) : float =

 let (x1,y1) = p1 in

 let (x2,y2) = p2 in

 ...

;;
deconstruct
function inputs

(x1, y1)

(x2, y2)

a

b
c

Distance between two points

type point = float * float

let distance (p1:point) (p2:point) : float =

 let (x1,y1) = p1 in

 let (x2,y2) = p2 in

 sqrt ((x2 -. x1) *. (x2 -. x1) +.

 (y2 -. y1) *. (y2 -. y1))

;;

compute
function
results

notice operators on
floats have a "." in them

(x1, y1)

(x2, y2)

a

b
c

Distance between two points

type point = float * float

let distance (p1:point) (p2:point) : float =

 let square x = x *. x in

 let (x1,y1) = p1 in

 let (x2,y2) = p2 in

 sqrt (square (x2 -. x1)) +.

 square (y2 -. y1))

;;

define helper functions to
avoid repeated code

(x1, y1)

(x2, y2)

a

b
c

Distance between two points

type point = float * float

let distance (p1:point) (p2:point) : float =

 let square x = x *. x in

 let (x1,y1) = p1 in

 let (x2,y2) = p2 in

 sqrt (square (x2 -. x1) +. square (y2 -. y1))

;;

let pt1 = (2.0,3.0);;

let pt2 = (0.0,1.0);;

let dist12 = distance pt1 pt2;;

testing

(x1, y1)

(x2, y2)

a

b
c

SUMMARY:
BASIC FUNCTIONAL PROGRAMMING

Writing Functions Over Typed Data

• Steps to writing functions over typed data:

1. Write down the function and argument names

2. Write down argument and result types

3. Write down some examples (in a comment)

4. Deconstruct input data structures

• the argument types may suggest how to do it

5. Build new output values

• the result type may suggest how you do it

6. Clean up by identifying repeated patterns

• define and reuse helper functions

• your code should be elegant and easy to read

Writing Functions Over Typed Data

• Steps to writing functions over typed data:

1. Write down the function and argument names

2. Write down argument and result types

3. Write down some examples (in a comment)

4. Deconstruct input data structures

5. Build new output values

6. Clean up by identifying repeated patterns

• For tuples:

– when the input has type t1 * t2

• use let (x,y) = … to deconstruct

– when the output has type t1 * t2

• use (e1, e2) to construct

• We will see this paradigm repeat itself over and over

END

