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1. Introduction

The following result was established by Alexander [1]. A slightly weaker bound was
derived earlier by Beck [4].

Theorem 1.1 [1]. For each d > 2 and for arbitrarily large values of n, there are sets P
of n points in E? such that, given any two-coloring of P, a half-space exists within which
one color outnumbers the other by at least cn'/*~1/24 where ¢ = c(d) is a positive
constant.

A recent result of Matousek [8] asserts that this lower bound is optimal. That is,
for any set P of n points in E? a two-coloring of P exists such that, within any
half-space, no color outnumbers the other by more than ¢'n!/?~1/24 for some other
constant ¢’ = ¢'(d) > 0. Slightly higher upper bounds were established earlier by
Matousek et al. [9], and, for the case d = 2, by Beck [3]. Alexander also established a
“continuous” version of the theorem. Given a half-space 7, let Vol(7) denote the
Lebesgue measure of 7 N [0, 1.

Theorem 1.2 [1], [2]. For each d > 2, given any set P of n points in [0,1]%, a
half-space T exists such that

[|[PN 7| = n-Vol(x)| > cnl/?2-1/24,

for some constant ¢ = ¢(d) > 0.

We present alternative proofs of these theorems. We borrow Alexander’s basic
approach and add a few ideas to produce proofs which are technically simpler than
the original ones and completely elementary. A crucial new ingredient of the proof is
a finite-differencing technique that appears to be quite general. We break down our
exposition into three sections. First, we treat the two-dimensional case of Theorem
1.1. We give a short, self-contained proof, and we provide an intuitive probabilistic
interpretation of the technique.

Although the proof can be generalized directly to higher dimensions, we simplify
our basic approach still further, and obtain, in Section 3, a slightly more straightfor-
ward proof for the general case. Strictly speaking, treating the two-dimensional case
separately is unnecessary (so the reader may skip Section 2 if he or she so desires),
but we do so because it has an illuminating geometric interpretation. In Section 4 we
treat the continuous case (Theorem 1.2). Here yet another variation of the technique
is used, which is maybe somewhat less intuitive compared with the one from Section
3, but gives considerably simpler calculations. We end the paper, in Section 5, with a
discussion comparing our proof technique with the classical Fourier transform
approach (see, e.g., [4]).

2. Red-Blue Discrepancy in the Plane

Given n points in a two-dimensional yn X Vn square grid, we show that, no matter
how we color them red and blue, a half-plane within which one color outnumbers




An Elementary Approach to Lower Bounds in Geometric Discrepancy 365

the other by at least cn!/*, for certain appropriate constant c, always exists. Actually,
we prove the stronger result that (n'/?) is a lower bound on the mean square
discrepancy. To explain what this means, we must first define the notion of a random
half-plane or, equivalently, of a random line.

As is well known (see [11]), a measure  exists on the set of all lines in the plane,
which is invariant under the group of motions in E2. A line 4 (assumed from now on
not to pass through the origin) is uniquely specified by its closest point to the origin.
If p, 6 are the polar coordinates of that point, the desired invariant measure at A is
dw(h) = dp d [11]. Cauchy’s theorem says that the measure of the set of lines
intersecting a convex set A is equal to the perimeter of A.

Let = [0, $1*. By Cauchy’s theorem, the measure of the set Z* of lines crossing
% is exactly 1, so, from now on, a random line h is to be understood as a random
element of Z*, with respect to the probability distribution w.

Without loss of generality, assume that n = m? for some integer m > 0. We
define the point set P to be the set of interior vertices of an (m + 1) X (m + 1) grid
placed inside %, so that its four corners coincide with those of #. Fix a two-coloring,
P = R U B, once and for all. Given a nonvertical line 4, we define

D(h) =|RNh*|—=|BNht|

to be the discrepancy of the (closed) half-plane A* lying above h. We prove the
following lower bound on the expected value of D?(k), from which Theorem 1.1
follows immediately:

E,D? = Q(/n), 1)

where E, denotes expectation over A. (Actually, (1) holds for more general “well-
spread” sets of points; see a remark at the end of this section for details.)

2.1.  The Intuition

Before we give a proof of (1), let us informally address the simple question: why
can’t the discrepancy be zero everywhere? Suppose, for the sake of contradiction,
that D(h*) is zero for all h € Z*. (Of course, we know that it must be at least +1
somewhere, so the reader might want to think of zero as just meaning “very small.”)

Let slab(h) denote a slab of fixed width w (where w is about 1/m) centered along
the line h. Zero discrepancy implies that, within each of the two half-slabs,
slab~(h) = h~N slab(k), slab*(h) = h*N slab(k), red and blue points match per-
fectly, which we write as

R}=B} and R;=Bj, )

where R} = |R n slab*(h)|, and the other three quantities are defined analogously.

Pick two random distinct points p,q € P N slab(h) (see Fig. 1. If pq crosses h,
then, by (2) p and g are equally likely to be bichromatic or monochromatic; we write
this as BC = MC, which stands for: “probability of bichromatic crossing =
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Fig. 1. Assuming no discrepancy: R} = B;f and R} = B,

probability of monochromatic crossing.” On the other hand, if pg does not cross #,
then BN > MN, meaning that the probability that pq is bichromatic noncrossing
exceeds that of being monochromatic noncrossing. This is the key inequality driving
the whole argument, so it is crucial to understand it. Without loss of generality,
suppose that p is blue and lies in A*. Then q is picked randomly among B, — 1
blue points (—1 because p # q) and R; red points. Since B, = R}, the point g is
thus a tiny bit more likely to be red than blue.

Adding the two relations BC = MC and BN > MN yields BN + MC > BC +
MN, and, hence, BN > BC or MC > MN. Suppose that BN > BC (the same
argument applies to the other case as well). The inequality says that a random
bichromatic segment pg (p,q € P) that falls inside a random slab(h) is more likely
to avoid A than to cross it. The difference in probabilities is a positive number & that
is relatively large. (At least let us think of it that way.) However, throwing a random
slab on top of pq is similar to throwing a random needle of length |p — gl inside the
slab. This is the Buffon needle experiment [6], which tells us that long (random)
segments in slab(h) are almost as likely to cross the line 4 as to avoid it. This
immediately leads to a contradiction. Indeed, since pq are grid points, a random pgq
is, on the average, very long. So, by Buffon’s result, its probability of crossing &
cannot exceed that of avoiding & by as much as 8§, and we have a contradiction.

It might seem truly amazing that such a weak argument can produce any kind of
nontrivial lower bound, let alone an optimal one. The argument rests totally on the
fact that the trivial segment pp is forbidden from the probabilistic experiment (and
on the fact that the other segments pq are “sufficiently long”). We show in the next
section that splitting the slab in half is a special case of a general differencing
scheme.

Why the bound Q(n'/*)? Intuitively, the discrepancy of a half-plane is “con-
centrated” along its bounding line within a thin strip of width roughly 1/ Vn.
Indeed, it is possible to subdivide the grid into O(n) squares, each containing a large
but constant number of points, and require that the discrepancy within each such
square be zero: this restriction does not limit much the freedom the adversary has in
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coloring the points. On the other hand, it creates a jagged strip along the bounding
line that contains roughly vz points and has exactly the same discrepancy as the
half-plane. Now, if the coloring were random, then with high probability the
discrepancy within the strip in question would be roughly n!'/* (the standard
deviation for yn independent coin tosses). Of course, the coloring is not random,
the half-plane is. The crux of the argument is to show that a random half-plane
provides the same effect as a random coloring (at least as far as the standard
deviation is concerned). This is quite remarkable because there is much “less”
randomness in choosing the half-plane than in choosing a random coloring. Indeed,

there are only (’21) combinatorially distinct configurations obtained by intersecting

the set with a half-plane, whereas the number of colorings is 2”.

2.2. The Proof

Given a (nonvertical) line A crossing %, let h; and A, be the two lines parallel to h
at a distance w/2 = c,/m from h, for a small constant ¢, > 0, with A4, lying above
h,; these lines bound slab(h), as defined above. Define

D,(WE D(hy) — 2D(h) + D(h,). 3)

This measures the difference in discrepancy between the half-slabs slab~(h) and
slab* (k). We consider the average of D2(h) over all positions of the slab obtained
by varying h in #*. By the Cauchy-Schwarz inequality,

D2(h) < 6(D*(h,) + D*(h) + D?*(h,)),
and therefore
E,D? < 18E,D>. 4)

It thus suffices to establish a lower bound on the L2-norm of D, , which, as it turns
out, is much easier. By expressing D,(h) in unary (giving red points weight +1 and
blue points weight —1), we can pair and classify the individual components of
D2(h). That is, we have

2
D2(h) = (21 _Yi1-Yi1+ Zl) ,
R, B, R, B,

where R, is the set of red points in the upper half-slab, B, is the set of blue points
in the lower half-slab, etc. By expanding the right-hand side, we see that companion
pairs sum up to

IRyl + Byl + |R,| + |B,| =| P n slab(h)|,

while mixed pairs contribute twice the number of segments pg C slab(h) (p # q)
that are either monochromatic noncrossing or bichromatic crossing minus twice the
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number of segments that are bichromatic noncrossing or monochromatic crossing. In
other words,

D2(h) =|P n slab(h)| + 2(|MN| + |BC| — |BN| — |[MC)),

where |MN| denotes the number of nontrivial segments pg C slab(k) that avoid &
and have monochromatic endpoints, etc. We can rewrite this as

Di(h) =P nslab(W)| + 3 LN + X IEC(R) — ¥ IZN(h) — X 1MC(h),
P*q P*q P*q pP*q

where I)7V(h) is the indicator function that is equal to 1 if pg is contained in slab(k)
and avoids 4 and has monochromatic endpoints, and 0 otherwise, and similarly for
all the other functions. By using linearity of expectation, we find that

E,D2> Y Prob,[peslab(h)]l - Y g(p,q),
PEP pP,qEP

p*q
where
8(p,q) = |Prob,[ pq lies in slab(k) and crosses &]
—Prob,[ pq lies in slab(k) and avoids A ]|
= |Prob,[ pq lies in slab(k)]
—2Prob,[ pq lies in slab(k) and avoids A1l.

By Cauchy’s theorem, a random line 4 is at a distance w/2 or less from any given
point p with probability 7 w. (For this, we need to assume that all points of P lie at
distance > w from J%; our choice of w below does indeed have this property.)
Moreover, pq lies in slab(k) and avoids 4 if and only if pq lies in either slab*(4) or
in slab (k). Hence

w
EDZzmwn— Y |fOw.lp —q - 4f(—,|p - q|)|, )
p,q$eP 2
pP*q

where f(x, y) is the probability that a random slab of width x € {w/2,w} contains a
fixed segment of length y.

Lemma 2.1. For any y,w > 0 with w/y < c,, where cy > 0 is a sufficiently small
constant, we have

4

lf(w,y) - 4f(—:—,y)l < :—3
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Proof. In view of the fact that x <w <y, the maximum angle a between a
segment of length y and the axis of an enclosing slab of width x is equal to
arcsin(x/y). Hence, if we first integrate over the displacement of 4 and then over its
orientation, the outer integral is easily seen to be

a

flx,y) = / (x —ysin|0) dd =2ax — 2(1 — cos a)y,

therefore

w w w
flw,y) — 4f(—,y) = 2w(arcsin— - 2arcsin-——)
y 2y

(5T (5]

A Taylor expansion around w = 0 gives

w w w
fw,y) — 4f(—2-,y) = _1“67 + 0('—'5-),

from which the claim follows. O

In our setting, we have |p — gl > 1/4(m + 1) for any distinct points p,q € P,
while we choose w = ¢,/m, for a constant ¢, > 0 which we can make as small as we
wish. Therefore, we may bound each term in the sum of the right-hand side of (5)
using Lemma 2.1, and we obtain

4
w
E,D2 > mwn — Y,

. (6)
P#*q |P - q|3

Since the edge length A, of the grid is 1/4(m + 1) and there are at most 8k grid
points at L*-distance Ayk from a given grid point, we obtain

1 4n
PN < X Xk

5 < < Cn3/? @)
P*q ‘P_q‘ 1<k<m-1

for an absolute constant C, and, hence, setting w = c,/m, we get
E,DZ > mwn — Cw*n®? = cym/n — CciVn = Q(Vn)

for a small enough c,. This combined with (4) establishes (1) and thus completes the
proof of Theorem 1.1. O
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Remark. The proof does not require the points of P to lie on the grid. As is easily
checked, it applies equally well to sets P C % so that |p — g| > ¢/m, for any pair
p # q of points in P, where c is any fixed number.

3. Red-Blue Discrepancy in Dimension d

Given n points on a d-dimensional cube grid, we now show that, no matter how we
color them red and blue, a half-space within which one color outnumbers the other
by at least Q(n!/?71/24) always exists. As in the two-dimensional case, we can
actually prove this result for more general sets. Let P be a set of n points in E¢,
and let & and &' be, respectively, the largest and smallest distance between any pair
of distinct points in P. We say that P is well-spread if the ratio §/8' is less than
bn'/?, for some absolute constant b > 0 (clearly, this is asymptotically the smallest
ratio one can have). We show that the above lower bound holds for any well-spread
set in E¢,

We fix a red-blue coloring of P, which we can regard as a functon y: P — {—1,1}.
The discrepancy of the half-space 2™ bounded below by the (nonvertical) hyper-
plane 4 is

def

D)= Y x(p). ®

pEPNh*

(In what follows, we also use this definition of discrepancy for arbitrary real-valued
functions y.) We want to show that

E,D? = Q(n!~1/9),

The underlying distribution is given by the motion-invariant measure o for
hyperplanes, normalized so that the measure of hyperplanes crossing any segment
pq is equal to its length |p — gl (By Cauchy’s theorem, we know that such a
normalization is possible.) By appropriate scaling we can always assume that the
point set P lies comfortably within a cube whose set of intersecting hyperplanes has
measure 1. We assume that the distance of each point of P from the cube boundary
is at least some absolute constant, because we shift slightly the points of P in the
following analysis.

First we recall a formula (due to Stolarsky) expressing the above quadratic
average in terms of sums of distances. We define the indicator function

I (b = {1 if h separates p and q,

Pq 0 otherwise.

For convenience, we assume that P contains as many red points as blue ones. If this
is not the case, we can always add new points to P and color them by the deficient
color. Note that if we must add too many points (more than byn'/2~1/24, for a
suitable small constant b, > 0), then any half-space that contains the cube has high
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discrepancy and we are done. Otherwise, if we prove Theorem 1.1 for the augmented
set, it will also hold for the original P, provided b, is sufficiently small. Thus, our
assumption is not restrictive. We now have D?(h) = —D(h)D*(h), where D*(h) is
the discrepancy of the half-space below h, so it follows by elementary calculations
that

D*(h) = - Y L, (Wx(p)x(q).
p,q€P

By Cauchy’s theorem,

[LgW) de(h) = 1p - ql,
and therefore

E,D*= - Y x(px(glp -4l )
p,q€P

(see also [1]). Note that (9) holds for any real-valued function y on P with
Y ,er x(p) = 0, when D is defined as in (8).

It appears difficult to bound the right-hand side directly. Instead, we use a
finite-differencing technique, similar to the trick of using half-slabs in the previous
section.

First we review the definition and a basic property of finite differencing; see, e.g.,
[7] for proofs and for more details. The forward differencing operator A acts on a real
function f as follows:

AFGO)E Fx + D = f(0).

Its t-fold iteration can be expressed as

t .
Af(x) =Y (—1)"'(§)f(x + ). (10)

i=0

For a function f € C'(0,¢) (that is, f has a continuous ¢th derivative in (0, ¢)), there
is a number ¢ € (0, t) with

A'f(0) = fO(E). (11)

Let w be a small positive real, and let v be the vector (w,0,...,0). We form the
union of ¢ = [d/2] + 1 copies of P, each translated by a multiple of v:

t
P,= | (P+jv).
j=0
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To avoid notational confusion, it is convenient to assume that no line connecting a
pair of distinct points in P is parallel to the x;-axis. This way, no point appears
multiply in P,,, and we can extend the coloring of P to P, by writing

X(P+fv)=(—1)j(;-))((p) for peP, j=0,...,t.

Note that this is not a coloring in the standard sense, but, rather, an assignment of
real weights to the points of P,. Note also that the sum of these weights is 0. We
easily see that the discrepancy D,,(h) for the new set P, (defined by (8) for the new
“coloring”) is given by

D,(h) =Y, (—1)j(;)D(h —jv),

j=0

where k& — ju is the hyperplane A shifted by the vector juv.

We should point out the similarity with the analysis of the previous section.
Instead of making three copies of 4 and assigning them the weights 1, —2, 1, which
is what we effectively did in (3), we generalize this idea and make ¢ copies of P (not
of h), to which we assign weights derived from the rows of Pascal’s triangle. This has
the effect that the new discrepancy D,, becomes a th-order finite differencing of the
original discrepancy (see (10)).

It is interesting to note that the technique of the preceding section (specifically,
the need to use slabs of fixed width w) cannot be interpreted in terms of shifting the
points of P by a few fixed vectors. (Alexander [1] uses a translation vector in one
dimension higher and weights defined algebraically, with no reference to finite
differencing. Explicit use of the finite-differencing calculus is the main simplifying
factor in our approach.) In terms of slabs, the difference between the approaches of
this section an the previous one is that, instead of having slabs of fixed width, we are
now dealing with slabs of fixed x;-width. However, no explicit reference to these
slabs is needed in the present analysis.

By the Cauchy—Schwarz inequality,

t

t 2
DX < Y (;) - D2k - o),
j=0

j=0
and therefore
E,D? < aE,D?, (12)

where

t 2
a=(t+1)2(;)

j=0
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is a constant depending on d. We have a relation similar to (9):

ED:=- Y x(pP)x(g)lp -4
p,q€P,

=- Y x(px(@)G,(p,q),
P,qEP

where

t
(2t . :
)y (~1)’(t+j)lp~q+1vl if p#*gq,

j=—t
_[2t-2 . _
(t—l)w if p=gq.

To verify these last two identities is straightforward. For example, in the case where
p # q, the length |p — g + jv| is weighted by the factor

t—j t—j
i+j t t i t t i 2t
o (i) - e 2] - e)

i=0 i=0

G,(p,q) = (13)

We now simplify G, (p, q) for p + q. For fixed p, g, the length function

FOZ1p g +xl=(p,—a, + 2w’ + (py — ) + = +(p, — 4)°

is such that all its derivatives exist at a sufficiently small neighborhood of x = 0.
Comparing (13) with (10), we see that

G,(p,q) = (A*f)(-1),
so & € (—t,t) exists such that
G,(p,q) = f2(§),
from which it is easily deduced that

Cﬂvﬂ va”
|G, (p, )| < < ,
v lp—q+ &' T lp—ql-w

for some constant C; > 0 (depending on d). We can now repeat the previous
argument. At most O(k?~!) points of P lie at distance roughly k/n'/? from any
point, so, as long as w is much smaller than n~'/¢, we have, for a fixed p,

1 ki

= O e

= 0(n@¥-W/4d),
}; (p —ql—mw)
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and, hence,

Z IGW(P, q)I =0Q) - wtplt@i-1/d

P,qEP
p*q

It follows that

E, D> — Y. G,(p,p) — O(1) - wn!*@t-1/d
P

> n(Ztt_—IZ)w —O(1) - wltpl+@i-1/d,

Choosing w = con™ /4, for a sufficiently small constant c, > 0, yields E,D? =
Q(n'~1/4), Hence, by (12),

EhD2 — Q(nl_l/d),

which establishes Theorem 1.1. O

4. Discrepancy for the Lebesgue Measure

Let P be any set of n points in [0, 1]% and let Vol(r) denote, as in the Introduction,
the Lebesgue measure of 7 N [0, 1]%. Given a nonvertical hyperplane h, we define its
discrepancy by

Do(h) < IP A h*| = n - Vol(h™).

Clearly, if » misses [0, 1]¢, then Dy(h) = 0.
We want to show that

E,D} > cn'~1/4, 14)

for some constant ¢ = c¢(d) > 0, where the expectation is taken with respect to the
probability distribution w, over all hyperplanes intersecting [0, 1]°. As above, this will
readily imply Theorem 1.2.

To make the proof formally closer to the previous one, we first replace the
continuous distribution by its approximation by the points of a sufficiently fine grid
Q. Namely, we choose a number m, of a much larger order of magnitude than n,
and we let Q be the points of the rectangular grid with step m~!/¢ inside the cube
[0, 1]¢.
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We define D(h) as the discrepancy of “P with respect to Q” in a natural way: We
consider the set S =P U Q (we assume, for convenience, that no point of P
coincides with any point of Q), and define a “coloring” y on S by

+1 if peP,
= n
x(p) -— if peQ.
m

Clearly, we have )., x(p) = 0. Then we define

(< Y x(p).

peSNh*

It is easy to check that if m was chosen sufficiently large (considerably larger than
n¢, say), then we have, for any A,

ID(h) — Dy(h)| = o(n'/2-1/24), (15)
and thus it suffices to prove that
E,D? = Q(n'~1/9),

Let us remark that we could also deal with the continuous case directly, writing
integrals instead of sums, with no conceptual difference.

We now apply a finite-differencing scheme that is somewhat different from the
one used above. Let w be a fixed positive real, and let ¢+ be a positive integer
constant (depending on d); the value of these parameters are determined later. We
embed E? in E4*!, which we regard as the Cartesian product E¢ X E’, by the map
wyy..ouy) = (uy,...,uy,0,...,0) (that is, u — (u,0)), so we regard S as a set of
points in E“*', We now create 2’ copies of S of the form S + (0, wb), one for each
vector b = (b,,...,b,) €{0,1}. Let S, denote the union of all these copies. We
extend the coloring y to S, by defining

x(p + 0,wb)) = (- 1™ y(u), (16)

for p e S, b €{0,1).

We remark that this scheme could also be used in the proof from the previous
section, and, conversely, the present proof could be performed using the differencing
scheme from the previous section. The current scheme yields considerably simpler
calculations, especially for the continuous case we treat here, while the scheme of
the previous section can be considered more elementary, as it does not add extra
dimensions to the ambient space. '
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The discrepancy D, (h) for the new set S,,, where now 4 is a hyperplane in E4*,
is easily seen to be

DW= Y (—~D™"D(h - (0,wb)),
bef0,1)

where h — (0, wb) is the displacement of % by the vector (0, wb), and where D(h) is
the discrepancy of 4 with respect to the original embedded set S. By the
Cauchy—Schwarz inequality, we have

D2(h) <2' Y, D*(h — (0,wb)), a7
be{0,1)

so E,D? < 2%E, D?, and it thus suffices to show that
E,D2 = Q(n'~1/4).

It is easily seen that )_pes, x(p) = 0, so equality (9) holds for S,, as well. With the
invariant measure  on the hyperplanes scaled appropriately, we thus have

E,D2=- Y x(Px(@Ip —41=- ¥ x(px(q)G,p,q), (18)
p,q€ES, P,9€S

where

t .
Gw(p,q)=2‘Z(—1)’(;)V|p—q|2+jw2. (19)

j=0

To derive this formula, we consider all differences of the form [p + (0,wb)] —
[g + (0,wd')], for b,b' € {0,1}". If b — b’ has exactly j nonzero components (which
must be +1), then the length of the corresponding difference is V|p — gl* + jw?.
The number of such pairs (b, b') is 2’(;), and the product of the “colors” of
p + (0,wb) and of q + (0,wb’) is (—1)x(p)x(q).

Comparing the formula for G,(p, g) with (10), we see that G,(p, q) = A'f(0),
where

FOE2(=1DVlp - gl + w2

Considering p, ¢, and w fixed, we get from (11) the existence of a number & € (0, ¢)
with

G.(p,q) = f(§)
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(since f is clearly ¢ times continuously differentiable everywhere except possibly at
0). The tth derivative is easy to calculate, obtaining
w2t
Gw(p’ q) = _Cl - ’ (20)
(p-qf +&wd)™

where O < ¢ <t and C, = C((¢) is a positive constant.
We now split the sum in the right-hand side of (18) into several parts, as follows:

E,D} = Ep, + Epp + Eg, + Ep + Epg,

where

Epy=— Y x(p)’G,(p, p),
pEP

Epp=— Y x(Px(@)G,(p,q),
pP,qEP
pP*q

Epg=- XY  x(Px(@G,(p,q
pEP,q€Q

and similarly for E,,, E,,. We estimate these terms one by one. We use the fact,
established above, that —G,(p,q) > 0 for all p,q,w. For E,, formula (19) for
G, (p, p) simplifies to

G,(p,p) = —c,w,

where

¢y = —21):(—1)"(1’.)\5

j=1

is a constant, which must be positive by (20). Therefore, the sum Ep, is c,wn. For
Epp, we observe that x(p)x(g) = 1for p,q € P, and so Epp > 0. Similarly, we find
that E,, and E,, are both positive, which suffices for our purposes.

Finally, the sum Ep, of the mixed terms has negative sign, and here we have to
estimate its magnitude. We have

n
~Epg= Y, X x(Px(@)G(p,9)=-— )1 X GJp,q).
pEPqeQ peEP qeQ
We bound the inner sum (over Q), using the fact that Q is a grid with side m~1/¢,
and thus that there are O(k¢~!) points g with k/m'/? <[p — q| < (k + 1)/m"/“,
For points g € Q at distance smaller than w, we use the estimate G,(p,q) <
22| p — gl < 2%w (which is clear from (19)), and only for points further apart we
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apply the derivative-based estimate (20). As long as ¢ > d/2 + 1, we can estimate
this sum by

-XGp=- ¥ GJpg - Y GJMp.q
q9€Q q€Q,lg—-plsw q€Q,lg-pl>w
w \¢ w2t
< 22'W(“Tl'/—d) +0()- Y —
m 4€0.lg-pl>w |P — 4l

kd—l
= O(wd“m) + O(Wzl) Z —
k>wm!/4 (k/ml/d)

1

<O m) + O(w¥m@-bv/dy Y PEET

k>wm!/4

< Cywi 'm,

for some constant C; (depending on d). Multiplying this by the number of points in
P and the weighting factor n/m, we get

'EPQI < C3n2Wd+1.
We now choose w = c,n~1/4, as before, with ¢, sufficiently small, thereby obtaining
E,D? > Ep, = Epy > cown — Cow?*1n? = n'~"V4(c,c — C3ef*1) = Q(n' "1/ 7).

This establishes Theorem 1.2. O

5. Discussion

Methods for proving lower bounds in discrepancy theory are often based on
eigenvalues and Fourier analysis; see [5 and 10]. In this section we compare this with
our (and Alexander’s) approach.

In a method using eigenvalues, we represent a set system by an m X n incidence
matrix A, where each of the m rows of A is the characteristic vector of a distinct set
in the set system. A coloring is a 0/1 column vector x (the generalized colorings
used in the above proofs correspond to arbitrary column vectors x), and the
discrepancy is simply the L*-norm of the column vector Ax. Just as we did in this
paper, the first step of a lower-bound proof is to pass to the L2-norm, that is, we look
at || Ax|l, instead and try to derive a lower bound on it. In particular, note that if
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U= {x € E*||lxll, = ¥n} denotes the Euclidean sphere of radius Vn centered at
the origin, the maximum discrepancy D(A) of the set system satisfies

1
ID(A)| > —— inf || Ax|l,.
(A) JnTx‘é‘ull Il2

To derive a lower bound on || Ax|l,, we first observe that the matrix B = A’ is
positive semidefinite, so it can be diagonalized as

B =MTAM,
where A is the diagonal matrix of eigenvalues. We have
IlAxll3 = (A4x)"Ax = xTBx = y"Ay,

where y = Mx. The column matrix of eigenvectors M7 is orthogonal, therefore
y € U and

1
D*(A) = — inf yTAy.
m yeU
Finally, we obtain
n
D*(A) = —A,,
m

where A, is the smallest eigenvalue of B; note that all the eigenvalues are
nonnegative.

Thus, with this approach, estimating the smallest eigenvalue is the key to deriving
a lower bound on the discrepancy. Set systems are often defined by means of a
convolution. For example, consider the (red-blue) discrepancy D(q) of a fixed-radius
disk centered at g. We can write

D(g) = [ (D, (x) ds,

where I, is the indicator function of the disk centered at g, and

()= Y x(p)é(x —p),
peEP

where 8(y) denotes the two-dimensional Dirac (or impulse) function, that is, 6(y)
corresponds to the density of the mass distribution which is 0 everywhere except for
the origin, and in which the origin is a point of unit mass.

We have I,(p) = I,(q — p), and therefore

D(gq) = f,{/(p)lo(q —p)dp = (x*1)(q),
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which is the convolution of y and I,. Because of the convolution theorem this
makes Fourier analysis a favorite tool to get a handle on the spectrum of B, and
hence, on the discrepancy.

In Alexander’s method (and in this paper), a slightly different tack is taken. We
give up trying to diagonalize B perfectly. Instead, we settle for a transformation
which brings B into diagonally dominant form. Somewhat miraculously, the finite-
differencing technique does just that. Going back to our analysis of the two-dimen-
sional case in Section 3, after using the slab-based transformation from D to D,,, we
show that the diagonal elements associated with D,, contribute most of the “action.”
Specifically, let 4, be the matrix associated with the modified discrepancy function
D,. We can reinterpret the various steps of the proof as follows: By the
Cauchy—-Schwarz inequality, we derive that

Laxl? = (14, xI3).

By analogy with our previous discussion, let B,, denote A% A,,. Obviously,

2
14,313 = 7B, x = T )15,
ij\ ok

where x; is the color of point i and A4,, = (w, ;). Now, observe that — Y, w, ;w; ; is
essentially the term G, (p, q) in the proof, where p is the ith point and g is the jth
point. The remainder of the proof shows that, up to a constant factor,

T ~ T
x'B,x =x'D,x,

where D,, is derived from B,, by zeroing out every nondiagonal element. This means
that B, is diagonally dominant, as desired.
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