How did Dennis Ritchie Produce his PhD Thesis?
A Typographical Mystery

David F. Brailsford

School of Computer Science
University of Nottingham
Nottingham NGS8 1BB, UK

dfb @cs.nott.ac.uk

ABSTRACT

Dennis Ritchie, the creator of the C programming language
and, with Ken Thompson, the co-creator of the Unix operat-
ing system, completed his Harvard PhD thesis on recursive
function theory in early 1968. But for unknown reasons, he
never officially received his degree, and the thesis itself dis-
appeared for nearly 50 years. This strange set of circum-
stances raises at least three broad questions:

e What was the technical contribution of the thesis?
e Why wasn’t the degree granted?
* How was the thesis prepared?

This paper investigates the third question: how was a long
and typographically complicated mathematical thesis pro-
duced at a very early stage in the history of computerized
document preparation?

CCS CONCEPTS

1.7 [Document and Text Processing]: 1.7.1: Document and
Text Editing, 1.7.2: Document Preparation.

KEYWORDS

mathematical typesetting, electric typewriter, digital restora-
tion, archiving, troff, Postscript fonts, IBM 2741

ACM Reference Format

David F. Brailsford, Brian W. Kernighan and William A. Ritchie.
2022. How did Dennis Ritchie Produce his PhD Thesis? A Typo-
graphical Mystery. In Proceedings of The 22nd ACM Symposium
on Document Engineering (DocEng2022). ACM, New York, NY,
USA, 10 pages. https://doi.org/10.1145/3558100.3563839

1. Introduction

In June 2020, David Brock, a historian of technology and
director of the Computer History Museum’s Software His-
tory Center, published Discovering Dennis Ritchie’s Lost

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. For all other
uses, contact the authors. DocEng2022, Sept 2022, Virtual Event, CA USA.
© Copyright held by the authors 978-1-4503-1789-4/13/09.
https://doi.org/10.1145/3558100.3563839

Brian W. Kernighan
Department of Computer Science
Princeton University
Princeton, NJ 08540, USA

bwk @cs.princeton.edu

William A. Ritchie
Thinkfun Inc.
1725 Jamieson Ave
Alexandria, VA 22314

bill.ritchie @thinkfun.com

Dissertation, an article about Dennis’s long-lost PhD thesis,
Program Structure and Computational Complexity.

Brock’s article [1] makes for fascinating reading. Much of it
is focused on the thesis’s contributions to recursive function
theory and early theoretical computer science. To over-sim-
plify, the thesis showed that a class of programs expressed as
assignments, increments, and nested loops was capable of
performing arbitrary computations. Quoting Brock, “In loop
programs, one can set a variable to zero, add 1 to a variable,
or move the value of one variable to another. That’s it. The
only control available in loop programs is ... a simple loop,
in which an instruction sequence is repeated a certain num-
ber of times. Importantly, loops can be "nested," that is,
loops within loops.” In more modern terms, these loop pro-
grams are a Turing-complete computational model, equiva-
lent to Turing machines and Church’s lambda calculus.

The first section of Brock’s article, "Everything but Bound
Copy," explores an intriguing open question. Although the
thesis was essentially finished, lacking only a handful of triv-
ial typographical corrections and presumably a pro forma
final public oral exam, the thesis was never submitted to
Harvard (or so it is believed), it definitely was never
accepted by Harvard, and thus Dennis never actually
received his PhD.

Why wasn’t the thesis accepted by Harvard? Why didn’t
Dennis ever get his PhD? Indeed, why did he never explic-
itly acknowledge the unusual situation? And how did the
thesis simply disappear for nearly 50 years, coming to light
only after Dennis’s sister Lynn tracked down a copy after his
death in October 2011?

One oft-told story was that Harvard wanted a fee for pro-
cessing the thesis and Dennis thought that he shouldn’t have
to pay it. If thesis rejection was as simple as a library fee
dispute, however, we should expect that Dennis would have
recounted the story, embraced it in his typically self-depre-
cating way, and turned it into a life lesson similar to the way
he described how he wasn’t smart enough to become a
physicist so he turned to computing.

Instead, the thesis disappeared for 50 years and was never
mentioned by Dennis. More significant is how he allowed
the uncorrected story that he had a doctorate to spread

throughout his lifetime. This includes citations for the Tur-
ing Award and the Japan Prize, both of which mention his
Harvard doctorate. Dennis was so guileless his entire life
that this must have weighed on him, but it is unlikely that we
will ever know for sure. This part of the story, still a work in
progress, is told by Bill Ritchie, Dennis’s youngest brother,
at dmrthesis.net, a web site devoted to the thesis [2].

This paper explores a different set of questions that are par-
ticularly appropriate for a conference on document engineer-
ing. How did Dennis manage to produce multiple versions
of a long and complicated document with exceptionally high
quality and accuracy, at a time when computer preparation of
mathematical documents was not even in its infancy? What
hardware and software might he have used, and how did it
relate to the state of the art at the time?

We also describe our attempt to recreate the thesis using
standard Unix document preparation tools like troff and egn
that became widely available only a few years later[3]. A
machine-readable version of the thesis would enable a num-
ber of studies that are too hard with only imperfect scans of
typewriter-like printouts, and thus might shed some light on
the early history of computational complexity.

The results of our experiments and supporting documents for
this paper are available at www.cs.princeton.edu/"bwk/dmr.

2. Background: 1960s Typing Technology

The 1960s was the decade of the electric typewriter, but not
yet the electronic typesetter. IBM, the leader in the field,
was focused on the burgeoning business community rather
than scientific research; their primary goal was office inte-
gration and efficiency rather than the elaborate scientific
notation that was required for academic research papers.

2.1. IBM Electronic Typewriters

In 1959 IBM introduced the Model C basket-and-typebar
typewriter, then in 1967 the Model D of the same design.
Other manufacturers including Royal, Olympia, Smith
Corona and Olivetti offered typewriters with similar design
and features. For the most part these machines used a fixed
width system, either 10 or 12 characters per inch, with 6
lines per inch vertical spacing.

In 1961 IBM introduced the revolutionary new Selectric
typewriter with its spinning typeball or ‘golf-ball’ design,
which kept the paper stationary while the typeball moved its
way across the platen. Inserting a special purpose character
such as a mathematical symbol or Greek letter was much
easier with a Selectric: the typist could simply swap in a new
typeball rather than having to insert a supplementary type
stick into the basket, which was the method with traditional
machines.

While not fully modern, the Selectric was more suitable for
electronic control than were traditional typewriters. In 1964
IBM introduced a standalone word processing machine, the

MT/ST (magnetic tape, Selectric typewriter), which was
marketed primarily to large businesses along with dictation
equipment with the intention to better integrate secretaries
and their bosses in the executive suite.

The Selectric also formed the guts of the IBM 1050 printer
terminal, which was introduced in 1963 for use with the Sys-
tem/360 and other mainframe computers, and the more
streamlined 2741 terminal which launched in 1965. Com-
pared with other printing devices of the time, Selectric-based
terminals were faster, had better print quality, were quieter
and had more easily interchangeable special characters and
type fonts. But IBM always saw these machines as propri-
etary and never made any attempt to use ASCII standards or
otherwise embrace the coming electronic revolution.

2.2. Early Formatting Programs

In 1964 Jerry Saltzer, while working for Project MAC at
MIT, wrote the text formatting program RUNOFF to help
type his thesis proposal and subsequently his thesis. (Conve-
niently he had an IBM 1050 terminal in his home that was
connected through CTSS to the 7094 mainframe at Project
MAC.) As much of a historical breakthrough as this was,
RUNOFF did not have any facility to help change golf-balls
in the middle of printing a manuscript; likewise it had no
commands for superscripts or subscripts as these were not
supported by the Selectric.

According to Saltzer, “If you look skeptically at its list of
features you will discover that it includes just enough to
allow me to prepare my own PhD thesis, nothing more. For
example, my thesis had no equations, so RUNOFF had no
facility for them. Development of RUNOFF features ended
in 1966 when I turned in my thesis.”

So what were the conditions that Dennis faced as he was
completing work on his doctoral thesis in late 1967 and early
1968? Mike Fischer (a fellow Harvard grad student and
brother of Dennis’s first thesis advisor, Patrick Fischer) says
“Computerized typesetting was in its infancy in the 1960s.
Of course people had the idea of having the computer print
their paper instead of a typist, but printers were limited in
both their quality and their range of allowed fonts. For the
time that Dennis was at Harvard, it was electric typewriters.”

It may be hard for readers today to appreciate just how labor-
intensive it was to prepare documents before the creation of
word processing programs, when there were only mechani-
cal typewriters—better than clay tablets or quill pens, to be
sure, but any change of more than a few words in a docu-
ment could require a complete retype. Thus most documents
went through only one or two revisions, with handwritten
changes on a manuscript that had to be laboriously retyped
to make a clean copy.

As Jerry Saltzer said “The standard procedure for preparing
a PhD thesis in the 1960s was to assemble a rough draft
either by typing or in longhand and then hire a professional
thesis typist.”

Mike Fischer echoes this: “With my own thesis, I began by
typing a rough draft myself that I then edited using scissors
and tape and pencil and white-out. Once a page became too
patched up, I made a Xerox copy to create a clean new ver-
sion that I could then edit and chop further as needed. Once
my draft was finalized, I paid $500 to a professional typist
($4,300 today) to retype it into a final dissertation that I
could bind and submit to Widener Library. I specifically
recall that my typist used typebar special characters, which
would have meant that she used an IBM Model C or D type-
bar typewriter.”

Brian Kernighan created a stripped-down version of
RUNOFF that he called Roff to print his Princeton PhD in
1968. Roff was written in Fortran and ran on an IBM 7094.
Input was on punch cards, so making a revision required
replacing some cards with new ones, then submitting 3
boxes of cards (about 20 pounds or 10 kg) to an operator.

Kernighan’s thesis also avoided mathematical expressions as
much as possible because his output device, an IBM 1403
line printer, couldn’t handle them. Subscripts and super-
scripts were eliminated, and special characters were inserted
by hand after the fact. Roff’s one novelty was that it did
automatic capitalization of the first letter of each sentence,
since punch cards really only supported upper case.

In short, typing a mathematical paper in the 1960s was hard
work: time consuming, detailed, and laborious.

So in practical terms what were Dennis’s options for typing
his thesis? As indicated, many doctoral students used a
department secretary or professional typist to finalize their
theses. This is certainly a possibility, though in this event
Dennis still must have exercised close oversight over all
character placements.

He could have typed it himself, or perhaps he had a Bell
Labs technical typist help him with final drafts. In late 1967
when he was finalizing his dissertation he was working at the
Labs at Murray Hill NJ and living at his family home in
Summit. However, neither family members nor Bell Labs
colleagues ever heard him discuss anything like this.

Dennis worked on Project MAC during graduate school and
had a CTSS account which he kept active while moving to
the Labs and starting work on Multics. Bill Ritchie recalls
that at some point shortly after starting work, Bell Labs
installed a toll-free phone line and a 2741 terminal in his
home basement office, though he is not certain exactly when.
If there was a way to use these to help type his thesis, one
would think that Dennis would have figured it out, especially
with RUNOFF as a model. But there is no evidence that he
did this, or even that he could have done so given the techni-
cal limitations described above.

Dennis never talked about his thesis, to colleagues or to fam-
ily, so no one knows how the document was actually pro-
duced. For the purposes of this paper it really doesn’t mat-
ter. What is important is the actual work product, which

from a typographic perspective is vastly superior to most
other math dissertations of the period.

3. The Thesis Document

The final draft of “Program Structure and Computational
Complexity” is 180 double-spaced pages and includes nearly
40 different math symbols and Greek letters scattered across
many pages. Nearly every page after the introduction con-
tains multiple sub- and superscript expressions, often three
layers deep; many pages contain dozens of sub- and super-
scripted characters. Figure 1 shows half of one compara-
tively easy page.

; n+
Now 1fﬂ-wmbm+---+m n+l+u>nbn+
wm'bm + oo +u.)n+1‘o

g +cun(q+b+bn+5r_q+l) and furthermore P' is the least ordinal

O,
+ Wb, let B' =

- n i
n41® Then P+w (q+b+5m+1) =

with this property. Thus by (3.2),

TE(KK) < fB'mnﬂ(q +b+b +5m+1)

= f‘B'f(l)Kl+1(q +b +bn+53+]) by definition of B'
(q+b+b,+1)

S oay | (5m) by (3.4.v)
-+
(q+b+b,+1) (3) -

< fﬁa;d’*l 1 (m) by (3.4.ii)
(g+b+b,+4)

SfB m“*ln (m) by (3.4.vii)
+

- (g+b+b,+4)
But even if m = 0, Tp(xk) =2< fB_an+ln (m) by (3.4.v). Since

tm_l(ﬁ) = tn(B)-.‘—bn = b+bn, the lemma is proved, concluding Case 4.

Figure 1: Half of page 46

3.1. The Basic Grid

Clearly the document was typed on a fixed width typewriter,
12 characters per horizontal inch and double spaced at 6
lines per vertical inch. Most typewriters at the time had a
manual platen adjustment that allowed 1/12" line height
half-steps, which in principle allowed a typist to organize the
character placement of any paper onto a 1/12" by 1/12" grid.

We applied a 12x12 grid over every tenth page to evaluate
character placement. The document is a scan of a copy so
not everything lines up perfectly but the precision of posi-
tioning is evident in the excerpt in Figure 2 and other fig-
ures; a full set of sample pages is available at dmrthesis.net.

The equations line up perfectly on the overlaid 1/12" by
1/12" lattice. Every character is placed exactly inside its
appropriate cell, with no errors or out of place symbols. For
the most part this precision is evident throughout the entire
document.

Evaluating the thesis after it surfaced, Mike Fischer
explained “The fact that it was typed on a 1/12" x 1/12" grid
is no surprise to me. 12 characters/inch was the standard
"elite" typewriter. 6 lines/inch was also standard, but the

- e lrr \]"a\)l \
(X 1) AN (F2) S
\ HEAEn \{)

£ Z N
= L Ig-HC) IR
| | O A e ¥ ()
Z Vi A\ Vi 2
(mla2)p2) lm) oy
& y
(g3
SERNCRERELORY

Figure 2: Character positioning

IBM typewriters had a platen that would allow half-spacing,
i.e., 12 half-spaces per inch. So there was no need to do
manual continuous positioning in order to type a page where
all letters ended up on the grid. Rather, in order to type a
superscript "2", one would roll the paper down one click,
type the "2", and roll it back up one click to continue.”

In our research we found only a few math doctoral theses
from the 1960s where sub/superscripts consistently follow a
1/12" by 1/12" grid, and none of these were nearly as com-
plex as Dennis’s thesis. One possible explanation is that it
was just too hard to keep track while typing the individual
characters of a complicated expression onto the page one
character at a time.

3.2. Vertical Positioning

But there are fascinating departures from the grid as well.
We start with vertical control, the up and down spacings that
create the sub and superscripts. There are many examples
through the thesis where, even with multiple layers and
extensive undulations, the characters lie directly in the grid.

There are several dozen cases sprinkled throughout the docu-
ment where characters seem to be wedged into place outside
the grid system. In some instances this could be a relax-
ation, where the typist took a moment off from the rigors of
the grid and opened the escape mechanism to allow a single
character to be inserted free form. Other times the place-
ment seems intentional, as if an individual character
belonged in a half-step between lines.

The argument for intentional placement comes into more
clear focus when we examine some of the more complex
mathematical expressions contained within the document.
For a relatively small but not insignificant number of
instances, a superscript is itself an exponent expression con-
taining its own sub or superscripts. In these cases Dennis
appears to have doubled the precision of the vertical grid,
centering the exponent on a 1/24" grid so that its own
sub/superscripts can center onto the main 1/12" grid.

3.3. Horizontal Positioning and the + Symbol

Dennis was also able to split the horizontal grid of 12 char-
acters per inch. We have identified two specific situations
where he manipulated the document copy onto a 1/24" cen-
ter in order to reposition one or more characters. Typewrit-
ers of the day were not set up to handle this kind of adjust-
ment; repositioning the paper or adjusting the typing mecha-
nism by this small precise amount would be difficult, exact-
ing work. And yet in each of these cases it appears that he
made adjustments to widen or justify horizontal spacing
purely for aesthetic reasons.

When it appears in a subscript or superscript position, the
"+" symbol is treated like other character, with no blank
space either side. But when a " + " appears in the baseline of
an exponent, Dennis almost always inserted one or more
blank characters before and after the symbol to improve vis-
ual spacing.

His primary spacing rule consisted of positioning the "+"
symbol between two adjacent blank cells, then striking the
"+" directly between these cells on a 1/24" center. The "+"
symbol thus becomes a 1/12" wide character surrounded by
two 1/24" blank half-spaces: a single character centered
within two cells, as shown in Figure 3, marked with blue
arrows.

il . h
LAl

: *
Figure 3: Plus sign example

Dennis’ treatment of spacing around the "+" sign stands out
as among the least disciplined parts of the document. He
kept to his standard “2 cell spacing” about 80% of the time,
but there are plenty of instances when other spacings are
used as well.

P e S
~_

- + bml - [}

e RE IRSE IREE

We have no idea how it would even be possible to make
these horizontal adjustments with the typing machines of the
time. Why did Dennis not simply put a full character space
left and right and avoid splitting the grid? He did this a few
times; nothing stood in the way of this decision. The "+"
sign leaves us with a basket of unresolved issues.

3.4. Roman Numeral Lists

Roman numeral lists were a frequent component of the the-
sis; Dennis used such lists twenty three times. With the first
five lists, all typed characters stayed in their respective 1/12"
by 1/12" cells.

Starting with the Roman numeral list on page 39, the spacing
changed to create a new typographic effect. Dennis accom-
plished this by shifting right the characters of Roman num-
ber (i) by 1/12", then shifting the characters on line (ii) right
by 1/24", centering both numerals on numeral (iii) below.

Then every even number in each list after this follows this
new typography rule, adjusting to a 1/24" center alignment;
see Figure 4, where the center line is marked.

this thesis is the study of two examples of

the language in which-computations are

Figure 4: Centered roman numeral list

It is as if for this Roman numeral list Dennis found a new
skill which he then employed on the remaining 13 lists. We
have no idea how he did this. Moreover, the visual distinc-
tions between the center-justified and non-justified lists are
so subtle as to seem almost gratuitous. Thus we also have
no idea why he did this. And yet this treatment of the
Roman numeral lists is what Dennis elected, including a col-
lection of 1/24" half steps, seemingly for the pure fun of it.

3.5. Version Control

Since Dennis’s death in 2011, two versions of the thesis have
surfaced. In January 1968 he had sent copies of a late draft,
nearly complete but containing approximately 60 minor
typos with pencil corrections noted, to his student colleague
Albert Meyer and to his initial thesis advisor Patrick Fischer.
These are identical except for a few of his pencil comments
in margins.

Sometime around 2015, David Brock discovered a thesis
manuscript in Dennis’s personal papers, which had been
donated to CHM by the Ritchie family. This version was
nearly identical to the January draft except that all 60 typos
had been corrected. This undated draft was likely made in
late January or February 1968 and was extremely close to
finished; only 6 minor corrections were still needed.

For the most part the revisions from January to February ver-
sion were simple typos, replacing a few characters on a sin-
gle line of copy, as in Figure 5, which shows a handwritten
note from page 8 of Albert Meyer’s copy, and the correction
on the final version.

It appears that Dennis was able to replace incorrect copy
with new text in the surrounding original copy, but note the
extra space in the corrected version. Other than corrections,
the January and February versions are identical in every
way: February is not a new version, but a copy of the Janu-
ary draft except for corrections.

To test whether this could really be true, we chose six sam-
ple pages at random, scanned January and February versions
of each page, then overlaid them to see where differences
might emerge. The pages are available at dmrthesis.net.

So this leaves us with our final mystery: How could Dennis
have done this? The natural explanation is that he used
white-out and a Xerox copy machine. Except that there have

FAPSAY oy £ - ¢ — - R
LILl) = > XK = us AT = ‘_-;,,4"7}2’»,,\(_2;7‘-‘,:1\‘@}
£y r censists of several eppreciations cf/che
P | 7 \ 7 4 A\
1= A=l PRI, T X =] [T [WRINIH)
first part Before going into the specifics
b lm LY
() [Emift jordi rB

this thesis is the study of two examples of
cting the language in which computations are

r consists of seferal applications of)the

Before going into the specifics

Figure 5: Handwritten correction noted and made

been no reports from anyone from this era that white-out /
replace / Xerox editing treatment was possible at the preci-
sion and reproducibility seen here.

4. Recreating the Thesis Document

The previous sections have highlighted any number of mys-
teries about how the thesis was produced. When we began
this work, the thesis was available only as a bitmap PDF
from a scanned original. It seemed that the thesis would be
more accessible for further study if it could be recreated as a
searchable text document. Thus we have recreated the thesis
by converting it to froff format, with extensive use of egn for
the mathematical parts. In a sense, this is anachronistic,
since nroff, the typewriter-only precursor of troff, dates from
about 1972, and egn was not available until 1974, six years
after Dennis’s thesis was completed early in 1968. But it
seems certain that Dennis would have used nroff, eqn and
related tools if they had been available to him.

4.1. Font Issues

In a previous restoration project [4] we discovered the impor-
tance of finding that a set of fonts created for the Linotron
202 typesetter had been migrated into the modern era in
Adobe Type 1 PostScript format. All the mechanical limita-
tions of the 202 could be sidestepped when its fonts could be
used on any PostScript-capable typesetting machine.

For our present work, we have assumed that Dennis did use
an IBM 2741 terminal to print his thesis; this seems the most
likely possibility. If only someone had made the 2741 char-
acter set available as a font on a typesetter or laser printer—
rather than as a set of metal characters on a golf-ball for a
near-obsolete device—then we could make Dennis’s thesis
machine-readable and amenable to further research.

Our font consultant, Chuck Bigelow, determined that the
2741 character set had indeed been converted to a fixed-pitch
Bitstream Inc. font called ‘Pica 10” with the same metrics as
the original golf-ball element. Unfortunately this font only
includes the standard character set. Despite intensive efforts
we have been unable to trace any modern form of the fixed-
pitch mathematical symbol and script characters that Dennis
so clearly had available on golf-ball elements in early 1968.

Fortunately the Adobe Symbol font (for Greek characters
and mathematical symbols) and as used in troff and egn,
worked well when supplemented by YandY’s MTMS script
collection. Occasionally using the egn ‘define’ capability,
we were able to confect missing symbols such as ‘monus’,
which appears at the right-hand end of the first lines of Fig-
ures 6 and 9.

. n+l n . .
for 2 <i<n+l, (z) = (Wi_l((z)z) 2 (z)l) 2 (z)O
So 7rr.l+l is also in (.
i 2

Figure 6: Constructing a weird symbol

4.2. Retyping the Thesis

Once the Pica 10 font had been tested we realized that a
‘thesis-rebuild’ would be possible, though it would need a
major effort to bring it about. We have set up a repository
web site [5] devoted to creating a canonical bitmap-PDF file
of what the original 180-page thesis was intended to contain,
together with source files for a step-by-step rebuild of the
entire thesis, using rbl, eqn and troff, leading to a final high-
quality PDF with full text and graphics.

The starting point for the recreation was a set of scanned-
page bitmaps, principally created from two of the original
1968 hard copies. More recently, dating from the release of
PDF in 1989, it has been possible to enclose these scans in a
PDF wrapper.

For material of this sort the Adobe Acrobat PDF viewer pro-
vides an ingenious device for making the acquired pages
seem to be, at least partly, searchable. An OCR engine
analyses each page and calculates point-size string widths
and bounding box coordinates for all the words it identifies.

It then re-typesets the page, often using a generic font such
as Helvetica, in what is called Text Mode 3. This mode is a
sort of electronic ‘invisible ink’ which is fully compliant
with all of PostScript’s capabilities for sizing and placing of
text, except that it omits the final commands that render
material and make it visible.

If this correctly-sized invisible layer is laid down in exact
registration with the underlying bitmap original, a search
request by the user, to highlight the word ‘scanner’ (say),
delivers the bounding box of that string in the invisible layer,
little realizing that the exact registration properties result in
the highlight illuminating the bitmap version of the word in
the overlaid bitmap layer.

Regrettably this impressive OCR capability is only of lim-
ited use to us in the present project. Less than 5% of the
pages in the original thesis are in what might be called “plain
English.” For this small subset, the good performance of the
Pica 10 font under OCR led to a set of pages that simply
needed a few proofing corrections and the insertion of some
troff markup.

The rest of the pages were all to some degree highly mathe-
matical and the OCR engine, lacking any AI expertise in
Dennis-authored material, could not cope with dense strings
of what it saw as anomalously long non-existent words.

Accordingly, one of us (DFB) spent many hours with succes-
sive pages of the bitmap original displayed in a left-hand
workstation window, while he worked out (and typed into a
text-editor window) line-by-line, egn coding to mimic what
was on display. BWK did a great deal of proofreading, and
occasionally contributed advice on how to use egn to create
exotica like multi-line braces that appear on many pages,
such as those in Figure 7. Figure 8 shows the same display
created with egn.

I: LooP(n) X
I,: LooP(n) X -
I: LOOP(n) X
Q
IA: END
e
: : X
I€+x-2: END
I€+x-1: END

Figure 7: Hand-drawn braces

5. Two Challenges

We now take a detailed look at two of the problems encoun-
tered in bringing Dennis’s material into the modern era.

5.1. Center Justification Revisited

We have already pointed out that although font characters in
Pica 10 were of fixed width, Dennis seemingly had the abil-
ity to center-justify a column of Roman numerals around the
mid-point of the longest of the strings. At the very mini-
mum this would seem to require a horizontal half-space
capability. Figure 9 shows what we are up against. The
longest string is (viii), which has an even number of
characters and so the center of the string lies between the
(viand ii) sub-strings.

I,. LOOP(n) X)
I,. LOOP(n) X

. . r X
Ix: LOOP(n) X

Q

Ig: END

: : -
I, x_o: END
Ig,x—1: END)

Figure 8: Braces produced with eqn

Now consider the shortest string, which is (i). The mid-
point of this string aligns with the center point of the letter i.
Visual inspection shows that, somehow, Dennis has managed
to get the alignment very close to perfect.

The task is to achieve the same effect using the #roff typeset-
ting programs. There is no macro in the standard ms macro
package that can achieve this effect and egn has no facility
either. This may well be because any implementation of the
effect requires look-ahead to find the longest string in the
grouping followed by calculation of its mid-point.

Given that all the characters in the Pica 10 font are of fixed
width it is possible to pad out the strings with thin spaces to
make everything line up for center alignment. But ideally it
would be better to have a more general facility that could
cope with text strings in variable-width fonts.

Fortunately Michael Lesk’s bl program [6] for typesetting
tables provides the necessary facility. Figure 9 may be
thought of as a two-column table. The left-hand column
contains the Roman numeral strings that are to be centered.
The next column is a left-justified set of text strings which
define the assumptions inherent in the overall Lemma.

When coping with the left column the bl preprocessor uses
the fact that low-level commands in zroff itself enable text
string lengths to be computed accurately, in machine units
provided the individual character widths are known. So bl’s
task is to emit code that causes troff to measure the width of
all strings and also to emit low-level interleaved spacing
code for troff to obey, that will cause the entire left-hand col-
umn to be center-justified.

(i) -fl(x) = 2x+ (1=x)

(ii) fgpﬂ)(x) = 2P.2 (x) > oPtLl x

(111) £,(x) = 2%
(iv) £400) =1
(V) fo(x) >x+1

(vi) f((zp)(x) is increasing in p, x

(vii) ,if a = B+ @', then fa(x) > fB(x) for x > tn(B)

(viii) if @ > B, then f (x) > fﬁ(x) for x > tm(ﬁ)
(ix) 2-fép)(x) < fép+l)(x) for @ >1, x+p>1

(x) (fép)(x))z < fc(xp+2)(x) for @ > 2, x+p > 2.
Figure 9: Original centered roman numerals

Figure 10 shows that center-justification of the entire left-
hand column has indeed taken place.

(1) fy(x) = 2x+(11x)

(11) £{P*D) (x) = 2P (x) 2 2P*1.x

(111) f,(x) = 2%

(1v) £,(0) =1

(v) fy(x) 2 x+1

(vi) f((xp)(x) is increasing in p, x.

(vi1) 1f o = B + o, then f (x) > fg(x) for x > t, (B)
(vit1) 1f o > B, then £, (x) 2 fg(x) for x 2 t, (B)

(1x) 2-f&p)(x) < f&p*’l)(x) for a2 1, x+p 2 1

(x) [f((xp) (x) }2 < £{P™) (x) for @ 2 2, x+p 2 2.

Figure 10: Figure 9 with Bitstream Pica 10 and tbl

5.2. Line Drawings

Our second example where we have allowed ourselves the
luxury of ‘anachronistic’ improvements is in the diagram of
Figure 12.5 in the thesis. Figure 12.5, shown here as Figure
12, is a complex box-and-line diagram showing the way that
different varieties of loop programs are inter-related.

In the early 1970s devices such as the 2741 or a Teletype
Model 37 could be driven from a computer using nroff.
Dennis would have been well aware that such diagrams
could only be drawn with hyphens or underscores for hori-
zontal lines, together with sequences of bar | symbols for
vertical lines. The results from these techniques were never
elegant. For all these reasons we can conjecture that he
thought it better to place his character symbols on the page
by careful measurement and dead-reckoning, leaving the

boxes and lines (sometimes dotted or dashed) to be drawn in
by hand.

Figure 12 shows the hand-boxed original page where the
various box and line elements have clearly been hand-drawn,
around carefully placed characters in a script font. Many of
the script characters are not exactly elegant. Clearly Dennis
had problems finding golf-balls for all the characters he
needed.

We used pic[7] to create a version of the figure, Figure 13.
It can place elements not just at absolute positions but also at
positions relative to box and line boundaries, and other
places within a diagram. So as not to stray too far from the
constraints on the original material we did use absolute coor-
dinates to place the original lines, boxes, etc.

6. Conclusion

It seems that the more we try to figure out how Dennis pro-
duced his thesis, the less certain we are in any conclusions
we might draw. For example, the typed material is remark-
ably precisely laid out on the page, matching a grid almost
perfectly. How did he (or some typist) manage to sustain
such precision for 180 pages, with endless sequences of sub-
scripts on superscripts? How did he manage the fractional
spacing, especially horizontally, where so far as we know,
the devices of the day did not provide a mechanism.

How did he deal with the multitude of characters—Greek,
Fraktur, mathematical symbols, script letters—without los-
ing track of their positions on the page. And as a weird
aside, why are there two versions of the digit "4", one with a
closed top and one with an open top, shown in Figure 11?

(3.4) Lemma.
(10.4) Thec

’

reme.
Figure 11: Two versions of the digit 4

How did he draw all the brackets around the vertical con-
structs of loop programs? The braces are not perfect—
clearly they have been done by hand—but they are very pre-
cise. How did he manage the sole large diagram, Figure
12.5, with its intricate patterns of dashed and dotted lines?
How did he manage hyphenation? How did he manage to
keep pages all approximately the same height?

And so on: more questions than answers. We have greatly
enjoyed working on this project and we feel that there is a lot
of mileage left in it yet.

It is in many ways a blessing that Dennis’s thesis did go
missing for so long. Any attempt at early restoration, in the
period from 1968 to 1985, would have had to use the newly
developed tools such as troff, eqn, tbl and pic to confect a
version of the document that was suitable for an electro-
mechanical device such as a daisywheel printer or even a

2741. It was not until the mid-1980s that economical laser
printers at decent resolution became widely available.

Most important was the development of PostScript by Adobe
in 1984, followed by its more declarative form, PDF, in
1989. PDF has now become the de facto standard for inter-
changing visually complex material such as Dennis’s thesis.
And along with PostScript and PDF came font technologies
such as Typel, TrueType and Open Type, which made possi-
ble our starting point of the Pica 10 font as a faithful repre-
sentation of what was originally available on engraved golf-
ball elements.

Of course Dennis worked at Bell Labs from 1967 through to
his death in 2011 and he was certainly aware of (and a user
of) all the Unix-based text processing tools that we have
mentioned in this paper. Sadly, whatever happened in 1968
seems to have killed off any chance of him using these tools
to have another go at rebuilding and submitting his thesis.

Despite the important result from his research that loop pro-
grams provide another Turing-complete computability
model, it was still the case that working with Ken Thompson
on the Unix operating system and the C compiler was much
more in line with what he wanted to do in his professional
career. Although Dennis did not get his Harvard doctorate,
we should be thankful that this did not stop him from a life-
time of amazing contributions to practical computing.

Acknowledgements

Katie LaSeur of TheCreativeFold.com was enormously help-
ful with preparation of figures for this paper and for dmrthe-
sis.net. We are also grateful to Steve Bagley, Chuck
Bigelow, David Brock, Stu Feldman, Mike Fischer, Harry
Lewis, Doug Mcllroy, Sean Riley, John Ritchie, Jerry Saltzer
and Tom Van Vleck for generously sharing their expertise,
experience, and memories.

References

[1] David C. Brock, Discovering Dennis Ritchie’s Lost Dissertation,
https://computerhistory.org/blog/discovering-dennis-ritchies-lost-
dissertation, June 2020.

2] William A. Ritchie, Dennis Ritchie’s "missing" PhD thesis.
https://dmrthesis.net

[3] Brian W. Kernighan and Lorinda L. Cherry, “A System for Typeset-
ting Mathematics,” Communications of the ACM, vol. 18, no. 3, p.
151-157, 1975.

[4] Steven R. Bagley, David F. Brailsford, and Brian W. Kernighan,
“Revisiting a Summer Vacation: Digital Restoration and Typesetter
Forensics,” in Proceedings of the ACM Symposium on Document
Engineering (DocEngl3), p. 3-12, ACM Press, 10-13 September
2013. DOI: 10.1145/2494266.2494275

[5] Repository of material for this paper: www.cs.prince-
ton.edu/"bwk/dmr

[6] M. E. Lesk, Tbl—A Program to Format Tables, 1976. Bell Labs
memorandum

[7] B. W. Kernighan, “PIC—A Language for Typesetting Graphics,”
Software--Practice and Experience, vol. 12, no. 1, p. 1-21, January,
1982.

Figure 12: Original Figure 12.5

G
L, =R.=P.=8.,=8
g S g Tl Ty £y
= i _ oG
LyER, <858
3
Py
_ _ oG
28 =83
| | fa
Rl '?2
sg (x+1)2
G_
e
|
'Cl fl
Pl
_eG
8,=88
| o
LR =P,

Figure 13: Pic version of Figure 12.5

10

