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Abstract. Themain contribution ofthiswork is an O(nlogr~ +k)-timeal gorithmfo rcomputingall k
intersections among n line segments in the plane, This time complexity IS easdy shown to be optimal.

Within thesame asymptotic cost, ouralgorithm canalso construct thesubdiwslon of theplancdefmed

by the segments and compute which segment (if any) lies right above (or below) each intersection and
each endpoint. The algorithm has been implemented and performs very well. The storage requirement

is on the order of n + k in the worst case, but it is considerably lower in practice. To analyze the

complexity of the algorithm, an amortization argument based on a new combinatorial theorem on line

arrangements is used.

Categories and Subject Descriptors: F,2.2 [Analysis of Algorithms and Problem Complexity]:
Nonnumerical Algorithms and Problems-geo~netrica/ problenzs andco/nputations: G 1.3 [Numeri-
cal Analysis]: Numerical Linear Algebra G,2.1 [Discrete Mathematics]: Combmatorics

General Terms: Algorithms, Theory

1. Introduction

Intersecting a collection of line segments is one of the most fundamental tasks in

computer graphics. It arises in windowing and clipping operations as well as in

hidden-surface removal [20]. For scenes consisting of up to a few dozen

vectors, the naive method, which consists of checking all pairs of segments for

intersection, is often as good a solution as any. Of course, the approach quickly

breaks down as the number of segments becomes large. A popular method

consists of having a vertical line step through each endpoint from left to right.

A left (resp., right) endpoint gives rise to an insertion (resp., deletion) of the

corresponding segment into (resp., from) the set of segments currently active.
At each insertion, the new segment is tested for intersection against all the other

active segments. Although it does not take much imagination to see that this
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method can sometimes perform as poorly as the naive one, it remains a leading

candidate because of its simplicity and its good behavior in practice.

Nearly a decade ago now, Bentley and Ottmann [3] proposed an ingenious

sweep-line algorithm that is quite efficient across the board. Unfortunately, the

method is suboptimal; it is also considerably more difficult to implement than

the solutions above. It is a fundamental algorithm, nevertheless. For this

reason. it will be the starting point of our investigation. If the input consists of

n segments and the output is a collection of k intersecting segment pairs, the

algorithm requires 0( n log n + k log n) time and 0( n + k) space. A clever

observation by Brown [5] succeeded in trimming down the space requirement

to o(n).
In the wake of this result, researchers began to look at particular cases.

Nievergelt and Preparata [21] considered the problem of merging two planar

convex subdivisions: They showed that the resulting figure could be computed

in 0( n log n + k), where n and k are respectively the input and output sizes.

Mairson and Stolfi [18] extended this result by showing that the regions in the

original subdivisions need not be convex. More generally, a collection of n

nonintersecting red segments can be merged together with n nonintersecting

blue segments in 0( n log n + k) time. Also, Guibas and Seidel [15] showed

that 0( n + k) time is sufficient to merge two convex subdivisions. Progress on

the general intersection problem was achieved in Chazelle [6], where an

algorithm with a running time of 0( n log 2n /log log n + k) was described.

Unlike most intersection algorithms, this one had the particularity of not
following a sweep-line approach. Instead, it used a hierarchical subdivision of

segments and the key notion of a hammock (more on this exotic terminology

below). Finally, let us mention the recent works of Clarkson [8] and Mulmuley

[19], who, independently, have given probabilistic intersection algorithms with

optimal expected time.

The main contribution of the present paper is an 0( ?Zlog n + k)-time

deterministic algorithm for the general segment intersection problem; recall that

FZ denotes the number of segments and k the number of pairwise intersections.

(We insist on the word pairwise, as for example 4 segments intersecting in one

point give 6 pairwise intersections. ) The running time of the algorithm is easily

shown to be optimal. The storage requirement is 0( n + k). It remains open

whether the intersections can all be computed in optimal time and 0( tz) space.

One last piece of advertising about our algorithm: If so desired, it can be

made to compute within the same time and space bounds the so-called rvertical
map of the set of segments. This is the planar subdivision obtained by

drawing a rectangular frame around the segments and connecting by a vertical
line segment every endpoint to the edges immediately above and below (see

Figure 1). H is a simple exercise to show that the number of vertices and edges

of the vertical map is linearly related to n and k.’

1First, note that, If our goal is to Uerlve upper bounds, we can assume that the segments are m general
posltlon. Every intersection IS a vertex and so IS every endpmnt. Furthermore. every endpoint g]ves
ns,e to two more vertices when it IS connected to the edges rmmedlately above and below. We also get
four vcrtlccs from the covering fmme. This adds up to k + 6ri + 4 ~crtlces. Emxy mtcrsccmon has

degree 4, the four corners of the frame have degree 2. and the other vertices have degree 3 Th]s gives
us 2 k + 9n + 4 edges. Using Euler’s relatlon, we now dern,e that the number of regions (Inside the
frame) M (2,k + 9n + 4) – (k + 6n + 4) + 1 = k + 3n + 1. Note that the intersection points can
be connected to the edges above and below by vertical segments w]thmrt asymptotically increasing the
time or space requirements of the intersection algorlthm.
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FIG. 1. The vertical map of a set of n line segments enclosed in a rectangular frame.

The algorithm is not nearly as simple as one might wish (but, after all, we do

not know of any simple algorithm, no matter how slow, for computing the

vertical map of a set of segments). The algorithm is only slightly more

complicated than Bentley and Ottmann’s algorithm [3]. Our implementation

consists of about 1500 lines of C-code (discounting driver and 1/0 routines).

The program performs very well in practice. One of its advantages over simpler

methods is that for given values of n and k all inputs perform within the same

order magnitude. This means that, no matter how contrived the input, the

algorithm will never fail us by slowing down dramatically. We do not know of

any simple method for which this most desirable property is true.

The intersection algorithm is not based on any one or two ideas. It makes use

of a large number of concepts that have gained recent prominence in the design

of geometric algorithms. Even though not all of the following notions enter the

final composition of the algorithm, all are crucial to its development in one way

or the other: sweep-line, k-set, segment tree, finger tree, dovetailing,
amortization, functiona[ data structuring, topologicals weep. For example,

the algorithm does not use segment trees, finger trees, or topological sweep.

Yet, it is a big help to know these concepts in order to understand the

algorithm. The reader will appreciate these fine points better as he plows his

way through the paper. The amortization argument used to prove the claimed

time bound is based on a new combinatorial theorem for line arrangements (see

Capsule 10).

2. An Intersection Algorithm in Twenty-One Easy Pieces

All in all, the algorithm is quite simple but, as the keywords given in the

previous paragraph suggest, it is made of many pieces. To lay it all out in one

block may give the reader indigestion. More seriously, it may convey an

unpleasant impression of black magic. We believe that understanding the whys

and wherefores and not just the whats of each piece will make the reading of

this paper much easier. For this reason, we describe the algorithm as the end

result of successive transformations applied to a simple starting solution. Our
presentation may seem to proceed in roundabout ways, presenting ideas here

that are abandoned later, digressing on why such-and-such approach would not

work, etc. But in the end, we believe that although this strategy makes for a

longer paper it will actually shorten the reading time. The intersection
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algorithm is really quite simple when presented in a progressive didactical

fashion. This is what wehavetried todoin this paper.

To give the reader something to hold on to while plowing through our

discussion, let us just say that the main idea of the algorithm is to cut off the

segments in preprocessing to satisfy a certain normalization criterion. Then, the

sweep-line proper goes into action. Rather than maintaining the cross-section

and nothing else, we also include the entire scene formed on the right of the

sweep-line by the segments currently active in the cross-section. This is to help

us predict a bit ahead of time what is coming up. This section consists of

twenty-one short capsules, every one of which introduces a few simple ideas.

CAPSULE 1. A CLASSICAL INTERSECTION ALGORITHM

‘‘ Thursclav’s child has far to go”

Bentley and Ottmann’s solution to segment intersection is a model illustration of

the sweep-line paradigm. We make it the starting point of our investigation.

Although a quick review of the algorithm is in order, we still assume that the

reader is familiar with this classical algorithm. Let S = {S, I 1 s i < n} be a

collection of n line segments in the plane. Inherent to the notion of sweep-line

is the existence of a Cartesian system of reference (0, XY).

For the ease of exposition, we shall assume that no two endpoints have the

same x or y coordinates. This, in particular, applies to the two endpoints of the

same segment, and thus rules out the presence of vertical or horizontal

segments. Similarly, we shall assume that the intersection of two segments

s, n s, ( i < j), if nonempty, consists of a single point. Finally, we wish to

exclude situations where three or more segments run concurrently through the

same point. Note that in practice these assumptions are grossly unrealistic.

Your “average” graphics scene (whatever that means) is likely to contain a

vertex adjacent to many edges, not to mention horizontal or vertical edges. Our

rationale is that the key ideas of the algorithm are best explained without having

to worry about special cases every step of the way. Relaxing the assumptions is

very easy (no new ideas are required) but tedious. That’s for the theory.

Implementing the algorithm so that the program works in all cases, however, is

a daunting task. There are also numerical problems that alone would justify

writing another paper. Following a venerable tradition, however, we shall try

not to worry too much about it. We feel only marginally guilty doing so because

we can always fall back on the techniques exposed by Edelsbrunner and Miicke

[12] to remove singularities in geometric computation.

Imagine sweeping the plane by moving a vertical line L (called the sweep-
line) from left to right starting at the leftmost endpoint and stopping at the
rightmost one. At any time during the sweep, L provides a c?oss-section ot’ the

set of segments. As a geometric entity, the cross-section changes all the time

while L sweeps the plane. Cornbinatorially, however, it consists of a well-

ordered sequence of segments that changes only at discrete intervals: The

cross-section may gain or lose an element, or two consecutive elements may

swap places. Let us define the schedule of the sweep as the set of positions of

L where the (combinatorial) cross-section undergoes some changes. There are

two types of events in the schedule: 2 n events are contributed by endpoints,

while k events originate from intersections between segments.

Bentley and Ottmann’s algorithm is a direct simulation of the sweep. One

difficulty is that the schedule is not available at the outset. (If it were, then, of
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FIG. 2. We delete segment Sk from the cross-section when the vertical sweep-line process passes x’,
the x-coordinate of its right endpoint. As we do this, segments Si and Sj become adjacent and we
discover that they are about to intersect.

course, the problem would be solved and no simulation would be needed.) All

we can do is to start with a partial schedule containing all the events of type

endpoint. Then the idea is to build the schedule on the fly, making sure that

enough of it has been computed whenever the next event is being requested. To

make things concrete, let us represent an event of type intersection as a triplet

(x, i, j), where x is the abscissa of the intersection Si n Sj. A simple observa-

tion ensures the feasibility of this scheme: any event (x, i, j) of type intersec-
tion must be preceded by a witness, that is, an earlier event (of abscissa

x’ < x) right after which the cross-section contains the segments Si and Sj in

adjacent positions (see Figure 2). The idea is then to keep checking all new

adjacencies in the cross-section and insert the newly discovered entries in the

current schedule. Bentley and Ottmann show that a proper choice of data

structures leads to an 0( n log n -t k log n) running time for conducting the

entire simulation. Let us not worry about the underlying data structures at this

point.

CAPSULE 2. A SIMPLER SCHEDULE

‘‘ This is the way we sweep the house”

An inherent feature of the Bentley -Ottmann algorithm is to report the intersec-

tions in sorted order from left to right. (That is, after all what the idea of a

schedule is all about. ) Although there might be reason to believe that this

sorting can be performed in 0( n log n + k) time, it is a difficult open problem

and choosing that route for improvement might be ill-fated. Indeed, the bad

news is that the (open) problem of sorting X + Y in quadratic time (Fredman

[13]) is a special case of our sorting problem. Rather, we give up once and for

all the idea of sorting the intersections and redefine a schedule as the list of 2 n
events of type endpoint. In this way, it will be easy to compute the schedule

ahead of time; moreover it will never change. So, why didn’t we think of it

earlier, one might ask?
Well, of course, there are a few snags in our way now. Whereas formerly

a schedule interval could witness only a modest change in the current cross-

section (an insertion, a deletion, or a swap), hell may break loose now (so to

speak). Indeed, most of the action might take place during two consecutive

events on the schedule. Figure 3 illustrates this point. The scene between L and
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FIG. 4 Too many segments extending over too mony strips defined by two adjacent events

L’ is called a hammock in [6]: It is a subdivision of the closed vertical strip

between L and L’ created by various segments joining the two lines in

question. A hammock is a little like a line arrangement [10]. For example, with

our simplifying assumptions, all the vertices that are not on the boundary of the

hammock have degree 4. that is, are adjacent to four edges. Unlike a line

arrangement, however, the size of a hammock may be fairly unrelated to the

number of segments used for its construction. If nZ is the number of segments
then the number h of degree-4 vertices may lie anywhere between O and

rn(l’n – 1)/2.

As is shown in Chazelle [6], it is possible to construct the hammock between

L and L’ in 0( m + X) time. By constructing it, we mean computing the

vertices with all adjacency information. Using this approach to handle the

events of the schedule we may have to spend on the order of n + k, time

between two consecutive schedule events, where ~, k, = k. This leads to a

nontrivial quadratic algorithm—a big step forward, indeed! Figure 4 tells us

what went wrong: many segments might end up being looked at numerous times

with no intersections on which to amortize the costs. This suggests a crucial

modification of our strategy. Instead of building hammocks one at a time from
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FIG. 5. The solid lines define the web, When we add the dashed line segment, we cut three vertical

stops

left to right, we should build as much as we can while looking at a given

segment so as to avoid having to go back to it later.

In other words, if L is the sweep-line at time t, we now wish to maintain the

following invariant: all intersections between active segments (i. e., segments

crossing L) must have been computed by time t. That everything left of L
should be computed by time t is nothing surprising: that is the whole idea of a

sweep-line. However, requiring that all intersections between active segments

right of the sweep-line should also be available is a very strong invariant.

Certainly much stronger than anything we have seen in Bentley and Ottmann’s

algorithm.

CAPSULE 3. FROM HAMMOCKS TO WEBS

“So, he wove a subtle web in a little corner sly”

While we are at it, why not strengthen our invariant and maintain the whole

web formed by the active segments? Figure 5 (minus the dashed segment)

depicts a web. This generalizes the notion of a hammock: If A is the set of

active segments (the segments of S that intersect the current sweep-line L) and

L+ is the closed halfplane lying to the right of L, then the web of L is the

subdivision of L+ formed by the set of active segments {s fl L+ I s c A}. To
ensure that the web is a convex subdivision, we add stops to dangling edges.

To do so, we draw a vertical segment passing through each right endpoint: The

segment should be of maximum length but it should not create any vertices of

degree 4.
Assume that the web of the sweep-line L has been computed. How difficult is

it to add a new segment into it? Figure 5 illustrates the problem ahead. To add

the dashed line into the web, we can follow it from left to right and integrate it

into the web-structure as we move along. To begin with, we locate the edge of
L that contains the left endpoint of the new segment (let us assume that we

know how to do that). This gives us the first region of the web to be crossed by

the segment. We compute its exit point (if any) by walking around the region

in, say, clockwise order, starting from the entrance point. Using a standard

adjacency-list representation of the web, a data structure, which we shall call



8 B. CHAZELLE AND H. EDELSBRUNNER

the web-structure throughout, there should be no major problem doing so. The

web-structure can be thought as a collection of records with data and pointer

fields to support run-of-the-mill operations such as walking around a region of

the web in both directions, finding edges adjacent to a given one, etc. Many

data structures are available for this purpose, for example. winged-edge
(Baumgart [1]), DCIZ (Preparata and Shames [22]), quad-edge (Guibas and
Stolfi [16]). All we need to know at this point is that the web-structure is

edge-based. This means that its basic records are associated with edges.

Regions and vertices are not represented explicitly in the web-structure: they

are defined implicitly. The reason for doing so is that it is simpler that way.

Anyway, let us return to our discussion. Once the exit point has been

reached, we iterate on this process across the next region, and so forth. Either

the segment extends completely to the right of the web (the easy case), or it

stops somewhere in the middle of a region (as in Figure 5). We can detect this

case by keeping track of x-coordinates during the traversal of the regions. We

have omitted a few details, but none which require a great deal of creativity to

fill in.

It is unclear at this point how efficient this method will turn out to be.

Certainly, traversing boundaries might be costly. More worrisome are those

vertical stops, which we might keep on cutting through, as for example in

Figure 5, These intersections are not part of the output and a little thinking

shows that their number could extend far beyond 0( n log n + k). Obviously,

there is no point pursuing the present line of reasoning until we show how to

avoid this pitfall. How about assuming that it never happens? Here is a

hypothetical situation where the difficulty is easily overcome. Assume that all

the segments in S have their left endpoints right on the line L (forget for a

moment that this contradicts our assumptions). We call this the halfsegment
case. We avoid the problem of cutting vertical stops if we make sure that the

segments are inserted in an order corresponding to the right-to-left order of

their right endpoints.

CAPSULE 4. THE COMPLEXITY OF THE HALFSEGMENT CASE

“I spent a penny of it, I spent another”

Let us examine in detail the complexity of inserting a new segment. If we keep

the left endpoints on the line L in some balanced dynamic search tree (say, a

red–black tree [14, 23, 24]), it is easy to get started in 0( log n) time. To

simplify our task, let us ignore for a while the thorny case of the last region

traversed. Recall that it might be cut into three parts, instead of only two. Each

of the other regions traversed starts with a certain number of edges, say,
m 2 3, and is split into two regions of sizes p + 2 and q + 2, where

p 2 q ? 1 and p + q = m. We now request an act of faith on the part of the
reader.

Suppose that some magical data structure allows us to operate the split

operation in 0(1 + log q) time (as opposed to 0( m)). This includes finding

the exit point as well as partitioning the region accordingly. Let us try to be

more rigorous about what we mean here. The input to the magical box is the

region itself as well as the (infinite) cutting line. The output consists of the

two regions resulting from the cut. If the box assumes some normal repre-

sentation for the regions, then the output should be given in the same normal

representation. Of course, the representation of a region by a black box should
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allow for the linear-time traversal of its boundary, the cutting edge should be

available in constant time, etc.

Under these conditions, we claim that the amortized cost of an insertion is

equal to O(log n + /ci), where k, is the number of intersections created by the

new segment. Note that this would allow us to construct a web of size k in

optimal 0( n log n + k) time. But instead of rejoicing prematurely, let us try to

justify our claim. We use an amortization argument using credits. Recall that
the cost incurred while traversing and splitting a region of size p + q (q <p)
is 0(1 + log q). Let us agree that 1 + log q credits have enough worth to pay

for this cost .Z We assume that credits are real numbers.

As a credit invariant, we require that each region of m edges should hold

exactly m – log m credits. A neat side-effect of the insertion order is that any

region traversed gives rise to at least one new (genuine) intersection. We can

then safely grant ourselves 6 credits for each region traversed. The accounting

for a region goes as follows: We start out with a total of m – log m + 6
credits to spend. To maintain the credit invariant we need p + 2 – log( p + 2)

credits for one region and q + 2 – log( q + 2) for the other. Furthermore, we

must pay for the split itself, which amounts to another 1 + log q. The feasibil-

ity of the scheme depends on the sign of the quantity

A=w-log m+6-(p+2-log(p +2))

-(q+ 2-log(q +2)) -(l+ Iogq).

Because q s p, we have

2A= 2(p+2)(q +2) >(P+W7+2)+(q+ 2)2

(P+!7)!l -
> 1,

pq + q2

which shows that A > 0. This proves that the construction of the web can be

completed in 0( n log n + k) operations. Of course, to be honest, there remain

two stones unturned:

(i) the treatment of terminating regions;

(ii) the magica/ algorithm for splitting regions in logarithmic time.

CAPSULE 5. COMPLETING AN INSERTiON

‘‘ With a hop, step, and a jump”

This is how we deal with terminating regions. When we enter a new region, we

just pretend that the segment to be inserted extends completely past the region

(e.g., by stretching the right endpoint to infinity). Then, in 0(1 + log q) time,

we can split the region into two subregions of size p + 2 and q + 2, which is

consistent with what we did before (see Figure 6). Once the exit point has been

found, it is immediate to determine whether the region is terminating or not. If

it is, then we start two traversals of the boundary, one clockwise and the other

counterclockwise, both initiating from the exit point. The purpose of these

walks is to find the edge right above (resp., below) the right endpoint of the

segment. Inserting the vertical stops is now child’s play.
How does our previous accounting argument fare with this new method?

Quite well, indeed. We now have a 4-way split of an m-edge region into two

left regions of size a + 3 and b + 3 and two right regions of size c + 3 and

2 All logarithms are taken to the base 2. unless specified otherwise.
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FIG. 6. A terminating region is cut into four pieces, rather than three. This causes no harm because

the two right regions will never again be traversed. It is important that we do the second step (finding
the endpoints of the stop) from right to left.

d + 3, where a + b + c + d = m. Because of the order of insertions, the two

right regions will never be used any more, so we can leave them alone and not

worry about their credit invariants. Also, for this reason, we can give ourselves

an extra 0(1 + c + cl) credits. Observing that the sizes of the left regions can

exceed by at most one edge what they would have been without the vertical

cuts, the previous accounting will leave us just short of a constant number of

credits as far as the first split is concerned. These missing credits can be taken

from our pool of extra credits. Now what about the last two splits and the

walks? We can generously estimate the combined costs to be 0(1 + log( 1 + c)

+ log( 1 + d) + c + d). The extra credits will also take care of this easily.

This concludes our discussion of terminating regions.

CAPSULE 6. How TO CUT UP A REG1ON FAST

<‘With rings on her fingers and bells on her toes”

The time has now come to discuss the magical method by which an exit point

can be found so rapidly. Two key ideas are: (i) looking for the exit point by

binary search; and (ii) using finger trees to take advantage of uneven splits. To

simplify the discussion, we break the problem into simpler components.

Let us say a few words about a special type of finger trees developed by

Hoffman, et al. [17]. A homogeneous finger search tree will be, for our

purposes, a red-black tree augmented with special pointers. Each leaf stores a

distinct key, and as is usual with search trees, a left-to-right scan through the

nodes will show keys appearing in nondecreasing order. What makes this

red-black tree special is that it supports fast access in the vicinity of any item.
If you are holding a pointer to a leaf and you are searching for a key stored in a

leaf that is at a distance d away from the leaf you know (i. e., stored d leaves

away), then the search will take only 0(1 + log(min{ d, n – d})) time. Notice

that if the list of leaves is thought of as being circular then the cost of a search is

roughly the logarithm of the shortest distance between the source and the target.

These finger trees support an even more drastic operation: the so-called 3-way

splitting. Given pointers to two leaves, the operation involves removing all the

items of the tree between the two leaves (inclusive) and form two new trees,

one representing the removed sublist and the other representing the remaining

items. There again the time to perform this operation can be kept within

0(1 + log(min{ d, n – d})), where d is the number of leaves removed.
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To bring these finger trees to bear on our problem we need to implement the

search for the exit point as a binary search. Given a region &f of m edges, let

us artificially partition it into its lower and upper parts. These two parts share a

common edge joining the leftmost and rightmost vertices. Because of symme-

try, we can restrict our attention to, say, the upper part. Let v,, . . . , VU be the

vertices of this upper part in order from left to right. Suppose that we have built

a finger tree whose leaves store the vi’s in the same order. Let us now turn to

the segment to be inserted. If the point of entrance into the upper part lies on

Vlv,, then the exit point will be found on some edge Vivi+, (1 < i s u – 1). In

constant time, we can determine whether any VJ lies on the segment or, if not,

on which side. Therefore, just as intended, the tree lends itself to binary search.

The exit point will be found in 0(1 + Iog(min{ i, u – i})) time, and the

ensuing split will be completed within the same asymptotic complexity.

What happens now if the entrance point lies on some edge Viv, +, (l < i <
u – 1)? Since an exit point on v ~vU can be detected and computed in constant

time, let us suppose that it lies on vjvj+, (1 < j s u – 1). Note that because

the exit point always lies to the right of the entrance point we must have i < j.

The binary search alluded to in the previous paragraph will (almost) do the job

here. The only difference comes from the equivalence between a vertex vl

being above or below the segment and branching left or right in the tree. We

say that the vertex V1 associated with the current node in the tree is greater
than the exit point (i.e., branch left) if and only if vl is below the segment and
1> i. The time complexity will be 0(1 + log(min{ j – i, u – j + i})) time,

which also includes the split of the upper part.

Putting the pieces together involves totalling up the costs of splitting both

lower and upper parts. Of course, all the work may take place in only one of

the two parts, in which case our claim on the performance of the magical search

is easily vindicated. If both parts must be worked on, the complexity will be of

the form O(a(pl, Pz, q,, qz)), where

~(P17P2> 41?% ) = 1 + log(min{p,, q,}) + log(min{p, 42})

and Pl,q1,Pz,q2k 1, P =Pl -+P2 and q= ql +q2. Without loss of
generality, let us assume that q < p. We have

4P1>P2> 41742 )=1+1%41+1%42

—– 1 + log(q1q2) < 1 + log((q, + q2)2) < 2(1 + log q).

This proves our claim that the complexity of a split is 0(1 + log(min{ p, q})).
Thus, all is well that ends well. We have not exactly achieved the goal we were

pursuing, but we do have a nice result. This deserves a lemma.

LEMMA 1. (THE HALFSEGMENT CASE). Given n line segments in the p[ane
passing through a (known) common line, all k pairwise intersections
among them can be computed in 0( n log n + k) time and 0( n + k) space.

CAPSULE 7. A SWEEP TREE AND A LITTLE HELP FROM AN ORACLE

“Eleven, twelve, dig and delve”

We surely have cleared a big hurdle, but we must face reality. The halfsegment

case might be somewhat restrictive. Collections of segments often do not pass

through a common line. As we remarked earlier; however, our scheme will
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FIG.7. (a) Twelve segments that satisfy
the clearance property. (b) It takes only
two segments to violate the clearance
property.

(a)

(b)

work as long as any new segment the sweep-line encounters has its right

endpoint to the left of all the active right endpoints. We call this desirable

feature the clearance property: Technically, the property ensures that given

any two segments in S either their projections on the x-axis do not intersect at

all— except possibly at the endpoints—or one contains the other. Figure 7(a)

suggests that the clearance property is not nearly as strong as one might fear.

Figure 7(b) illustrates a typical violation of that property. Whatever its restric-

tive nature, a redeeming aspect of the clearance property is that any set of

segments can always be made to satisfy it. Simply cut the segments along the

vertical lines passing through all the endpoints. Of course, the fact that this may

produce a quadratic number of subsegments should temper our enthusiasm.

However, there always remains the prospect of a better cutting strategy, so let

us just pursue this idea to see how far we can go. In the following, until

specified otherwise, we shall assume that S satisfies the clearance property.

Imagine the sweep-line in action. For concreteness, we assume that at all

times the sorted sequence of active segments is represented by a red-black

tree. 3 Also, the web is supposed to be fully available as a web-structure.

Obviously, the tree of active segments, which we call the sweep tree, will

serve as an entrance door into the web, so we must provide its nodes with

pointers to the corresponding edges of the web.

As it turns out, it is convenient to let the web-structure grow beyond what is

strictly necessary to represent the web. What do we mean by this? Figure 8

depicts a situation where upon reaching L the next move should be to delete
segment s from the web. This can be done by a local transformation of the

web. We wish to argue that this work is wasted. Why bother with it? Can’t we

just agree that everything in the web-structure left of the sweep-line is just

garbage left behind? This may not help storage, but it will save us work. In

other words, while the web grows and shrinks all the time, the web-structure

only grows. The invariant will be that clipping the current web-structure by

removing everything that lies left of the sweep-line should give us exactly the

3 There are two kinds of red-black trees: one where keys are stored at the leaves, and another where

keys are stored at all the nodes. We choose the latter. Not that we have much to justify this choice at
this point. Later. however, we find a very Important reason So, patience!
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FIG. 8. When the sweep-line reaches the right endpoint of s, we abstain from deleting s from the

web-structure.

current web. By extension (and only when ambiguity could not cause trouble),

we shall refer to the web as the planar subdivision represented by the web-

structure. For example, we speak about edges of the web to the left of the

sweep-line as well-defined entities.

Of course, although we do not modify the web-structure when the sweep-line

reaches the right endpoint of a segment, we must still update the sweep tree

accordingly. For one thing, the node associated with the segment s must go.

Worse than that, the vertical order among active segments may get all upset by

the move from LO to L. Reconstructing the proper sweep tree seems as

hopeless as trying to maintain hammocks through a sweep. So, was the idea of

the sweep tree totally unproductive? Not really, we will see later. But for the

time being, let us use the magical trick again, and assume that some benevolent

oracle will do the work for us at no charge. Here is what our magic box, as we

shall call this oracle, will do for us. As the sweep-line moves from one endpoint

to the next (as directed by the schedule), the magic box will update the entire

sweep tree, including the pointers into the web-structure. Furthermore, if we

present the magic box with a point on the sweep-line it will tell us (presumably

by consulting the sweep tree) which edges of the web (if any) lie immediately

above and below the point. Most important, all the work performed by the

magic box is done free of charge. With this wonderful device in our hands, let

us look at the insertion of a new segment. There are a few important points to

make right now, so let us take a deep breath and open a special section on

insertion.

CAPSULE 8. A CLOSER LOOK AT THE INSERTION PROCESS

“Put your right foot in and shake it all about”

The magic box is the guardian of the sweep tree. It is also its exclusive

operator. As long as the magic box is around we will never be allowed to use
the sweep tree ourselves. The reason is that the magic box may decide to

implement the sweep tree in such a bizarre way that we would not be able to tell

what is what if we were allowed to peek at it. More formally, the magic box is

an abstract data type whose functional specifications have been laid out, and

nothing should be assumed about its implementation. The advantage of this
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FIG. 9. Inserting anew segment

approach is that when the time comes to implement the box we will not have to

worry about existing subroutines having made all kinds of assumptions about

the sweep tree. For example, the fact that the tree is of type red-black should

now be completely irrelevant.

Since we do not delete anything from the web-structure, we should think of it

as representing a planar convex subdivision with the sweep-line smacked

somewhere in the middle of it. No link between the sweep-line and the web is

maintained explicitly. The connection between these two entities is entirely

provided by the magic box. In Figure 9, for example, the intersections between

L and the edges of the web are unavailable. In some sense, things could not be

simpler, could they?

Let us see about inserting a new segment. Its left endpoint lies on the

sweep-line, while by virtue of the clearance property, its right endpoint falls to

the left of all the right endpoints in the web (see Figure 9). Recall that these

right endpoints are those vertices adjacent to vertical stops. Our first step will

be to call on the magic box to find out which edges lie above and below the left

endpoint of the segment. We are then ready to follow the instructions that we

wrote out for the halfsegment case. Are things really that easy? There are two

minor details to which we should perhaps pay attention.

(1) Since the sweep-line does not coincide with any boundary of the web, the

left endpoint of the new segment will be left dangling if we do not provide

additional vertical stops. The symmetry between left and right endpoints

provides an easy fix: Just handle the traversal of the first and the last regions in

the same way. Given the edges of the web above and below the left endpoint,
we begin by connecting them via a vertical stop (see Figure 10), This puts us at

the starting stage of the halfsegment case. We have already studied this in

detail.

(2) The second point to make is not a real problem. It is just an observation to

make sure that the reader appreciates all the subtle differences between what

faces us now and the much easier halfsegment case. Many regions visited

during the insertion may lie partly to the left of the sweep-line (Figure 9). Since

the connection between the sweep-line and the web is not enforced explicitly,

this should not surprise us. However, it changes our perspective a little. Before,

if you recall, the actual web was only what lay to the right of the sweep-line.

The fact that more was actually stored in the web-structure was viewed as a



Optimal Algorithm for Intersecting Line Segments 15

FIG. 10. The left endpoint is connected by a vertical segment to the edges immediately above and
below. Then, the segment is traced from left to right and integrated into the web just as in the case of
halfsegments.

mere product of our laziness. Now, on the contrary, we are saying that what

lies to the left of the sweep-line might be of vital importance to the algorithm

itself and should, by virtue of the extension mentioned earlier, be made part of

the web itself.

The intersection algorithm is complete. The schedule consists of 2 n events,

half of which (the right endpoints) involve absolutely no work on our part. It

does not take great insight to show that the complexity analysis of the

halfsegment case carries over to this algorithm almost verbatim. To summarize,

we have in our possession a full-fledged algorithm for intersecting n line

segments in 0( n log n + k) time. Well, of course, modulo a couple of

provisos: the clearance property and the magic box. Before attacking these two

problems, let us straighten out one minor item. This will give the reader a

well-deserved break.

CAPSULE 9. FINGERS ARE JUST Too COMPLICATED

c‘Says Simple Simon to the pieman”

Fingers are nice and cute but (ironically) impractical. What programmer would

seriously consider implementing an algorithm that calls for the concurrent

maintenance of finger trees when these could easily number in the thousands?

To add insult to injury, most of these finger trees would likely be very small in

practice, and price would be paid for overhead with little or no gain at all. Of

course, from a theoretical perspective, we could stick to our fingers and the

remainder of the algorithm would work just as well. From a practitioner’s

viewpoint, however, the only alternative seems to be going back to the

sequential traversal of the regions. Suppose that we choose to walk clockwise

from the entrance to the exit. Figure 11 clearly shows that this is not exactly a

well-inspired move. Inserting segments labeled 1 through 5 would lead to the

repeated traversal of the same sequence of consecutive edges — something too

horrid to be even mentioned.

Going counterclockwise instead of clockwise is unlikely to fare much better.
However, going in both directions might do the trick. It certainly would take

care of the problem depicted in Figure 11. What we have in mind here is a

dovetailing mechanism by which two walks start concurrently from the en-

trance point, one running clockwise and the other running counterclockwise.

Both processes end as soon as one of the walks discovers the exit point. Note
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Fm. 11. As we insert 1, 2, 3, 4, and5, in this order, werepeatedly traverse along chain of edges.

Even inthehalfsegment case, this maylead to an Q(rrfi)-timea lgorithm, even though the number of

intersections is O(n): take n – [W] horizontal segments and a convex chain of length roughly fi.

FIG. 12. We enter the region via edge 0. Then we alternate between a clockwise and counterclock-

wise step around the boundary. Thesequence of edges traversed is 1,2.3,4,5,6,7. We exit the region

at edge labeled 7.

that the discovery will always precede the eventual crossing of the two roving

pointers, so at worst, we have traversed the entire boundary of the region.

Figure 12 illustrates this new way of searching for the exit point.

So, let us just discard finger trees once and for all. What is left is simply the

web-structure and the magic box. As before, nothing need be done when the
sweep-line reaches a right endpoint. The case of a left endpoint gives rise, as

usual, to the insertion of a vertical segment into the web. We have just seen

how to traverse intermediate regions. Are the first and last regions handled

much differently? Not really. As far as the starting region is concerned, the

magic box helps us to insert the vertical stop in constant time. Then the

dovetailing proceeds just as described. Regarding the last region, we begin by a

simple observation. If we keep an eye on the x-coordinates of the vertices

visited at all times, we naturally detect the occurrence of the last region. This

detection will take place during the discovery of either the lower or upper

endpoint of the vertical stop. The idea is just to continue the dovetailing as

though nothing happened until the other endpoint is found. Splitting the region
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11: end
9

7
FIG. 13. The region is entered at the

5 edge labeled O and the boundary is then

traversed in clockwise and counterclock-

3 wise directions in a dovetailing fashion.
When the counterclockwise path reaches

1 edge 6, we can already suspect that we
might be in the terminating region of the

o
new segment. This is verified when edge

11 is reached.

in three is now a trivial operation. This concludes the insertion. For illustration,

the labeling in Figure 13 indicates at which steps the endpoints of the vertical

stop are discovered. Note that with a different distribution of vertices we could

have the same walk discover both endpoints of the stop.

We could now just go ahead and try to prove that the running time of the

algorithm has not increased dramatically. This turns out to be a nasty business.

For this reason, we commit a venial sin. We add some instructions to the

algorithm to make its analysis easier. Before we describe how to do that, let us

take a look at the problems that we are facing.

CAPSULE 10. A COMBINATORIAL EXCURSION

c‘The cow jumped over the moon”

Before describing our corrigendum, we would like to give the reader a sense of

the difficulty. To begin with, our previous amortization argument can be

thrown away. The rules of the game have now changed in a profound way. Let

us see why on a simple example (Figure 14). The dashed boundary represents a

region of the web consisting of p = 2 k + 1 edges, into which we insert p
segments in the order indicated by the labels. Segment 1 cuts through the

middle of the region (i. e., has about p/2 edges on either side). Segments 2 and

3 cut through the middle of the left and right subregions, respectively, and so

forth. With finger trees, the time required for the insertion of all p segments

would be on the order of

() (1logp+210g ; +“””+2~-Vog* ,

which is @(p). With our dovetailing strategy, the time would be on the order

of

()P+2; +.. . ()+Zk–l L
Zk-1 7

which is @ p log p).
So, was forsaking finger trees such a good idea after all? One may wonder.

Clearly, if the answer is yes, we will need a more global argument: Global in

the sense that the region to be sliced is itself the witness of a large number of

intersections and this will have to be used somehow. Indeed, the clearance

property tells us that because we are inserting new segments all across the
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FIG. 14. We add segments 1 through 7 in this order. If there were p such segments (rather than7)
and the polygon has p edges, we could end up spending Qplog p) time on these insertions alone,

(a)

\
\

(b)

FIG. 15. (a) Any two segments supporting edges of theupper (lower) chain intersect. (b) Vertex z is

charged only by the lowest region below z that is incident to both lines passing through the vertex,

region the segments which contribute the edges of the region must extend

completely to the left and the right of the region in question. This forces these

segments to be in grid-like position, as depicted in Figure 15(a). Thus, the

region alone is witness to Q( pz ) intersections —enough to make us forget about

the @(p log p) cost of insertion. Of course, this does not really prove
anything, but at least gives us cause for a little optimism. The key fact is that in

the charging scheme alluded to above, a given vertex will be charged at most a

constant number of times.

LEMMA 2. Consider a hammock defined by n segments connecting two
vertical lines; let deg( r] be the number of edges bounding region r in this
hummock. Then

~ deg’(r) = O(n + k),
r

where k is the number of intersecting segment pairs and the sum is taken
over all regions r in the hammock.
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PROOF. If v and w are, respectively, the leftmost and rightmost vertices of

a region r in the hammock (assuming that these vertices are unique), we define

the upper chain of r as the polygonal line running clockwise from v to w.

Similarly, the lower chain is the polygonal line running clockwise from w to

v. Let u and 1 be the number of upper and lower edges, respectively (i.e.,

edges in the upper and lower chains); the total number of edges of r is equal to

P = U i- 1. The number of intersections among the segments supporting the
edges of r is at least (~) + (~) > ( p – 2)2 /8. In case v or w (or both of them)

are not unique (and thus r has one or two edges on the vertical lines defining

the hammock), we have a similar result. Now, p < u + 1 + 2 and therefore

(~) + (j) > (P – 4)2/8. In other words, r can claim credit for (i.e., charge) at
least (p – 4)2/8 intersections. The proof will be done if we can show that each

vertex is charged by at most two regions. Indeed, we succeed in doing this,

except for the two intersections that are defined by the first and the last edge of

the upper chain and the lower chain. So, let us exclude those from the charged

vertices of r. Consider now a vertex z in the hammock. It is the intersection of

two segments. To be charged by a region r, it is necessary that r should lie

either in the wedge below or above z. In any event, r has to be incident to both

segments passing through z. But the two edges supported by these segments

cannot be first and last on the upper (lower) chain. The latter condition implies

that the region is either the lowest below z or the highest above z that is

incident to both segments. Otherwise, there is a segment that cuts all regions

below (or above) this region, which gives a contradiction (Fig. 15(b)). ❑

Although Lemma 2 does not quite solve our problem, it tells us something

very important about the distribution of regions and vertices. As such, it is an

interesting combinatorial result about arrangements of lines. For the sake of

argument, let us pursue this fascinating study one step further. The proof of

Lemma 2 still holds if we replace the two vertical lines of the hammock by two

arbitrary distinct lines. Of course, the shape of the window through which we

look at an arrangement of lines influences the definition of chains. A chain of a

region will now start and end at a vertex that allows a tangent line parallel to

a side of the window. The observation that the sum of the chain lengths squared

is at least proportional to the square of the total number of edges of the region is

true as long as the window is bounded by a constant number of sides (see

Figure 16). A vertex will be charged by at most four regions, one in each

wedge. This allows us to state the following generalization of Lemma 2.

THEOREM 3. Let R be the set of regions obtained as the intersections of a
convex polygon P with the i-egions of an arrangement of n lines. If P has a
constant number of vertices, then

~deg’(r) = O(n -t k),
r

where k is the number of line pairs intersecting inside P and the sum is
taken over all regions r in P.

To see how important the restriction to a window of constant size actually is,

consider a circular window in Fig. 16. Let this window contain the vertices of

the n-gon (24-gon in the figure) but no other vertices. Then, ~, deg 2( r) =
Q( n2), although there are only 0(n) intersections inside the window.
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FtG. 16. An arrangement of lines
viewed through a quadrilateral window.

What are the implications of Lemma 2 to our analysis? A region with p
edges might be entitled about p2 credits since it can be identified with roughly

that many intersections (up to within a constant factor). This credit invariant is

both good and bad. If we split a large region in the middle, then we release

many credits. If, however, a new segment is inserted in such a way that it

increases the number of edges from p to p + 1 (think of a segment cutting off

only one vertex of the region), we have to feed ( p + 1)2 – p2 = 2 p + 1 new

credits into the system. To earn these credits, we must argue that the new

segment contributes on the order of p new intersections. But is that true?

Suppose that we are in a hammock: All segments, including the new one, join

two vertical lines between which the region lies. If the new segment cuts

through two consecutive upper (resp., lower) edges, it creates about u (resp., 1)

new intersections. This is not exactly what we wanted, but there an easy fix:

Redefine the credit invariant to be U* + 12. The new intersections can be

converted into either 6(u) or @(1) new credits, which is sufficient to maintain

the invariant. Once again, this discussion is not leading to an answer but to a

problem. Indeed, let us return to the general case where a segment is inserted

into a web.

CAPSULE 11. ADDING EXTRA VERTICAL EDGES

“That was against the rule,

It made the children laugh and play”

Our previous argument falls through for the following reason. Let L be the

current sweep-line (passing through the left endpoint of the segment to be
inserted) and let L’ denote the vertical line passing through the right endpoint.

Again, let us concentrate on a region being cut through and through by the new

segment. The clearance property ensures that each segment which contributes

an edge to the region either stretches all across the strip (L, L’) or falls

completely on one side. Figure 17 gives a dramatic illustration of what could

happen. The region has upper and lower edges in large quantities, yet the new

segment generates only two additional intersections. To maintain the credit

invariant, we need on the order of (1 + 1)2 – 12 extra credits, which might be

very hard, not to say impossible, to get.
Another source of worry is the exposition of the edges outside the strip.

Suppose that many segments joining L and L’ are to be inserted later on: What
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FIG. 17. The new segment s cuts a
region whose lower chain consists of

many edges. However, it does not cut

more than two segments supporting those
edges.

will happen if these segments cut the region through both its lower and upper

edges? This will force our dovetailing to go all the way around the region to

find the exit point. This excursion outside the strip could turn out to be very

costly. All the more costly as we may have very few intersections to show for.

We certainly do not need more roadblocks at this point. Fortunately, a minor

addition to the dovetailing mechanism will take care of it.

The dovetailing can be modeled as two scouts walking around the boundary

of the region, one clockwise and the other counterclockwise. We require our

scouts to keep track at all times of whether they are inside or outside the strip

(L, L’). A scout always begins his walk inside the strip. He may then leave it

and re-enter later on. Further down the road, the same scout might leave again

and finally re-enter. Of course, we should recall that scouts can never cross,

which certainly puts a limit on how many times they can go in and out.

Now comes the addendum. The scouts work in dovetailing fashion until the

exit point has been found. If the region extends to the left (resp., right) of the

strip, then the dovetailing must continue until this has been discovered and a left

(resp., right) vertical edge has been added to the web. (Of course, there is no

need to add a vertical edge if there is already one there and the addition would

create a multiple edge). These vertical edges will serve as shortcuts and ensure

that straying outside the strips can occur at most twice per region. This is

illustrated in Figure 18.

Here is another way to look at the dovetailing. Let 1 be a variable equal to 1

if a left vertical edge is needed, or O if it is not. Note that 1 = 1 if and only if

the left endpoint of the segment to be inserted lies to the right of the leftmost

vertex of the region. We define r similarly with respect to the right vertical

edge. If, at any time during the dovetailing, we happen to leave the strip to the

left, we can immediately set 1 to 1. If, on the contrary, we reach the leftmost

vertex of the region, we can set 1 to O. A similar remark applies to r. Instead of

stopping the dovetailing as soon as the exit point has been found, we pursue it

until each of the following is true: (i) the exit point has been found; (ii) both 1

and r have been set to some value; (iii) if 1 (resp., r) has been set to 1, then the
corresponding vertical edge has been added to the web. Note that all of these

conditions can be made true by a single one of the two concurrent walks or by a

combination of the two.

Is the algorithm different when we are dealing with the starting or terminating

region? Not at all. Actually, a minute’s reflection shows that we have added
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FIG. 18. The clockwise scout leaves the strip at step 1, re-enters at step 9; the left vertical edge is

added. Then the scouts continue their walks, The exit point is discovered by the clockwise scout at step

19. By that time the counterclockwise scout has left the strip through its right boundary and is walking
on with the goal of recentering and tinding the upper endpoint of the right vertical edge. As it turns out,
this endpoint will be discovered first by the clockwise scout, At that very step ( #25), the dovetailing

stops. Note that if the counterclockwise scout had not left the strip by the time the exit point was
discovered the dovetailing would still have had to go on to check whether the region might extend past
the right boundary of the strip. Many different scenarios are possible. As is the case in our example,
one vertical edge (the left one) is computed entirely by one scout, while the other one is handled j ointly
by the two scouts.

consistence y into the whole algorithm. The vertical stops introduced in the first

and last regions are just particular cases of vertical edges. Of course, the way in

which they are discovered is a bit different: With the help of the magic box, no

extra work is really needed for the starting region. Two final observations to

ensure that everything is clear:

(i) Each region traversed could end up with two new vertical edges: This
includes the first and last regions.

(ii) Because of our assumption of distinct coordinates, a vertical stop consists

of at most two collinear edges; other vertical edges (of the shortcut type)

are never split during later insertions.

CAPSULE 12. RELAXING THE CLEARANCE CONDITION

‘‘ Who cut off their tails with a carving kru~e”

What can we do if the segments do not satisfy the clearance property? Cut
them in small pieces. Of course, we would like as few pieces as possible, or
at least not too many. Here is a reasonable strategy based on the binary rep-

resentation of the endpoints’ ranks. To begin with, we should observe that the

~-coordinates of the segments are completely irrelevant to the problem. We
might as well simplify the problem. Given two closed intervals 1 and J on the

real line, we say that 1 and J are astride if one endpoint of 1 lies in the

interior of J and the other one lies outside J (note that this implies that one

endpoint of J lies in the interior of 1 and one lies outside 1). A set of intervals

is called clear if no pairs of intervals are astride.

Let V be a set of n intervals of the form [Xi, yi] (O s i < n). We define

C=(.zo, ..., z~) as the sequence of distinct endpoints formed by V: We
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have m + 1 s 2 n, with equality occurring when all endpoints are distinct.

Consider the following sequence of special intervals; they are so special to us,

indeed, that we shall call them canonical intervals. We take all intervals one

endpoint apart:

[zo, z,], [z,, z2], [z2, z3],..., [z,2", z(j+,,20],..., [z,,l_,, z,n].
Then, we take intervals two endpoints apart:

[zo, z2], [z2, z4], [z4, z6],..., [z@,z(J+,,21],... .

In general, we take intervals 2 k endpoints apart, which gives

[zo, z2k], [z2bz2k+l],..., [zj2k, z(J+,,2k],... .

In each case, j runs as high as the corresponding interval fits entirely into

[ ZO, z,.]; similarly, k runs as high as the corresponding sequence is not empty.
An elementary geometric progression shows that the total number of canoni-

cal intervals can never exceed 2 m – 1. Most important, the set of canonical

intervals is always clear. It thus gives us a good kit for cutting up the intervals

V. We would like to be able to take any interval [ Xk, y~] of V and partition it

into a short sequence of canonical intervals. By short, we mean of size at most

2 log m. Let us try a small example. The ranks of the coordinates as opposed

to their values will determine the partitioning, so we can make our life simpler
and choose Z, = i, and say, [x~, Yk] = [2, 7].

The idea is to find the highest value of k such that 2 is a multiple of 2 ~ and

2 + 2 k does not exceed 7. The values k = O, 1 pass the test, but k = 2 fails.

This gives us the first canonical interval; namely, [2,2 + 2 ~] = [2, 4]. The

initial interval [2, 7] is now reduced to [4, 7]. We pursue this game keeping k
at its current value ( k = 1). The value k = 1 passes the test, but k = 2 fails.

So, we add the canonical interval [4,6] to the sequence, and iterate with respect

to the interval [6, 7] and the value k = 1. We now find that the current value of

k fails. So, we restart the whole process from right to left, resetting k to the

value O. Starting at 7, we find that k = O is the only value of k for which 7 is a

multiple of 2 ~. Since 7 – 2° is no less than 6, we get another canonical

interval, [6, 7]. The two ends have met, so we may stop.

Note that we do not obtain the intervals in order from left to right. As it turns

out, this is of no consequence as far as our application is concerned. There are

hundreds of other ways to carry out the partitioning, and one should feel free to

add all the bells and whistles he might wish. We include a formalized version of

the algorithm in pseudo-C-code. An interval of the form [z,, Zi+ J k parti-
~ for any fixed k. It follows that attioned in at most two intervals of length 2 ,

most 2 k intervals will be necessary, where 2(2° + 21 + “ s “ + 2‘- 1, > A.

This gives us an upper bound of (2 log ( h + 2)1 – 2 on the size of the partition.

The time required for the partitioning is of the same order of magnitude.

It is now time to return to the clearance property. The previous scheme
allows us to enforce this property by trading the original set of segments for a

slightly larger set. This is called the augmentation process. If we start out

with n segments, the analysis above indicates that the augmented set will have

its size within 0( n log n). We are basically done with the clearance property.

Well, actually, there is still one little hitch. Recall the property sought:
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left = Xk; right =.vk;

step = 1:
while (left + step < right)

{step2 =2X step;
If ((left’% step2)ll(left + step2 > right))

{add [ ZI,,t, zle,t+~.,~ to sequence;
left + = step; step = step2:

}
}

step = 1;

while (left + step = right)
{step2 =2X step;

If ((rlght~. step2)ll(left + step2 > right))

{add [ Z.,ght - ,..P> z,,g~.l to sequence;
right – = step; step = step2:

}

}“
FIGURE19

Whenever a new segment is to be inserted into the web, the interior of the
vertical strip defined by its endpoints should be free of any endpoint. The

clearance property makes this condition realizable. Of course, this assumes that

the segments are inserted in the proper order. If all the endpoints have distinct

x-coordinates (which has been our original assumption), then the left-to-right

order of the left endpoints induces the proper sweeping order among the

segments. This is all very well, but in spite of all our assumptions, the

augmented set of 0( n log n) segments is very unlikely to have distinct coordi-

nates. There are just too few coordinates to share among too many segments.

How should the sweep-line break ties? When it is moved to its next

destination it may now encounter several endpoints vying for attention. Recall

that right endpoints are just to be ignored. As far as left endpoints go, the

sweep-line must treat the tied segments in the right-to-left order of their righ~
endpoints. Any other order would obviously violate the condition mentioned.

One remarkable property of the augmentation process is that this order coin-

cides with the order of the right endpoints of the original segments. What we

mean to say is that if two augmented segments have the same left x-coordinate

then the relative x-order of their right endpoints (if there is no tie) is the same

as the relative x-order of the right endpoints of the original segments. This

simple remark will give us a very convenient method for breaking ties and

doing other useful things as well.

The alert reader will perhaps have recognized glimpses of the ubiquitous
segment tree [4] in the partitioning scheme described in Figure 19. We can

identify the canonical intervals with the nodes of a complete binary tree on m
leaves. Each interval [XL, y~] is partitioned into a collection of canonical

intervals, at most two of which are identified with nodes on the same level of

the tree. In a total of 0( n log n) operations, we can compute node-lists

indicating, for each node of the tree, which segments use the canonical interval

at that node for their partition. The correct processing order is then obtained by

traversing the tree in preorder. Within a given node-list the processing order is

immaterial as far as the insertion is concerned.

For reasons that it is too early to mention, however, we wish to prescribe a

specific order among elements of the same node-list. We assume a normaliza-
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FIG. 20. Using the canonical intervals defined by the segment tree, we decompose the four segments
into nine segments that now satisfy the clearance property. The schedule takes nine segments by
traversing the tree in preorder.

normal form if the following is true

two segments s, and s, of S that

tiw condition. A schedule is said to be in

for any node v of the tree: Given any

contribute entries to the node-list at v and are such that the’ right e~dpoint of Si

precedes the right endpoint of Sj in x-order, the segment o contributed by Sj

must be inserted before the segment o‘ contributed by Si. In other words, ties at

node v are broken by looking at the x-coordinates of the right endpoints of the

original segments.

Figure 20 illustrates the augmentation process on four segments. Since

deletions are ignored, let us give the schedule of insertion for the sweep-line.

The entry i: ( jd, kd ) means “insert the portion of segment i running between
the x-coordinates of the d endpoint of segment j and the d’ endpoint of

segment k (d and d’ are placeholders for 1 = left or r = right)”. The

processing order will be

l:(ll,2r) 3: (2r,4r)
2:(21,31) 4:(2r,4r)
3:(31,2r) l:(2r, lr)
2:(31,2r) 3:(4r,3r).
4:(41,2r)

This completes our discussion of the clearance property. Note that the

augmented set can be treated just like an ordinary set of segments. The only

difference is in the fact that x-coordinates might be shared among endpoints.

This will not create (much) difficulty, In one way, it will turn out to be a

bonanza when we get to discuss the magic box. If a segment is partitioned into
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s > 1 subsegments, only the leftmost endpoint of the segment should be hard to

insert. The s – 1 other “left” endpoints should be trivial to handle since they

coincide with the right endpoints of subsegments already inserted. In fact, there

is another interpretation of the augmentation process. It is a way to schedule the

insertion of a segment into the web. At certain points, it might be wise to

suspend the insertion process for a segment just to resume it later when more

pieces of other segments are in the web. This is exactly what we do when we

‘ ‘cut’ ‘ each segment into smaller pieces. To distinguish endpoints from the

original set of segments from the ones created during the augmentation process,

we refer to the former ones as the original endpoints; the others are called

augmented endpoints. We use the same terminology to distinguish between the

segments of S and the segments resulting from the augmentation process.

There is another important difference brought about by the sharing of

coordinates. Let vw be a vertical stop of the right type, that is, created during

the cutting of a terminating region (Figure 13). Let v (resp., w) be the upper

(resp., lower) endpoint of the segment. The segment vw consists of two

collinear edges. Later, this vertical segment may be further split by augmented

endpoints in the process of insertion. These splits occur from the left; they

may cause the boundary of the region immediately to the right of the segment

vw to contain an arbitrarily large number of consecutive vertical edges (see

Figure 21). This is called a vertical chain. Our goal is to be able to treat an

entire vertical chain as a single vertex. The reason is that repeated traversals of

vertical chains could have a devastating effect on the running time of the

algorithm.

Let us place ourselves at the point in time when the sweep-line has just

reached the position of the vertical chain and no further action has yet been

taken. One solution would be to require that in the web-structure any record

referring to an edge e lying on vw should have handy a pointer to the unique

web edge VV’ whose left endpoint is v as well as the edge WW’ whose left

endpoint is w. The edges VV’ and WW’ are called, respectively, the ceiling and

the floor of e (Figure 21). This provision would make it possible to circum-

vent vertical chains entirely. If we encountered one of them when dovetailing

around a region, we would be able to skip it entirely: An operation referred to

as a vertical skip in the following. Also, if we started the insertion of a

segment whose left endpoint was a vertex of such a chain, we could again skip

to the leftmost vertex of the lower or upper chain of the starting region in

constant time. Another subtle point of terminology. Vertical chains are kept

separate from upper and lower chains. For illustration, let us walk around a

generic region in clockwise order, starting from the bottom of the vertical
chain. We will successively traverse ( 1) the vertical chain, (2) the upper chain,

(3) a vertical edge, and (4) the lower chain. Parts (1) and (3) may not be

defined; although we might occasionally refer to (3) as a vertical chain as well,

notice that it cannot consist of more than one vertical edge. The distinction

between vertical and upper/lower chains is crucial. When we later assign credit

invariants to lower and upper chains. this will specifically exclude vertical

chains.

The provision that we have just described is handy because it illustrates

exactly the effect we want to achieve in the simplest terms. Each edge e of a

chain should have ready access to its floor and its ceiling. Unfortunately, our

solution is plagued with a major flaw and must be abandoned. The problem is
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FIG. 21. Many augmented endpoints can have the same x-coordinates and thus create long vertical
chains.

that we do not really care about e’s floor and ceiling until a segment adjacent to

e comes to be inserted. But when this happens, segments adjacent to the chain

may have already been inserted and in the process assigned edge e a new floor

or a new ceiling. As it turns out, all but at most one vertex of the chain are

augmented endpoints, so insertions of the continuing type (i. e., of segments

whose left endpoints are augmented) are likely to pop out of the vertical chain

in random manner. How do we maintain floor and ceiling assignments under

these conditions? One could use finger trees for that purpose. But wait ! Wasn’t

dovetailing used to avoid fingers in the first place?

Fortunately there is a very simple solution. Upon encountering a vertical

chain, we indulge in a bit of preprocessing. This encounter will occur the first

time we try to insert a segment whose left endpoint lies on the vertical chain in

question. Since floors and ceilings come only later into the picture we replace

them by special edges called companions. Rather than jumping to the floor or

ceiling directly, we jump to companion edges. At the end of the preprocessing

each edge of the chain will have a pointer to its unique companion edge on the

chain. To define the notion of a companion, let us go through the history of

insertions emanating from the chain under consideration. At the beginning, the

highest and lowest edges of the chain have each other for companion. No other

edge has a companion. Let p be a vertex of the chain (distinct from v and w)

and let pk (resp., P[) be the vertex right above (resp., below) p. Assume that
the first segment adjacent to the chain that gets to be inserted is of the form pq.

Then, if PPJ1 (resp., Ppl) does not already have a companion, it is given the
highest (resp., lowest) edge of the chain for companion. The insertion of pq
makes two vertical chains out of one, and the definition proceeds recursively in

the obvious manner. Note the importance of not giving anyone a new compan-

ion if it already has one. Without this rule, everyone would end up with itself as

companion (the ultimate society). It is clear that if whenever we insert a

segment adjacent to the chain, we know the companions of the chain edges
adjacent to it, vertical skipping becomes trivial. When an insertion cuts a

vertical chain into two pieces, all new floors and ceiling can be computed

(implicitly) in constant time.

How difficult is it to compute companions? Let v,, Vz, . . . . v., be the

vertices of the chain in descending order, with v, = v and v,. = w. Assume



28 B. CHAZELLE AND H. EDELSBRUNNER

compamon(vlvz) = Vm– IVm;

push( 1):

f0r(i=2, i=m, i++)

{while (x, < x,)
{if (i> t + 1) ccmpanion(vfvt+l) = V,_lV,;

pop;

}
If (1 > t + 1) companion(v, _lvZ) = vtvt+l;

push(i);

FIGURE 21

for the time being that each of these vertices is an augmented endpoint, and for

each i ( 1 < i < m), let x, be the x-coordinate of the right endpoint of the

original segment associated with v,. From our previous remark concerning

the equivalence of orderings between the xl’s and the right endpoints of the

augmented segments, the schedule of events ensures that the segments are

inserted in an order such that x,, > x,, > “ “ “ > xl,~_,.

It is clear that the particular orientation of the segments emanating from the

chain has nothing to do with companionship: All that matters is how far these

segments extend to the right, since this determines their order of insertion.

There exists a simple linear time algorithm for computing companions. See

pseudocode (Figure 22). The symbols push and pop denote the standard stack

operations. Each entry in the stack is an integer between 1 and m. The top of

the stack is denoted t. To ensure the consistency of the while loop we set both

x, and Xn to +m, but we make the convention that xl > x,.. Figure 23

depicts the algorithm in action as well as its relation to the computation of

left-to-right maxima. The curved arrows represent the companion assignment;

they are computed from left to right by the algorithm. To summarize, this

preprocessing should be applied the first time we attempt to insert a segment

emanating from the chain. Then the entire chain is scanned and the routine

above executed.

If one of the vi’s is not an augmented endpoint (only one may not be so), then

it must be the right endpoint of an original segment. Although no segment will

be inserted from it later, this case does not differ from the general one in any

significant way. More interesting is the case of an original left endpoint lying

on the chain. Granted, the magic box will figure out on what edge of the chain

that endpoint lies. But what about vertical skips? When the insertion of the

segment takes place, we convenient y forget the fact that we do not know its
floor and ceiling and boldly start the dovetailing from the entrance point. The

scouts will be at liberty to scan through the vertical chain. This exception to the

rule is acceptable because it will happen only once per chain. The costs incurred

can be accounted for by the chains themselves. For the sake of consistency, we

can therefore pretend that, in all cases, vertical skips can be implemented with

overhead amounting at worst to an extra multiplicative factor.

Yes, gentle reader, this was a long capsule, indeed. We hope it has convinced

you that life without the clearance property is not all that bad. The price to pay

is an augmented set of segments, a more intricate algorithm for determining the

schedule, the notion of a normal schedule, the necessity of vertical skips and its

consequences in terms of preprocessing vertical chains.
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FIG. 23. The arrows indicate the companionship among line segments. We have drawn all segments
horizontal because their actual slopes are irrelevant.

CAPSULE 13. IMPLEMENTING THE MAGIC Box

‘ ‘For nobody’s toeses are posies of roses”

The only problem with magic boxes is that they are magic. Of course, one can

always leave their construction as an exercise to the reader . . . . Let us return

to the point where the magic box was introduced. We had just agreed to keep

the sorted sequence of active segments in a so-called sweep tree. This is a

red– black tree whose symmetric traversal gives the name of active segments in

ascending order. In our case, the collection of segments is the augmented set

emanating from the cutting described above. Recall that a segment is said to be

active if it intersects the sweep-line. As the set of segments has been aug-

mented, so has the schedule: Its events are now determined by the endpoints of

all the segments in the augmented set. The previous capsule has made this plain,

so let us move on.

As long as the sweep-line stays put, the sweep tree can be updated quite

easily. Consider the insertion of a new segment. If the left endpoint is original,

then the edges of the web right above and below the point in question are

retrieved by binary search in the sweep tree. The tree is updated accordingly

(insertion of a new node and the whole bit). If the left endpoint is of the

augmented type, things are even simpler. The sweep tree can be completely

circumvented. We assume that an appearance table is maintained throughout

the sweep to tell us if (and where) a given segment has already contributed to

the web. If s, (the ith segment in the original set) has already contributed at

least one edge to the web, the ith entry in the table will be a pointer to the

rightmost such edge. Note that this edge always has a vertical stop on the

right. If on the contrary Si has yet to become active, then the ith entry is equal

to o.

Going back to the insertion of the new segment, we first find out the name Si

of the original segment (before being cut up) — a constant-time operation with a

proper representation of the augmented set. Next, we look up entry i in the

appearance table. If it is equal to O, we search the sweep tree for the two web
edges, respectively, above and below, the left endpoint of the new segment.

Then, we insert a new node pointing to the new web edge. The dovetailing can

get started from there. If the ith entry of the appearance table is not null, then

we jump directly to the edge to which it points. The dovetailing will begin in

the vicinity of that edge. Updating the sweep tree is particularly easy. Consider
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segment s

FIG. 24. Inorder to insert segment .s’, weusethe appearance table tojumpto theright endpoint of its

predecessor, segment s. This is also the right endpoint of edge e, therlghtmost edge of s in the web.

Figure 24. The appearance table takes us to edge e. The two vertical edges

adjacent to the right endpoint of e give us the starting point of the dovetailing.

(Inthe particular case of Figure 24, a vertical skip is in order.) At this point,

we assume that just as each node of the sweep tree points to some edge of the

web, there exists a reverse link to go from the edge to the corresponding node

of the tree. This will allow us to update the node that points to the edge e to

point to e’ instead. Note that this reverse link could be put in the appearance

table directly. The reason we choose not to do so is simple: Later, we will

revamp the sweep tree, so by disconnecting it completely from the appearance

table. the definition we just gave of the table will not have to be changed.

What we have done in this capsule is to show how to implement the magic

box while the sweep-line is stationary. Put differently, we have described how

to make use of the sweep tree. We must now deal with the major problem yet

unsolved: How do we update the sweep tree, especially when a large number of

intersections take place between two schedule events and the order along the

sweep-line gets all mixed up? Since we have long forsaken the possibility of

treating intersections in order from left to right, we are not going to sweep over

intersections, pause for a moment, do some work, and go on. The sweep-line

algorithm has been entirely laid out in the previous capsules, and we shall not

touch it any more. The magic box will have to be implemented as a separate

subroutine. It might use the web as a tool, but it will not affect its construction,

nor any aspect of the sweeping process for that matter.

These fine words having been spoken, we now need a new insight. Here is

one: Since we are proclaiming east and west that the sweep-line and the magic
box should be separate and independent, why tie the definition of the sweep tree

so closely to that of the sweep-line? Why should all the nodes of the sweep

tree point to edges crossing the sweep-line, for example. After all, when an

insertion occurs, only a logarithmic number of nodes are visited; so our current

invariant might be too strong.

CAPSULE 14. A FUNCTIONAL LOOK AT THE SWEEP TREE

“But lies in bed till eight or nine,

Lazy Elsie Marley”

The answer will come from a lazier approach to the updating of the sweep tree.

Instead of maintaining a global invariant on the structure of the tree, we allow
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the tree to decay somewhat (not in balance but in the information that it stores):

The main requirement will be that whenever a binary search is to be activated

the nodes visited can be “reconfigured” at little cost, or at least at a cost that

can be charged to new intersections. To understand what we are really trying to

do here, we must go back to the notion of a functional data structure. This is

an abstraction developed in [7] where a data structure is not regarded merely as

a particular arrangement of data but rather as a particular arrangement of

functions. The main idea is to relieve elementary components of a data structure

from the necessity of storing data. Sometimes, the benefit of this approach is to

bring upon storage the same effect as lazy evaluation and call by need are

known to have on execution time. In other cases, it provides a much more

adaptive data structure which runs faster. This will be the case here. The reader

who is not too familiar with [7] might be a little befuddled by this discussion.

The smoke should dissipate soon, though, as we put these ideas into practice.

Regarded as a data structure, the sweep tree is a particular way of arranging
data in a structured manner: The arrangement is that of a balanced binary tree

and the data consists of pointers to edges in the web. Note that the child

pointers are part of the arrangement, and thus for our purposes are not
considered as data. Interpreted as a functional data structure, the sweep tree

becomes an arrangement of functions. What does that mean? The functional

version of the sweep tree (or functional sweep tree, as we shall call it) is

obtained by replacing the data inside each node by the function whose evalua-

tion is associated with that node. To understand this last sentence, it may help to

back up a little.

Let v be a node of the sweep tree and let s be the augmented segment from

which the web edge pointed to by v originates. The raison d’~tre of v is to

allow a client —in this case, the search algorithm—to answer questions of the

type: “Is query point p above, on, or below segments?” If one thinks about

it, however, this misses the essential point of a binary search tree: If o(v)

denotes the symmetric rank of node v, then s happens to be the o ( v)th active

segment in ascending order. So, we can reformulate the question entirely in

terms of v and p. It comes down to evaluating the function ~V( p), where

.,fV(p) is equal to 1 if, say, c‘point p lies above the O(v) th active segment”
and – 1 (resp., O) if p lies below (resp., on) the segment in question.

The only difference between the sweep tree and its functional counterpart is

that the data at v is replaced by the function ~,. Everything else remains the

same; in particular, the bijection between nodes and active segments, where

symmetric order among nodes correspond to ascending order among active

segments. The reader may now wonder how we go about implementing a

functional sweep tree. In particular, what do we store at node v, now that data

has been purged out? Recall that a functional data structure is just an abstraction

and that it has to be converted back into a real data structure in order to be

implemented. However, we have gained complete freedom in the way we

choose to implement the functions ~,,’s.

How will we take advantage of this freedom? To evaluate fy at any given

time one must know which is the o ( v)th currently active segment in ascending
order. The naive implementation of f ~ consists of maintaining this information

at all times, whether it is needed or not. As we know, this will have the effect

of essentially sorting all the intersections by x-coordinates, which is bad news,

to say the least. Consider the history of the o ( v)th active segment. Let

tl,t2,t3,... be the times at which this segment, denoted ai, changes. Every
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time the sweep tree is used by the algorithm only a logarithmic number of nodes

are visited, so it is reasonable that two consecutive visits of v might occur

respectively at time O ( t3< (1< 14),when Uq is the relevant segment, and at

time 9‘ ( tq< 19< tlo),when the active segment is now ag. The naive imple-

mentation of y,, requires that at time t, the new segment ~, should be

computed. But we do not have to do that. Instead, it is all right to require that

only when v is visited the relevant CYi should be computed. One way of doing

this is to compute aq at time /3 and then do nothing until time O‘. at which point

we enumerate ~~, ~~, O!e, ~72 0!8, ~9 in this order and decide that CL9 is the

relevant segment. The latter implementation of f,, is likely to be easier since it

does not depend on some global clock but instead follows its own local

timetable.

CAPSULE 15. THE LEVELS OF A SET OF SEGMENTS

“ And then she may walk in two”

We begin with a short but necessary digression. A fundamental notion in the

study of line arrangements is that of a level (Edelsbrunner [10]). For k =
1, . . . . n, we define the k-level of an arrangement of n nonvertical lines as the

collection of edges with exactly n – k lines above. (More rigorously, an edge

belongs to the k-level if the vertical ray emanating upward from any point of

the edge intersects precisely n – k + 1 lines; note that an edge is a relatively

open set and therefore does not contain its endpoints. ) The collection of

k-levels partitions the set of edges into polygonal lines running in a monotone

fashion from x = – co to x = + m. A sweep-line cuts through a subset of

edges (the active edges) in bijection with the set of levels. The bijection

between the sweep-line and the active edges can thus be also regarded as a

bijection between the sweep-line and the levels of the arrangement.

What if we replace each active edge by (either itself or) some other edge

along the same level? (see Figure 25). This will likely have the effect of

bending the sweep-line. But recall our earlier pledge that the sweep-line would

remain straight. What we mean to say is this:

The sweep-line is and will always remain a straight line. The web edges

pointed to by the nodes of the sweep tree should be in bijection with the

levels of the arrangement. Furthermore, no such edge should lie

completely to the right of the sweep-line.

Figure 25 illustrates this statement. The sweep-line is the dashed vertical line.

The nodes of the sweep tree are in one-to-one correspondence with the edges

shown in bold. The knowledgeable reader might be tempted to draw an analogy

with the notion of topological sweep (Edelsbrunner and Guibas [11]). But that
would be a mistake. We need much greater flexibility than is afforded by

topological sweep. Indeed, things could get much wilder than in Figure 25: Any

bold edge could be replaced by any edge to its left on the same level. An

extreme (yet valid) example is shown in Figure 26. The 12 nodes of the sweep

tree point to 12 distinct edges in the arrangement, all collinear to a total of only

2 lines!

Of course, there is only one problem: Everything we have said so far applies

to line arrangements. As it turns out, generalizing our previous discussion to

line segments is quite simple. First of all, the notion of a level is perfectly well

defined among the n segments of our set S (see Figure 27). The definition is
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FIG. 25. The curved line intersects each
level of the arrangement exactly once; the

edges containing those intersections are
shown in boldface,

FIG. 26. The bold edges indicate the cur-
rent state of the sweep tree, It contains one

edge of each level.

FIG. 27. Levels in a set of line segments.

somewhat different. The simplest one is procedural. Starting from each left

endpoint in S, in turn:

(i) Walk to the right until you reach either an intersection or an endpoint. In

the latter case, stop.

(ii) Follow the edge to your right or your left, whichever takes you in

ascending x-order. Then go back to step (i).

We shall refer to the traversal in steps (i) and (ii) as an x-walk. An x-walk can

be started from any edge in the arrangement of segments: It always proceeds in

ascending x-order (hence the name), and if allowed to run its full course,

always terminates at the right endpoint of some segment of S.
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CAPSULE 16. X-WALKING AS THE KEY TO USING AND UPDATING THE SWEEP TREE

“Hus\z-a-bye, baby, onthe free fop”

Let us relate all of this back to the sweep tree. We assume for the time being

that as the sweep-line advances nothing ever gets to be deleted from the

web-structure. That is, no clever garbage collector takes the initiative to wipe

out edges and vertices left of the sweep-line on the grounds that perhaps they

have become useless. This assumption was already implicit earlier, as we

observed that the dovetailing itself may have to venture left of the sweep-line on

occasion. Here, it becomes all the more important as the sweep tree may relate

to edges way to the left of the sweep-line. For this reason, the term, web, will

now refer to the entire planar subdivision constructed so far, and not just the

part of it lying to the right-hand side of the sweep-line. We are now ready for

the invariant attached to our generic sweep tree node v. Consider the sweep tree

in its previous version and traverse its nodes in symmetric order. The web

edges, Ul, uz, . . . , u ~, obtained by following the appropriate pointers from

these nodes, correspond precisely to the active segments in ascending vertical

order. Now, consider the sweep tree “new-look” and perform a similar

symmetric traversal. As before, each node will store a pointer to some edge of

the web, so let el, ez, . . ..e~ be the sequence of edges obtained during the

traversal.

No edge e, (1 s i s m) lies completely to the right of the sweep-line.

Also, there exists a sequence of indices 1 < i ~ < “ 0. < iy s m with the

following property: for each edge Uj (1 s j s 1) an x-walk in the current

web starting at the edge e,, will lead to the edge u~.

In plain English, this is what happens. Ideally, we would like a complete

bijection between the nodes of the old sweep tree and those of the new one.

Ideally again, while a node of the old tree would point to some edge u of the

web crossing the sweep-line, the same node in the new tree would point either

to u itself or, if not, at least to an edge from which u can be reached via an

x-walk. This would be ideal. As it turns out, we will be considerably better off

in the end if we allow a few extra (dummy) nodes in the tree. An x-walk

starting from one of these extra nodes will never get to the sweep-line: It will

reach the right endpoint of a segment before crossing the sweep-line.

The alert reader may be thinking that if we did not blithely ignore right

endpoints, and instead deleted the relevant nodes from the sweep tree, we

would not wind up with spurious nodes in our tree. As a matter of fact, things
are not so simple. The problem with deleting from the tree is that when the

sweep-line reaches a right endpoint, there may be no corresponding node in

the tree. To be sure, there is some node in the tree from whose web edge an

x-walk will indeed take us to the right endpoint in question. But finding it

involves performing an x-walk backwards. We concede, however, that such

an approach is feasible.

Anyhow, we hope our new sweep tree is well understood by now. Although

the functional interpretation of the data structure is quite simple, there is so

much freedom of action that one might be surprised by certain configurations.

Once again, a few rambling remarks should help clear up whatever smoke may

remain in the reader’s eye.
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FIG. 28. Edges a, b, c, d. e, f, g, h, i are stored in the new sweep tree in this order, while

1,3,4, 5,6 would be the order of the edges in the old sweep tree.

(1) As opposed to the old sweep tree, which is completely specified by the

edges that intersect the sweep-line, the new tree depends on the previous history

of the sweep-line. Figure 28 depicts a fairly realistic configuration (except for

the clearance property, which we have conveniently forgotten). The symmetric

traversal of the old tree would lead to the edges labeled 1, 3,4, 5, 6 in this

order. (Edge 2 is to be inserted later, so let us just ignore it now. ) Traversing

the new sweep tree in symmetric order will give us a, b, c, d, e, f, g, h, i (see
Figure 29). Note that not only h and i (like c and d) originate from the same

segment, but h precedes i in symmetric order even though the edge labeled h
lies higher than the one labeled i. The bijection maps 1,3,4,5,6 to

b, c, d, f, h, respectively. Edges a, e, g, i are spurious.

(2) Following the philosophy of a functional data structure, we use the new

sweep tree just as we would use the old one. Only the implementation of the

functions f,’s differs. The binary search proceeds as usual. To determine the

outcome of a comparison at a given node v, we begin by checking whether

the associated web edge intersects the sweep-line. If not, then it lies totally

to the left of it. So, we start an x-walk until we reach the sweep-line. When this

is done the comparison can be performed in constant time. Of course, we must

update the information stored at node v: The pointer to the web will now point

to the last edge traversed during the x-walk. For example, the visit, during a

search, of the node associated with the edge d in Figure 28 would conclude

with four dislodging d as the edge pointed to by the node in question. If for

some reason the x-walk has to be aborted (as it would from edges a, e, g, i in

Figure 28), then we delete the node v from the sweep tree (an operation that is

structural to the tree and totally independent of the functions associated with the

nodes). Once the deletion has been completed, we simply restart the binary

search from the root of the tree, as though nothing had happened. Of course,

we might get stuck in the same fashion the next time around, but clearly this
cannot happen for ever.

(3) How about an insertion? Dealing with a segment whose left endpoint is

augmented does not involve the sweep tree at all (only the appearance table and

the web-structure), so let us assume that the left endpoint is original. Look at

Figure 28 and imagine that the left endpoint of 2 is the current event in the
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FIG. 29. The new sweep tree is a sorted binary tree whose nodes correspond to certain edges to the
left of the sweep line. Figure 28shows these edges in the web

3

b

d

FIG. 30. The sweep tree obtained from one m F]gure 29 after .wwalklng ~ and c and deleting the
node that pointed to u.

schedule. To insert the corresponding segment, the first thing on the agenda is

to perform a binary search in the sweep tree. Here is a likely scenario (see

Figure 29). The root points to f: An x-walk from f takes us to the edge

labeled 5, so 5 dislodges ~ as the edge pointed to by the root. The outcome of

the comparison is “below. ” Therefore, we pursue the search by visiting the left

child of the root, which leads us to c. After the required x-walk, we replace the

pointer to c by a pointer to 3: The outcome of the comparison is still “below.”

The left child of the current node takes us to the edge a, The ensuing x-walk

leads nowhere, that is, to a deletion, so we must restart from scratch. The

sweep tree is as depicted in Figure 30. The second binary search will proceed

more smoothly. The pointer to b will be made to point to 1, and this will be the

final change to the tree. Note that when a deletion occurs there is no need to

restart from the root (although it does not hurt to do so). Perhaps going back

just a few steps prior to the time of deletion would do just as well. We leave
this fine-tuning as an exercise to the reader.q

(4) A few more words concerning x-walks. We have seen how easy it is to

perform an x-walk in constant time per edge traversed. But we were dealing

with arrangements of segments and not webs. The difference is that we may

now have vertical edges. The rule is simple: ignore these edges altogether.

Whenever the x-walk encounters a vertex adjacent to a vertical edge, it should

try to proceed along the edge collinear to the current edge. If there is no such

edge, then we have reached a right endpoint, and a deletion will follow (unless,

of course, we have reached the sweep-line). There are three different cases (up

4 The reader did not think he would get away without homework, did he?
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(1)
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FIG. 31. The three possible cases in .x-walking: In case ( 1), we encounter a right end and we stop; in

cases (2) and (3), we ignore the verticol edges and continue walking straight.

to mirror-image configurations): Figure 31 summarizes what to do. Note that

case (3) is not exactly a special case. It may happen all the time. The two bold

edges lie on two segments that used to be one in the original set S. When the

one cm the left was inserted, the two vertical edges were added to the web (as

stops). Later, when the edge on the right was inserted, no use was made of the

sweep tree because the appearance table contained all the information needed.

For this reason, it could well be the case that the node of the sweep tree that

leads to these edges (via an x-walk) was not visited in a long time and

consequently kept way back to the left of the sweep-line (see Figure 31).

(5) Note that the sweep tree is updated only when inserting the left endpoint

of an original segment. In the schedule, this represents usually only 1 out of

@(log n) events. Right endpoints are ignored and left augmented endpoints are

handled via the appearance table, so one should expect the sweep tree to be

often lagging far behind the sweep-line.

(6) Caution should be used when updating the web-structure because of

side-effects. For example, adding an edge to the web often causes the splitting

of one or two other edges. Let e be such an edge (a nonvertical edge) and let el

and e, be the two edges resulting from the split: el (resp., e,) is the piece of e

to the left (resp., right) of the splitting point. Let Si be the segment of S from

which e originates. Suppose now that the appearance table contains a pointer to

e (obviously, in its entry i). To comply with the definition of the appearance
table, the ith entry will now have to point to e,. Note that no pointers from the

web to the appearance table are necessary for this update (which is good

because we do not have such pointers in the web-structure). All we need to

know is the name (i) of the segment. The second type of side-effects concerns

the sweep tree. If a node of the tree happens to have a pointer to the edge e,
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then it should be replaced by a pointer to e,. The main difference with the

previous case is that we need to find out which node of the tree needs updating.

First of all, note that at most one node of the sweep tree can point to the same

edge e. This is because each node of the tree is in correspondence with a

distinct level in the web. A simple solution is to augment the web-structure with

the appropriate information. If a sweep tree node points to an edge of the web

then the record for this edge should contain a field with a pointer to the node in

question. Note that during x-walks it is not even necessary to update those

fields since they will never be used again.

Once again, we want to remind the reader that this capsule concerned only

the implementation of the magic box and everything we said earlier about the

sweep-line proper still applies verbatim.

CAPSULE 17. A SUMMARY OF THE ALGORITHM

‘‘ Jack be nimble, Jack be quick”

Let us have a quick run-down through the main stages of the algorithm. First,

we cut up the input segments to ensure the clearance property. Then we build

an event feeder for on-line enumeration of the events of the schedule. The

sweep-line gets started. We call the event feeder to know what our next move

should be. All events are of the form: “Here is an augmented segment whose

left endpoint lies on the sweep-line. Insert it into the web. ” If the left endpoint

is original, then we perform a binary search in the sweep tree to locate where in

the web the insertion should start. Each visit of a node in the tree may

necessitate an x-walk through the web. An aborted x-walk causes a deletion

from the tree and the restarting of the binary search from scratch; this is the

only possible cause of deletion from the sweep tree. Whether the search lands

on a vertical chain or not makes no difference, since we shall not use vertical

skips (at least for the starting region). If the left endpoint of the segment to be

inserted is augmented, then we look up the appearance table to locate it in the

web. If we land in the midst of a vertical chain, then we preprocess it to enable

vertical skipping (unless the preprocessing has already been performed). The

insertion proper proceeds by way of a dovetailing walk around the boundary of

the region to be cut up (using vertical skips if necessary). The dovetailing stops

as soon as the exit point has been found and vertical edges have been computed

(or found not to be necessary). The insertion goes from one region to the next

until the right endpoint of the new segment has been reached. Special cases

include the starting and terminating regions. Caution must be taken in cutting

up edges of the web because of side-effects.
This concludes the algorithmic part of our discussion. It now remains to

anal yze the complexity of the algorithm.

CAPSULE 18. IN THE FINAL ANALYSIS

‘‘ Oh, my little twopence, pretty little twopence -‘

The data structures as well as the algorithm have been simplified to the

extreme. It now remains to prove that the time performance has not been

jeopardized in the process. Although it is hard to see why the algorithm should
have become much worse, proving that it is not so is a different matter. Let us

review the potential rough spots in the analysis. All preprocessing, including

the set-up of the schedule and the cutting of segments, can be done in
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0( n log n) time. As for the sweep proper, we only have to consider insertions

of new segments. The cost of using the magic box can now be assessed. If the

segment is not the first of its kind in the web, then the appearance table gets the

insertion started in constant time. Otherwise, the sweep tree is searched. Let us

look at this in some detail.

If we are lucky, only a single path of the sweep tree is visited and the search

time amounts to O(log n + W), where W is the number of edges traversed

during .x-walks. Since these edges will never be visited again by x-walks

(remember that x-walks never back up), we can charge them the cost of the

x-walks. The term O(log n) is charged to the (original) left endpoint of the

segment being inserted. Sometimes, recall, the search is terminated before

completion and resumed from the root after deletion of a node. Using the same

charging scheme to take care of x-walks, these aborted searches end up

requiring each O(log n) time. This cost is charged to the right endpoint of the

edge pointed to by the node being deleted. This endpoint is original so there

will be at most n deletions. As described earlier, all side-effects are handled in

constant time. To conclude to an 0( n log n + k) -time algorithm, we must

therefore prove that cutting up regions during insertion takes 0(k) amortized

time. This would be easy if we used finger trees, but recall that Capsule 9 has

ruled that out.

Instead, we cut up a region by dovetailing from the entrance point until the

exit point is found. Also, we add all relevant vertical edges whenever necessary

(the reader is invited to go back to Capsule 11 if this sounds mysterious). Our

analysis will proceed from the general to the particular. We shall begin with the

situation where the region to be cut up lies completely within the vertical strip

bounding the current segment to be inserted. When this is done we look at the

special cases, that is, starting or terminating regions, vertical edges, etc.

Let s be the segment to be inserted and R the region to be cut up. We

assume that R satisfies what we call the spanning property: This means that

the region lies inside the vertical strip defined by the endpoints of s. We shall

examine later what happens if we relax this property.

(1) Assuming the Spanning Property. Our first observation is that no

edge of R is vertical. Indeed, the schedule ensures that the strip does not

contain any segment endpoint (original as well as augmented) that is already in

the web. We can then define without ambiguity the leftmost (resp., rightmost)

vertex v (resp., w) of the polygon R. Let p be the number of edges in the

lower chain of R, that is, in the polygonal line running clockwise from w to v.

Similarly, q denotes the number of edges in the upper chain of R. Trivially,

we have p > 1 and q > 1, and p + q is the number of edges bounding R.
We require that the region R should hold exactly p2 + q2 + rein{ p, q}
credits.

credit invariant for R: p2 + q2 + min{p, q}.

By distinguishing among several cases, we shall see how this invariant can be
maintained under the insertion of s. We assume that 21 additional credits are

available upon entering the region R. Each credit can be used to pay for a

constant amount of computation. It will be obvious as we go along what exactly

we mean by this, so there is not much point in trying to describe here what

work can be accomplished with a single credit. As usual, any credit that is
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FIG, 32. Segment s intersects the lower chain of region R. We assume here that R lies in the strip
formed by the vertical lines passing through the two endpoints of s.

available but not used is thrown away. Regarding the 21 initial credits, we

charge their cost to the points of intersection between s and the boundary of R.
Before we plunge into the case-analysis, it might help to shed a little light on

the rather peculiar credit function chosen. Informally, the quadratic terms ( p2
and q 2) cover cuts that are neither too close to v or w nor nearly tangent to R.
Near-tangency requires possibly many credits just to maintain the invariant:

these are generated from scratch by the intersections newly created. When the

cut is close to v and w, the quadratic terms become poor credit providers;

hence, the term rein{ p, q}. The ever-alert reader, once again ahead of the

action, will have undoubtedly recognized the kinship between dovetailing and

the min operator.

First Case: Cutting a Single Chain. Both entrance and exit points lie on

the lower chain (the case of the upper chain is similar and can be obviously

omitted). Note that our assumptions on the input set S rules out special cases,

for example, cutting throttgh a vertex of R. Figure 32 illustrates the situation.

Let PI be the number of edges below s and let Pz = p – p ~. Note that PI >0
and p2 > 2. (The reader should ponder why we cannot have p2 = 1; hint:

remember our initial assumptions. ) For convenience, let us say that the region

R is of type (p, q), meaning that R has p edges in its lower chain and q
edges in its upper chain. Then, a region of type (p, q) gives way to two

regions, one of type (p, + 2, 1) and the other of type ( p2 + 1, q). We have

two sources of credits available: Those already present within the region R and

the 21 extra credits given to help us make it through the cutting of R. We need

more. How can we claim additional credits?

As illustrated in Figure 33, the fact that s extends both to the left and to
the right of R (the spanning property) implies that each of the p2 edges of the

lower chain above or through s comes from a segment that intersects s (the

points z, in Figure 33). So it seems that asking each intersection to generate,

say, four credits for our use is legitimate. As long as we do not make more than

one, two, or say, a constant number of requests to the same intersection Zi

later in the computation, we will still be in the running for an optimal

(amortized) insertion time.

Unfortunately, a given intersection may be charged too many times by this

process. As it turns out, a closer look at these multiple requests reveals an
intriguing pattern that points to a quick fix. To make our discussion more

concrete, let z,, . . . . ZP2 denote the intersections between s and the segments
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FIG. 33. Because of the spanning property, segment s intersects the p2 segments that support the

edges of the lower chain lying above (or passing through) .s.

of S contributing edges (above or through s) to the lower chain of R: The

order is taken to follow a counterclockwise traversal of the lower chain from v

to w (see Figure 33). We modify the charging scheme as follows: only the

intersections 22, 2S, . . . , ZP2_, are charged 4 credits. In other words, nothing
has changed but for the fact that we now leave the points z, and ZP, alone.

This gives us a total of 4pz – 8 credits.

This sounds familiar, doesn’t it? Indeed, recall that the proof of Lemma 2 in

Capsule 10 shows that each vertex is now asked to contribute to the wealth of at

most two regions: one above and one below the two segments that meet at the

vertex. We refer to this method of producing credits as the intersection charge.
Let us now assess our wealth. The credits at the outset amount to

(PI +P2)2+~2+min{PI +P2>9} +21 +’lP2- 8,

while after the cut the two new regions combined must hold a total of

(p] +2)2+ 1 +min{p, +2,1} + (p2+ l)2+q2+min{p2+ l,q}

credits. The running time of the dovetailing can be covered by rein{ p ~ + 1, p2
+ q} credits. If the clockwise walk discovers the exit point, then the cost of

checking the spanning property is subsumed. Otherwise, the entire lower chain

will have to be visited, which will take 0( p ~ + p2) time. We combine all

possible cases by charging rein{ p, + p2 p2 + q} credits for the dovetailing.

Note that we could multiply this number by any constant if it were more

convenient. We must now estimate the balance, denoted A, which is the

number of old credits (of region R), plus 21, plus the intersection charge,

minus the number of credits needed for the two new regions and the work it

takes to create them, We have

A=2plp2–4p1 +2p2+6+min{pl +p’, q}

. min{p2+ l,q} –min{pl +p2, P2+ q},
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FIG. 34. Segment s intersects both chains of R. Because of the spanning property, s intersects the

segments of at least P, + gl edges bounding R,

therefore.

A =2plpz –4P1 +Pz+ 6+min{pl +Pz,q}

– min{pz+ l,q} – min{pl, q}.

Because p2 – min{pz + 1, q} z – 1 and min{pl + P2, q} – rnin{Pl, q}

> (), we easily &riVe A > z p 1(p2 – 2) + 5 > 0. This concludes the analysis

of the first case.

Second Case: Cutting Both Chains. The entrance point lies on the lower

chain and the exit point lies on the upper chain (for obvious reasons, the reverse

case is omitted from our discussion). Figure 34 illustrates our assumptions. The

lower chain consists of p2 edges below s and p, = p – p2 edges above or

through s. Similarly, the upper chain has qz edges above s and ql = q – q2
edges below or through s. We have the boundary conditions p,, ql > 1 and

P2>q2~o.

Let us go through the same credit argument we used previously. A region of

type (p, q) gives way to two regions, one of type ( p2 + 1, q, + 1) and the

other of type (p, + 1, qz + 1). The intersection charge provides 4( p, – 2) +
4( ql – 2) credits. To this amount, we add our 21 extra credits and the

(P, + P2)2 + (q, + q2)2 + rnin{ P, + P2, ql + q2} credits associated with
the region R. On the debit side, the two new regions require a total of

(Pz + 1)2+ (q, + 1)2+ 1 +min{p2, ql}

+(fll + 1)2+ (9, + 1)2+ 1 +min{fl,, g,}

credits. The cutting cost amounts to rein{ p ~ + q2, p2 + ql }. If the clockwise

walk discovers the exit point, then checking the spanning property requires

another 0( q, ) time. A similar argument made with respect to the counterclock-

wise walk shows that p ~ + q, credits are sufficient to cover all this extra work.

This makes p ~ + ql + rein{ Pz, q2 } an adequate amount of credits to pay for

the entire dovetailing. The total balance comes to

A = 2PZ(P, – 1) +2q2(q1 – 1) +Pl +ql – 1 +rnin{PI +P2, q, +q2}

–min{p2, ql} – min{pl, q2} – min{P2, q2}.
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FIG. 35. The vertical edgesof a region may come from an earlier dovetailing process or they may be
vertical stops. In the second case, they are likely to consist of several edges (as illustrated in (b)).

Using the fact that PI + ql – rein{ P2, ql} – rein{ PI, qz} ~ o and rein{ PI

+PZ, ql + q2} – min{p2,’qz} > 1, we derive that A >0.
This concludes our discussion of the easy case where the spanning property

is satisfied. We now turn to a much more delicate task: assessing the full

implications of vertical edges.

(2) Relaxing the Spanning Property. We shall begin with a general

discussion of vertical edges. Assume that R already has two vertical edges on

each side ( VVO and WWO), each of which extends beyond the vertical strip

defined by the segment s (see Figure 35(a)). Either edge may have been added

during an earlier dovetailing traversal or it may be more simply a vertical stop.

In the latter case, the edge VVO may contain the right endpoint v ~ of a segment

(Figure 35(a)). Of course, this means that VVO is not really an edge but a

vertical chain. It is interesting to observe that because of the scheduling of

insertions this situation cannot happen with WWO. Suppose now that v and the

left endpoint of s share the same x-coordinate. Then VVO may contain an

arbitrary number of right endpoints v 1, V2, . . . (Figure 35(b)). Why is that so?

If v is strictly to the left of S, then the sweep-line has advanced too far ahead

for any augmented right endpoint to be left stranded on VVO. If, however, v and

the left endpoint of s are vertically aligned, things are different. Any number of

augmented right endpoints can lie on VVO. Fortunately, we have made provision

to enable vertical skips over vertical chains.

For complete generality, we shall assume a situation that paradoxically can

never happen. That is, having v lie strictly to the left of the left endpoint of s

and at the same time having an arbitrary number of left vertical edges

VOV1, V1V2, . . . . The combination of two factors allows us to ignore the

presence of vertical chains in the complexity analysis. For one thing, the

dovetailing is not affected by it because of vertical skipping. The only case in
which we ignore vertical skips and walk right through vertical chains is when

we insert a segment whose left endpoint is original. This can happen only once

per vertical chain, however, so we can essentially ignore the effect on the

complexity. Also, credit invariants are defined with respect to lower and upper

chains only, which specifically excludes vertical chains. For these reasons, we
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FIG. 36. Starting at v (or w, ifthe reader prefers), weperform adovetailing traversal of the region in

order to add the vertical edge from v to w.

can (mentally) replace VVO and WWO by single vertices and everything we say

will still be valid.

Let us now turn to the cutting up of R caused by the insertion of ,s. For the

sake of generality, we shall continue to assume that R stretches over both sides

of S. (The other cases will follow readily after that. ) As a warm-up exercise, let

us find out the cost of adding a vertical edge. Suppose we want to insert one of

the vertical edges along the dashed lines of Figure 35(a). If we start from one of

the endpoints, how much time will that take us using dovetailing? Figure 36

makes this question more concrete.

Let a + b – 1 (resp., c + d – 1) be the number of edges in the upper

(resp., lower) chain of region R, where a, b, c, d >1. Suppose that vw is a

vertical edge to be inserted into the web, starting at v or w (whichever one

does not matter). The edge splits the upper chain of R into two pieces: The left

one consisting of a edges, and the other one comprising b edges. Similarly, the

lower chain is split into two polygonal lines of respective size c and d. The

credit invariant ensures us the disposal of ( a + b – 1)2 + (c + d – 1)2 +

rein{ a + b – 1, c + d – 1} credits. We request 6 extra credits for the cre-

ation of the edge v w. (The new vertical edge will be delighted to pay for these

extra credits. ) The two regions created require a total of a2 + C2 + rein{ a, c}
+ b2 + d2 + rein{ b, d} credits, to which we must add rein{ a + c, b + d} to

pay for the dovetailing. This gives us a balance of

A=2(a–l)(b –l)+2(c–l)(d –1)+3–min{ a+c, b+cf}+ 6,

where 8 = min{a + b, c + d} – min{a, c} – min{b, d}. To prove that A

is nonnegative, we distinguish among four cases which, by symmetry, cover all

possible cases. In the first three cases, we use the fact that 8>0.

(i)a, b,c, d>2:A>2(a–l)+2(c– 1)+3–(a+c)=a+c–l

(ii) al~a2and cord isequal tol:A2(a –l)(b-l)+(a-l)(b -
1)+3–min{a+b+c, a+ b+d}=a–l+b–1+ 3– (a+
b) – min{c, d} ~ O.
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(iiija= land c=l:AZ3–min{2, b+ d}>O.
(iv) a=landd =l:A~3-min{l+c, b+l}+min{l+b,c+l}-

1–1>0.

What this little digression shows is quite remarkable. Any vertical edge can

be added to the web at an amortized cost of 6 extra credits, provided that we

know the starting point of the dovetailing. Returning now to the two vertical

edges al bl and a, b, (Figure 35(a)), let c1 (resp., C7) be the minimum number
of credits necessary to cover a walk around the boundary of R from al to b,

(resp., a, to b,). The value of c{ (resp., c.) is equal to the number of
nonvertical edges on the piece of boundary running from al (resp., a,) to b,
(resp., b,) clockwise or counterclockwise, whichever is shorter. We define c as
the maximum of c1 and c,.

Suppose that some benevolent oracle inserts the two vertical edges at no cost
to us. We claim that once all the credit invariants have been restored following

these two insertions we have in our hands at least c extra credits to dispose of.

Without loss of generality, assume that c = Ci > c,. We shall request the oracle

to insert a, bl first. Then we restore the credit invariant. Since the cost of

insertion is null, our little digression above shows that the number of credits

released in the restoration can pay for a dovetailing walk from al to b[. This

gives us the extra c credits desired. Since the next insertion will not consume

any credit (rather, it will release some more), we can keep these c credits for

ourselves. Note that if c = Cr, then the order of insertion for the oracle must be

reversed. This establishes our claim.

By inserting the two vertical edges the oracle creates a configuration that

satisfies the spanning property. The cost of inserting the new segment s is

therefore under control, as was shown earlier. Let us examine the difference in

credit accounting between the fictitious, oracle-aided insertion and the real one.

As far as the restoration of credit invariant is concerned there is no real

difference. The splits may occur in a different order but the end result is just the

same. Thus, we only have to worry about the cost of dovetailing. More

precisely we have to show that the credits used to pay for the fictitious

dovetailing added to the c extra credits suffice the cover the cost of the actual

dovetailing.

To avoid rather tedious combinatorial derivations, we use a trick. It may

sound a little suspicious at first, but a second reading should chase away any

lingering doubt. We need the useful notion of delayed dovetailing. Imagine that

in the course of dovetailing one of the two (concurrent) walks gets stopped, say,

at a red light, and misses its turn to move t consecutive times, while the other

walk keeps going as though nothing was happening. It is fairly obvious that the

red light will not delay completion by more than 2 t steps. To see this, imagine

that animated by a spirit of solidarity the other walk decides to stop while the

light is red. Then the dovetailing will go through exactly the same sequence as

before, only 2 t steps behind.

The relevance of this argument is obvious. Since none of the termination

conditions are tested outside of the vertical strip, we may mentally replace the
polygonal line al, . . . . v, . . . . b[ by the edge alb, and place a red light at b,
for a duration equal to the length h of the polygonal line. Let X be the length of

the polygonal line al, . . . , w, . . ., bl. Recall that c1 = rein{ h, X}. Since the

two concurrent walks in the dovetailing never cross each other, no more than c,
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edges of the polygonal line a~, . . . , v, . . . , bl can ever be visited. This means

that it is safe to set the duration of the red light at bl to the value c1 instead

of A.

We play a similar trick with respect to the polygonal line a,, . . . . w, . . . . b,,
placing a red light at b, of duration c,. With these modifications. the real

dovetailing is nothing but a delayed version of the fictitious dovetailing. Its cost

will be covered by the credits used to pay for the nondelayed dovetailing (which

we have) plus a number of credits proportional to the duration of the red lights,

that is, C[ + c,. We have c credits for that purpose, which is therefore

sufficient. We are applying here a general rule concerning credits. If credits are

to be consumed directly, then we can always do with any number proportional

to what is strictly needed. If, however, they are to be recycled (e.g., to

maintain credit invariants), then we must use what is available and not a

multiple thereof.

This concludes our analysis of the cutting operation for the case where the

region under consideration is neither the first nor the last one to be cut up

during the insertion. We have omitted the case where the region stretches over

on one side of the vertical strip but not on the other. This is really a subcase of

the one discussed above, and we trust that the diligent reader will eagerly and

easily work it out for himself.

(3) At the Beginning and at the End. Our final word on the analysis of

the running time concerns the starting and terminating regions cut up during the

insertion of segment ,s. Let us begin with the starting case.

If s is a brand-new segment, its (original) left endpoint is located in the web

via the magic box and the insertion of the vertical stop comes for free. (Recall

that, although original, the left endpoint could very well fall right in the midst

of a vertical chain. In that case, of course, no vertical stop is needed. ) As we

have seen earlier, the credit invariant is maintained with no difficulty. The

remainder of the insertion proceeds as usual. If the insertion is of the continuing

type, then locating the (augmented) left endpoint comes for free, courtesy of the

appearance table. Everything is as usual, except for one minor point. Remem-

ber the vertical chains. Well, the segment could come out of a vertex some-

where in the middle of such a chain. As we said earlier, vertical chains can be

treated as single vertices using floors and ceilings, so it is possible to avoid

traversing these chains.

We now turn to the case of a terminating region. Its treatment is really no

different from that of any intermediate region. Here is why. We modify the

position of the segment s in such a way that the algorithm will not realize it, yet
everything will conform to the treatment of an intermediate region. As shown in

Figure 37, the trick is to bend and stretch the segment so as to create an exit

point. Nothing in the insertion process, including the addition of the vertical

edge, will be altered by this modification. This proves that our previous

analysis applies just the same.

This brings to an end the analysis of the running time of the intersection

algorithm. We have proven that n segments in the plane can be intersected in

0( n log n + k) time, where k is the number of intersections. What is the

space complexity of the algorithm? Obviously, no more than 0( n log n + k).
Can we somehow reduce this to 0( n + k)? This fascinating question will be

the subject of our next capsule.
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FIG. 37. By bending segment s at its entrance into the region so that it intersects the boundary at the
vertical projection of its right endpoint, we can reduce the case of a vertical stop to the general case of
vertical edge addition. This device is used only in the counting argument, and not in the algorithm.
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FIG. 38. The algorithm constructs a refinement of the vertical map defined by the segments. The solid

edges lie on segments of the set. The dashed edges are vertical stops through original or augmented

endpoints, and the dotted edges are shortcuts created by the dovetailing process.

CAPSULE 19. LOWERING THE STORAGE REQUIREMENT

“A halfpenny loaf will serve us all”

Figure 38 depicts the output produced by the algorithm on the input set shown

in Figure 19. We have the entire vertical map (after another pass through the

web) and more. Indeed, the augmented endpoints are all there, in addition to the

numerous vertical edges that accompany them. It is easy to clean up the map by

getting rid of all these extra edges and vertices. A depth-first search through the

map allows us to do the mop-up in time linear in its size. (Implementing this

operation is actually not nearly as simple as it sounds. It is nevertheless a
standard exercise in graph manipulation which we will leave as is. )

The obvious question remains, however: Can the storage requirement be kept

in 0( n + k) during the course of the algorithm itself? In practice, no one

should really care too much about this. Storage limitations are less and less of a

problem, especially when it is a question of 0( n log n + k) versus 0( n + k).
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Furthermore, one should not forget that k will often be the dominating term,

anyway. But for the sake of a nice theoretical result, let us show how to achieve

0( n + k) storage. We will give a quick-and-dirty method.

Intuitively, one would like to argue that, although a segment of ~ may be

split into a logarithmic number of pieces in the augmentation process, at most a

constant number of the cuts need be present in the web-structure at any given

time. Consider the edges produced by the algorithm that will eventually go after

the mop-up. These fall into three categories: (i) the vertical stops created at

augmented endpoints (and augmented endpoints only); (ii) the vertical edges

created to provide shortcuts; (iii) the edges of the web adjacent to any of the

above. Edges of type (i) or (ii) are called troublemakers.
Suppose that we have a regular mop-up algorithm to get rid of troublemak-

ers (not necessarily all of them): Such an algorithm is called regular if it

removes edges one at a time in such a way that at all times the current

web-structure forms a convex planar subdivision. Getting rid of edges (iii) can

be done on the fly by adding a few instructions to any regular mop-up

algorithm. This involves checking locally for vertices of degree 2 and replacing

pairs of collinear edges by their unions. We omit the details. Of course, we

should not expect to have all edges of type (iii) removed by this method if it

fails to get rid of all troublemakers.

We need a piece of terminology to characterize special pairs of vertices in the

map. Consider the insertion of segment s = pg. If its left endpoint p is
original. we call on the magic box to determine the point v (resp., w) on the

edge immediately above (resp., below) p. The pair (v, w) is called a trigger. If

p is an augmented endpoint, the insertion begins by looking up the appearance

table. This leads us to an edge of the web whose right endpoint is precisely p.
The vertices v and w immediately above and below p form two pairs

(v, p) and (p. w), both of which are triggers. Note in passing that with the
requirement of using vertical skips, the vertices v and w are not necessarily

visited during the dovetailing (they are visited only if they also happen to be at

the very top or bottom of the corresponding vertical chain). There are other

possibilities for a pair of vertices to be a trigger. If vw is a vertical edge (a

shortcut) vertically aligned with p and created while inserting s, then the pair

(v, w) is also called a trigger. This holds regardless of whether p is original or

augmented. Now what about the other endpoint q? Every vertical stop vw

vertically aligned with q and created while inserting s gives rise to two triggers

(v, q) and (w, q), following the usual maneuver. Finally, every vertical edge
(shortcut) vertically aligned with q and created while inserting s also gives a

trigger. Triggers are kept in an array of queues. Each entry in the array
corresponds to a distinct x-coordinate. When a trigger is created, it is stored in

the queue corresponding to the x-coordinate of its associated endpoint ( p or

q). With a proper pointing mechanism, we can easily ensure that inserting a
new trigger is done in constant time.

Our regular mop-up algorithm will work as follows. Right before L moves to

its next location (or at the very end of the sweep), we examine the queue

corresponding to the current x-coordinate and remove all duplicates. Then we

remove each trigger (v, w) from the queue and we initiate a clockwise traversal

from w to v (assuming without loss of generality that v lies above w). If we

encounter a troublemaker during the traversal, we remove it and stop. Other-

wise, we just go on until v is reached.
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This is our mop-up algorithm. It is obviously regular, so we can complete it

with the removal of edges of type (iii) as mentioned above. It remains for us to

show that the mop-up removes enough edges to keep the storage requirement of

the overall algorithm down to 0( n + k). Then we show that the mop-up

procedure itself runs in time 0( n log n + k). Finally, we prove that the

mop-up does not get in the way of the main intersection algorithm, that is, does

not destroy information needed by the algorithm. Finally, we show how the

event feeder itself can be confined to 0(n) storage.

(1) The Storage Requirement. It suffices to prove that the total number of

troublemakers remains in 0( n + k) at all times. Let us look at a snapshot of

the web in the course of the algorithm. Since troublemakers are associated with

augmented edges, any one of them can be removed without violating the

convexity of the region that contains it. Let us conceptually remove all of them

at the completion of the whole intersection algorithm. This gives us a convex

planar subdivision .Y’. Each troublemaker has associated with it a unique region

of ~ that contains it. We show that during the course of the algorithm no

region of Y ever contains more than one troublemaker to the left of L at any

given time. Since Y has 0( n + k) regions and the number of troublemakers

lying to the right of L is 0( n + k) (from the previous complexity analysis),

our point will thus be made.

Suppose that our claim is not true and that we have two troublemakers in the

same region of 9‘ that lie left of L. If there are more than two such

troublemakers, choose the two rightmost of that type. The rightmost trouble-

maker was inserted in the trigger-queue before L swept across it; therefore, it

must have been subsequently removed from the queue and caused the leftmost

troublemaker to be mopped up. Note that this argument only works because we

wait for L to reach the rightmost troublemaker. In other words, our claim

might be wrong as far as what lies right of the sweep-line is concerned.

(2) The Mop-Up Time. Once again consider a region of 7. None of its

edges are visited more than twice while mopping (once for each of its two

adjacent regions). A trigger can be regarded as a barrier that effectively blocks

off any further attempt at repeating the same traversal. How about the removal

of duplicates in the trigger-queues? To ensure linear time, we must label the

triggers in a canonical fashion so that bucket sort can be used. This is an easy

exercise.

(3) How Safe Is Mopping? By any chance, are we not sawing off the

branch on which we are sitting by blindly destroying the web-structure? Since

triggers, as mentioned above, act as barriers the cutting process itself is fairly

safe. The dovetailing will never have to complain that an edge it should have

been visiting is no longer there. How about the magic box, however? Remem-

ber that the web edges pointed to by the sweep tree can lag arbitrarily far

behind the sweep-line. So, it could certainly happen that an x-walk traverses an

edge of type (iii) that the mop-up will have deleted. What will save the show.
however, is the fact that the mop-up does not compromise the integrity of the

web as the representation of a planar convex subdivision. Furthermore, since

only vertical edges are effectively removed (nonvertical edges are only merged)

and vertical edges are essentially ignored by x-walks, nothing is in jeopardy if,

of course, one is to use caution in the implementation of the mop-up. For



50 B. CHAZELLE AND H. EDELSBRUNNER

example. itmustbe clearly understood that thepointers between the elements of

the trigger-queues and the edges of the web must go both ways. The reason is

that a modification of the web may affect a vertical edge pointed to by a

trigger-queue.

(4) The Event Feeder. This refers to the computation of the schedule of

events. The method that we gave earlier really requires @(n log n) storage in

the worst case. Although the number of events could be of that order of

magnitude, it would be nice to have a co-routine GetNextEvent that feeds the

next event to any one that calls it, and requires only linear storage.

The event feeder can be thought of as a preorder traversal of the segment tree

associated with the segments. A segment tree for four segments is depicted in

Figure 19. Our goal is to perform the preorder traversal without keeping the

entire segment tree in storage at any point in time. As explained in Capsule 12,

only the x-coordinates of the endpoints are important. Let C =

(Zoz,, . . . . Z2. _, ) be the sorted sequence of distinct x-coordinates that we
get from the segments. For each pair of integers j >0 and k >0, there is a
node of the segment tree that corresponds to the interval [ ZJ2*, Z(J + 1)2~ ,1
provided that (j + 1)2 ~ <2 n – 1. Note that the segment tree is a complete

binary tree whose leaves are [log n] + 1 nodes away from the root. The node
list of a node v is the set of segments whose x-intervals contain the interval of

v but not the interval of v‘s parent. We define the extended node list of v as

the set of segments that belong to the node list of v or any descendent of v.

Clearly, the extended node lists are supersets of the node lists. Still, a single

segment can be in the extended node lists of at most four nodes on a single level

of the tree. This is because a segment is in the extended node list of a node v

but not its regular node list only if an endpoint of the segment falls within the

interval of v. Thus, extended node lists need 0( n log n) storage altogether.

We see that extended lists provide enough information to allow for the preorder

traversal of the tree without constructing the entire tree.

Consider a path from the root to a leaf in the segment tree. We claim that the

sum of the lengths of all extended node lists on this path is 0(n). For one

thing, the sum of the lengths of the node lists themselves is 0(n). The reason is

that a segment can belong to at most one node list on the path. Also, the sum of

the lengths of the extended node lists, not counting the regular node lists, is in

0(n). Recall that a segment is in the extended but not in the regular node list of

a node v only if one of its endpoints (or rather the x-coordinate of one

endpoint) falls within the interval of v. Because we assume that no two

endpoints share the same x-coordinates, the number of endpoints in the
intervals of the nodes on the path decreases by a factor of two each time we go

down one level. This gives us a geometric series that adds up to 0(n).

The event feeder that we have in mind is a recursive procedure where each

call is represented by a node of the segment tree. Consider a (recursive) call of

this procedure represented by node v. The arguments for this call are the
extended node list of v as well as two integers j and k, where [ Zjzk, Z(J + ~)2~]

is the interval of v. First, we compute the node list of v (the segments in the
extended node list that cover [ ZJ2k, Z( ~+ I ~CA-1) and feed those for insertion into
the web-structure in order of decreasing right extent. This ordering does not
require sorting if the segments in the incoming extended node list are already

ordered in this fashion. Next, we compute the extended node list of v‘s left
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child (all segments that are not in v‘s node list and whose x-intervals intersect

[Zz/z~-l, z(*j+,)2k-1 ]) and we call the procedure recursively for this child.

Finally, we compute the extended node list of v‘s right child (all segments that
are not in v‘s node list and whose x-intervals intersect [ Z(2J + 1)2~-1, Z(2J+ 2)2L 11)

and we call the procedure recursively for this child of v. It should be clear that

this procedure only stores the extended node list of a single path of the segment

tree at any point in time, so that the required storage is 0(n).

CAPSULE 20. COULD WE HAVE DONE IT BETTER?

“Bake a cake as fast as you can”

We could claim without proof that @(n log n + k) is as fast as any intersection

algorithm can get and probably get away with it. It is, indeed, not too difficult

to see. Following Dobkin and Lipton [9] and Ben-Or [2], we model the

complexity of an algorithm by an algebraic decision tree. Each step of the

computation corresponds to the visit of a node in the tree. With each node is

associated a polynomial of fixed degree: The sign (and/or nullity) of its value

determines the branching of the computation. A node can produce the output of

at most one intersecting pair. To a given collection of n segments corresponds a

certain path in the tree whose traversal will produce the output of all k
intersecting pairs. Usually, the minimum height of such a tree determines a

lower bound on the time complexity. Here, of course, we already know that the

height will have to be (3( nz). A more refined complexity measure should

incorporate both input and output sizes as parameters. We define the function

7’( n, k) as the minimum, over all valid computation trees, of the maximum

length of any path associated with a collection of n segments intersecting in

exactly k points. Keep in mind, however, that to be valid a computation tree

must be able to handle any input of n segments.

We now prove the existence of a constant c such that T( n, k) > C(n log n
+ k), for all feasible pairs (n, k). 5 Our claim is obviously true if k is the

dominating term, so we can safely assume that k < n log n. As we already

said, although T( n, k) concerns only a subtree of the computation tree, it is

crucial that the whole tree should be valid and not just the subtree in question.

This will rule out arguments of the sort: T( n, O) is constant since the algorithm

does not even have to get started! The point is that the algorithm does not know

that fact ahead of time.

For any n > no and any k < n log n there exists a set of n segments that

intersect in exactly k points and follow the schema of Figure 39. Half the

segments are points on a horizontal line while the remaining segments lie in a

grid fashion. Obviously, the horizontal segments in the grid can always be

arranged so as to intersect exactly k vertical segments.

Consider the grid segments as fixed once and for all. This means that their

coordinates appear not as variables in the polynomials of the computation tree

but as coefficients. Let p = 1n /2] and xl, . . . . XP be the positions of the

5 Note that k and n are not completely independent: for example, we must have O < k < (~). It is
easy to see, however, that this is the only condition. Here is a simple way to generate a set of n
segments with any desired number of intersections. Start with n (unbounded) lines in general position.
Intersect the lines with a large disk containing all the (~) intersection points. Now take each segment in
turn and shrink it to a point. We thus go from (~) intersections to O while losing only one intersection at
a time.
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FIG. 39. Half the segmentsare single points and lie on a horizontal line. The other half consists of

horizontal andvertlcal segments that intersect in k< nlog n points.

[rz/2] points onthehorizontal line. Letusdefine thescope ofa computation

path to be the sequence of points (xl, . . . . XP) whose corresponding set of
segments are accepted by the path in question. The sequence ( x,, . . . , XP) can

also be interpreted as a point in p-space. It is clear that the scopes must

partition the set

IK= (xl,...+) 1rI (x, -x,) #o.] <l<jsp

A typical scope will consist of a few connected regions of Y?P, every one of

which must fall completely within a connected component of K. The reason is

that if a scope had a connected component astride two regions of K then it

would contain a piece of some hyperplane x, = Xj. This would invalidate the

computation tree since we could thus add an extra intersection and keep the

algorithm unaware of it.

An immediate consequence is that the number of paths accounted in T( n, k)

is at least equal to the number of connected components in K (which is equal to

P!) divided by the maximum number of connected components of a scope.
Adapting a classical result on the Betti numbers of algebraic varieties, Ben-Or

[2] shows that the number of connected components is dominated by b ~+’, for

some constant b > 0, where h is the maximum number of polynomials

associated with a path of the tree. We have h < T( n, k); therefore, the number
~) Since the tree is ternary, this numberof paths is at least equal to p!/ b P+ ‘(n .

is at most equal to 3~(”’ ‘). Putting things together, we easily derive that

T(rz, k) = fl(n log n), if k < n log n. We can now state our lower bound

theorem with assurance.

LEMMA 4. A LOWER BOUND. Any algorithm that correctly computes
segment intersections among any set of n segments will take on the order of
n log n -t- k time in the worst case, for any value of the input size n and
any feasible value of the output size k.

CAPSULE 21. THE END

‘‘ The nightingale sings when we are at rest”

We have reached the end of our journey. The main open problem remains to

work out some way of cutting down the storage requirement to 0(n). Now, it

may not be possible to do so while keeping a running time of 0( n log n + k).
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An interesting lower bound might be lurking there. Given the importance of the

problem, both on theoretical and practical grounds, this deserves serious

investigation. We conclude this section with a summary of our main result.

THEOREM 5. GENERAL SEGMENT INTERSECTION. A 11k pairwise intersections
among n segments in the plane can be computed in 0( n log n -t k) time.
The running time is optimal. The storage requirement is 0( n + k). If so
desired, the algorithm will compute the vertical map of the set of segments
within the same time and space bounds.

3. Open Problems

Two natural questions have been left unanswered. Is it possible to reduce the

storage requirement to 0(n)? Clarkson [8] has recently provided a positive

answer to this question if we are ready to use a probabilistic algorithm that

takes 0( n log n + k) expected time. The deterministic case remains open.

Another challenge is to extend the ideas of this paper to compute intersections

of analytic curves.
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