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Abstract

We investigate ways in which an algorithm can improve
its expected performance by fine-tuning itself automat-
ically with respect to an arbitrary, unknown input dis-
tribution. We give such self-improving algorithms for
sorting and clustering. The highlights of this work: (i)
a sorting algorithm with optimal expected limiting run-
ning time; and (ii) a k-median algorithm over the Ham-
ming cube with linear expected limiting running time.
In all cases, the algorithm begins with a learning phase
during which it adjusts itself to the input distribution
(typically in a logarithmic number of rounds), followed
by a stationary regime in which the algorithm settles to
its optimized incarnation.

1 Introduction

The classical approach to analyzing algorithms draws
a familiar litany of complaints: Worst-case bounds
are too pessimistic in practice, say the critics, while
average-case complexity too often rests on unrealistic
assumptions. The charges are not without merit. It’s
hard enough to argue that the only permutations we
ever want to sort are random; it’s a different level of
implausibility altogether to pretend that the sites of a
Voronoi diagram should always follow a Poisson process
or that ray tracing in a BSP tree should be spawned by a
Gaussian. Efforts have been made to analyze algorithms
under more complex models (eg, Gaussian mixtures,
Markov model outputs) but with limited success and
lingering doubts about the choice of priors.

Ideally, one would like to compute a function f with
the help of a self-improving algorithm. Upon receiving
its first input instance I0, such an algorithm would com-
pute f(I0) with, say, good worst-case guarantees and
nothing more. Think of newly installed software that
knows nothing about the user and runs in its “vanilla”
configuration. Subsequently, as it is called upon to com-
pute f(Ik) for k = 1, 2, . . ., the algorithm would gradu-
ally improve its performance through automatic finetun-
ing. Intuitively, if the Ik’s are drawn from a low-entropy
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distribution, the algorithm should be able to spot that
and learn to be more efficient.

The obvious analogy is data compression, which
seeks to exploit low entropy to minimize encoding size.
The analogue of Shannon’s noiseless coding theorem
would be here: Given an unknown distribution D, de-
sign a self-improving algorithm that converges to one
with optimal expected running time. The second goal,
which is to optimize the convergence speed, is more
strictly speaking of a machine learning nature. One of
the surprises to us—but perhaps not to machine learn-
ing experts—is how fairly naive distribution learning
suffices for dramatic self-improvement.

The starting point of this work is the observa-
tion that, trimmed of noise, real-world data is often
of much lower entropy than size alone suggests. For
example, Takens’ embedding theorem asserts that uni-
variate time series obtained from deterministic dynam-
ical systems can be geometrized canonically as a (usu-
ally) low-dimensional attractor set in finite-dimensional
space [45]. Hidden Markov models for speech recogni-
tion can be remarkably effective with only a few thou-
sand states. Anecdotal evidence can also be gleaned
from the current trend toward personalization in the
design of web tools (search engines, recommendation
systems, etc). Input data is often lodged in a tiny slice
of input space that cannot be captured by closed-form
distributions. To make predictions about the slice is the
essence of machine learning [16,28,39]. To take compu-
tational advantage of the slice is what self-improving
algorithms are all about. There is an intriguing connec-
tion with online learning, and several of our algorithms
can, indeed, be interpreted as prediction from expert ad-
vice [11, 12, 14, 18, 20, 27, 29, 33, 34, 36]. This connection
will be explored in the full paper.

Our Results The performance of a self-improving
algorithm is measured with respect to an unknown
memoryless random source D of input instances. (See
discussion of the model’s merits below). The algorithm
is given instances I0, I1, . . ., which it must solve one at
a time in batch mode with: (1) no prior knowledge of
future instances; and (2) no a priori knowledge about D.
The algorithm may store auxiliary information to help
improve its performance. (Unlike self-organizing data
structures, however, none of that information should be



necessary for the algorithm to complete its task.)
Our first result is, in some sense, the first truly

optimal sorter. While the prospect of “beating
n log n” might excite only true-blue sorting devotees,
the topic is the ideal introduction to the concept of self-
improvement. First, some notation. Given a source D of
numbers {x1, . . . , xn} to sort, let D< be the distribution
over the symmetric group induced by the ranks of the
xi’s (using the indices i to break ties). The complexity
of our algorithm depends on the entropy H(D<), which,
we happily note, can be much smaller than the entropy
of the source (while, of course, never exceeding it).

• Sorting: We give a self-improving algorithm with
a limiting running time1 of O(H(D<)+n) and prove
that it is optimal. If the input {x1, . . . , xn} to
be sorted is obtained by drawing each xi indepen-
dently from some distribution Di, then the storage
is O(n1+ε), for any fixed ε > 0. The storage is
optimal in the worst case. We also show that in-
dependence is necessary: Without it, the storage
must be exponential in n.

Our second result addresses a classical NP-hard
optimization problem.

• Clustering: We consider the k-median problem
over the d-dimensional Hamming cube. Assum-
ing a distribution of n points, each one drawn
independently from its own unknown (arbitrary)
random source, we give a self-improving (1 + ε)-
approximation algorithm that runs in O(dn) lim-
iting running time and O(d) space. Errors occur
with arbitrarily small probability. The algorithm
can be made Monte Carlo (ie, with error proba-
bility independent of the input) with some extra
storage independent of n.

Previous Work Related concepts have been stud-
ied before. List accessing algorithms and splay trees are
textbook examples of how simple updating rules can
speed up searching with respect to an adversarial re-
quest sequence [1,13,25,43,44]. It is interesting to note
that self-organizing data structures were investigated
over stochastic input models first [2, 10, 21, 35, 41, 42].
It was the observation [9] that memoryless sources for
list accessing are not terribly realistic that partly mo-
tivated work on the adversarial models. It is highly
plausible that both approaches are superseded by more
sophisticated stochastic models: for example, hidden

1If Tk(n) is the expected running time for solving Ik—over the
input distribution and the random bits of the algorithm—then,
as k grows, Tk(n) (or a function bounding it) converges to the
limiting running time.

Markov models for gene finding or speech recognition or
time-coherent models for self-customized BSP trees [6].
Nonparametric learning avoids the limitations of closed-
form distributions but its aims are predictive rather
than prescriptive and algorithmic speedups are usually
not among them.

Algorithmic self-improvement differs from past
work on self-organizing data structures and online com-
putation in two fundamental ways: (i) self-improving
algorithms operate offline and do not lend themselves to
competitive analysis; (ii) they do not exploit structure
within any given input but, rather, within the ensemble
of input distributions. For example, suppose that the
distribution consists of two random but fixed permuta-
tions. Our self-improving sorter will run in linear time,
whereas any self-organizing data structure for searching
would require Ω(n log n) time.

A Bayesian version of self-improvement would be
to postulate a prior and treat the Ik’s as data condi-
tioning a posterior distribution. While this paper is
concerned with memoryless sources, it is easy to imag-
ine extensions to higher-order models. One could also
consider time-varying distributions or Markov models.
We believe that sticking to memoryless sources for self-
improving algorithms is far less restrictive than doing
the same for online computation. Take speech for ex-
ample: The weakness of a memoryless model is that the
next utterance is highly correlated with the previous
ones; hence the use of Markov models. A self-improving
algorithm would operate at the level of a sentence or
a paragraph—not an utterance—where correlations are
more diffuse and a memoryless source might be a good
first approximation.

2 A Self-Improving Sorter

For simplicity, we break up our discussion into a non-
learning and a learning phase. First, we assume that the
distribution D =

∏

i Di is known ahead of time and that
we are allowed some amount of preprocessing before
having to deal with the first input instance (§2.1). Both
assumptions are unrealistic, so we show how to remove
them to produce a bona fide self-improving sorter (§2.2).
The surprise is how strikingly little of the distribution
needs to be learned for effective self-improvement.

Remark: Much research has been done on adaptive
sorting [17]; in particular, on algorithms that exploit
near-sortedness. Our approach is conceptually different.
We seek to exploit properties, not of individual inputs,
but of their distribution. In particular, our sorter runs
in linear time for permutations drawn from a linear-
entropy source, even though any individual input might
be a perfectly random permutation. We are not aware



of any previous algorithm that can achieve that.

Theorem 2.1. There exists a self-improving sorter
that runs in O(H(D<) + n) limiting running time, for
any input distribution D =

∏

i Di. Its worst case run-
ning time is O(n log n). The storage requirement is
O(n1+ε), for any fixed ε > 0, which is optimal in the
worst case. The algorithm reaches its limiting complex-
ity within O(log n) sorting rounds.

Can we hope for a similar result if we drop the
independence assumption? The answer is no.

Lemma 2.1. There exists an input distribution D such
that any self-improving sorter that runs in O(H(D<) +
n) limiting running time requires at least Ω(2H(D<) )
storage.

Proof. Consider the set of all n! permutations. Every
subset S of 2n permutations induces a distribution DS

such that DS
< has every permutation in S with equal

probability (and only permutations in S). H(DS
<) is n,

and by definition any optimal self-improving sorter will
(eventually) sort a permutation from DS in expected
cn time, for some constant c. The total number of
such distributions is

(

n!
2n

)

> (n!/2n)2
n

. Consider a
self-improving sorter A that uses s units of storage. Let
the algorithm that results from setting this space with
the string v be Av. A distribution DS is handled by
Av, if Av sorts a permutation from DS in expected cn
time. By the pigeon-hole principle, there exists some
string w such that Aw handles at least (n!/2n)2

n

2−s

distributions.

Define a permutation to be easy if Aw sorts the per-
mutation in 2cn time. Consider some DS that is handled
by Aw. Then, by Markov S has at least 2n/2 permu-
tations which are easy for Aw. A simple information-
theoretic argument shows that there exist at most 22cn

easy permutations. Any handled distribution is gener-
ated from a set of permutations with at least 2n/2 per-
mutations from the set of easy permutations; the rest
can be anything. Therefore the total number of handled
distributions is at most -

(

n!

2n/2

)(

22cn

2n/2

)

< (n!)2
n/22cn2n

This must be greater than (n!/2n)2
n

2−s. Therefore
s = Ω(2nn logn). Since H(DS

<) = n, the theorem is
proved.

2

2.1 Sorting with Full Knowledge We consider the
problem of sorting I = {x1, . . . , xn}, where each xi is

drawn from a distribution Di, which is specified by a
vector (pi,1, . . . , pi,N ), where pi,j = Prob [xi = j ]. We
can assume without loss of generality that all the xi’s
are distinct. (If not, simply replace xi by nxi + i− 1 for
tie-breaking purposes and enlarge N to n(N + 1). All
probabilities and entropies remain the same.)

• The V -list: Fix an integer parameter λ = c log n,
for large enough c, and sample λ input instances
from

∏

Di. Form their union and sort the resulting
λn-element multiset it a single list u1 ≤ · · · ≤ uλn.
Next, extract from it every λ-th item and form the
list V = (v0, . . . , vn+1), where v0 = 0, vn+1 = ∞,
and vi = uiλ for 0 < i ≤ n. Keep the V -list in
a sorted table as a snapshot of a “typical” input
instance. We will prove the remarkable fact that,
with high probability, locating each xi in the V -list
is linearly equivalent to sorting I. We cannot afford
to search the V -list directly, however. To do that,
we need auxiliary search structures.

• The Di-trees: For any i > 0, let predv
i be the

predecessor2 of a random y from Di in the V -
list, and let Hv

i be the entropy of predv
i (which

cannot exceed the entropy of Di). The Di-tree is
an optimum binary search tree [37] over the keys
of the V -list, where the access probability of vk is
∑

j{ pi,j | vk ≤ j < vk+1 }, for any 0 ≤ k ≤ n: the
same distribution used to define Hv

i . This allows
us to compute predv

i using Hv
i + O(1) expected

comparisons. We can reduce the size of each Di-
tree to O(nε), for any fixed ε > 0, without losing
more than a constant factor in the running time.
(Details omitted.)

To sort I, first we search for each xi in the V -
list using the previous technique. This allows us to
partition I into groups G1 < G2 < · · · of xi’s sharing
the same predecessor in the V -list. The sorting of I
is complete once we go through each Gj and quicksort
their elements. The first phase of the algorithm takes
O(n+

∑

i Hv
i ) expected time3. What about the second?

Its complexity is O(n), as follows from:

Lemma 2.2. E | { i | vk ≤ xi < vk+1 } |
2 = O(1), for

any 0 ≤ k ≤ n.

To prove Lemma 2.2, we introduce an analytical
device in the form of an idealized V -list. Given a ran-
dom {x1, . . . , xn} drawn from D and a real z, let ρ(z) =

2Throughout this paper, the predecessor of y in a list refers to
the index of the largest list element ≤ y; it does not refer to the
element itself.

3The Hv

i
’s themselves are random variables depending on the

choice of the V -list. Therefore, this is a conditional expectation.



E |{ i |xi ≤ z }|. The function ρ grows monotonically
from 0 to n and ρ(z + 1) ≤ ρ(z) + 1; therefore, for each
0 ≤ k ≤ n, there is a maximum integer bk ≤ N such
that dρ(bk)e = k. Call b0 < · · · < bn = N the B-list.
The expected number of xi’s in [bk, bk+1) is less than 3;
therefore

∑

i qi < 3, where qi = Prob [ bk ≤ xi < bk+1 ].
So, for any 0 ≤ k < n, using (pairwise) independence,
E |{ i | bk ≤ xi < bk+1 }|

2 =
∑

i qi + 2
∑

i<j qiqj ≤
∑

i qi +(
∑

i qi)
2 < 12 . With this inequality, Lemma 2.2

follows from the first part of:

Lemma 2.3. With probability at least 1 − 1/n3, (i) no
interval [vk, vk+1) contains more than three bj’s; and
(ii) no interval [bk, bk+1) contains more than three vj’s.

Proof. Suppose that some [vk, vk+1) contains at least
bj, bj+1, bj+2, bj+3. If Y is the number of elements in
the original sample u1, . . . , uλn that lie in [bj , bj+3], then
Y ≤ λ. But Y =

∑

l yl, where yl is the indicator
variable for ul ∈ [bj , bj+3]. Let αl = Prob [ yl = 1 ],
α = (

∑

l αl)/m, and m = λn. Note that 2λ ≤ EY ≤
4λ. By Chernoff’s bound [4] (page 268), Y < αm − a

with probability less than e−a2/2αm. Setting a = λ/2
proves that, with probability 1 − 2−Ω(λ), [vk, vk+1)
contains no more than three bj ’s. With λ = c log n,
for c large enough, the union bound ensures that, with
probability at least 1 − n−3, this holds true of every
interval [vk, vk+1).

To prove (ii), suppose now that some [bk, bk+1)
contains at least vj , vj+1, vj+2, vj+3,. Define Z =

∑

l zl,
where zl is the indicator variable for ul ∈ [bk, bk+1).
Let βl = Prob [ zl = 1 ] and β = (

∑

l βl)/m. Note that
Z ≥ 3λ and yet EZ ≤ 2λ. We can actually assume
that EZ = 2λ, since it is the worst case. Again, by
Chernoff’s bound, Z ≥ βm + a with probability less
than e−a2/2βm+a3/2(βm)2 . Setting a = λ proves that,
with probability 2−Ω(λ), [bk, bk+1) contains no more
than three vj ’s. We complete the proof by repeating
the previous union bound argument. 2

We have shown that the algorithm takes O(n +
∑

i Hv
i ) expected time (given a fixed V -list). Given the

artificial nature Hv
i , there is no obvious reason why this

should be optimal. Indeed, to prove that it is requires
a little effort. We sketch the proof. Let predf

i be the
predecessor of a random y from Di in {0, x1, . . . , xi−1},

and let Hf
i be the entropy of predf

i . Fredman proved
that the expected time of any comparison-based sorter
is Ω(n +

∑

i Hf
i ) [19]. This result together with the

following lemma tells us that the algorithm runs in
optimal time on expectation.

Lemma 2.4.

E
[

n +
∑

i

Hv
i

]

= O
(

n +
∑

i

Hf
i

)

.

Proof. We introduce two new entropies: Define the
D-list {dk = b2k} to consist of the even-indexed en-
tries of the B-list. Let predx

i and predd
i be the prede-

cessors of a random y from Di in {0, x1, . . . , xn} and
in the D-list, respectively. (Note that y and xi are
drawn independently from the same source.) We de-
fine Hx

i (resp. Hd
i ) to be the entropy of predx

i (resp.
predd

i ). The predecessor of y in {0, x1, . . . , xn} can
be inferred from three pieces of information: (i) y’s
predecessor in {0, x1, . . . , xi−1}; (ii) y’s predecessor in
{0, xi+1, . . . , xn}; and (iii) whether y < xi, y = xi,
or y > xi. By using bijectivity between the in-
put instances (x1, . . . , xn) and (xn, . . . , x1), it then fol-

lows that
∑

i Hx
i = O(n +

∑

i Hf
i ). Given a random

(x1, . . . , xn) drawn from D, let χk = 1 if [dk, dk+1) is
empty, ie, does not contain any xi, and 0 otherwise,
and let qi,k = Prob [ dk ≤ xi < dk+1 ]. Note that the ex-
pected number of xi’s in that interval is at least 1; there-
fore, Prob [χk = 1 ] =

∏

i(1 − qi,k) ≤ e−
P

i
qi,k ≤ e−1.

For a fixed (x1, . . . , xn), glue together consecutive empty
intervals, ie, remove dk if both [dk−1, dk) and [dk, dk+1)
are empty. Let d′1 < d′2 < · · · be the subset of {di}

thus left, and let predd′

i be the predecessor of a ran-
dom y from Di among {d′k}. Finally, let ξ be 0 if y
lies in an interval [d′k, d′k+1) that coincides with one of
the nonempty [dj , dj+1)’s, and 1 otherwise; and denote
Prob [ ξ = 1 ] by pξ. Using standard information theory,
(2.1)

Hd
i = H(predd

i ) ≤ H(predd′

i ) + pξH( predd
i | ξ = 1 );

E
{

pξ H( predd
i | ξ = 1 )

}

= E
∑

k

χkqi,k log
pξ

qi,k

≤
∑

k

(Eχk)qi,k log
1

qi,k
≤ e−1

∑

k

qi,k log
1

qi,k

= Hd
i /e.

For any fixed (x1, . . . , xn), predd′

i can be inferred from
predx

i with one extra bit. This remains true on average,
and so by (2.1)

Hd
i = EH(predd′

i ) + E
{

pξ H( predd
i | ξ = 1 )

}

≤
e

e − 1
EH(predd′

i ) ≤
e

e − 1
(Hx

i + 1);

and therefore, Hd
i = O(Hx

i + 1). By Lemma 2.3, with
probability pζ ≥ 1−1/n3, no interval [dk, dk+1) contains
more than six vj ’s. Let ζ = 1 if that is the case, and
0 otherwise. If ζ = 1, then predv

i can be inferred from
predd

i with only three extra bits. Therefore,

EHv
i ≤ E[Hv

i |ζ = 1] + n−3E[Hv
i |ζ = 0]

≤ Hd
i + 3 + n−3 log n .



The lemma follows now from the relations above among
Hx

i , Hf
i , Hd

i . 2

We can show that the storage cannot be reduced to
linear. In particular, our O(n1+ε) bound is optimal for
some distributions.

Lemma 2.5. For any H ≤ bn log n, with small enough
constant b > 0, there exists a distribution D =

∏

i Di

of entropy H such that any comparison-based algorithm
that can sort a random permutation from D in expected
time O(H + n) requires a data structure of bit size
Ω(2H/nn log n).

Proof. The basic idea of the proof is the same as the
proof of Lemma 2.1. Let h = 2bH/nc. We define Di

by choosing h distinct integers in [1, n] and making
them equally likely to be picked as xi. This leads
to

(

n
h

)n
> (n/h)hn choices of distinct distributions D.

Suppose that there is a data structure of size s that can
accommodate any such distribution with an expected
running time of O(H+n). Then one such data structure
S must be able to accommodate this running time for
a set G of at least (n/h)hn2−s distributions D. Each Di

is characterized by a vector vi = (ai,1, . . . , ai,h), so that

D itself is specified by v = (v1, . . . , vn) ∈ Rnh. (From
now on, we view v both as a vector and a distribution
of input instances.) Define the j-th projection of v as
vj = (a1,j , . . . , an,j). Viewed as an input instance, we
say that vj is easy if S sorts it within C(H +n) time, for
large enough C. Of course, even if v ∈ G, it could well
be that none of the projections of v are easy. However,
if we consider the projections obtained by permuting
the coordinates of each vector vi = (ai,1, . . . , ai,h) in all
possible ways, we enumerate each input instance from
v the same number of times; therefore, there exists a
choice of permutations for which at least half of the
projections are easy. Let Iv denote the corresponding
input instances.

How many distributions v can each generate at
least h/2 input instances from Iv. There are fewer
than |Iv|

h/2 choices of such instances and, for any such
choice, each vi = (ai,1, . . . , ai,h) has half its entries
already specified, so the remaining choices are fewer
than nhn/2. This gives an upper bound of nhn/2|Iv|

h/2

on the number of distributions. This number cannot be
smaller than (n/h)hn2−s; therefore

(2.2) |Iv| ≥ nnh−2n2−2s/h.

In a comparison-based decision tree model, each input
instance is associated with the leaf of a tree of depth
at most C(H + n), ie, with one of at most 2C(H+n)

leaves. This would give us a lower bound on s if each

instance was assigned a distinct leaf. But this may not
be the case. However, we have a collision bound, saying
that at most 4n/2 instances can be mapped to the same
leaf. This implies that |Iv|4

−n ≤ 2C(H+n); and by (2.2),
s = Ω(hn log n); hence the lemma.

To prove the collision bound, we use the tie-
breaking rule of §2.1 to map each input instance to
a permutation (the one induced by the map xi 7→
nxi + i − 1). It is clear that two instances mapping
to two distinct permutations must lead to two differ-
ent leaves of the decision tree. So the only question
left is to bound the number of instances mapping to
a given permutation. Let (x1, . . . , xn) be an input in-
stance (no tie-breaking). For i = 2, . . . , n, define αi = 0
if xi = xi−1, and 1 otherwise. For j = 1, . . . , n, define
βj = 0 if xj = i for some j, and 1 otherwise. For ex-
ample (3, 3, 3, 5, 5, 3, 7, 7) gives 0010110 for the αi’s and
11010101 for the βj ’s, and the induced permutation is
(1, 2, 3, 5, 6, 4, 7, 8). It is elementary to see that any in-
put instance can be fully recovered if we are given its
tie-breaking induced permutation together with the bit
vectors αi, βi. This proves the collision bound. 2

2.2 Learn-And-Sort It takes O(log n) rounds to
build the V -list. Instead of a table, we use a perfect
binary search tree to store the V -list. The Di-trees
require dynamic updates, so we turn to splay trees [44].
We maintain a buffer of size M = nε(ε log n + log δ−1),
for some constant δ > 0, in which we record the first M
outcomes of predv

i . We then initialize the Di-splay tree
only over the set of recorded predecessors. It can be
shown that, with probability at least 1− δ, all bk’s such
that Prob [ bk ≤ xi < bk+1 ] ≥ n−ε, for some 1 ≤ i ≤ n,
are encountered in the first M rounds. An argument
similar to the one used in §2.1 shows that the total
storage requirement is still O(n1+ε).

3 Self-Improving Clustering

Clustering arises in quantitative data analysis [22, 38]
under many different formulations [3, 7, 8, 15, 23, 24, 26,
31, 46]. Our approach in this section is not wedded
to any specific one, but, for concreteness, we focus on
the k-median problem over the Hamming cube: Given
a set I of n points in {0, 1}d, find a set C ⊆ {0, 1}d

(|C| ≤ k) that minimizes
∑

x∈I d(x, C), where d() is the
L1 distance. Our ideas for the two-center case easily
extend to the general problem, so we restrict our dis-
cussion to the case k = 2. Formulated as a maximiza-
tion problem, NP-completeness was proven by Klein-
berg et al [30], who also gave a constant factor approx-
imation algorithm, later improved to a PTAS by Alon
and Sudakov [5]. Using dimension reduction methods,
Ostrovsky and Rabani [40] derived a PTAS for the corre-



sponding minimization problem (note that approximate
solutions might be quite different) with a running time4

of O(npoly(ε−1)d2). By sampling over the points rather
than the dimensions, Kumar et al. [31] produced a differ-
ent algorithm (henceforth denoted mod-KSS) that has
the advantage of running in linear time for any fixed ε.
Although designed originally for the Euclidean k-means
problem, it can be easily adapted to the problem at
hand: Its complexity becomes ε−O(ε−2)dn.

Is there a self-improving version of mod-KSS? The
method identifies a small set of candidate center pairs
from which, with high probability, a suitable pair will
be an approximate solution. The construction is non-
oblivious, however, and it appears unlikely that a single
set can accommodate the bulk of input instances from a
random source. But by modifying the random sampling
used in mod-KSS (in a way somewhat reminiscent of
what we did in the sorting section §2), we are able to
construct a suitable set P of candidate pairs. With
this in hand, we can build the necessary machinery
to achieve self-improvement. We omit many of the
technical details from this abstract.

Theorem 3.1. Let D =
∏n

i=1 Di be a random source
of n-point sets in {0, 1}d, where each Di has positive
entropy and minimum point-wise probability p > 0 on
its support. Assume that n = Ω̃( d

ε4p ). There exists a

self-improving (1 + ε)-approximation algorithm for the
2-median problem that runs in linear limiting running
time and O(d) space. Errors occur with arbitrarily small
probability. The algorithm can be made Monte Carlo
(ie, with error probability independent of the input) with
exp(poly(d, p−1, ε−1)) extra storage.

Note that by the assumptions of the theorem, p
must be at most 1/2.

3.1 Construction of candidate pairs We describe
the construction of P (Figure 1). As usual, the input
is a set I = {x1, . . . , xn} drawn randomly from an
unknown source D =

∏

i Di, ie, each xi ∈ {0, 1}d is
drawn independently from Di (assumed to be of positive
entropy). Some notation :

• OPT2 (I, c1, c2) =
∑

x∈I mini d(x, ci).

• Given S ⊆ {0, 1}d, Maj (S) is the point obtained by
taking majority coordinate-wise in S. Note that
the 1-median of I has cost OPT1 (I, Maj (S)) =
∑

x∈I mini d(x, Maj (S)).

• Yi = support (Di) and Y = ∪n
i=1Yi (Y and its

subsets are multisets).

4All the algorithms in this section are probabilistic.

• Given any Z ⊆ Y , IND (Z) = { i |Z ∩ Yi 6= φ}.

Our objective is to obtain a (1 + ε)-approximation
for OPT2 (I) = min c1,c2

OPT2 (I, c1, c2).

Lemma 3.1. With probability > 1 − 2−s, a random
I ∈ D satisfies OPT2 (I, c1, c2) ≤ (1 + 3ε) OPT2 (I) for
some (c1, c2) ∈ P; furthermore, |P| = (pε)−O(s) log n
(s = b0ε

−2 for some constant b0).

We now sketch the proof of this lemma. Let I1, I2

be the two clusters producing OPT2 (I), with |I1| ≥ |I2|.

Claim 3.1. With probability 1 − 2−Ω(λ), for some pri-
mary center c1, minc OPT2 (I, c1, c) ≤ (1 + ε)OPT2 (I).

Proof. Let S be the s random points picked in forming
any one of the primary centers. Clearly,

Prob [S ⊆ I1 ] = Prob [S ⊆ I1 | IND (S) ⊆ IND (I1) ]×

Prob [ IND (S) ⊆ IND (I1) ] ≥ (p/2)s.

Conditioned upon being a subset of IND (I1),
the indices of IND (S) are uniformly distributed
within IND (I1). By a sampling argument (omit-
ted from this abstract), we can prove that
OPT1 (I1, Maj (S)) ≤ (1 + ε)OPT1 (I1, Maj (I1)),
with probability ≥ 1

2 (p/2)s. If so, we set c1 to
Maj (S) (henceforth, c1 will denote this point). Picking
λ(2/p)s primary centers ensures the existence of such
a c1 with probability 1 − 2−Ω(λ). Let (I ′1, I

′
2) be the

two clusters induced by minc OPT2 (I, c1, c). Note
that minc OPT2 (I, c1, c) ≤ OPT2 (I, c1, Maj (I ′2)) ≤
(1 + ε) OPT2 (I). 2

Let t = d(c1, Maj (I ′2)) and Qi = { x ∈ I | d(c1, x) ≥
t/2 }. By the triangular inequality, I ′2 ⊆ Qi, and,
using a standard irreducibility argument [8, 31], we can
assume that |I ′2| ≥

ε
2 |Qi|. Indeed, if that were not the

case, then mapping all of I ′2 to c1 instead of to its own
majority point, would incur an additive cost ≤ ε

2 t|Qi|.
But then, OPT2 (I, c1, Maj (I ′2)) ≥ (1 − ε/2)|Qi|t/2;
therefore, using c1 as the sole center would give us a cost
≤ (1 + 3ε/2) OPT2 (I, c1, Maj (I ′2)) ≤ (1 + 3ε) OPT2 (I),
which would be acceptable.

Definition 3.1. Input I is typical if, regardless of the
choice of c1 (in the construction of P), 2j−1 ≤ |I∩Pj | ≤
2j+1 for all j > j0.

Claim 3.2. Typicality is violated with probability
λ(2/p)s2−Ω(p2j0 ) ≤ 2−b0s.



The Set P of Center Pairs

1. Primary centers c1: Fix three large enough parameters b0, s, λ, where s = b0ε
−2, λ ≤ 2s/p, and b0ε

is small enough. Repeat λ(2/p)s times: Sample I from D; pick a set S of s random points from I; and
output Maj (S).

2. Secondary centers c2: For each c1, sort Y by decreasing distance from c1 and, for j = 0, 1, . . . , log n,
form the prefix Pj of Y of cumulative probability 2j , ie,

∑

yl∈Pj
Prob [yl] = 2j (where probability defined

with respect to the Di that yl is drawn from). Let j0 = log(s/p2)+ b0. (Round to nearest integer whenever
needed.)

(a) For all subsets S of at most s points from Pj0 , output Maj (S).

(b) For each j > j0, repeat λ(8/p2ε)s times: Pick s random indices from IND (Pj) and, for each such index
i, sample one point from Di to form S: Output Maj (S).

Figure 1: Construction of the set P of center pairs

Proof. Since E |I ∩ Pj | =
∑

yl∈Pj
Prob [yl] = 2j and

IND (Pj) ≤ |Pj | ≤ 2j/p, (by Chernoff) a random
I ∈ D is not typical (for fixed c1) with probability
∑

j>j0
2−Ω(p2j) ≤ 2−Ω(p2j0 ). By a union bound over all

c1’s, we get the desired bound. 2

Let Pji
denote the smallest Pj ⊇ Qi. We now prove

that together with c1, some c2 (secondary center) sat-
isfies the condition given in the lemma. We distinguish
between two cases:

• ji ≤ j0: All subsets of |I ′2| of size ≤ s
are enumerated, and we already know that
one of them, S, must satisfy OPT1 (I ′2, c2) ≤
(1 + ε)OPT1 (I ′2, Maj (I ′2)), where c2 = Maj (S).
This implies that OPT2 (I, c1, c2) ≤ (1 +
ε)OPT2 (I, c1, Maj (I ′2)) ≤ (1 + 3ε) OPT2 (I).

• ji > j0: Assume that I is typical. Since Qi ⊃ I ∩
Pji−1, |Qi| ≥ 2j−2; therefore |I ′2| ≥ ε2j−3. In view
of IND (Pj) ≤ 2j/p, we find that |I ′2| ≥

pε
8 IND (Pj).

The sampling in 2(b) is uniform over the indices of
IND (Pj); therefore,

Prob [S ⊆ I ′2 ] =

Prob [S ⊆ I ′2 | IND (S) ⊆ IND (I ′2) ]×

Prob [ IND (S) ⊆ IND (I ′2) ] ≥ (p2ε/8)s.

Again, using the uniformity of the distribution
within IND (I ′2), we find that OPT1 (I ′2, Maj (S)) ≤
(1 + ε)OPT1 (I ′2, Maj (I ′2)) with probability ≥
1
2 (p2ε/8)s. Picking λ(8/p2ε)s secondary centers

(for fixed c1) ensures, with probability 1 − 2−Ω(λ),

Learning phase (on first O(log n) inputs):
0.construct P
1.for first N = O(log n) inputs I
(a) calculate Zc1,c2

for all (c1, c2) ∈ P
(b) run mod-KSS to output a (1 + ε)-

approximation for I

2.for each (c1, c2) ∈ P compute average Ẑc1,c2

over the first N samples of Zc1,c2

3.choose c∗1, c
∗
2 with minimum Ẑc∗

1
,c∗

2

Normal phase (on all other inputs):
for all inputs I, return c∗1, c

∗
2

Figure 2: Self-Improving algorithm for clustering

the existence of such a c2, where OPT2 (I, c1, c2) ≤
(1 + ε)2 OPT2 (I). Removing the typicality assump-
tion brings the probability of success down to
1 − 2−b0s − 2−Ω(λ).

The size of P is ≤ (|Pj0 |
s + λ(8/p2ε)s)λ(2/p)s log n.

Setting λ = b0s and plugging in |Pj0 | ≤ 2j0/p and
j0 = log(s/p2) + b0 gives |P| = (pε)−O(s) log n (and
the desired probability of error).

3.2 Learn-And-Cluster For fixed c1, c2, the ran-
dom variable Zc1,c2

= OPT2 (I, c1, c2) is highly con-
centrated around its mean. Indeed, Zc1,c2

=
∑n

i=1 zi,
where zi = minj d(xi, cj) for random xi ∈ Di. We may
assume that EZc1,c2

= Ω(pn). Indeed, if EZc1,c2
≤ n/2



Normal phase (Monte-Carlo):
for input I
if I is nonhot or nontypical then

return mod-KSS(I)
else

return c∗1, c
∗
2

Figure 3: No input left behind

then with probability at least 1− e−Ω(n/d) we will have
Zc1,c2

≤ 3n/5, in which case computing the optimal
solution is trivial.

Let Ec1,c2
denote the event

|Zc1,c2
− EZc1,c2

| ≤ εEZc1,c2
,

that is, Zc1,c2
is close to its mean (up to a relative error

of ε). By using a generalized Chernoff bound (for sums
of variables with different variances) and a convexity
argument, we find that

ProbI∈D [Ec1,c2
] ≥ 1 − 2−Ω(ε2(

P

i
E zi)

2/
P

i
Var zi)

≥ 1 − 2−Ω(ε2pn/d).

Definition 3.2. An input I is hot if Ec1,c2
occurs for

all (c1, c2) ∈ P.

Taking a union bound over all center pairs in
P , we know that this happens (by Lemma 3.1) with

probability at least 1 − (pε)−O(ε−2) 2−Ω(ε2pn/d) log n >
1 − 2−s, for n = Ω̃(d/ε4p).

We know that with probability > 1−21−s, an input
I ∈ D is hot and satisfies the condition specified in
Lemma 3.1. Therefore, there exists some (c1, c2) ∈ P
such that OPT2 (I, c1, c2) ≤ (1 + 3ε) OPT2 (I). Also, for
all (c′1, c

′
2) ∈ P , OPT2 (I, c′1, c

′
2) ≤ (1 + ε)EZc′

1
,c′

2
. If we

can find a pair (c∗1, c
∗
2) ∈ P , such that EZc∗

1
,c∗

2
is at most

(1+ε)min(c′
1
,c′

2
)∈P EZc′

1
,c′

2
, then (c∗1, c

∗
2) is a (1+O(ε))-

approximate solution for I. This is what the learning
phase of the self-improving algorithm (Figure 2) does.

It will run at a cost of ε−O(ε−2)dn steps per input (for
running mod-KSS). The pair (c∗1, c

∗
2) chosen at the end

will satisfy the condition given above with probability
1−1/ poly(n, ε−1, p−1). With probability > 1−21−s, the
clustering is a (1+O(ε))-approximation of the optimum.
(Rescale ε to get a (1 + ε) factor.)

3.3 Monte-Carlo clustering The benefit of the
above trimmed-down approach is that it requires no ex-
tra space on top of the space used by mod-KSS (note

that Ẑc1,c2
for (c1, c2) ∈ P can be calculated after the

first O(log n) inputs are handled, without the need of
using Ω(|P|) storage). There is a drawback, however:
The error probability, though arbitrarily small, is due
not only to the randomization but also to the distri-
bution D, which runs contrary to the “no input left
behind” philosophy of Monte Carlo algorithms.

We describe how to fix this, thereby completing the
proof of Theorem 3.1.

The cause of errors due to the random source is
two-fold: (i) nontypicality and (ii) nonhotness, both
occurring with probability ≤ 2−s. It is not ruled out
that nontypicality and nonhotness are a property of
a (rare) input I, regardless of however many parallel
independent learning phases are performed. If we could
spot both cases, we could safely run mod-KSS on such
inputs, since the expected running time would then be
linear: 21−s× mod-KSS = O(dn) for b0 = log ε−1. The
new normal phase of the self-improving algorithm is
given in Figure 3. Since typicality needs to be enforced
only for one center pair, (c∗1, c

∗
2), it can be detected in

linear time and O(log n) space.
Much tougher to handle is hotness detection. Recall

non-hotness means that c∗1, c
∗
2 is not an ε-solution for

I. This could be detected if we had a procedure
that estimates the cost of the optimal cost (without
actually returning the centers). Fix (c1, c2) ∈ P and
suppose that I is typical but not hot. For notational
convenience, we relax the hotness parameter from ε to
O(ε). We reduce the problem to nearest neighbor (NN)
searching in L1 with wildcards. We apply dimension
reduction and then use standard NN technology. We
begin with the observation that only hotness on the
low end of the tail matters: Just check if I is hot for
(c∗1, c

∗
2) and go the mod-KSS route if not. Then clearly

the only cause of error would be if OPT2 (I, c1, c2) lay
on the low tail of Zc1,c2

, for some unknown (c1, c2).
This reduces hotness detection to a nearest neighbor
problem. Indeed, define the “distance” between I and
(c1, c2) as OPT2 (I, c1, c2). This is not a metric, but we
can turn it into L1 with wildcards. Define vc1,c2

∈
{0, 1}2dn as (c1, c2, . . . , c1, c2), and wI ∈ {0, 1}2dn as
(x1, x1, x2, x2, . . . , xn, xn). Given v, w ∈ {0, 1}2dn, let

∆(v, w) = min
u∈U

2dn
∑

i=1

uid(vi, wi) ,

where U is the set of all u ∈ {0, 1}2dn satis-
fying

∏

2dj<i≤2dj+d ui +
∏

2dj+d<i≤2d(j+1) ui =

1 for 0 ≤ j < n (the wildcards). Note that
OPT2 (I, c1, c2) = ∆(vc1,c2

, wI). Next step: dimen-
sion reduction. Take a sample R of r = O(b0d/ε4p)
random points from I and check if the unbiased esti-



mator n
r OPT2 (R, c1, c2) differs from EZc1,c2

by a factor
> 1 + ε. We declare I non-hot if it does. Applying
generalized Chernoff to the worst-case distribution of
individual variances shows that detection will fail with
probability ≤ 2−Ω(ε2rEZc1,c2

/dn) ≤ 2−Ω(ε2rp/d) ≤ 2−s.
To get rid of the wildcards, we observe that

∆(v, w) = minv′∈Bv
d(v′, w) − K, where K is the num-

ber of ones among the points of R, and Bv consists
of all the points obtained by zeroing out one coordi-
nate in every consecutive pair in v. (By abuse of no-
tation, we still use vc1,c2

and wI but think of these
vectors as living in {0, 1}2dr.) The problem is to
compute minc1,c2

∆(vc1,c2
, wI) = min { d(v′, wI) | v

′ ∈
Bvc1,c2

} − K. This is the nearest neighbor problem

in dimension 2dr with 2r|P| = 2O(b0d/(ε4p)) log n. This

can be solved exactly in O(dr) = O( b0d2

ε4p ) time, us-

ing 2O(dr) = 2O(b0d2/(ε4p)) storage. (The storage can
be decreased by using approximate NN searching over
the Hamming cube [32], but to deal with the addi-
tive K requires a bit of work.) In summary, setting
b0 = O(log ε−1) ensures a limiting running time of
O(dn), using exp(poly(d, p−1, ε−1)) storage. (Note that
the exponential dependency on ε is to be expected.)
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