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Abstract

The purpose of this dissertation is two-fold: To assert the power of convexity as a crucial factor of
efficiency in computational geometry and to show how non-convex designs can also benefit from this
feature.

Most of the recent results in computational geometry have relied on the attribute of convexity, and ~
have failed to generalize to arbitrary designs. To remedy this flaw, one gcnerai approach consists of
decomposing the objects into convex pieces, then applying the procedures to each part. We study the
problem of finding minimal convex decompositions in two and three dimensions. Among our major
results are an O(n+ N"') dynamic-programming algorithm for producing minimal decompositions of

- non-convex polygons and an O(riN3) heuristic for decomposing three-dimensional polyhedra. The
latter procedure is worst-case optimal in the number of convex parts (within a constant mﬁltiplicative
factor). In both cases, n denotes the total number of vertices, while N refers to the number of edges
which exhibit reflex angles.

We further explore the problem of finding minimal decompositions in three dimensions and prove
its effective decidability. We also establish an Q(Nz) lower bound on the number of convex parts, and
use this result to analyze the performance of the above heuristics.

The second purpose of this study is to show how convexity can be used for greater efficiency. We
justify this claim by studying one of the most fundamental questions in computational geometry:
"Do two convex objects intersect?” Note that the problem does ‘not call for an actual computation of
the intersections, which allows the possibility of sub-linear algorithms. The restriction to a simple
detection rather than a complete computation is common in many applications areas where efficiency
is the main concern.

~ We present a class of practical algorithms for detecting intersections of lines, planes, polygons, and
polyhedra in two and three dimensions. Their run-times range from O(log n) for the planar cases to
O(log3n) for detecting the intersection of two polyhedra, where n represents the total number of
vertices involved.
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Chapter 1
INTRODUCTION

1.1 The Nature of Our Work"

The increasing reliance on computers for solving large problems is a pervasive phenomenon of our
age. This trend naturally prevails among the most applied branches of mathematics, and- in this
regard, geometry is no exception. Historians of science will observe and be intrigued, however, that
‘among the accredited disciplines of computer science, computational geometry stands as a latecomer.
Although it has béen fostered over the years by the development of related techniques, it was not
firmly established as a field until a conscious unifying effort came to assemble the scattered pieces of
the edifice into a coherent entity.

We owe this effort to M. Shamos, who gave unity to the field in a Yale PhD thesis and christened
the new-born discipline "computational geometry"” [Shamos,78]. His work is a large collection of
geometric results lending themselves to computer applications. In its claim to breadth and simplicity,
it constitutes the basics of the field and amply reflects the extent of its applications. One major
contribution of Shamos’ work has been to give the field legitimacy by showing how classical geometry
failed to address computational issues. Thus, by proving to be practical and original, computational
geometry has gained recognition as a well-founded branch of applied mathematics. Its practicality
can be seen everywhere, and a quick glance at its applications reveals its intrusion into the most

varied domains.

The advent of graphics terminals, epitomized by the current success of video-games, owes its .
existence to technological breakthroughs as well as a catalogue of geometric software. Typical tasks
involved. in graphics include windowing, clipping, or positioning, and often raise only very
elementary geometric questions. Their profusion, however, has nurtured the field and laid the
foundations.

i
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But graphics is by no means the sole contributor to the growing attention given to computational
geometry over the past decade. To a large extent, geometry is at the foundation of most arts and
techniques, and very few branches of engineering are free of its spell. The range of its applications is.
extremely wide and eclectic as the few following examples will show.

A typical class of problems encountered in architecture, city planning, or car design involves
finding possible arrangements of objects under a set of constraints, possibly expressing intersection or
boundary specifications. Optimizing constrained criteria is often purely geometric when for example
it involves minimizing wiring costs in network design. In other cases it may still take on a geometric
setting and benefit from a geometric approach. Linear programming is a notable example.

Computers and high speed are inherently related. Thus it comes as no surprise that computational
geometry often has to deal with dynamic situations. Plane simulation and computer animation are
two areas among a host of others where geometrically defined events must be reported in real time. A
common attribute of real-time environments is to dictate a quest for efficiency, and this will often add
to the difficulty of the problems.

Aside from its practicality, computational geometry has also shed new light on the traditional
approach to geométry. To grasp its originality and its departure from classical geometry, we must
examine both its nature and its aims.

The need for computational geometry results from the typically non-algorithmic formulations of
classical geometry For example, the convexity of a polygon P is often defined as the property that P
must contain a segment if it contains its endpoints. While it is not clear at all how this definition can
be of any practical use for testing the convexity of P, restating it as the requirement that consecutive
‘edges not form reflex angles immediately leads to effective methods.

This example may, however,- be misleading if one is thereby tempted to limit computational
geometry to a passive use of classical geometry. This thesis will provide numerous new results of
pure geometry, fully original, yet carrying out the perennial work in the field. There is no mystery to
it. All the problems addressed are new inasmuch as computer geometry opens up classical geometry
to non-regular structures. Computers have to deal with arbitrary polygons rather than regular
polygons, arbitrary curved lines rather thén conic sections, and so forth.

Also, the task of translating classical results into algorithmic terms has raised questions related to
the analysis of algorithms which would be totally irrelevant in the absence of high-speed computers.
Euclid or Monge would certainly have had no grounds for worrying about the number of operations
required to find the convex hull of a few thousand points. Thus, a host of new questions have been
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raised, and while they undoubtedly relate to computer science, their geometric setting makes the help
of classical geometry most promising. Voronoi diagrams provide a conspicuous illustration of non-
trivial results of pure geometry whose applications have flowered once expressed in algorithmic terms
[Shamos,78]. To summarize, while relying on the immense resources of classical geometry,
computational geometry must pursue two goals:

1. Increased computer application.

-

2. Development of the understanding of the theoretical aspects of the questions addressed.

As one would expect, computer geometry first set about answering the most basic questions. To
that end, objects under consideration have often been assumed to be convex. Unfortunately, this
approach has been so strikingly exclusive that a Martian skimming through the relevant literature
might falsely conclude that all things on earth are convex. Daily observations not only deny that fact,

‘ they also r;\ise doubts about the practicality of such assumptions.

To be fair, we must acknowledge the key role played by convex structures. We can trace their
importance either directly in nature or as a handy tool in many sciences.

Physical scientists commonly represent phenomena with convex models, and in higher dimensions,
linear programming stands as the most notable example of mathematical problems involving convex
polyhedra [Dantzig,63]. On the other hand, cartography, land planning, numerical analysis, or
economics are some of the numerous fields which often rely on convexity in order to make their
problems tractable. .

Unfortunately, even the simplest graphics systems will constantly display non-convex objects for
which standard geometric procedures have to perform efficiently (inclusion, intersection, area-
covering, window-clipping being some landmarks among a host of other common tasks). A possible
remedy might be to extend current aigorithms to handle non-convex designs. Actually, this
alternative is not always viable, especially if the algorithm relies heavily on the attribute of convexity.
Then it becomes necessary to devise entirely new procedures. For example, there are logarithmic
methods to test the intersection of a convex polygon with a line, whose very principles fall through
when the convexity constraint is relaxed. -

Yet, as it seems that convexity is so likely to guarantee efficiency, we should be reluctant blithely to
dismiss it. On the contrary, we might be tempted to exploit much convexity as can be found in our
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non-convex desigﬁs. The above example will illustrate this point. This thesis will demonstrate how to
test the intersection of two convex polygons in logarithmic time, while linear time is a lower bound
for the non-convex case. Yet, what can be said of non-convex polygons made of two, three or p
convex parts? If such decompositions were available, we could naively test the intersection of each
pair of convex parts, ending up with an O(pzlog N) time algorithm if N is the total number of
vertices. Clearly, we can extend this appfoach to handle a large class of practical problems, hopeful
that retaining the power of convexity will yield efficient algorithms. '

Of course, this approach requires that, for all practical purposes, the non-convex objects dealt with
can be made of relatively few convex parts. Fortunately, this assumption seems to be confirmed by
experimental observations from domains as varied as graphics [Newman and Sproull,79], pattern
recognition [Pavlidis,68], or tool design [Volecker,77]. For example, it is regarded virtually as a law of
nature that polygons with thousands of vertices can be expected to have at most a few tens of reflex
angles. (Yes, sometimes, Mother Nature can even be pleasing to computer scientists !)

This stresses the interest lying in a decomposition procedure which would capture this feature.
What is needed is an efficient method for decomposing a non-convex object into a minimum number
of convex parts. Unfortunately, this operation is anything but trivial. Naive enumerative procedures
are doomed to fail and structural facts about the geometry of the problem must be sought.
Nevertheless, even if the path to success is a long, devious one, our efforts will undoubtedly be
rewarded. Indeed, success would result in the first systematic method for adapting to non-convex
designs the host of fast algorithms which constitute the bulk of computer geometry to date.

Concerning the theoretical issues, we plan to achieve two goals:

1. To establish the complexity of a problem which is, at first sight, more likely to be NP-
complete than polynomial. |
2. To fill a major gap in the current state of computer geometry and present the first

significant approach to non-convexity.

In addition to allowing for fast all-purpose algorithms, the study of the decomposition problem is
challenging and interesting in its own right. Also, practically speaking, many fields would benefit
greatly from a decomposition procedure. Here are some examples:

Tool designers are often obliged to achieve non-convex designs by means of convex picces.
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Typically, the convex pieces ensure the modularity of the tools and must be as few as possible
[Volecker,77]. Other applications pertain to pattern recognition, where work on the decomposition
problem first started in the late 60’s. As a result of the linguists’ need for an automatic Chinese
character recognizer, engineers designed image processors (o filter hand-written signals and produce
complex geometric contours. The intent was to decompose the figures into convex parts to be
matched against a set of patterns representing the Chinese character designs. Once again, the relative .
-ease of dealing with convex designs as opposed to non-convex ones was the prime concern [Feng and
Pavlidis,75]. ' ‘

At this point, we must acknowledge prior work on this problem. On_ly the two-dimensional case
has been investigated and, to our knowledge, only approximations or simplifications of the problem .
have been solved. Typically, no new vertices have been allowed in the decomposition, that is, ail
segments must join only the vertices of the original polygon. One possible method consists of
regarding the vertices of the polygon as the nuclei of growing convex cells. We grow cells
simultaneously toward the interior of the polygon, and freeze borders as they happen to meet. This -
method has the merit of simplicity, but it does not guarantee a minimal decomposition [Schachter,78].

Other approaches have led to algorithms for solving either approximately or exactly simplifications
of the problem [Feng and Pavlidis,75], [Pavlidis,68]. In each of these papers, the introduction of new
points to the decomposition has been forbidden which, as we will show, rules out optimal solutions.
In any event, the full problem had never been solved before this work, despite the considerable
interest and consequent endeavors it has inspired.

Not only all attempts have been unsuccessful, they have also failed to bring any significant insights
into the problem, and we are at a loss to acknowledge any direct contribution. One positive
consequence of this gap is to make our work highly self-contained.

This thesis certainly does not claim simplicity. But it could hardly be otherwise. We believe that the
decomposition problem has been open for so long because it is inherently complex. Aside from
solving the probiem, we also aimed at a thorough understanding of its intricacies, which also led to
several simplifications of our solutions. From a broader perspective, it cannot be questioned that the
interest of a difficult problem goes far beyond its own purpose, and an undersianding of what makes
it difficult is especially enlightening. '

A second class of problems which this thesis will investigate concerns what may be regarded as the
“most important application of computer geometry: To determine whether a pair of convex objccts
intersect. This problem is well understood in a model of computation where the objects are given as
input and their intersection i returned as output. For many applications, vhowever, we may dssume
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that the objects already exist within the computer and that the only output desired is a single piece of
data giving a common point if the objects intersect or reporting no intersection if they are disjoint.
Such situations are common in graphics systems, where lots of objects are involved at the same time
and the intersection of any two is to be detected. For example, when we wish to clip or window a
scene, algorithms of the form given here would be sufficient for identifying those polygons which
would require further processing [Newman and Sproull,79]. Similar situations are frequently
encountered in real-time environments where the data are constantly updated and fast intersection
procedures are required (plane simulation or air_traffic control being typical examples). Other
applications of intersection algorithms can be found in de31gn rule checking for VLSI designs,
trajectory checking for computer-anded design and motion control in computer animation.

In all of these applications, detecting rather than computing intersections is really sought. Although
the actual computation of an intersection may require linear time, much greater efficiency can be
expected from our own statement of the problem. Indeed, we will show that under the assumption
that all objects are convex, this hope is largely fulfilled. Note that the convexity requirement is not
that exclusive. As mentioned earlier, our decomposition procedures used in preprocessing will often
restore the power of convexity to non-convex designs.

Looking more closely at the benefits of convexity, we are tempted to draw an analogy between the
role played by convex objects in geometry and that played by sorted lists in data structures. As sorting
is known to speed up searchmg, it seems that similar benefits should be expected from convexity.
Surprisingly enough, this smple idea has never been exploited in a systematic fashion. At the time
when most efforts in computauonal geometry have focused on convex objects, the deep structural
facts derived from convexity have seldom been used for greater efficiency.

This thesis intends to fill this gap by presenting a comprehensive study of sublinear intersection
algorithms. All possiﬁle intersections in two and three dimensions will be investigated, and although
few of our algorithms have been proven to be optimal, they constitute the most efficient class of
geometric algorithms to date. Their remarkable performance epitomizes the richness of convexity and
illustrates the power of our convex decomposition procedures for their ability to allow non-convex
designs for efficient treatments. But we also feel that it will go far beyond its illustrative purpose by
opening a new direction of research. Indeed, the link between convexity and efficiency revealed here
can undoubtedly be used for various other geometric problems. Such problems usually involve the
testing of a predicate expressing a geometric property rather than the actual computation of a
geometric figure.

An important issue that confronts us concerns the computer representation of oeomcmc objects. In
particular it is wetl-known that three-dimensional polyhedra can be specified under any planar graph’



representation. These modes of description, however, will often be inadequate for exploiting the
possibilities of binary or Fibonacci search that convex structures allow. Especially when all the data
can be stored in a high-speed random-access memory, other representations will be necessary,
sometimes involving preprocessing the input data.

Detecting geometric intersections is a perfect example of a generél problem which can be cast
under various instances and still be solved with a small number of unifying concepts. Unlike convex
decompositions which call for a host of seemingly unrelated results, the intersection problems rely on
a few key ideas and relate to one another in a subroutine fashion. It is once again an attribute of
convexity to provide such mathematical niceties.

In conclusion, by studying the decomposition of non-convex objects into a minimum number of
convex parts, we propose to construct the first bridge between the rich, powerful, alas often imaginary
realm of convexity and the barren land of the non-convex world. Working in two and three
dimensions, we will illustrate the fruitfulness of this approach and demonstrate the power of
convexity by describing a class of fast algorithms for determining whether two objects intersect.

At the beginning of this introduction, we mused over the history of computational geometry and
showed how the field was awarded recognition for being practical and original. In addition to these
qualities, this thesis clearly demonstrates that the field has also depth and substance. It shows that
computational geometry has in store a host of very difficult problems which can nevertheless be
solved. And this is, after all, the best promise for future exciting research.

1.2 Thesis Outline and Main Resuits

Even minimal experience with geometry convinces one of the deceptive simplicity of some
geometric proofs. Recall that Poincare was the first to write an acceptable proof of Euler’s formula,
after it had been fully accepted for over a hundred years on the basis of several seriously flawed
"proofs" [Lakatos,76].

Thus, while we recognize the value of intuition as the source of most mathematical discovéries, we
willgrant no credit to "intuitive evidence” in the course of a proof. Following this principle. we have
tried to present complex proofs as rigorously as necessary, while giving as much motivation and
intuition as possible beforc diving into the thick of their intricacies. An unfortunate feature of
geometry is that simple phenomena are often hard to describe. With figures and notations as our
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basic tools, we have tried to illustrate complex proofs abupdant.ly, while avoiding having this thesis
turn into a comic strip (the author concedes that, anyhow, the "comic” would be in the eyes of the
beholder...). We were specially concerned with notation, trying to keep it simple and suggestive yet.
thorough and unambiguous. We deplore the absence of standard terminology in computer geometry,
and we strongly believe that this lack will have to be remedied soon, hoping to have somehow
contributed to this task.

The following is an outline of the course we have chosen to follow:

In Chapter 2, we study the planar case of the decomposition problem. We describe a polynomial-
time algorithm for decomposing a polygon P into a minimum number of convex parts. If n and N are
respectively the total number of vertices in P and the number of vertices showing a reflex angle (the
notches of P), the running time of our algorithm is O(n+N510g(n/N)). Since N is most often very
small, the algorithm is of practical use. However, we will describe an improved version of the
algorithm, which runs in time O(n+N3). The description of this improvement is long and complex,
but mainly independent of the rest of the algorithm. For this reason, we have presented it in a
separate section which can be skipped by the reader without jeopardizing his/her understanding of
the sequel.

Chapter 3 investigates generalizations to three dimensions. We begin by showing how a naive
decomposition may produce an exponential number of convex parts. This drawback can be remedied
with a few simple modifications, and we will present an O(nNZ(N +log n)) t:ime algorithm which
guarantees O(NZ) convex parts (n and N are respectively the number of vertices and the number of
notches. In three dimensions, a notch is an edge of the polyhedron with its adjacent faces forming a
reflex angle). The same algorithm can be improved further by exploiting the attributes of convexity
more thoroughly. We will present a version of the algorithm which runs in time O(nN3) and we will
introduce a systematic approach to convexity. Up (o a constant factor, all the algorithms given are
worst-case optimal in the number of convex parts. We will prové that cN2 is a lower bound on the
minimum number of convex parts. We conclude this chapter with a proof that the general problem of
finding an optimal decomposition of a three-dimensional polyhedron is decidable.

Chapter 4 explores the problem of detecting whether two objects intersect. With a decomposition
method at our disposal, we may assume that all objects are convex. We describe sublinear algorithms
for intersecting any pair of objects from the set: line, polygon, plane, polyhedron. The running times
of the algorithms range from O(log N) when the intersection involves two polygons, to O(log3N)
when it involves two polyhedra (N being the total number of vertices). To achieve these time bounds,
polyhedra must have a special representation which can be simply obtained from any standard
representation in time O(Nz).
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We will also discuss future research in the area, open problems, and applications of the results

presented in this thesis.
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Chapter 2
DECOMPOSING A POLYGON

2.1 introduction

The problem which we are studying can be simply stated as:

Given a simple polygon P, what is the smallest
set of pairwise disjoint convex polygons whose
union is exactly P? ‘

If the interior angle formed by two consecutive edges of the polygon P is reflex, then their common
vertex is called a notch. This notion is crucial since the absence of notches characterizes the convexity
of a polygon. If P is non-convex, let n (resp. N) be the total number of its vertices (resp. notches).
The most efficient algorithm for solving this problem which we will present requifes O(n+ N3) time
and space. Here is an outline of the main directions followed in our analysis.

We begin by observing that each notch can be simply removed by the addition of a polygon to the
decomposition. Also, we can show that at most two notches can be removed through the addition of a
single polygon, from which it follows that the minimum number of convex parts always lies between
N/2 +1 and N+1. However, to extend these simple observations seems a difficult mathematical
probiem. To form minimal decompositions, additional points must be introduced as vertices of newly
generated polygons (these points are commonly referred to as Steiner points [Melzak,61}, [Gilbert
and Pollak,68]).. This removes the obvious finiteness of the problem and makes simple enumecrative
procedures impossible. Furthermore, the problem cannot be treated in a local manner.. These
observations led to the conjecture that the problem was NP-complete.

Next we introduce X-patterns from which minimal decompositions may be generated. An Xk-
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pattern is a particular interconnection of k notches which removes all reflex angles at the k notches
and creates no new notches. A decomposition obtained by applying p patterns X.l ,...,Xi along with k
line segments (k=N-(i1+...+i ) used to remove the remaining notches will yield I~P+ 1-p convex
 parts. It is clear that the decompositions which use the most X-patterns also minimize the number of
convex polygons. This can be viewed as a generalized matching problem and seems to lend itself to a
dynamic programming approach [Bellman,57]. There is exactly one type of X2-pattern and one type
of X3-pattern, as shown in Figure 2.2. Since this is not the case for all k, and since the task of
determining whether some given notches can be combined to form an X-pattern seems too involved,
a direct use of X-patterns does not yield a polynomial-time algorithm.

Instead, we use structural facts about the decomposition to limit the types of interconnections
occuring at notches, and achieve a polynomial-time dynamic programming algorithm. One crucial
fact allows us to assume that; except for X4-patterns, no two Steiner points are adjacent. This leads to
the introduction of a more constrained type of interconnection called a Y-pattern. We will show in
Section 2.3 how to construct Y-patterns in polynomial-time and achieve our goal with a
decomposition algorithm which runs in time O(n+Nlog(n/N)). Finally, in Section 2.4, we will
present an improvement which speéds up the algorithm to O(n+ N3) time. Although it has not been
proven to be optimal, the number of notches in most practical polygons is small [Pavlidis,79], and the
 algorithm is of practical use in its current form.
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2.2 Definitions and Basics

Throughout this work, all polygons will be assumed to be simple, meaning that only consecutive
edges can intersect. Let P be a simple polygon with vertices w;,w.,...W  and reflex interior angles
occurring at the N notches Vi VgV which form a subset of the LA Let B(P) denote the boundary of
P. From here on, all indices of vertices (resp. notches) are taken modulo n (resp. N). Vertices will
always be taken [.O occur in clockwise order, and the "set of points between v, and Y; in clockwise
order” will refer to the set of points visited in a clockwise traversal of the boundary of P from v, to Vi
Angles will always be oriented, and by (ab,ac), we actuaily mean the angle (vector ab, vector ac). By
convention, all angles will be measured counterclockwise between 0 and 360 degrees - See Figure 2.1.
Finally, if S is a line segment, line(S) will denote the infinite line passing through S.

A decomposition of P is a set of polygons I’l,.‘..,Pk whose union gives P, and such that the
intersection of any two if non-null consists totally of edges and vertices. A decomposition is said to be
convex if all its polygons are convex. The goal of this research being to minimize k, we define an
optimal convex decomposition (OCD) of P as any convex decomposition realizing the minimum
value of k.

Let v be a notch and ab its adjacent vertices on the boundary of P (a preceding b in clockwise
order). We define the range R(v) of v as the set of points u such that the segment vu lies totally in P,
and neither the angle (va,vu) nor (vu,vb) is reflex. Thus, R(v) forms a sub-polygon of P - See Figure
2.3.

2.2.1 The Naive Decomposition

- A simple way to obtain a convex decomposition consists of drawing a line from a notch so that it
removes- the reflex angle. This gives two polygons which can be decomposed by iterating on this
process. We observe that the decomposition may not be optimal - See Figure 2.4.

To visualize the naive decomposition, we can imagine that we resolve the reflex angle of each notch
in turn by drawing a line from the notch within its range -until we first hit another line. The line hit
can be either a segment of P or a line previously drawn. Let us call the whole segment thus drawn a
"new" line of the decomposition. Since we can draw the line along any direction within the range of
the notch, we can always manage not to hit any line at either of its endpoints. This detail is of
importance for its two main conscquences:

i
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u=(ab,ac)

Figure 2.1: Conventions on notches and angles.

Figure 2.2: An X2-pattern, an X3-patternm, and an X6-pattern.
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1. Each new line removes exactly one notch.

2. No more than 2 new lines can intersect at the same point and no pair of new lines can

intersect at their endpoints.

We omit the proof which proceeds by a trivial induction on the number of notches.

It follows from 1. that exactly N new lines must be introduced, and since each new line drawn adds
one polygon to the decomposition, we conclude that:

Theorem 1: The naive decorhposition applied to P produces exactly N+ 1 convex parté.

The edges of P along with all the lines introduced in the decomposition form a planar graph. Note
that a line of the decomposition can contribute several edges to the graph. Fact 2. implies that all the
vertices of the graph have degree 2 or 3. By induction, all the convex polygons have at least one
notch of P as a vertex. Also, since a notch has degree 3, each polygbp has a segment of B(P) on its
boundary (note that it is not necessarily an edge of B(P)). This fact shows that the subgraph of the
decomposition consisting of added edges forms a forest of binary trees (an edge is said to be added if
it lies on a new line). Binary trees are defined here as free trees with vertices of degree 1 or 3. The
leaves of a binary tree are its vertices of degree 1 [Knuth,68].

Before proceeding with a truly algorithmic description of the naive decomposition, we must answer
the basic question:

How do we represent a convex decomposition?

According to the definition, we might want to have each convex polygon represented by a list of its
vertices in clockwise order (polygon representation). An alternative, however, is to regard the
decomposition as a planar graph and to represent it by its adjacency lists (graph representation). In
this representation, we assume that a clockwise order of the edges lying on B(P) is available. Since
the algorithms we will give for the naive decomposition will produce graph representations, we need
the following resuit:

Theorem 2: A graph representation of the naive decomposition can be used to obtain a
polygon representation in time O(n).

Proof: We identify the cdges of the graph with the edges of the convex polygons (Note
Ll';at two consecutive edges on a polygon may be collinear). Let ab be an edge of a convex

polygon Q of the decomposition with a,b in clockwise order. The next vertex ¢ of Q in
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clockwise order is the unique vertex of the graph, adjacent to b, distinct from a, such that

(ba,bc) is not reflex. Since the degree of all vertices is 2 or 3, the graph representation

~ allows us to determine ¢ in constant time. Also, as mentioned above, each convex polygon

has at least one edge Which lies on B(P). Thus we can scan the edges of the decomposition

graph lying on B(P) in clockwise order, computing the convex polygon adjacent to each of

. them Marking the edges lying on B(P) as they are visited will avoid duplicating the
polygons.

What is the running time of this method? Since no edge is visited more than twice, it is
proportional to the total number of edges in the decomposition graph. This number is
exactly 2N +n since each new line adds two to the edge count, namely itseif and one from

the line it intersects (which it splits in two). O

We now turn to effective ways of computing the graph representation of a naive decomposition.
We compute the graph G of the decomposition in stages.

1. Initially, G is P.

2. For each notch in turn, resolve the reflex angle by introducing "a new line, updating G

accordingly.

To execute Step 2, let D be the bisector of (v a,v. b) with av, b being consecutive vertices of P in
clockwise order. We must insert into G the segment v.¢ deﬁned as follows: v, lies in both P and D,
and intersects with edges of G only at v, and c. To determine c, we may compute all the intersections
CppenCyy of D with the edges of G, such chat (vave, )<180 Then c is the ¢ closest to v; - See Figure 2.5-
a. Let e-(x,y) be the edge of G on which c lies. Assume for the rnoment that c is dlsunct from x and
y. We update G by setting a new entry ¢ with adjacent vertices: v,X.y. Also, we must correct the entry
x (resp. y) by replacing its adjacent vertex y (resp. x) byc.

If now c is x (the case c=y is similar), there is a chance that c becomes of degree 4 and we must
. repair this anomaly. Let t be the intersection of line(bv,) with xy if it exists or y otherwise - See
Figure 2.5-b. Any line from v, to xt resolves the reflex angle at the notch v,, and we only have to
ensure that the line does not intersect other lines of the decomposition. To do so. consider the largest
triangle v.xc (with ¢ on xt) which contains no point of the decomposition in its interior. From the



a) Removing the notch vi.

b) Ensuring degree 3 for c.

Figure 2.5:
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convexity of the decomposition, it follows that if ¢ is not t, the segment v.c must pass through a notch
of P. Thus we can compute ¢ in O(N) operations by testing all the notches Y; which lie on the segment
viZp where Z, is the intersection of xy with line(vivj).

We have seen in the proof of Theorem 2 that G has n+2N edges, then since intersecting each
bisector with the edges of G takes O(n) time and correcting the possible anomalies requires ON)
operations at each time, the naive decomposition can be carried out in O(aN) time.

2.2.2 A More Efficient Decomposition

We will next anticipate a little and present an improvement which relies on results of Chapter 4.
We need to prove some preliminary facts.

Lemma 1: Let Ypen¥N be positive integers such that y,+..+yy < 1, then log

y +tlogyy < Nlog(n/N).

Proof: It is a trivial consequence of the fact that the function log is monotone increasing

and concave. O

The improvement we propose for the naive algorithm involves an O(n) time preprocessing of P,
which will be supposed to be applied once and for all throughout this chapter. Before describing it,
we give a few definitions:

A convex po yggnal line is a sequence of vertices {a,.a,,...a o 1,ap} such that (a3, ;.2 a. )< 130
degrees for all i; 1<ip. It is called a convex chain if {al, ~a,a } forms a convex polygon. Note that

3,03, corresponds to a.clockwise traversal.

If we have random access to its p vertices, it will be shown in Chapter 4 how to intersect a convex
chain with a line in O(log p) time, reporting the 0, 1, or 2 points of the intersection. Unfortunately,
between each pair of notches (v Vie ) the boundary of P is certainly a convex polygonal line Li but
not neccssanly aconvex cham Thls motivates the following preprocessing.

We partition the boundary of P between two consecutive notches into successive convex chains as
follows: Let L {yl, -y } be the convex polygonal line given in clockwise order, with y, =v, and -
Yp=Vis If ncxthcr the angle (ylyk,ylyz) nor the angle (ykyk 1,ykyl) is reflex for any k between 2 and
p, L is a convex chain and remains unchanged. Otherwise, let j; be the smallest k such that

{yp¥io¥y . Y} 1S @ nOD-cONvex polygon, that is, such that either (y;¥, , |.,¥,) OF (¥ . 1YYy +1yl)
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is reflex - See Figure 2.6-a. We define C, as the convex chain {yl, =Y }. Then we apply the same
procedure recursively on the remaining part of L,. We define C, as Vi oY } with j, being the

smallest k>j; such that (y yk + 1,y l) or (¥, YY1V 1) is reﬂex We 1terate on this process until .
we reach Ypr thus pamuomng L, mto t consecutive convex chains C,,.. -Cp Repeating for each pair of
notches (v,,v; +1) and renumbermg the C we partition the whole boundary of P into m consecutive
convex chains C,,...C_ in clockwise order.

Letting x. oXiel be the endpoints of C in clockwise order (with X, =X +1=v1) we call the X, the
pseudo-notches of P. Note that a pseudo-notch may be any vertex of P. See Figure 2.6-b. Clearly, we
can allow random access to the vertices of each L, and execute the whole preprocessing in O(n) time
and space. We know that N<mgn. It is crucial for the following, however, to show that m=O(N).
Actually we have : .

Theorem 3: The number m of pseudo-notches in P cannot be greater than 2(1+N).
Proof: Consider the vertices W, of P which are not notches of P, and let U be the sum of
all the angles (w W, W w.). Similarly, for all the vertices W, of P which are notches, let V

be the sum of all (w W W W, P-Itisa classical result of geometry that [Coxeter,61]
(1) U-V = 360

Now for each convex chain Ci={al,...,ap} such that only the vertex a, may be a notch of
P, let a, be the vertex of P adjacent to a > in clockwise order. We define Ui as the sum of

all angles (a J.laj) for j=2,....p. By construction, the polygon {al,...,a o3 +1,al} has a

i j+ L
reflex angle either ata 1 OF 2 Therefore if ¢ (resp. d) is the angle (a p+131%) +1 [resp.
(3,252 p +la1)] counted between -180 and + 180 degrees, negative if there is a reflex angle

. at a1 (resp. al), positive otherwise, we have
@u; = 360 -(c+d) > 180

Since none of the Ui accounts for the reflex angles of P, the sum of all the Ui cannot
exceed U. Also, if between a pair of consecutive notches, P consista of a single convex
chain, no U, is defined on this portion of P, whereas if it consists of p chains, p-1 U/'s are
defined. Consequently, exactly m-N quantities Ui are defined. These facts, combined

with (2) imply
180(m=N) < Sum of all Ui <U

“and since from (1)
’ U = 360+ V < 180(2+N)

We finally have m < 2(1+N). O
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a)’ The two cases for defining a pseudo-notch.

b) The pseudo-notches of a polygom.

Figure 2.6
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We can now state our main result: )

Theorem 4: The naive decomposition of P can be done in O(n+N210é(MN)) time and
O(n) space.

Proof: After preprmesging P as described above in O(n) time, we can speed up the first
version of the naive decomposition as follows: To intersect D with the edges of G, we first
intersect D with all the edges'previously added to G, then with all the chains C,.....C_..
This will take O(2N +log k1+...+log k ) time, with k, being the number of edges in Ci.
Since m=0O(N) and k1+ ~+k_<n, Lemma 1 shows that this running time is bounded by
O(Nlog(n/N)). O |

2.2.3 X-decompositions

We begin the discussion of OCD’s by defining a type of decomposition to be used in our analysis.
A pblygon is said to be interior to P if it lies inside P, and at most a finite number of its points lie on
the boundary of P. Also, we naturally call the number of segments emanating from a vertex in the
decomposition the degree of that vertex. '

Definition 2.1: An X-decomposition is any convex decomposition containing no interior polygon,
and such that no vertex is of degree greater than 3, except for the notches which may be of degree at
most 4.

In order to show that there always exists an OCD which is also an X-decomposition, we need some
preliminary resuits. -

Lemma 2: If a reflex angle u is subdivided into p non-reflex angles lii (u=u1+...+up

and Ku,,...,u 13_<_'180), such that u, +u,, u,+u,, ...,up-1+up>180, then p cannot be greater

L
than 3.

Al

Proof: It is trivial and is omitted. O
Next we turn to a question regarding graph embeddings. Let G be a connected planar graph
embedded inside P, such that the graph H formed by G and P does not have any vertices of degree 1.
Let -
divides the boundary of P into p pieces bl,...,bp, where bi is the portion of B(P) between a, and &

a 0 denote the vertices of G encountered in a clockwise traversal of B(P) - See Figure 2.7-a. G

Let F, be the face of H adjacent to b, and lying in P. We have the foilowing.



Lemma 3: All the faces F, are distinct.
* Proof: 157i is a polygon lying inside P which contains b, on its boundary. Suppose that
Fi= Fj. Then F"i contains both b, and bj on its boundary, and it is possible tb draw a curved
line L in F. which connects b. and b. without intersecting any edge of G - See Figure 2.7-
b. L partitions P into two regions which both contain vertices of G. Since no edge of G
mtersects L, G cannot then be connected. This contradxcts our assumption and completes

the proof. O
We are now in a position to prove our earlier claim.

Theorem 5: Any OCD can be transformed into an OCD which is also an X-
decomposition. -

Proof: Consider an OCD of P which is'not an X-decorﬁbosition. We appiy geometric
transformations on its edges to make it into an X-decomposition, the resuit of each of
these transformations being always an OCD. We first show how to satisfy the degree
requirements. This process may introduce interior polygons, but we next describe a

procedure to remove all interior polygons without increasing the degree of any vertex.

1) Regarding the decomposition as a graph consisting of added edges and edges lying
on B(P), we can always assume that only the vertices of P may be of degree 2. Let xy be
an added cdge. Since from the convexity of the decomposition, y is at least of degree 3, xy
can be rotated slightly around y withoﬁt making any angle around y reflex. This is the
crux for reducing the degree of vertices. Indeed, let x be a notch of degree greater than 4
and YpenYy (k>4) its adjacent vertices, with ¥ and y, belonging to the boundary of
P. From Lemma 2 we know that there exists some i distinct from 1 or 2 such that
(xyi H,xyi_l) is not reflex - See Figure 2.8-a. Then we can move Xy, along xy, ; orxy; , 0
form a new segment x’yi with x’ chosen close enough to x SO as to prescrve Convexity. We

iterate on this process until the notch x becomes of degree 4,.

Suppose now that x is not a notch but still lies on the boundary of P (it may or may not
be a vertex of P). If x is of degree greater than 3, let YpenYy (k>3) be its adjacent vertices

with ypy, on the boundary of P. Since (xyl,xyz) is not reflex, we can apply the same






i Yi+1

Figure 2.8: a,b,c) Satisfying degree requirements for
X-decompositions.

d) Removing interior polygoms.
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technique as above on any edge Xy, (i distinct from _1,2) until x is made of degree 3 - See
Figure 2.8-b. Finally, if x is a vertex of degreé greater than 3 which does not lie on the
boundary of P, all its adjacent edges are added edges, say Xyi,...X¥, (k>3). Applying
Lemma 2 for u=2360 degrees establishes the existence of an edge xy, such that (xyi w1
1) is not reflex - See Figure 2.8-c. The same method above will still reduce the degree of x
to 3. As fnentioned earlier, tﬁese operations may introduce interior polygons.-However,

the procedure we next describe will remove all of them.

2) Consider the subgraph H of the decomposition consisting of the added edges. We
pick an interior polygon of the OCD and let G be the connected component in H to which
the edges of this polygon belong - See Figure 2.8-d. Note that an iﬁterior polygon of the
OCD is a face surrounded by a cycle in H.Let I denote the vertices of G. (in
clockwise order) which lie on the boundary of P.Let K be the graph obtained by
removing G from the graph of the OCD. Since G liesin P and is a connected component
in H, it lies entirely in one face of K which we denote Q. We observe that all the ai’s lie on
the boundary of Q. Also, since G is connected, Lemma 3 shows that the faces of the OCD
adjacent to each portion of B(Q) between a, and a, _; and contained in Q are all distinct.
Therefore there are at least k of them, and since G alsb contains the face 'corresponding to
the interior polygon, the OCD has at least k+1 faces in Q. The polygon Q may not be
convex, but since we had a convex decomposition of P before removing G, all the notches
of Q must be notches of P, that is, ’some of the a's. Now, instead of keeping the
decomposition of Q induced by the OCD, we apply the naive decomposition to it, which
will introduce at most k+1 polygons. Since the boundary of each of these polygons must
contain some segment on B(P) adjacent to a notch a, none of them can be interior to
P. Repeating for all remaining interior polygons eliminates them and completes the proof.

a

Once again, we regard the added edges of an X-decomposition as forming a subgraph, and more
precisely, a forest of trees, since there is no interior polygon in the decomposition. After removing all
the edges of the decomposition which lie on B(P), the vertices of the forest are of degree 1 or 3, except
for those vertices which are located at the notches of P and which may be of degree 1 or 2. We will
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pay special attention to those trees where all the vertices of degree 1 or 2 are notches of P, and which
we call X-patterns. X-patterns are defined more generally as follows:
Definition 2.2: A planar embedding of a tree lying in P is called an X-pattern if:

1. All vertices are of degree 1, 2, or 3.

2. The vertices of degree 1 or 2 coincide with notches of P, and ihe adjacent edges resolve

the reflex angle at the notch.

3. None of the 3 angles around any vertex of degree 3 is reflex.

An X-pattern with k vertices of degree 1 or 2 is called an Xk-pattern. Vertices of degree 1,2,3 are
respectively called N1-, N2-, N3-nodes. For simplicity, we refer to the vertices of degree 1 or 2 as the ~
notches of the X-pattern. Informally, an Xk-pattern is an interconnection of k notches used to
remove them, while introducing k-1 additional polygons to the decomposition - See Figure 2.2. An
X-decomposition is said to have p X-patterns if the forest of trees which it forms contains p X-
patterns. X-patterns are of great interest for us because of the following.

Theorem 6: An X-decomposition with p X-patterns consists of at least N+ 1-p convex '
polygons.
Proof: Let S,t.k be respectively the number of polygons, trees, and vertices of the trees

lying on the boundary of P. It is easy to prove the relation
1S = k-t+1

by induction on t. The case t=1 being trivial, assume that the introduction of t-1 trees
involves k; vertices on B(P) and creates Sl= kl-(t-1)+ 1 polygons. Introducing the last tree
into the decomposition will account for exactly k-kl-l additional polygons, leading to a

total of S= S1 + k-k1~1 =%k-t+1 polygons and proving (1).

Each of the t-p trees which are not X-patterns has at least one vertex lying on B(P)

which is not a notch. Therefore,

2)tp<kN

Combining (1) and (2) completes the proof. O

Actually, we can show that any X-decomposition with p X-patterns can always be transformed into
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an X-decomposition with exactly N+ 1-p polygons. Remove all the trees of the decomposition which
are not X-patterns. Relation (1) in the proof of theorem 6 shows that this leaves N1+ 1-p polygons,
where N, is the total number of notches involved in the p X-patterns. Now, resolve the reflex angle at
the remaining notches by applying the naive decomposition to these N1+1-p polygons. This
guarantees an X-decomposition and adds N-N, polygons, thus leading to a total of N+1-p convex
polygons - See Figure 2.9 for an X-decomposition involving an X3-pattern and an X4-pattern. In
general, a set of X-patterns is called compatible if no pair of edges taken from two distinct patterns
intersect. For example, the X-patterns of an X-decomposition are always compatible. The previous
results show that if an OCD has p X-patterns, any set of p compatible X-patterns will lead to an
optimal decomposition through the following procedure: "

1. Apply the p X-patterns. ‘

2. Remove the remaining notches with the naive decomposition (to "remove” means here

"to resolve the reflex angle ét").

Note that those p X-patterns do not have to be trees of an X-decomposition. It may happen that
applying the naive decomposition to finish off the work will add edges to the X-patterns, and as a
result, the former X-patterns will become subtrees of the final decomposition. Of course, the naive
decomposition may transform the original X-patterns but cannot add or remove X-patterns. All the
previous results can be summarized in the following: '

Theorem 7: Let p be the maximum number of compatible X-patterns in P. An OCD of
P has exactly N+ 1-p convex polygons, and can be obtained by applying p compatible X-

patterns and rémoving the remaining notches with the naive decomposition.
Comparing the results of Theorem 1 and 7, we observe that the effect of each X-pattern is to save one
polygon over the naive decomposition. This remark permits us to establish bounds on the minimum
number of convex parts in a decomposition.

Theorem 8: For any polygo:i P, an optimal convex decomposition consists of at least
1+4[N/2] convex parts and at most N+ 1.
Proof: It is a direct consequence of the necessity for an X-pattern to involve at least two

notches. O

Before closing this section, we will establish a general result on the topology of X-patterns, which

~ will be used often later on. We call a segment xy a divider of P if it lies in P and if x and y are the



Figure 2.9: An X-decompositicn involving an X3- and an X4-patterme.

m

Figure 2.10: Intersection of an X-pattern with a divider of P.
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only intersections of xy with the boundary of P. Itis cleéu: that a divider partitions P into two polygons
Pl and P2.
Lemma 4: If an X-pattern intersects a divider xy, it must contain notches in both P1
and P2. |
Proof: Suppose that the X-pattern has all its notches in Pl LetT be the portion of the
X-pattern lying in P2. Since the X-pattern intersects xy, T is not empty. In general, T
consists of a set of disconnected trees. Let Ube the line parallel to xy which intersects Tat
a maximum distance to line(xy) - See Figure 2.10. All of T lies between U and line(xy).
Since T does not contain any nbtches, the intersection of U and T must contain at least
one N3-node of the X-pattem. This N3-node must then- cxhibit reflex angles, which leads

to a contradiction. O

2.2.4 Y-patterns

.

Unfortunately, to determine if k given notches can be combined to form an Xk-pattern seems very
difficult and makes the existence of an efficient algorithm based on these patterns extremely unlikely.
To remedy this flaw, we extend our work to Y-patterns which allow for such an algorithm. A Yk-
pattern is essentially an Xk-pattern where no two Steiner points (i.e., vertices outside of B(P)) are
adjacent. For this reason, Y-patterns are likely to be easier to construct than X-patterns.

Definition 2.3: A Yk-pattern is an Xk-pattern made up of vertices of type N1,N2, and N3 (Fig.
2.11-a) such that:

1. No edge joins two nodes of type N3.

2. In any path containing 3 consecutive nodes of respective type N2,N3,N2, the N2-nodes
lie on opposite sides (i.e., the two pairs of edges of P which emanate from the N2-nodes

~ lie on opposite sides of the path).

Note that the N3-nodes of a Y-pattern are its Steiner points. A Y7-pattern and its representation are
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given in Figure 2.11-b. To understand condition 2, we note that, for instance, if the two N2-nodes
were pointing downward, we would not have a Y-pattern.

Of course, Y-patterns are worth considering only if they can be effectively used in X-
decompositions. Indeed, we can show that, except for X4-patterns, all Xk-patterns can be
transformed geometrically into Y-patterns without increasing the number of convex polygons, and
without even affecting the other patterns in the decomposition. These transformations, called
reductions, involve stretching, shrinking, or rotating the lines of the original pattern.

All the transformations simply involve moving N3-nodes. They can be best visualized by imagining
an X-pattern as a mechanical syétem of levers. Levers can be shrunk, stretched, but must remain
constantly straight. Furthermore, no angle is allowed to become reflex. At all times, the tree which is
being transformed remains an X-pattern. However, the X-pattern may gain or lose vertices in the
process. Figure 2.12 shows the reduction of an X3-pattern in an OCD. Note that the final tree can be
considered either as an X3-pattern or as an X2-pattern between a and b, with the edge from ¢ coming
from the naive decomposition. In the latter case, we consider that the pattern "loses” two vertices
(one N1 and one N2-node). Since we obtain an OCD by maximizing the number of X-patterns, in
this case, the knowledge of the X2-pattern between a and b is sufficient to produce an OCD. Note
however that this X2-pattern cannot form a tree in-any OCD but only a subtree.

Theorem 9: In an X-decomposition, any X-pattern which is not geometrically reducible
to an X4-pattern can be reduced to a Y-pattern. (This Y-pattern may be a subtree in the
X-decomposition.) |

Proof: As We said carlier, the method involves applying continuous transformations
(reductions) to the edges of an X-pattern, while pfeserving the convexity of ail polygons at
all times. Before proceeding, we have to ensure that reductions can be carried out freely
without merging two patterns in the process, thus possibly increasing the number of
polygons in. the decomposition. To see that, consider an X-pattern T. By definition, no
line of T can intersect any other line which does not belong to T or P. We claim that any
reduction of T will preserve thié property. Suppose that in the ‘course of a reduction, a
point of T gets to intersect with an edge L not in T’; then this point can always be assumcd
to be a vertex of T, therefore, 3 edges of T emanate from it and all lie on the same sidc of
L, thus exhibiting a reflex angle between adjacent edges in the pattern, and showing that
the reduction was illegal. See the example of Figure 2.13. Now, we can focus on our

prime goal:
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Given any X-pattern not reducible to X4, we show that we can reduce it to a tree

satisfying successively conditions 1 and 2 in the definition of Y-patterns.

1) Figures 2.14-1-I1,-II1 show the 3 possible cases where two N3-nodes are adjacent and
indicate the corresponding sequence of reductions to apply. Explaining the details of the
first case should be sufficient. We move one of the N3-nodes in the direction indicétéd by
the arrow. This node is the only vertex of the X-patt'em to move, which in turn causes the
motion of exactly 3 edges. Either we get to 1) and we are ﬁniéhed, or we get to 2) and
another reduction leads to 2.1),2.2), or 2.3). We then iterate én this process as indicated in
the figure. Convergence is guaranteed since each reduction adds a different N2-node. We
note that the figure investigates all cases except those representing extreme instances of X-
patterns, namely, the cases illustrated in Figure 2.15 (knowing that case 2 represents 2
edges emanating from the same notch, one of which lies in the range of the notch, the
figure should be self-explanatory). To handle these 4 cases, it suffices to note that, in each
of them, we can prune one edge from the pattern along with the adjoining subtree and
still preserve the non-reflexivity of all the angles (see Lemma 2). We then iterate on the
same procedure decribed above. This operation removes at least one N1-node from the
pattern, but since case 2 of Figure 2.15 introduces a Jnew N1-node, convergence is no-t

obviously guaranteed.

To see that the process will always;converge, we oniy have to show that when in case 2
the subtree pruned involves a single notch, this notch can never be reintroduced by
subsequent reductions. Figure 2.16-a represents this situation with the dashed line being
pruned. The only way to reintroduce x into the pattern (or to actually introduce any notch
between x and y in clockwise order) is to make it a N2-node first. This involves at least
another notch between x and y and is therefore impossible (for a more formal proof, see

Remark below). -

Figures 2.14-II,-IiI handle all the remaining cases in a similar fashion. This procedure is

to be applied as long as two N3-nodes are adjacent in the pattern. Figures 2.14-1-11,-11T)
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Extreme instances of X-pattern vertices.

Proving that reductioms always converge:
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cover all cases since the pattern cannot be reduced to an X4. Each application of the
procedure decreases the number of these "Steiner” edges by at least one, thus ensuring
coﬂv‘ergence. See Figure 2.17 for an example of reductions turning an X6-pattern into a
Y7-pattern. Note that X-patterns "gain” vertices in the transformations of Figure 2.14

and "lose” vertices in the pruning of the extreme instances of Figure 2.15.

2) Finally, once condition 1 holds, we satisfy condition 2) by treating the two possible '
cases IV),V) as indicated. Convergence is guaranteed for the same reasons as above. Note
that if we fall into one of the 4 cases of Figure 2.15, chopping one edge off will

automatically make condition 2) hold locally. O
This theorem sets the stage for our algorithm.

Remark:

The edge xy partitions P into two polygons Pl and P2, one of which (say P1) contains the X-pattern
T under consideration. We begin by observing that T will always lie entirely in P1 after any series of
reductions. Indeed, the first contact of T with P2 would occur with an N3-node of T lying on the
segment xy and its 3 adjacent edges lying in P1 - See Figure 2.16-b. Thus T would exhibit a reflex
angle, which is impossible. We can now prove our claim. If the notch x is to be reintroduced into T
through subsequent reductions, it must first become an N2-node of T with the 2 adjacent edges being
collinear. This is a consequence of the reductions of Figure 2.14. Since x was originally an N1-node
of T, the angle (xzxy) is non-reflex - See Figure 2.16-c. This implies that T must lie partly in P2,
which contradicts our remark above. O
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2.3 The Polynomiai-time Algorithm

2.3.1 Introduction

From the results of the previous section, we observe that an optimal decomposition can be based
on Y-patterns and X4-patterns. This reduces the problem of computing an OCD to that of
determining a maximum set of compatible patterns, where patterns designate here X4- or Y-patterns.
Before procceding with the description of a polynomial-time algorithm for producing the graph of an
OCD, we must answer ‘a basic question previously raised in the discussion of the naive
decomposition: How hard is it to derive a polygon representation of an OCD from its graph
representation? "

Theorem 10: The graph of an OCD can be used to obtain a polygon representation of
the OCD in time O(n).

Proof: From the subgraph of an OCD consisting of the added edges, we can obtain the
full graph of the decomposition in time O(n): Simply add the vertices of P and update the
adjacencxes of the leaves of the graph. Then, since an X-decomposition is a forest of
binary trees just as well as the naive decomposition, the proof of Theorem 2 is still valid.

a

One difficult problem is that patterns are not given for free. They must be computed and questions
of the kind: " Does there exist a pattern connecting k given notches?" must be answered. In order to
preserve the flow of the presentation, we have chosen to postpone the description of the
decomposition algorithm and even any mention to it until we have solved a certain number of purely
geometric problems. These problems will arise constantly later on and methods for solving them will
be used as subroutines by the main algorithm. If those subroutines are necessary to the algorithm,
their description is not essential to its understanding, however, and we prefer to present them
separately. |

The type of problems which we will tackle concerns the possibility of an X-pattern between given
notches. We will successively solve this problem for X2-, X3-, and X4-patterns (Sections 2.3.3,4,5).
Although only X4- and Y-patterns will be eventually considered in computing OCD’s, methods for
detecting X2- and X3-patterns will be uscd for constructing Y-patterns by patching two or three "Y-
subtrees” together. We will explain these operations in detail at the end of Scction 2.34.
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The problem of detecting the possibility of an X3-pattern between three given notches is essentially
equivalent to that of finding a point of P visible from the three notches so that the three edges to the '
notches do not exhibit reflex angles. This problem can be easily solved if O(n) time is allowed.
However, our claim to achieve an 0(n+N3) time decomposmon algorithm rules out such trivial
procedures.

Instead, we will present a preprocessing which computes a description of the region of P visible
from each notch. This preprocessing takes O(Nlog n) time for each notch. This may be surprising
since the visible region may involve on the order of n vertices. The crux is that only significant
vertices (e.g, notches) of the visible region have to be computed for our purposes. This economical
description is called the superrange of the notch. We will devote Section 2.3.2 to describing
* superranges and showing efficient ways of computing them. The algorithm which we will present is
fairly involved, but the reader can skip its description without jeopardizing his/her understanding of
the decomposition algorithm. ‘

Finally, we will present the optimal convex decomposition algorithm in Section 2.3.6.

2.3.2 Superranges

Let v be a notch of P and t;,....t, be the list in clockwise order of all the notches visible from v, that
is, such that vt, lies totally in P. Note that scanning t,... ..,t corresponds to a clockwise traversal on the
boundary of P but also a clockwise sweep around V. ThlS simple remark will be of the utmost
importance later on. If D is the semi-infinite line (or half-line) starting from v with the direction
 from v tot, and D (resp. D l) is the half-line passing through the edge of P starting from v in
clockwise order (resp counterclockmse order), Dy.. D) b1 partition the region of P visible from v
into p+1 simple polygons all adjacent to v. Typically a polygon is comprised between D, D1 and a
convex polygonal line on B(P). Call a, and bi the endpoints of this convex line with bi following a in
clockwise order (note that this line is not necessarily a convex chain) - See Figure 2.18.

" For each notch v, we define a data structure called the superrange e of v, denoted SR(v), and used to
represent the domam of P visible from v. SR(v) is the ordered list: '

SR(Y) = {(aybg)--(a,b )}

Next we describe an efficient method for computing a superrange.
Theorem 11: The superrange of any notch can be computed in O(Nlog n) time after

O(n) preprocessing.



Figure 2.18: The superrange of a notch v.
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Proof: We successively present an algorithm for computing the superrange, prove its
correctness, then establish its running time. The algorithm uses two stacks of points with
the usual pﬂmitivés pusha, popa, topa for stackl and pushb, popb, topb, for stack2.
Initially both stacks are empty, and when the algorithm terminates, stackl (resp. stack2)

contains the list 3y (resp. bo,...,bp) in this order.

Wiog, we assume that v is v,. The algorithm considers in turn subchains of Cl,...,C n
forming a panitiog of the boundary of P in clockwise order. Informally, a subchain
starting at A is defined by opserving the motion of vx as x scans the vertices of P in
clockwise order starting from A. As long as vx sweeps angles in the same direction, that is,
either clockwise or counterclockwise around v, and as long as x is not a pseudo-notch, the
points of the boundary so far scanned belong to the subchain. Letting B represent the
other endpoint of the subchain, Figure 2.19-a illustrates the 4 possible configurations with -

their respective designation.

Since we compute a subchain by sweeping the boundary of P until we change direction

or we first hit a pseudo-notch, the 4 cases can be interpreted as follows:

1. CW: Clockwise motion. Change of direction. B is not a notch.

2. CWN: Clockwise motion. Either B is a notch and there may or may not be a

change of direction, or B is not a notch and there is no change of direction.
3. CCW: Counterclockwise motion. Change of direction. B is a notch.

4. CCWN: Counterclockwise motion. Either B is a nowch and there is no change of

direction, or B is not a notch and there may or may not be a change of dircction.

It is easy to see that these 4 cases cover all possibilities. The importance of these

particitlar cases in computing superranges becomes apparent when we give an informal
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interpretation of them: CW and CWN are both clockwise motions, with CW
corresponding to a situation where the boundary of P curves below the subchain and
subsequently hides part of it from v. CCW and CCWN proceed counterclockwise. In both
cases, the subchain currently scanned is not visible from v but CCW is the only case where

the next subchain may be partly visible.

In all cases, we obtain B by either minimizing or maximizing the angle (vx,vA) for all
vertices x of Ci‘ As will be éhown in Chapter 4, this can be done in O(log k) operations if
C hask vertices. C being a subchain, we define NEXT(C) as the subchain following Cin
clockwise ordér on the boundary of P. We adopt the convention ﬁat if C terminates at v,
that is, is the 'last subchain before v, then NEXT(C) is 0. Thus, given the endpoints -of C,
we can determine the endpoints of NEXT(C) in O(log k) time if k is the number of

vertices of the convex chain C, where NEXT(C) belongs.

We also define I(C) as A if C is of type CW or CWN and B if it is of type CCW or
CCWN. Since these 4 types can be disiinguished in constant time, 1 can be computed in

constant time.

We present some notationﬁ "x intersect y" designates the intersection of x and y. By
"hline(ab)", we mean the half-line originating from a and passing through ab. Also, if a
and b lie on the same convex chain Ci (b following a in clockwise order), Chain(a,b)
designates the portion of C, comprised between a and b in clockwise order. Finally, we let

w be the vertex of P following v in clockwise order. We can now present our algorithm:

Throughout the algorithm,

"Case 1" refers to the case where "C is of
type CWN and the intersection of
C with hline(vt) is not empty”.

"case 2" = "C is of type er and the intersection
of C with hline(vt) is not empty”.

mcase 3" = "C is of type CCW".

Recall that B designates the ending vertex of the subchain C in a clockwise traversal.



Algorithm SR(v)

_t=w , C=C,
while C not 0 begin
switch to the corresponding case
into which C falls:
case 1:
pusha(C intersect hline(vt))
pushb(B)
t=8
C=NEXT(C) -
while C not in case 1 or in case 2
begin ’
C=NEXT(C)
end

n
break

case 2: .

pusha(C intersect hline(vt))

pushb(B)

1=8

C=NEXT(C)

while true
begin
if (v1,vi(C))<180 then 1=1(C) -
while x= C intersect vtopa not empty

begin
popa , popb , t=topb .
end
if topb lies on vx
then
C=NEXT(C)

while (C not in case 1 or 2) or
: (C intersect hline(vt) does
not exist or does not lie on vx)

begin C=NEXT(C) end

break
else if C is in case 3 and 1=1(C)

then
x= Intersection of hline(vB)
with Chain(topa, topb)
popb , pushb(x)
t=topb , C=NEXT(C)
break
else C=NEXT(C)
end
end
postprocessing:
Eliminate from both stacks the pseudo-notches

which are not notches of P.

REMARK: In statements such as "x= C intersect line", if the intersection is a whole
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segment of C, either of its endpoints is to be assigned to x. However, to ensure v=a,=b N

we should choose the point nearest v.

Proving the correctness of the algorithm is delicate and requires great care. As a short-
hand, we will say that a chain hinders a point M if it prevents it from being visible from v

by intersecting the segment vM. The algorithm considers each subchain in turxi and

L Declares the current subchain to be visible from v if either no previous chain

hinders it or, if some hinders it, so does a subchain to be examined later on.

2. Also, to guarantee correctness, all previous subchains declared visible so far must

be checked to see if the current subchain hinders them or not.

The algorithm distinguishes between two cases:

I) The first subchain to be examined falls into case 1 or case 2. Since the polygon
formed by closing the subchain with an edge joining its endpoints is convex (fundamental
.\ property of a convex chain), no point previously visited can hinder B, and t can be moved
clockwise accordingly - See Figure 2.19-b-L. At all times, t is the point representing the
biggest motion clockwise around v so far. Assume that the second subchain considered is
not in case 1 or 2. Then since it must start counterclockwise (as séen from v), no
subsequent subchain can be visible from v until one crosses hline(vt) - See Figure 2.19-b-
IL. At this point, the algorithm switches either to the first or the second case. In either case,

there are 2 possibilities:

Either no previous subchain hinders C, and the previous procedure is still valid, or the
chain "spirals” around v - See Figure 2.19-b-III. In this case, we just ignore this fact and
declare ’the subchain visible from v. We still satisfy condition 1. since it must also be

hindered by at least one subsequent subchain.

I) Assume that C falls in case 2. The subchain NEXT(C) hinders part of C and the



50

information stored in the stacks must be correéted. This is done in the block "while true
begin ... end". First, as long as C and vfopa intersect (vtopa is the segment from v to
topa), the whole subchain from topa to topb is hindered by C and the stacks must be
popped - See Figure 2.19-b-IV. Now 3 cases must be distinguished according to the

relative position of C and vtopb.

1) "If topb lies on vx" (Fig. 2.19-b-V), the-correction is done. We reset the algorithm to

case 1 or case 2 by looking for the first subsequent subchain to cross the segment Xt.

2) "C is in case 3 and 1=1(C)". Note that 1 is the point visited from the moment we
entered case 2 corresponding to the biggest motion counterclockwise. Clearly, C may be in
case 3 and yet have its endpoint B not visible from v if 1 is distinct from I(C). See the
example of the subchain ending at B in Figure 2.19-b-VL. In the same figure, on the other
hand, the subchain ending at B’ permits us to finish the correction, since at that stage,
1=1(C). We next fall into case 1 or case 2. It is helpful to observe that the a/s and b;'s are
computed only during clockwise sweeps and corrected when the motion goes

counterclockwise.

3) Finally, if neither of the above alternatives occurs, we can directly switch to the next

subchain.

Since convex chains are considered rather than the whole convex polygonal lines
running between consecutive notches, the stacks may contain other points than the a,b,
defined in the superrange, namely, pseudo-notches which are not notches of P - See
Figure 2.19-VIL. Of course, each of these points appears in both stacks and can be

removed with a simple scan through the stacks.

Finally, we establish the running time of the algorithm by observing first that no point
popped from a stack can be pushed onto it again. Also, each subchain has first to be
computed, then may be submitted to a constant number of intersection tests and cause

exactly one intersection test with another convex chain (statement "x= Intersection of
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hline(vB) with Chain(topa,topb)”). Therefore, thé total running time is bounded by
O(Nlog n) since each of the m=O(N) convex chains defines at most 3 subchains. The
proof is now complete since we have seen earlier how to compute the convex chains in

O(n) preprocessing. O

The notion of superrange_can be of great use for many geometric problems and is, thus, interesting
in its own right. To understand its fruitfulness in our specific problem of decomposition, we need to
introduce a function of two arguments R(v,D), where v is a notch of Pand Dis a half-line emanating -
from v which contains at least a segment vx lyirig inside P. This ensures that at least a piece of D is
visible from v. Let D, D, ,
which D lies. Then, if (vbi,vai) is reflex, R(v,D) is set to 0, otherwise it is set to the segment vy where y
is the intersection of D with a.lbi. To simplify the notation, we also define R(v,va) as R(v,hline(va)).
We clearly have: '

be the 2 half-lines introduced in the definition of the superrange between

Lemma 5: Once the superrange of each notch has been computed, R(v,D) can be

evaluated in O(N) time, for any notch v.
Remark: Since the superrange is an ordered list sweeping the plane clockwise around v, D, and D1
can be located through a binary search, thus leading to an O(log N) running time for computing
R(v,D). This may be interesting for reasons of efficiency, but will not, however, change the order of
magnitude of the decomposition algorithm presented later on.

From here on, we assume that, in a preprocessing stage, the superrange of each notch has been
precomputed. The motivation for the superrange appears clearly in the following.

Theorem 12: If v is a notch of P and vx the edge of an X-pattern, x lies on the segment
R(v,vx).

Proof: The theorem is obvious if x lies on the boundary of P, since it is then a notch of
P and R(v,vx) is exactly vx. Suppose that x is a Steiner point and vx contains R(v,vx) - See
Figure 2.20. Let (ai,bi) be the pair of SR(v) such that vx intersects aibi. The segment aibi
is a divider which partitions P into two polygons Pl and P2, with, say, P1 containing
x. Since the portion of B(P) between a, and b, is a convex chain, Pl is a convex polygon,

therefore the X-pattern cannot have notches in P1, which contradicts Lemma 4. O
We will next show how to use the previous results to compute X2-, X3-, and X4-patterns efficiently.



Figure 2.20: R(v,D) expresses the longest edge vx with
direction D of an X-patterm.

b)

d)

Figure 2.21: The definition of rij and lji'
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2.3.3 Detecting X2-patterns

Theorem 13: Given two notches VoV the possibility of an X2-pattern between v, and v
can be detected in constant time, after a preprocessing taking O(N3 +N210g n) time.

Proof: The preprocessihg involves computing the superrange of each notch, then
determining the segments R(v V. v) for all pairs of notches v, Yy From Theorem 11 and
Lemma §, it follows that this can be done in O(N3+Nzlog n) time. Now the result of
theorem 12 implies that an X2-pattern between v, and Y; is possible if and only if

R(vi,vivj)zvivj, and the segment v,v; removes the reflex angle at both v, and Vi a

2.3.4 Detecting X3-patterns

We now turn to the more complex problem of computing X3-patterns. We need some additional
preprocessing that we next describe: Call R, and L, the two edges of P adjacent to v, (R, following L
in a clockwise traversal of the boundary). For our purposes here, we actually consider R, and L,
oriented towards v, thus permitting us to define R(vi,Ri) and R(vi,Li) without ambiguity. Similarly,
to give full meaning to angles of the kind (vix,R(vi,D)), we always assume R(vi,D) to be a segment
oriented in the direction of D.

The preprocessing involves computing the superrange of each notch. Then, for each pair of notches
VpVp we define the two quantities 5 and 1 as follows: v, i is basically the rightmost segment in the
range of \A which can be seen ﬁ'om Vi More precisely, 1f both R, and L lic on the same side of
lme(vv) w1th v v R)<180 (Fig. 2.21-a) we determine the pairs (a ,b ) and (a » w10 0 +7 of SR(v)

such that v; occurs between b and a in a clockwise traversal of B(P) We assume that a o+l does

p+1
not lie smctly between v, and b (Fig. 2 21-b). We may have v, = =b_ = p =341 however. Then, lct t be the
segment R(v, L) if (R(v L) vid, +1)<180 (Fig.2.21-c), else va b+l (Fig.2.21-d). Actually if we now
have (v Y; ,0X180, we define t as R(v V. v) Finally, if (LR, )<180 we define T as the endpoint of t other

than v, If any of the conditions above fa:ls T is 0.

We repeat the same process on Y; with respect to V. If R and L lie on the same side of line(v, v)
we first determine the pairs (a b ) and (ap +1% _,_1) from SR(v ) such that v, occurs between b and

.1 in clockwise order. We also suppose that b does not lie smctly betwcen Y; and a, Then we
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let t be R(v R) if (v b R(v R))<180 or vb otherwise. Similarly, if (t,v v)<180 t is changed to
R(v \A v) SO that we can deﬁne 1 as the endpomt of t other than Y; if (L t)<180 In all other cases, l
is 0

With the superrange of each notch at our disposal, we can compute each I and 1ji in O(N) time,
" summing up to an O(N? +N2log n) preprocessing time.
We can now achieve the first of our goals:-
Theorem 14: After some preprocessing taking O(N 3+N210g n) time, the possibility of
an X3-pattern between 3 given notches can be detected in'constant time.
Proof: We will show that VvV are the notches in clockwise order of an X3-pattern if

and only if:

1. AN occur in clockwise order on the triangle ViV

2. ru rjk,rh,llk,lkl 1Jl are all distinct from 0.

3. The points A= vklh intersect v, e B= v/, intersect v,r,; and C= vjlji intersect

virij are well defined.

4. The polygon Q= vinjAkavi is simple and has a non-empty kernel. (Recall that
the kernel of a polygon Q is the region of Q- visible from every point in Q
[Shamos,78]).

All these conditions can be easily tested in constant time with the preprocessing described

above.

We say that a point x is range-visible from a notch v if it lies in its range, that is, if the
segment vx lies totally inside P and removes the reflex angle at v. We define the open
triangle (ax,ay) as the convex region swept by a half-line pivoting in clockwise order

- around a from ax to ay.
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Let S be the Steiner point of an X3-pattern between v,v The first condition is

AN
clearly necessary. To prove that the second is such, we will just show that T is not 0, all of
the other cases being similar. Since the 3 edges of the pattern must lie in the triangle
ViV the first requirement illustrated in Figure 2.21-a is obvious. Reconsidering the
pairs (ap,bp),(ap +1,bp +phitis equally clear that the configuration of Figure 2.21-b cannot
iead to an X3-pattern since we must have (Svj,Svi)<180, where S is the Steiner point
Indeed, Sv; must intersect b pdp+1 with possibly v, =b, since S must be visible from both
v, and Vi This remark shows that not only the configurations of Figure 2.21-c,-d are t._he
only ones possible, but also that S cannot lie in the open triangle (viap +1,Ri). The other
conditions to satisfy in order to define r; express the fact that S lies in the triangle AN
well as in the range of vl Also, since we must have (viS,vivj)<180, it is legitimate to set t to
R(vi,v.lvj) if (vivj,t)<180. Finally, if (t,Ri) is reflex, no point visible from v; can be range-

visible from v, and we can set 5 to 0. Thus when a Steiner point exists, all these

conditions will be satisfied and S cannot lie in the open triangle (vir.u.,Ri).

As mentioned in defining the superrange, aoboalbl...a pbp occur in clockwise order on
the boundary of P, therefore we must have (vilik,virij)<180 wh?n 1.lk and ry are distinct
from 0, since VpVpVy oecur in clockwise order. It follows that if A,B, and C exist, the
polygon Q must be simple. To prove that these points are well defined, we first show that
Svj intersects Vil Since we have seen that Svj must intersect Vi1 thus implying that
Vil is not defined as R(vi,v.lvj), we only have to show that Svj intersects Vil in the case
where this segment is defined as R('vi,Li). Since S cannot lie in the open triangle
(R(vi,Li),Ri), Svj must intersect viB (Fig.2.22-a), and it cannot intersect Brij, since S would
then belong to a convex polygon where no Steiner point can lie - See Theorem 12. This
proves our claim, and shows that oF (as well as 1ji by a similar reasoning) lies outside the
triangle Sv.!vj - See Figure 2.22-b. Finally, as we know that S cannot lie in the open
triangles (virij,Ri) and (Lj,vjlji), we conclude that both angles (viS,virij) and (vjlji,ij) are
180, which, combined with the previous result, establishes that Vil and vjlji intersect. This

proves the existence of the point C, as well as A and B, by symmetry. Finally, since S can
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lie only in the open triangle (v} lk,vlru) the same result about Vi and v, proves that it

actually lies in the kernel of Q.

The 4 conditions havixlg been proved necessary, we next show that they are sufficient.
Assume that they are all satisfied - See Eigure 2.22-c. Since Vil is range-visible from v,
and so is vjlji from Vi condition 3 ehows that C is range vislble from both vi and Vi It
follows that the boundary of P cannot _inte:sect with viC or ij, and by symmetry, cannot
intersect with the edges of Q. Therefore, any point of its kernel is range-visible from
AN and is the Steiner point of a possible X3-pattern. Note that all 3 angles around the

Steiner point are ensured to be <180 since the kernel of Q lies inside the triangle ViV a

Corollary 14: (Corol. of Theor. 14)

1) It turns out that we will not have to use the previous result directly since only X4-patterns and
Y-patterns will compose our OCD’s. However, we can show how a minor modification of the
method presented above permits us to patch Y-subtrees together in constant time. More precisely,
the 3 edges adjacent to a Steiner point of a Y-pattern can be viewed as forming an X3-pattern, where
the angles at the 3 notches would have been slightly modified. The three remaining pieces of the Y-
pattern emanating from the three notches are called Y-subtrces. Conversely, given three Y-subtrees
denoted Y, Y Y adjacent to v, VpVe respectively, we might ask whether they can be patched together
to form a Y-pattern Let t,t. tk be the three edges of the Y-subtrees adjacent t0 v,,v,, Yk respectively -
See Figure 2.23. It is clear that the Y-subtrees can be patched if and only if the 4 conditions of
theorem 14 are satisfied, where in all statements with R,R, Rk, these segments have been replaced by
tt tk respectively. Note that this detection will operate in constant time only if R(vl,t.) R(v t.)
R(vk,tk) have been precomputed, since these segments are needed for the detection (see proof of
Theorem 14).

2) A second application of Theorem 14 relates to the construction of Y-patterns from several
subtrees. ‘Suppose that two Y-subtrees Yi and Yj are given with the configuration of Figure 2.23. Let
S be a point visible from v, AN such that the angle (v VeV S) is maximum and, with the adjunction
of Y and Y no reflex angle exists at v, o Vp or S. Clearly, if there exists a Y-subtree Y such that
Y, Y .Y, can be patched as indicated above we can always assume S to be the Steiner point between
Vo v and Vi The problem is now to determine S if such a point exists. Once again, Theorem 14
shows that S is defined if and only if the 4 conditions are satisfied. Now all occurrences of R, and R
should be replaced by t, and t respectively, and all statements involving R should snnply be
dropped. Since S has to be in the kernel of Q, S is the vertex x of this kernel that maximizes the angle
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Figure 2.22: Detecting X3-patterns.

Figure 2.23: Patching Y-subtrees is similar to
detecting X3-patterns.
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(v N x) With R(v r_) and R(v L) precomputed, the 4 condmons can be tested and the kernel
computed (if it exists) in constant time. Since the kernel cannot have more than 6 edges, S will also be
determined in constant time.

All the results of this corollary still apply for the "counterclockwise” configuration, where all the
Y-subtrees connect the notches to the left instead of the right.

2.3.5 Detecting X4-patterns

At this point, we wish to present a simple method for detecting X4-patterns. We will describe a
much more efficient algorithm in a later section, which we have judged too involved to be introduced
here.

Theorem 15: After some preprocessing taking O(N3+N210g n) time, the possibility of
an X4-pattern between 4 given notches can be detected in O(Nlog(n/N)) time.

Proof: v, Vi and ] being the notches given in clockw1se order, two types of X4-
patterns have to be considered and tested successwely See Figure 2.24-a,-b. We only
describe the method for the case where v, and v, are adjacent to the same Steiner point,

the other case being treated similarly.

We will see later on that, for our purposes, we can always assume that no reduction of
the pattern can lead to an X3-pattern or a Y5-pattern with a notch between the two
Steiner points. In this case, it is easy to see that applying the two reductions of Figure
2.24-b,-c successively, will take A to the intersection of Vil and leﬁ (recall that these
points have been defined in the preprocessing of Theorem 14). This comes from the fact
that, by definition, Vil (resp. vl.) is a seoment range-visible from v, (resp. v) with a

jit
minimum angle (virij,vivj) (resp. (vjvl "1111) and which must intersect Y; A (resp. v. A) A
being now Vil intersect vjlji with similarly B= Vil intersect vlllk, the existence of an X4-
pattern implies that AB does not intersect the boundary of P and removes all reflex angles
at A and B.Recciprocally, these conditions are sufficient.  All 1'm,;1u v ‘have been

precomputed in the preprocessing, and ensuring that AB removes the rcflex angles at A
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and B takes constant time. Finally, we must test for the intersection of AB with the
boundary of P. This can be done by intersecting each convex chain Cl,...,C n with AB in
" logarithmic time, leading to an O(Nlog(n/N)) execution time, as seen in the proof of

theorem 4. O

2.3.6 The Optimal Convex Decomposition Algorithm

2.3.6.1 Introduction .

The procedure for determining a maximum set of compatible patterns which can be used in a
decomposition is based on a dynamic programming approach for the following reasons: Suppose that
an oracle informs us that a certain X4 or Y-pattern belongs to an OCD. If this pattern has k notches,
it decomposes P into k subpolygons Pl,...,Pk, and finding an OCD for each of them will give us an
OCD of P.

To do so, we compute maximal sets of compatible patterns for each P. Since the notches of P, are
also notches of P, any X-pattern of P.is also an X-pattern of P. Conversely, we want to show that any
X-pattern of P involving only notches in P, is also an X-pattern of P, This is of the utmost
importance since dynamic programming proceeds bottom-up, therefore we will have to find a
maximal set of patterns involving notches of P, before even knowing the exact shape of Pi. Thus we
must prove the following.

Let Zypeens

VoV 1Y (denoted V(i,j)) be the notches of P between z and z, in clockwise order (z =V

=v, +1) We will show that no X-pattern S which has all of its notches in V(i,j) can intersect T.

Z, be the notches of an X-pattern T in clockwise order around the boundary of P, and let

Z\H-l

Assume that S intersects an edge e of T. Consider the unique divider D of P passing through
e. Recall that D is defined as the shortest scgment collinear with e having both endpoints on B(P). D
partitions P into two polygons P1 and P2 - See Figure 2.25. Since the path of T between z | andz
is a convex polygonal line, it lies entirely in P1 or P2 (say P1). It follows that all the notches in V(i,j)
are notches of P1. Finally, from Lemma 4, we conclude that S must have notches in P2, which leads
to a contradiction and proves our claim.

We can now define S(ij) for every pair of notches Vp¥pasa maximum set of compatibic X4- or Y-
patterns which may be applied between notches in V(ij) only. The ultimate goal being to find



Figure 2.24:
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A simple method for computing X4-patterms.

The interaction between X-patterns.

.Defining B(i,j) and F(1i,j).
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SA, N) the dynamic programming algorithm computes S(l,j) from {S(k,)|V(k,]) strictly included in l
V(i)}. This can be done directly if v, and v do not have to to be connected to the same pattern. We
simply test all combinations {S(i,k), S(k+ 1,1)} for all v, in V(i,j-1). Otherwise, we have to distinguish
whether v, and Y; have to be connected together to an X4- or a Y-pattern.

To handle the latter case, we compute all possible Y-patterns with a dynamic programming
approach, that is, we eliminate the patterns which could not belong to an OCD. We compute Y-
subtrees and Y-patterns by patching smaller Y-subtrees, using previous results on the detection of
X2- and X3-patterns. In order to prevent the number of computations from blowing up, however, we
keep only the Y-subtrees that are candidates for belonging to an OCD. A Y-subtree is considered not
- to be a candidate if, at the time it is computed, we are ensured of the existence of an OCD which does
not use this Y-subtree (although we may not know this OCD explicitly yet). As a short-hand, we say
that a pattern or a Y-subtree lies in V(ij) if all its notches do. It remains now to formalize the
intuition given here, and present a polynomial-time algorithm.

Consider a Y-pattern which is used in an OCD and has v; as an N2-node (recall the definition of an
N2-node in Figure 2.11). v, splits it into two Y-subtrees, and there exists j such that

L One of the Y-subtrees lies in V(ij) whereas the other lies in V(j+ 1,i).

2. All the other patterns in the OCD lie totally inside or outside V(i,j).

We want to consider the candidacy of this Y-subtree at the time S(ij) is computed. We first observe
that if (AN is a list of its notches in clockwise order, we can ignore its candidacy if we do not
1

m
have:

3. 1S =I8G+Liy Dl 1Sy + Lipy DI+18G + LirD
(Of course, if v n=Vp the rightmost term must be omitted.)

Indeed, if 3. does not hold,' the right-hand side is strictly smaller than IS(i.,j)|. Also, the assumption
that a Y-pattern using this Y-subtree is the only one to overlap both in V(i) and V(j+1,i) (conditions
1. and 2.) implies that removing the pattern from the OCD and replacing all the patterns lying in
V(i.j) by thosé of S(i,j) will yield a decomposition at least as good.

Let t be the edge adjacent to v, in the Y-subtree lying in V(i,j). We give t an orientation towards v,.
Among all the Y-subtrees in V(i,j) having v, as an N2-node, satisfying relation 3, and such that
u= (L ,0<180, we can consider the Y-subtree T which minimizes the angle u as the only candidate,
since all the candidates must cause the same savings between their notches - See Figure 2.26-a. We
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then define B(ij) as the pair (R(vi,t),T). If there is no such subtree, B(ij) is the pair (R(vi,Ri),O).
Carrying out the same reasoning counterclockwise in V(ij) with now v; as an N2-node, we define
F(i,j) in a similar fashion - See Figure 2.26-b.

2.3.6.2 The Algorithm

-

Having established our notation, we are now in a position to present our algorithm. We assume a
function <ARG) for assembling Y-subtrees in computing S(ij). ARG is in general a pair of Y-
subtrees taken from B(u,v) or F(u,v). If these two subtrees can be patched together t0 form a Y-
pattern, Y, the function <.> returns (C,Y), where C is the maximum number of compatible patterns
which can be applied in V(ij),_including Y. We return to a discussion of this function after a
presentation of our algorithm. However, before proceeding with a formal description, we will give a
brief overview of the algorithm.

After all the necessary preprocessing in STEP 1, we set up a double loop to implement the dynamic
programming scheme. Each step involves computing S(@i,j) for a given value of i and j. First we
compute the best Y-pattern which connects v, and Vi (STEP 2). This involves patching Y-subtrees
previously computed and selected as candidates. STEP 3 computes A as a maximal set of compatible
patterns in V(i,j), where v, and Y; cannot belong to the same pattern. Then we allow for an X4-pattern
connecting v, and Y and compute B. Finally, the Y-pattern of STEP 2 is used to compute C and the
maximal set among A,B,C can be chosen as S(ij). STEP 4 computes the Y-subtrees which are
considered candidates and lie in V(ij). These subtrees are to be used later on in STEP 2. Once a
maximal set of compatible patterns for P has been determined, we can finish off the decomposition
with the naive method (STEP 5).

Algorithm CD

STEP 1: "Preprocessing”

Check that P is simple and non-convex. Make a list of the notches vy,...Vy and the convex chains

Cr ,C For each notch v,, compute SR(v) R(v R) and R(v L) For each pair of notches ViV

determine the pairs (a p,bp) of SR(vl) as defined in the preprocessing of Theorem 14, and compute
R(vi,vivj). Initialize B(i,i) (resp. F(i,i)) to (R(vi,Ri),O) (resp. (R(vi,Li),O)) and S(i,i) to the empty set.
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for d=1,...,N-1

STEP

for i=1,...,N
let j=i+d [mod N] and do steps 2,3.4.

2:

Compute the best Y-pattern connecting v, and vy

as
of
max
all
Yi=
Y2=

Y3=
Y4=

STEP

the maximum element of U.Yi,i=1,...,4 (the elements
these sets being pairs (C,Y-pattern). the
imum is taken with respect to C), where for
v, in V(i+l,j-1):
{ <F(i,k),B(k,j)> }
<B(i.,k-1),F(k,3)> YU{ <B(i,j-1),F(j.j)> }

{
{ <B(i,k-1),B(k,j-1)> }
{ <F(i+1,k),F(k+1,3)> }

3:

Compute S(i}j) as the maximum of A,B,C (with respect

to

A=

the cardinality of the sets).
Max[ S(i,k) U S(k+1,j) ] for all v, in V(i,j-1)
corresponding to taking the best Y-patterns in

V(i,k) and V(k+1,j).

j}us(i+1,a-l)US(a+1.b-1)US(b+1.j‘1) ]

for all X4-patterns Xx; , , j connecting v,,v,,

Max[ {xi'a!b‘

VgV with v, and v, in V(i,j).

{ the Y-pattern computed in STEP 2 (having notches
V5 in clockwise order) }

US(i+1,,-1)U. .. US(ip+1,1,-1)US(i +1.5)



STEP 4:
Compute B(i,j) and F(i,j).

STEP 5:
Finish the decomposition using the naive algorithm,

adding one polygon for each remaining notch.

The remainder of Section 2.3.6 is devoted to justifying the steps of the algorithm and determining
its time of execution.

2.3.63 Patching Y-subtrees Together (STEP 2)

We define the function ARG to take two Y-subtrees and construct a Y-pattern if these subtrees
can be patched together. This process forms the core of STEP 2 of the algorithm CD.

ARG is any argument of the kind: (F(ik),B(kJ)), (B(i,x-1),F(k.j)), (B(ik-1),B(k,j-1)), or
(F@i+ 1.X),F(k+ 1)), with VoVeY occurring in clockwise order. We outline the algorithm for only the
first three cases, with the last case following directly from this description.

case <F(i,k),B(k,j)> - (Fig.2.27?a)
Let F(i.k)=(r,T) and B(k,j)=(s,V).
if (r,s)<180 and T not 0 and V not 0
then return(|S(i.k)[+|S(k,j)|+1 , Y-pattern:TUV)

else return(0)
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case <B(i,k-1),F(k,j)> - (Fig.2.27-b)
Let B(i,k-1)=(r,T) and F(k,j)=(s,V).
if an X2-pattern is possible between v, and vy
with the notches adapt.ed to T and V respectively, in the
sense of Corollary 14
then return(|S(i,k=1)]+|S(k,j)[+1,Y-pattern:v,v,UTUV)

else return(0)

case <B(i,k-1).B(k,j-1)> - (Fig.2.27-c)
Let B(i,k-l)?(r,T) and B(k,j-1)=(s.V).
r and t allow to test the possibility of patching
T and V with the notch vj.(Corol1ary 14.1).
 if the patching is possible, call W the resulting
Y-pattern.
then return(|S(i,k-1)|+|S(k,j-1)|+1 , W)

else return(0)

We omit the last case, which we have, however, illustrated in Figure 2.27-d.

Because the Y-subtrees in the B(u,v) and F(u,v) satisfy relation 3., the number that <ARG? returns
along with a Y-pattern represents the maximum number of compatible patterns which can be applied
in V(i,j), once this Y-pattern has been applied.

We state this formally as:

Lemma 6: STEP 2 computes in O(N) time a Y-pattern connecting v, and v, (if any
exists) such that the nuinber of compatible patterns which can be applied in V(i)
between its notches is maximum.

Proof: Corollary 14.1 shows that each call on <ARG> takes constant time, therefore
STEP 2 requires O(N) time. Note that all patterns and Y-subtrees being represented by

adjacency lists, merging any pair of them takes constant time. We next have to show that



a) ' b)

c)

d)

Figure 2.27: Computing the function <ARG>.
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STEP 2 investigates all possibilities of Y-subtrees connecting v, and Vi Consider the path
from v; 10 Y, in the Y-pattern which we are looking for. If it contains an N2-node, it will
be detected in Y1. Otherwise, one N3-node may appear on this path, and all such.
candidates will be considered in Y3 and Y4. Finally, if no N2- or N3-node exists, this will
be handled in Y2. Note that for reasons explained earlier, it is legitimate to consider only
the Y-subtrees in the B's and F's, since there are the only remaining candidates at this

stage. O
- 2.3.6.4 Computing S(i,j) (STEP 3)

Suppose that we have a procedure to compute the quantity B of STEP 3 in Xfour(n,N) time. Then
it follows that

Lemma 7: STEP 3 computes S(i,j) in time O(N>+ N2Xfour(n,N)).

Proof: The running time follows from the fact that A and C can be computed in O(N)
time. To show the correctness of the computation, we assume by induction that S(k,}) has
been computed for all Ve in V(ij) (except for S(ij)). We first find a maximal set of
compatible patterns without allowing any to have both v, and v; as vertices. Then, we
allow one X4 and finally one Y-pattern to have these two notches as its vertices. In the

latter case, Lemma 6 justifies considering only the Y-pattern computed in STEP 2. 00
Note that Theorem 15 shows how to detect an X4-pattern in O(Nlog(n/N)) time. We can then set
- Xfour(n,N) to O(N>log(n/N)) at this stage.

2.3.6.5 Constructing Y-subtrees (STEP 4)

We compute B(i,j) and F(i,j) in STEP 4 of the algorithm by iteratively patching Y-subtrees via
functions Y(LARG) and Y’(i,ARG), where ARG is an argument of the form B(a,b) or (B(a,b),B(c,d))
(or the same wiﬂl F). We outline these functions with the B’s only, the other cases being symmetric
"in the opposite direction”. - See Figure 2.23.
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case Y(i,B(a,b))-

Let B(a,b)=(r,T) and t be the edge of T adjacent to

Ve VYV must occur in clockwise order.

a
if v,v, does not intersect with the boundary
of P (except at v, and v,), removes the notch
at v, adapted to T, and satisfies:
w=(R,,v v, )<180.

then return( Y-subtree:v,v UT )

else return(0)
case Y(i,(B(a,b),B(c,d)))

Let B(a,b)=(r,T) and B(c,d)=(s,V).

ViVai Vg Ve Vy must occur in clockwise

order. With the notches v, and v, adapted to T

and V respectively, check if an X3-pattern is possible

between v,,v,,v If yes, compute the Steiner

c
point S which maximizes w=(R1,v1$) -
(Corollary 14.2). Finally,
if w<180

then return( Y-subtree: Sv.USv USv _UTUV )

else return(0)

b}

We define Y’(i,B(a,b)) as we did Y(i.B(a,b)) with (Ri,viv a) replaced by (viv a,Li) - See Figure 2.28 for
an illustration of the difference. We define Y'(i,F(a,b)) by a similar process.



case Y(%,B(a,b))

case Y(i,(B(a,b),B(c,d)))

case Y’ (i,B(a,b))

Figure 2.28: Computing Y(i,ARG) and Y’ (1,ARG).
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We are now ready to implement STEP 4 of the algorithm CD. We describe only the computation
of B(ij), the case F(ij) being similar in the opposite direction. We compute the 4 sets B1,B2,B3,B4 as
follows: '

Let C be the value of |S(i,j)| computed in STEP 3.
Bi= {Y-subtree of B(i,k)} for all v, in V(i,j-1) s.t

IS(i,Kk)[+]S(k+1,j)|=C

B2= {Y'(i,B(k,j))} for all v, in V(i+1,j-1) s.t

|S(i+1,k-1)[+|S(k,j)|=C
B3= {Y(i,F(i+1,3))} if IS(i+1,§)]=C

B4= {Y(i,(F(i*1,k),F(k+1,j)))} for all v, in
V(i+1,j-1) s.t |S(1‘+1.k)|+|$(k+1.j)|=c
Le't T be the Y-subtree of B1UB2UB3UB4 which maximizes

the angle u=(t,L;), where t is the edge of T which is
adjacent to v, (Fig.2.29).

B(i.5)= (R(v;.t).T) : .

We can now show that:

Lemma 8: STEP 4 computes B(i,j) and F(i,j) in O(N) time.

Proof: Once agairi, for reasons of symmetry, we only deal with B(i,j). Corollary 14 and
Lemma 5 show that the Y and Y’ functions can be evaluated in constant time (note that
for this purpose, in addition to a Y-subtree, each B and F contains the segfnent R(v,1),
where t is the edge of the subtree adjacent to v. Also, we should not tamper with the
representation of the Y-subtrees uséd in the Y and Y’ functions since they may have to be
used later on. It is clear, however, that Y-subtrees can be merged in constant time with a

simple system of pointers, while avoiding copying any of them.

Bl through B4 evaluate all possible Y-subtrees adjacent to v; and lying in V(i)), and



TTUUF(141,K)
Ay vk

d)

Figure 2.29: Computing B(i,j).
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keep a single candidate by maximizing the angle u (Fig.2.29). Once again, we can show by
induction that it is legitimate to consider only the Y-subtrees in the B's and F's. Bl
considers all the subtrees which do not connect v, and Y; (Fig.2.29-a). To handle the other
cases, B2 and B3 compute the subtrees whose vertex adjacent to v, is an N2-node. The two
possible configurations are illustrated in Figure 2.29-b,-c. Finally, if this vertéx is an N3-
node, B4 will detect all such candldates a-

2.3.6.6 Completing the OCD (STEP 5)

-
4

The last step of the algorithm CD consists of removing: the remaining notches with the naive
decomposition. Since an optimal set of compatible patterns involves a total of O(N) edges, the resuit
of Theorem 4 still applies, and shows how to complete the decomposition in time O(N 210g(0/N)).
From previous results, we can collect the orders of magnitude of each step’s running time.

preprocessing : n+N3+N21og n
STEP 2 . : ns

STEP 3 : N3+NZXfour(n,N)
STEP 4 : N3 '
STEP 5 : N210g(n/N)

Thus, we can state our main result:
Theorem 16: The algorithm CD requires O(n-l-N3 +N2Xfour(n,N)) operations.
Proof: It suffices to show that among n, N3, and Nzlog n, the last term is never
dominant, for n large enough. Suppose that n and N? are smaller than Nzlog n, then

N<log n, so n<10g3n, which is not possible for n large enough. O

At this stage, we know that

Xfour(n,N)=0(Nlog(n/N))
which, combined with Theorem 10, leads to

Theorem 17: An OCD of P can be obtained under a graph or a polygon representation

in O(n+N510g(n/N)) operations, using O(n+ N3) storage.
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Proof: It remains to show that O(n+N3) space is sufficient. This is obvious since all the

trees and subtrees stored in B(ij), F(i,j), and S(ij) involve O(N) edges. m|
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2.4 An OCD Algorithm Cubic in the Number of Notches

2.4.1 Introduction

In the previous section, we have established an upper bound of O(N3log(n/N)) on Xfour(n,N),
which led to an unsatisfying time bound. We now show how this may be reduced to O(N) time after
O(N3) preprocessing, thus decreasing the total running time of CD to O(n+N3). Since there are
potentially on the order of N* X4-patterns in P, we cannot compute all of them, and to achieve cubic
time, we have to show that only O(N 3) of them may be considered candidates. Theorem 9 states that
all X-patterns not reducible to an X4-pattern can be reduced to Y-patterns. We can show that those
mirreducible” X4 can be assumed to have a specific form, which we refer to as loose.

Definition 2.4: An X4-pattern is said to be loose if its edges can be moved so that each edge
adjacent to a notch v, lines up to R, or L (16 configurations are possible) - See Figure 2.30.

We now formalize our earlier claim:

Theorem 18: Every X4-pattern which is not reducible to a Y-pattern can be reduced to
a loose X4.

Proof: Call HULL(T) the convex hull of an X-i:attern T. It is clear that every X4-
pattern T can be reduced to an X4-pattern V such that no further reduction of V can lead
to another X4-pattern lying strictly in HULL(V) (i.e., where at least one notch lies m the
interior of HULL(V)). We show that if T cannot be reduced to a Y-pattern, V must be
loose. Assume that one of the 16 configurations cannot be achieved for V (See Figure
2.31 for the situations where this can arise). Now, by applying the reductions given by the
arrows of Figure 2.31, we ecither reach a Y-pattern or an X4-pattern lying strictly in
HULL(V), contradicting our hypothesis. Actually, another possibility is to reduce to the

alternate case of Figure 2.31, which can arise only a finite number of times. O

Because of this result, we can always assume that the X4-patterns we have to deal with in STEP 3
are loose and collinear with the right edge of each notch involved. More precisely, if S is a Steiner
point adjacent to v, R, is collinear with Sv.. From here on, all the X4-patterns considered will be



Figure 2.30: A loose X4-pattern with i 16 extreme configurations.

Figure 2.3l: X4-patterns can be assumed to be loose.

1
Figure 2.32: Characterization of an X4-pattern.
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assumed to have this configuration. Before addressing our main problem, we give a basic
characterization of X4-patterns which we will use throughout.
Lemma 9: VYoV being 4 notches of P in clockwise order, the tree of Figure 2.32

forms an X4-pattern if and only if:

1. A,B are the only two intersections between edges.
2. Angles x,y,zx’,y’,z’ are less than 180 degrees.

3. No edges of the tree intersect with the boundary of P (except at the notches).

Proof: This characterization is fairly straightforward. It is important to notice, however,
that if we consider the convex hull of the X4-pattern, a clockwise order of its 4 vertices
corresponds to a clockwise order of the notches on the boundary of P. This topological

fact will be used throughout. O
We represent this situation by the statement X4(vk,vi,vl,vj,A,B). We will often use this statement
with nodes replaced by * to represent the set of all possible X4 having the *ed elements filled in.

Next, we introduce some operations to be added to the preprocessing at STEP 1. Let r, be the
segment R(v,R) and (ap,bp) be the pair of SR(v,) such that a pb o intersects r; (note that this pair has
to be determined in order to compute R(vi,Ri) - See Lemma 5). For all v, between bp and v, in
clockwise order, compute A, the intersection of r; and r, if it exists (recall that not only the
intersection may not exist, but the segments r, may be 0 - See the definition of the R function above).
We always have:

1. (Aikv.l,Aik,vk)ﬂSO and Ay v, and A, v, intersect B(P) only at v, and v, respectively.
2. For each v, the set of Ay’s contains all possible Steiner points adjacent to v, of the loose

X4(*v,****) of Figure 2.32.

Next, for each v, the points A, are sorted on r, and maintained in a sorted list. In the following, r;
will be viewed either as a geometric segment Or as a list of sorted points A,. The data structure
chosen for L should allow constant time access t0 Aik as well as 2-way scans of the list I Note that
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this computation can be done in O(Nzlog N) operations, and that the A, may not be defined for all
LK.

We wish to apply the idea of patching subtrees to the construction of X4-patterns. In the
configuration of Figure 2.32, the edge v A is to be patched with the rest of the pattern. To generate
X4-subtrees, we extend the concept of B's and F’s, and define the sets E(i,j). Basically, E(ij) will
contain enough information to décide in constant time, if for a given v, there exists a v, such that
X4(vipVypY;
detenmnmg for each all the v, that can be patched to form an X4-candidate.

**). E(i,j) will be computed after S(ij) by considering all v, between v, and Y; and

Since, for each v, there are potentially on the order of N such v,, we cannot even look at all of
them, should E(ij) be computed in O(N) time. Fortunately, for each v, we can express the
" corresponding sét of 2 by a single piece of data, which can be computed in constant time.

It remains now to formalize the intuition given above. E(i,j) is defined as the set of pairs (Aik,Ajl)
with all k distinct such that X4(v,,v,, Yy Ay A ) with the added property that if an OCD contains a

loose X4-pattern, X4(vk,v, Vi ,* *), then there EXIStS an OCD containing X4(Vk"’; A Ao 1) where

(A AL 1) belongs to E(i,j). ThlS allows the set E(ij) to be used for our purposes without overlookmg
X4-candidates.

We next show that such sets can be found satisfying this property, and that each of them can be
computed in O(N) time, given the preprocessing described above. '

2.4.2 Computing E(i,j)

Recall that E(i,j) is to be computed after S(i,j).
I) "Selecting candidateson r; and 1,

To begin, we determine the points A, such that v, belongs to V(j+1,i-1) (note that if the pair
(a p,bp) of SR(vi) used to compute I, is such that bp belongs to V(j,i), all the vertices on r; will already
satisfy this condition).

Next, we keep only the A, which ﬁe on the other side of the infinite line passing through Rj from
the edge Lj. This ensures that:
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3.’v »V .,V occur in clockwise order and the
ang]e z <180 (Fig.2.32).

We operate the same selection on the list L. Namely, we determine the Ajl such that v, belongs to
V(i+1,j-1) and which lie on the other side of line (Ri) than L.l, thus ensuring :

4. v,,vq,v; occur in clockwise order and y<180.

J
We now retain in I only points A for which

lS(lJ)l = |S(i+ 11| + ISA+1§-DI
By doing this, we keep only the candidates for Steiner points of an OCD. Like the Y-subtrees in the
B(ij), the candidates have to cause the same savings in V(i,j), that is, [S(Lj)l-

Finally, we update the lists ; and f with their respecnve points thus selected, maintaining the
sorted order. Let us rename the points of I (resp. r) from v, (resp. v) Aje .A (resp. Br B ) This
entire step can be done in O(N) time given the preprocessing, and ylelds a list of all possible Stemer
points for optimal X4-patterns. It is now clear that E(ij) can be fo<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>