rl

i# m.g; Rz = 8 ST M e R
o . & v - }; |

il

—--P.‘«-A-,._.___
o
ot
3
(o
S —~
> = -
» L
) =
| -
—
o
—
~
3
(1o

l time closed. 'his allows
a> 2 is elosed under 1lir

(* for o > 2 can be ‘harad

ance to Turing machines oF

a program P' which is equiVs

ever, it is in general undes

The same kind of techniques are app

Axt [2], Grzegorezyk [9] and Robbin [i
are shown to be identical to a portion

and thus to each other. " Specifically,

classes, £ =P _for a > 4 (Theorem (104

(0 a

€ ,a<w, are a trivial modification
for o > 2 (Theorem (10.8)). All of th
using computation-time closure. Not

to a personal communication, Axt showe
but used a different method. Meyer sh‘

[14], using a method like gurs. Robbin

same as ‘the class of n-recursive functil

functions ar hose functions defined by
-

" 4 la "] Al o . w
standard W -orderings ot Type & ,
curring a restricted version of

It seems likely that by closer study
s = 1 e 1 ot = nal
L 2STa01L1lsS 1 at esa rainai.
v “Y TT Y r - - I
Chai 4 s 15 & IV udy
>
™ . . T ntaine
cursi > 9 LY 2y YV contains

; ‘31 '

f Peter [20,2
lasse £
1 uds a8 St
limited reect
nel
classes witl
set in
20llaborat
tain a str

1table
ment
apt

YIRS o

in charascterizing classe
ons. Cobham [6] pointeds

(7}

¥y considerably.

o
t
—
>
N
[
(=]
0
[0}
e
(6)
o
o’

discusses unnested
I the £ classe

[

4)); also, v Afinite sequence

“F:ncomparabla,

B chta

These tys

Ibert R. Meyer §15 applies Lemma (14.13
rsion of the Super Shl
of our Theorem (15.3)8

whose comp

Predicting how long a digital computer with a given program

will reguirs P ss its inputs is sometimes impossibly difficult.
:
Mis difficulty can be partially explained as a manifestation of
the theorem that there is no effective method for bounding the com-
putation time of a Turing machine by inspection of the machine, or
far bounding the running time of a program written in any language
prog :

ble of describing all recursive functions.

In other words, any formalism which can describe all terminat-

nonterminating computations, and

tive way of distinguishing the description

=
o)
~
$
(T
—

of a terminating from a non— terminating computation. In consequence,

2]
o
~

elating the complexity of a pro- .
gram in a sufficiently powerful language to the complexity of the
operations it carries out. This fact is borne out most strongly by
the existence of a universal Turing machine: a fixed program, actually

quite small, whose behavior is as difficult to predict as that of

of a computation by inspection o

yrogram tor the computation is in general impossible, this prob
~ 3 5)

. - .\'
in common with many her unsolvable problems, has interesting's

cases which can be treated. One approach which has yielded fruitfn

results is fairly common. It essentially involves a refusal to con-

|
. sider computations which take tooc long. Among the best known examples |

this method are the linear bounded automata of Myhill [18], the
n) countable sequences of Hartmanis and Stearns [10], and the pre-
lictably computable functions of R. W. Ritchie [23]. Each of these

theories considers computations by a Turing machine where there is

e) allowed for computation.

/

12 bound is im i 1 tside s ly by restricting attention
to thos putat J h satisfy the bound.

ntrast, the approach of this thesis is to restrict the

.}

omputations are expressed so that
infinite computations are no longer possible. The first result of
his restriction is tha®t there are indeed effectively calculable

ions, but the important fact is

that the existence of these bounds becomes a theorem not a postulate
about the computations. It also becomes possible to do for these

ossible for programs in general,

namely to relate the complexity of a program to the complexity of

bhe caleulation it describes; both kinds of complexity, of course,

B

The major part of this thesis is the study of two examples o
the technigue of restricting the language in which computations are
described; the remainder consists of several applications of the
tools developed in the first part. Before going into the specifics
f the two examples, we should discuss the possible forms of an
answer to the question: how does the complexity of a program relate

to the complexity of the computation described by it?

4 + -y
$ 4 iy :
3 % 1 Y

ey
N

rrams C

nswer nas

paper
LA

many

ram.

Q
are

[=

insufficient to contain the volume of paper required to write down J.
Thus the function of N which predicts the running time of .the program

must be very larze. In fact, it is proportional to

2%

—
-

heignt

This example indicaltes that we must accept one of two things: either
that we agree tc treat programs whose running times are so incredibly
long as to proclude any practical application of the results developed,
or that we must throw out means of expression, like those in the pro-
gram above, which programmers could hardly do without. In either case
the fact must bLe facted that there can be no direct practical applic-
ations of the theory. In the latter there is another difficulty. When
programs are restricted severely enough to make every program halt in
a rather short. time, the exact means of expression allowed to begin to
have a major «!'fect on the time required: it matters a great deal, for
example, whether multiplication is allowed as an elementary operation
or must be done in steps by means of repeated addition. In the case

of real computers, of course, this is an important consideration. But
we have already giveu up real applications by treating only programs
which no progrummer would write, so it would be improper to claim

practical siynificance for our work merely because of this feature.

)

Y

On the other hand, the mathematical significance of the theory
can only be enhanced when it is not model-dependent; that is when the
details of ‘s basic definitions have little effect on the theorems.
Thus, in the programs described below and studied in the sequel it
would make little difference if addition or multiplication were added
as elementary operations. We study two major examples of ways of
defining computations in such a manner that from a program one can
go effectively to a function which bounds the length of the computa-

tion. The two examples are Loop programs and definition of functions

by multiple recursion equations; both involve computations far beyond

the capabilities of real computers, but in return give rise to inter-

esting mathematical structures.

Loop prosrams wxemplify the approach to the theory of computability

introduced by Turing [28] in that a Loop program may be regarded as
a set of instructions to be executed by a sort of digital computer.
The Turing approach is typified by the use of simplified models of
real computers; if is probably the one most frequently found.

A distinct although equivalent version of the theory of computa-
bility is the one based on systems of Herbrand-Gddel-Kleene recursion
equations, as presented by Kleene in [11] and [12, §54]. Our second
example, that of definition of functions by multiple recursion, bears
exactly the same relationship to definition by unrestricted recursion
equations as do Loop programs to programs in general: in each case the
forms of expression are weakened in such a way that infinite computa-

tions become impcssible.

r
1 e
i |85
" oy

"
ntr

r

.

reocd s
32 mber, and
e
rs,
ve - Y 1
rol rUCTl
I £
ed 1 a LOOP inst
S 'p' iy § : 4~
{ 'l i)
> 3, r ;’. ~-’
3Y writt I
r 1 [S a
vy £ +h¢
Y r 1 ¥ iame
Y ume .
: 4 £ and
1114 + = 11
1ua ¢
Ju A
I'S . s a L
+ ¢) r £ h
U i L
3 ad the 11 H
£ +W¢ e + "
(844 A
Sy £ +) nstru

7

ruction

4 ma
rnta

X do
30 nt
TR AN
RTRAN
& AZAT

'or
~ ooy te
I S SRS

throug

and

AP
cuted

A

+avr whe
LY wWno

- ol

oy L '~.z‘.;\

the most usual
similarity is

sters
inet e -
1I1STI

oYy
1NN a DO]
in seguence,
+he 11ce +
}' LIAE A8 i
4 o
Ateda 0y
2 v £+
100 i i
repeacealy
V‘L‘). ®)¢ I
L .
— » e .
- vt ent
S€ MLen .
’
+3
PN 4 .= -
oy ne -
SND U De I¢

Loops may contain other Loops; that is, Loops may be nested to
any fixed depth. This is the motivation for the existence of LOOP(n)
instructions for n > 1: the effect of LOOP(n+1) is defined so as to
make such a Loop equivalent to a variable depth of nesting of LOOP(n)

Loops. In particular, the program

LOOP{n +1) X
Q

~

END

where n > 1, X is a register name, and‘g is a program, equivalent to

the program

LO(_JP(n) X

LOOP(n) X

where x is the number in X initially; that is, we have a nest of
LOOP(n) Loops of depth x. There are no constructions in real pro-
gramming languages comparable to LOOP(n) where n > 1.

To each Loop program an ordinal & is assigned, where O <ad.
The ordinal is derived directly from the depth of nesting of the
various kinds of Loops: for a program without Leops, @ = 0; if a

ncatenation of two programs with ordinals B, 71,

Lo
Ly)
Q

o
]
¥
t
(5]
ct
[s)
(1)
(¢
(&)

ck
o
(14
O
2]
[o
fot
b
W)
’—l
o
w
w
L3
N
{0
&N
}
w0
2
|

= max(B, v); if program Q is assigned

3 I > N . | 29 " J — A,‘+ e . !~
£ o A

1] Y P(Ll) ons 1S as-
1 a RE: ¥ reatest depth of nesting of

I { Y y I ¢ med to a program the

Y Y t i "y ryanm.
tion of computation by Loop program can be formallze
2 by-produ i rma L 3

B Righel i 4 L 1 1
< S ‘ : e !
trodn ‘ha naque formal
. s 3 > o
crlaim that 1 T ff a ca 1la Y 5 measured accuratel
18 bas Y P PI ra s the B (<

I O = s
1 f G L
(x)
: X + 2 o>l
f* @ is a succassor ordinal, a = B+ 1,

ve)

.
- a oot

i - ma i € 1 1
= Q. first f r 3 i ribe: £.(x)= max(1, 2x);
! 1
v
I'} letail { f are un ortant. For finit
rdinals. o = n, 3 same as the £ used in [15] and [16];
-
at 1limit ordir . the dei tior 3 the that used by Robbin
[25] for } 3 W._, W play the ole as our f_.
J y o
. Y 4 y - . f ar
proper T ea f 2 strict
£ ma Y v it 4 1
X B
o } 3 Thanrem o 1 P 4e Y
) f , the Bound Theorem is: if P is a pro-.
A ~
rram a 3 al a, there is a fixed number p, effectively
§ ! - B + ¥ - > neo ~f D «w +h in + o~ , -
f P, i he running time of P with inputs X.,...,X
~ 1

By fixing upon one or more registers for input and a register
for output, we associate with a Loop program a function computed by
that program; the class of functions computable by Loop programs
assigned ordinals less than or equal to @ is called %3' It is an
immediate consequence of the Bounding Theorem that every function
fe £O has a p so f(xl,...,xn) < fép)(max(xl,...,xn}). Also, for
each a < &> there is a function ?a € Ed S0 ?a(x) z-gz(x); it is im-
mediate that the classes Ea form a hierarchy, for it is easily shown
that if @ > B, £ (x) > féc)(x) for each ¢ and almost all x. Already
several of the goals looked for in the study of Loop programs have
been achieved, for it follows first that every program assigned or-
dinal o consumes no more than q;p)(max[xl,...,xn]) steps when given

input x s X and second that there are some programs assigned

1
ordinal ¢ which actually do require this many steps to halt. Thus
the ordinal assigned a program is'a reasonabie measure of the (po-
tential) complexity of the computation described by the program.

The further study of Loop programs, and in fact much of the re-

mained of the thesis, is heavily concerned with the property of com-

putation-time closure of a set of functions defin=d as follows: first, .

when a function is in the set, it can be computed by a Turing machine
in a number of steps which is bounded, as a function of the inputs, by
another function in the set; and second, if a bound on the computation
time of a function is in the set, the function itse2lf is in the set.
Each class Ea for ¢ > 2 is computation-time closed. The first require-

ment is met by combining th2 Bounding Theorem wi<h a demonstration that

a function in terms of already-defined functions must be an instance

of one of several schemata, namely those of substitution and n-

recursion for some fixed integer n > 1. Substitution simply means

obtaining a new function by means of explicit transformation or
composition of other functions. The schema of n-recursion allows
defining a function f(x ,...,xn) in terms of known functions and
values of f itself at arguments zl,...,zn such that the n-tuple
zl,...,zn is lexicographically less than xl,...,xn. The very form

of the schema of n-recursion is such as to ensure that the set of
equations constituting an instance of n-recursion actually does de-
fine a function effectively.

An ordinal o < of® can be effectively attached to each formal
system of equations satisfying certain purely syntactic requirements.
Letting Rd be the class of functions definable by systems of equations
with ordinals less than or equal to &, another hierarchy results which
is equivalent to the following: ﬁb consists of the closure under sub-
stitution of the constant and identity functions; ﬁd for every a > 0
consists of the closure under substitution of all functions f for which
there exist B and n so a = B-ra? and f is definable by (n-+l)-recursi5n
from functions in ﬁB.

For each n > 1 the functions in U ®_ are called n-recursive;

B a<a @
functions which are n-recursive for some n constitute the multiple re-
cursive functions. The notion of multiple recursive function is a ge-

neralization of that of primitive recursive function, which was intro-

duced explicitly by 33del [8]; as Péter [21] shows, the l-recursive

»

IA

1+
11

write

'mal syste

a program

T4

computes any function at least as large as fgzé and insert it into

a program to simulate the Turing machine. .

' The same kind of methods are also applicable to three other

hierarchies, those of Grzegorczyk [9], Axt [2], and Robbin [25].
The first two classify the primitive recursive functions and the
third all the multiple recursive functions. The point of interest
. is that each of these hierarchies is identical to a corresponding

portion of the Qd and ﬂd hierarchies; the classes of functions
eventually become the same.

The idea of computation-time.closure, which plays a major role
in our work, was used by R. W. Ritchie [23] without an explicit name;
its value in characterizing the Grzegorczyk hierarchy was pointed out
by Cobham [6]. Some of the results of Robbin [25] make implicit use
of the idea.

The usefulness of the notion is that the particular functions
in a computation-time closed set of functions depend merely on the
approximate size of the functions in the set; that is, a function.is
in the set if and only if a sufficiently large function is in the set.
For example, suppose C and D are two computation-time closed sets of

.. functions, and that O contains both a function which grows at least

exponentially and a function which majorizes every function of C.
Then it can be shown not only that D contains C properly, but that D
contains a function universal for C: a function U € D so that for each

f ¢eC, f(x) = U(e,x) for some e.

" $ 3 1 y + y
: i P4 L
$. v 3 v 3 y o $
13 eV LOpeQ 111 Ll [#8 A
'
T TVY v 4 v ~F AT e
L |9 1 1, Ol COUrse,
oyl o Fyr~m 1 ~ TS .
L Y§ thres there+s t1 O
ra & moerecureinne +he OV -
L L 3 X ALS1LO0 i .
. ' \
$. £ +he g ararchv)s ar
A A - Leral /)y : B
1
T o +4 oy } smad 13T v s $
A 3 A € sphed Up I LLULY »
t y ! 3 > t'-Ccont ined niv re-
: ae gy ‘ . w9 T Y17 £ My y } - .
i r el : : 8 o’ i Iy 1 LU L 12 ! .
} ¢ . . i " ‘ - +hnt +hav Y rarf ey 1y - y
. ' N 1 1y A | LLOX] 1 rael
a vy my i $ aratsane Rams PP T }
g v d v, ¥ . +har oy } } e A g
112 4 1all nougn bdacyKg And.
§ t1 renera v standard.
no,on
. . » v 5 y 4 3 ot ’ ~ V=taTel £ =27oemaent .
v A v Hd 1 LR 127 - 1 1 €] Il M
" "
v . v . rot ~vyherrint
- v) T it v ¥ harrod 4y
44 1 i : i il Loarl S ¢ I .
ariat 3 A ’ 1 gle G ¢ Salad Ll Af A H
: 4 o y .) v . 4 aoa ! rnaeoat y SrePas
L1 B4 . v y W i 4 AS< H 1011-11 2Ll i £ 'Sy
‘it s +) - e £ } ~ et e 'y
. H i . ASUALLY ACIl 1L OY - Bt 1.1
S Y : ' > ofdore fror %8 hoalinnino £ +he alrnl
y et » e - 1% ‘4 mi i+35on ie 4 oy 3¢ 4 3
4 1 - X o . 20 | SPOS L - L - iCI 1

by juxtaposition, especially with one-place functions: fg(x)

same as f(g(x)).

Finally

is the

"c" means strict set theoretic containment.

(poopd)

II. LOOP PROGRAMS

§1. A Loop program is a finite sequence of instructions for manip-
ulating non-negative integers stored in registers. There is no limit
to the size of an integer stored in a register, nor to the number of
registers to which a program may refer; but a given program refers

only to a fixed set of registers. We will use upper case English
letters, sometimes with subscripts, as register names, and abbreviate
a sequence Xl,...,Xn of register names by in' Boldface capitals (iden-
tified by a wiggly underscore) stand for Loop programs, and if'g is a
program Reg Qg) is the set of register names used by P.

The instructions of a Loop program are of five types:

(1) x=0

(2) X =X%+0

(3) X=4Y

(4) LOOP(n) X where n is a fixed integer, n >1
(5) END |

Here "X" and "Y" may be replaced by any names for registers, and the

"0" of "X = 0" is to be read "zero".

(1.1) Definition. The class L of Loop programs is U Ly» where o
ranges over ordinals < a?ﬁ and where HJ is the smallest class
satisfying
(1) 1ra=0; Ly 1s the class of finite seguences of type (1),

(2), and (3) instructions,

o

(ii) If P < 1, and B < &, then P e I,.,
[$) ~ a

(iii) If @, R € Ly and P is Q concatenated with R,
then P € I,
(iv) If Q € LB and ¢ = B-fa? for some n, 0O <n < w,

then ’Ii € La, where E is

LOOP(n+1) X
Q

~

END
and X is any register name.

By (1.1l.iv), type (4) and (5) instructions occur in pairs, like
parentheses in a well-formed formula, so that the LOOP-END pairs in
@& program are unambiguously determined.

The first three types of instruction have the interpretation
suggested by their appearance. "X = 0" means that the contents of
register X are to be replaced by zero; "X = X+ 1" means that the
contents of register X are to be incremented by one; "X = Y" means
that the contents of register Y are to be copied into register X,
destroying the 0ld contents of X but leaving Y unchanged. These are
the only instructions which affect the registers.

Instructions of types (1), (2), and (3) are executed sequentially
in the order in which they appear in the program. Type (4) and (5)
instructions affect the normal order by indicating that the execution
of the block of instructions between the IOOP and its matching END

is to be repesled zero or more times.

The effect of a LOOP(n) instruction is defined by induction on

n. Specifically suppose that P is a Loop program, and that x is

I stored in register X initially. Then the program
LOOP(1) X
P
END
. means that P is to be repeated x times in succession before the

next instruction (if any) after the END is executed. Changes in
the contents of X by P do not affect the number of times E is exe-

cuted; and if x is zero initially P is not executed at all.
(1.2) Example. The L, program
LOOP(1) X

X =X+1
END

doubles the contents of register X.

(1.3) Example. If the initial contents of X and Y are x and y,

the L2 program

' LOOP(1) Y

A=0
LOOP(1) X
X=A
A=A+1
f‘ END
END

leaves x*y in X, where x*y (pronounced "x monus y")

equals x- y if x > y, O otherwise.

Suppose now that the interpretation of the effect of a
LOOP(n) - END pair has been given for some n 21, and P is a Ioop
program. Say that the initial contents of register X are x > 1.

Then we interpret the program

LOOP(n+1) X
1%

~

END
as being identical to

LOOP(n) X 1
LOO?(n) X > e

LOOI.’(n) X
P
g)

END

END
END

where the IOOP(n) - END pairs are nested to depth x. If x is zero

initially, the effect is the same as

LOOP(1) X
154

~

END

That is, P is nol ezecubed of, all.

(1.4) Example. Suppose we have the Ih)program

LOOP(2) X
X=X+1
END

and X contains 2. Then the program is equivalent to

LOOP(1) X
LOOP(1) X
X=X+1
END

END

and execution of the program would leave 8 in register
X. Notice that the depth of nesting is not affected by

changes to X.

(1.5) Example. If the initial contents of register X are 2,

the LQF program

LOOP(3) X
X =X+1
END

is equivalent to the program

LOOP(2) X
LOOP(2) X
X = X 1
FND

END

which is in turn equivalent to

LOOP(1) X
LOOP(1) X
LOOP(2) X
X=X+1
END
END
END

12>}

Now when the program Q indicated above is executed, the
~o

contents of X

then the next

LOOP(1) X
LIOOP(1) X
X =X+1
END

END

Thus the expan
LOOP(n) - END

register at th

Finding the number 1

left as an exercise

will change to 8, by Example (1.4). But

time Q is executed, Q will be equivalent to

depth 8

depth 8

sion of a LOOP(n+1) - END pair in terms of

>d

0

depends on the contents of the associat

e time the LOOP is encountered.

eft in register X by the program of (1.5) i

for the persistent reader.

S

§2. Although it would be possible to characterize formally the
notion of computation by Loop program directly in terms of the in-
formal discussion above, the examples, especially (1.5), should have
convinced the reader that such a characterization would tend to be
quite complicated; more seriously, the individual steps in a com-
putation by a Loop program would in themselves involve considerable
computation. This is undesirable because we will be attempting to
measure the computational complexity of a function by the number of
éteps required to compute it. If the individual steps turn out to
be nearly as complicated as the function itself, this measure can
hardly be claimed to have much significance.

We will circumvent this kind of objection by giving a definition
of coﬁputation by Loop program whose individual steps are quite ele-
mentary. The price that must be paid for this characterization is
that it is no longer clear from the definition that Loop programs be-
have as outlined in §1; thus, a theorem must be proved which states
in effect that Laop programs operate as desired. The proof, unfor-
tunately, is rather tedious; but given the theorem, we can select
whichever version of computation is more appropriate to the case at
hand.

To begin this alternate characterization, associate with each
programlg not only the registers Reg Qg), but also a switch and a

pushdown store; the latter are used by LOOP and END instructions.

ey

o

(2.4) Definition. Let P=1, i oI be a Loop program.

IR
A sequence sl,..f,sm of states of‘g is an execution

of E whenever

(i) s; is initial, and

(ii) sﬁ is final, and
(iii) The pushdown stores of s, and s are the same, and
(iv) For each i, 1 < i <m, i is the next state of

si under P.

If the pushdown store of 8, is empty, the execution is proper.

(2.5) Definition. If there is a unique execution of’g of length
m beginning with (ir,l,o,p) and ending with (i;,e+ 1,0,p)

“then for 1< i<r, xi is the integer left in Xi by P when

Reg (g) initially contain X Also m-1 is the running

time.

(2.6) Definition. If for each ir there is a unique proper exe-
cution of P beginning with (ir,l,o,(O)), then let Tp(ir) be

the running time of the execution beginning with (ir,l,O,(O)).

Definition (2.2) may seem complicated, but its complexity lies
in the multitude of clauses rather than in the clauses themselves.
A more comprehensible description of the execution of a Loop program
can be given as follows.

(i)-(iii) If the current instruction is an instruction of type

(1), (2) or (3), carry out the instruction in the obvious way and go

on to the next instruction. <i?5\

(iv) If the current instruction is "LOOP(n) Xk" put the
(n+;1)-tup1e (xk=1,...,ik=l,xk;l) on the pushdown store. (If n =1,
put (xk;l) on the pushdown store.) Then go to the matching END
instruction.

(v) If the current instruction is "END", and if the top of
the pushdown store is (al,...,an;i) with a = 0, and £ = O, pop up
the pushdown store and go on to the next instruction.

(vi) If the current instruction is "END", and if the top of
the pushdown store is (al,...,an;o) with a = 0, and £ = O, pop up
the pushdown store and do this instruction again.

(vii) If the current instruction is "END", and if the top of
the pushdown store is (al,...,an;a) with a, = O for all i < n but
a8 # 0, and £ = O, subtract 1 from a and go to the instruction fol-
lowing the matching LOOP.

(viii) If the current instruction is "END", and if the top of
the pushdown store is (al,...,an; a) with a # 0 and a, # 0 for some
u<n, and £ = 0, subtract 1 from a, and set £ = 1; then do this in-
struction again.

(ix) If the curreht instruction is "END", and if the top of
the pushdown store is (al,...,au,o,...,o,an;a) with 1 <u<n and
a, # 0, and £ = 1, and if the métching LOOP instruction is "LOOP(n) X, ",
then set £ = 0 and put the (n +1)-tuple (al,...,au-l,auél,xk=l,...,xk=1,xk;0)
on the pushdown store; then do the END instruction again. This ex-

hausts the cases which can possibly arise.

Examination of the various cases of (2.3) should convince the
reéder that the next state of a given state is unique if it exists
at all, and thus that there is at most one execution with a given
initial state. The possibilities do arise that a state has no next
state yet is not final, or that there is never a final state;
but the theorem about to be proved has among its consequences that
from any initial state thereis exactly one execution, and thus that
the running time TP and the integer left in Xi are well-defined

~

functions from N into N.
(2.7) Definition. Two programs P and ? are equivalent if given
any initial state of‘E and‘g there are unique executions

of‘g and‘g whose final states are the same except perhaps in

the third from last ("instruction counter”) component.

(2.8) Theorem. Lettz be a Loop program using r registers.
(i) If s = ()“cr,l,o,p) is an initial state of P, there
is a unique execution of’g beginning with s; furthermore,
the running time and the integers left in Reg QE) are
independent of p, the initial pushdown store.

(ii) If P is of the form

LOOP(1) X
Q

~

END

L
1l

and if x=0, P is equivalent to

LOOP(1l) X
Q

~

END

In both cases Tﬁ(xr) = Tz(xr).

Proof. The proof is by transfinite induction on Definition (1.1)

of La.
If P e L, by (1.1.i), so that @ = O and P contains no LOOP in-

structions, (i) of the theorem is obvious and (ii) and (iii) are

vacuous. If P e L, by (1.1.ii), so that Pe LB with B < @, the theorem

is immediate by the induction hypothesis. If P e L, by (1.1.1ii1) so

that P is Q concatenated with R, any final state of Q corresponds in |

an obvious way with an initial state of 5; the details are omitted.

Now assume that P e L, by (1.1.iv) with n = 0; that is, P is

LOOP(1l) X
Q

END
for some Q € Lﬂ where @ = B+ 1 and X is some register name. Let
there be e instructions in E and. say x is the initial contents of
X; as an induction hypothesis assume that 3 satisfies (2.8.i). Con-
sider the initial state (x_,1,0,p). By (2.3.iv) the unigue next
state is ()—cr,e,o,((x;l),p)); the next state after this, by (2.3.vii),

is (ir,z,o,((x -1;1),p)) if x > 0. But this is essentially an initial

j\b\ |

state in an execution of Q; by the induction hypothesis the next
several staf,es consist of an execution of Q which ends with
(i;‘,e,o,((x -1;1),p)) for some }-(1'. Then the next state is
(i;,Z,O,((x- 2;1),p)) if x > 1; repeating the argument leads,
after x executions of @, to the state (i;,e,o,((o;l),p)). By
(2.3.v) the next state is ()-c'I:,e+ 1,0,p) which is final. Counting
the number of states not involved in the executions of ,9-, yields
(2.8.ii) and thus (2.8.i).

The remaining possibility is that P € L, by (1.1.iv) with

n > 0, so that P is

Il: LoOP(n+1) X
Qe

I8 END

e

Let the final END instruction be the e-th instruction of z, as in-

dicated above. We have to show first that the program f =

Il: LOOP(n) X
I: LOOP(n) X =
I: LOOP(n) X
Qe
IA: END
e
* X
I€+x-2: END
I$+x-l: END

where x > 0 is the initial contents of X, is equivalent to P, and
that T _(x) = Ta(x_). As indicated, we let I~ be the first END

2 T P e
instruction of 13\ after Q. The method is to consider an execution
of 1/; and show that each state of this execution corresponds in an
appropriate sense to a state in the execution of P; the correspondence
includes the requirements that the registers be the same, and that

the pushdown stores be "similar". Since Pe L 1.» and
= S <

B+uf?

wn-lx, the induction hypothesis for P will yield the result

a> B+
desired.

In the definition and lemma that follow, we use a consistent
notation: letters without hats refer to the program P, and those
with hats refer to ’1:3:; for example, s and § are states of P andé
respectively. Also, a primed letter refers to the next state of
a given state; so if, for example,§ is a state of é, s' is the next

state of & under P. Finally, x is the initial contents of register

X. We assume that x > 0.

|
(2.9) Definition. For a pushdown store p let O’J.p be the object
at the j-th level of p; that is, if p= (ql,(qz,...(qk,(o))...)),
then O'J.p = qJ. for 1 < j <k; if j >k, O'J.p = 0. Two push-
down stores p and ﬁ occurring in states of P and ’1:’: are

similar if for each j one of the following holds:

(1) 0P

(ii) GJ.p = (y,al,...,an;O) and O’J.f; = (al,...,an;o) and

crjﬁ, or

Uj+1p = (y,bl,...,bn;b) for some y with 0<y<x; or

(iii) o.p = (y.,al,...,an;o) and 0'i§= (al,.;.,an;l)
and 0’J.+lp = (y+ l,bl,...,bn;b) where for 1<k<n,
bk=0, and 0 <y < x; or

(iv) O'J.p = (x- l,al,...,an;l) and O'J.f;= (al,...,an;l).

(2.10) Lemma. TLet é\l”"’é\m be an execution of E Then there
is an execution Sl""’sm of 2 such that sl = §l and for
each pair Bgin (:.(r,i,ﬂ ,P) and QJ = (fr,{,f,ﬁ) we have
xJ. = fc\J. for 1< j<r, pis similar to p, and one of the
following holds:

(i) 1 <i<e and f.=-i+x-l; or

(i1i) i =£=1, and £ = £ = 0; or

(1ii) 0P = (y,O,...,O,an;a) with 0<y<x,i=e,
£=l,i=0,f=x-y+1; or

(iv) i =e+1, £ =2+

(y,_s.n;a) and i = e, £ = €+ y with

0 <y <x, andﬂ:é\.

(v) o, P

Proof of Lemma. ILet s = § = ()-cr,l,O,p) be an initial state of P and
é. Then s and § satisfy (2.10.ii), and pP=D sop is similar to p by
(2.9.i). Now assume that s = (ir,i,z,p) and § = (ir,f,é\,f)\) are states
of P and é satisfying (2.10); we iarove that s' and §' also satisfy

(2.10). The proof consists in considering the cases that arise.

Case 1. s and § satisfy (2.10.i). Then P and P are executing
the same instruction of Q, and the result follows from an induction

hypothesis on Q.

X 2N

(35

=

A AT R R T AN N T T R T TR e

bwk

bwk
This is really wrong...

0,...,0,�

Subcase 5.2. (2.3.vi) applies to §: 4=0,a =0, £ = 0,
and so s ='(§cr,é‘+y,0,c;f). (2.3.vi) must also apply to s, so s' =
(ir,e,o,q) and s' and §' satisfy (2.10.v).

Subcase 5.3. (2.3.vii)éappliesto §: £ = O and ay = 0 for
1 Si;j <n but. a # 0. Then §'= (ir,x-y+l,0,((al,...,an_l,a.n-'-l;é:),&))
by (2.3.vii). If y = 0, (2.3.vii) also applies to s and s' =
(;cr,Z,O,((O,al,...,a.n_l,a.n-‘-l;a.),q)) so s' and §' satisfy (2.10.i).

If y >0, then (2.3.viii) applies to s; s'=
(ir,e,l,((y,al,...,an_l,a.n=1;a),q)). Then s' and §' satisfy (2.10.iii).
Subcase 5.4. (2.3.viii) applies to §: £ = 0, a # 0, and for
some u with 1 <u<n, a 4 0. Then §'=(ir,€+y,l,((a ,...,an_l,ani'l;é':),a)).

By similarity, (2.3.viii) also applies to s, so s' =

(ir,e,l,((y,al,...,an_l,a.n=l;a),q)) and s' and §' satisfy (2.10.v).
Subcase 5.5. (2.3.ix) appliesto s: f = 1, for some u with °

1<u<n, auaéo, and for all j with u < j < n, aJ.=0. Then if x,

is the current contents of X, §'=

(ir,€+ y,O,((al,...,au_l,auil,xk-'-l,...,xk-‘-l,xk;o),ﬁ)). By similarity

(2.3.ix) applies also to s, and so s' =

(ir,e,o,((y,al,. ..,au_l,a.u=l,xk-'-1,...,xk-'-l,xk;o),p)). Then p' and p'

remain similar by (2.9.ii), and s' and s8' satisfy (2.10.v). This con-

cludes the proof of Lemma (2.10).

We have thus shown that given an execution of E, there is an identi-
cal-length execution of P with the same initial state and such that

in each corresponding state the registers are identical. Also, by the

B
i1

a

L e —————————

g

i
similarity of the pushdown stores, the execution of P ends with the

- pushdown store the same as it was initially;‘g and‘g are then equivalent.

The sole remaining case is that X, the initial contents of X; is

zero. But then the following is an execution of 1245

Sl = (ir:I:O)P)

Il

2 (ir,e,O,((0,0,-..,O;l),p)) by (2-3-1V)
S5 = (ir,e+-l,0,p) by (2.3.v)
This proves (2.8.iii); (2.8.i) is immediate by the induction hypo-

thesis for‘g and Theorem (2.8) is proved.

In view of (2.8.1i) the distinction between executions and proper
executions (in which the pushdown store is initially empty) is un-
necessary, since the initial contents of the pushdown store do not
affect the quantities of interest, the final contents of the registers

and the running time.

§3. The previous section showed that the running time function TP

for any program‘gris totally defined. It should also be intuitively

clear that TP is effectively computable. Thus the claim that the

~

running time of a Loop program is bounded a priori is trivially true,
provided that the claim simply means that given a program with its
initial state, there is an effective method of finding a number that
bounds the number of steps required for the program to halt. For
since any Loop program with any input eventually does halt, an "ef-
fective method" simply consists of running the program and counting
the steps.

Of course, bounding the running time of'z by T, is not very

P

~

informative, for it amounts to "predicting" that P will run as long
as it runs. One would at least hope for bounding functions which
are in some sense sufficiently comprehensible that they provide more
information than the previous tautology. An inevitable difficulty
is that the bounding functions must grow at such extraordinary rates
that their sizes can hardly be called comprehensible. Nevertheless,
the functions ﬂa defined below have such simple definitions and use-
ful properties that our Theorem (3.6) below has intuitive appeal as

well as technical usefulness.

(3.1) Definition. If g: N =N is a function, the function h:
N° + N is called the iterate of g (or, h is defined by

iteration from g) whenever h satisfies

h(0,z) = =z
h(y+l,z) = g(h(y;z))

S DEUTTINCITTRONND I TR TN W S S — e

-~

Notice that to(a) = 0 for all ®. The next lemma collects most

of the information we require about the functions fa.

(3.4) Lemma. For all x, p € N, @, B < o>

(1) fl(x) = 2x+ (12x)

(ii) f§p+l)(x) = 2.2 (x) > 2P*tux
(111) £ ()ial2
(iv) £,(0) =1
(v) £(x) >x+1

(vi) fép)(x) is increasing in p, x

(vii) if @ =B+d', then f(x) > fg(x) for x > t (B)

(viii) if @ > B, then ﬂa(x) > fB(x) for x > tu;B)
(ix) z-fé?)(x) < qép+l)(x) for @> 1, x+p>1

(x) (:f‘(gp)()‘:))2 < fc(zp+2)(x) for @ > 2, x+p > 2.

Proof. (i) If x = 0, £,(0) = £°)(1) = 1 = 2-0+ (1:0).

f1(1) = f(l)(l) =2 = 2-1+ (1:1). If for x > 1 f (x) = 2x,

0
fﬁx+l)= Qﬁﬁx)=2x+2

1

I

2(x+1) + (1=(x+1)).

(ii) Tmmediate for p = O. f£p+l)(x) = flfgp)(x)

- 2-2(P)(x) - 2Pep (x) > a5

(x+1)

1

(111) £,(0) = fgo)(l) - 1. 2y(x+1)

oEFLL . i)

EN e 2x-fl(l)

(iv)-(vii) These will all be proved simultaneously by induction

on @& and x. All are immediate for @ = O by definition.

If @ = B+1, then £,(0) = féo)(l)

1 proving (iv). Also,
: fa(O) > 0, yielding (v). Now fa(x+ 1) = foa(x) >3 fa(x), using (v)
for fﬁ' Then féwl)(x) =f ((zp)(x) > f((zp)(x), proving (vi). Also,
f('x(x+l) = fsfa(x) > (x+1)+1, proving (v).
Now in (vii), n must be O since @ is a successor. Since
fa(x) > x+1, fafa(x) > fB(x +1), using (vi) for fB. But fsfa(x) =
fo(x+1) so fo(x+1) > fa(x +1) for all x > 0 = t,(B), proving (vii).
The next possibility is that @ is a limit ordinal: let & =

B +wn+l where n > O and P is the least such ordinal. Then fa(x) -

fB_Han(x). Now fa(O) = fB(O)‘= 1, proving (iv). Also,
fa(x+1) - fB-Kun(x+1)(x+l)
> fB+aJn(x+l)(X) by (vi)
> wa.)nX(X) by (vii) since tn(B+ @'x)=0
= f,(x)

Then fc(!wl)(x) = fafép)(x) > fép)(x), proving (vi). 'Also,

f‘a(O) =1>0+1 and fa(x+1) > f‘a(x) > x+1 proving (v). Finally,

0O and v < wn+1. 1 i

Then & = B+ T

2 =3 1 1
write B = B'4+r where tn+l(g)

1 1

, and by choice of B', fa(x) 3 4 q (x). Since r < dre,
B'+w x
(¥) then ax >7r. So, using (vii) for B'+ «’x and B'+ o

= Bt + ™

if x > tn+1

fa(x) = fB'-Kbnx(X) > fB'+Y(X) = fB(x)

X | - . 11). 3
1L > tn(r) But x > tn+l(r) > tn(Y), proving (vii). This com

pletes the proof of (iv)-(vii).

(viii) Ifa>B there is a ¥ > 0 so @ = B+ y. Write
Y = (Dn+a)n-gn + e + a.)o-go = (bn+‘r', so @ = B+u.)n+r'. By re-

peated applications of (vii) we have fa(x) >f (x) for all x,

B+
since t (B+ ') = 0. Also by (vii), f a(x) > £.(x) if
n B’*ﬂ) s B

x> t,(B) >t (B). So f,(x)> fg(x) for x > t (B).

(ix) z-fép)(x) B flf((xp)(x) < fc(xpﬂ“)(x) if @>1 and x+p > 1

by (i) and (viii) since f((zp)(x) >1if x+p> 1.

z
(x) Trivially, 2 < 22" f(z)(z) for all z. Then
- 2

(f((zp)(x))z = féz) fép)(x) < fép‘*'z)(x)

if x+p > 2 by (viii), since x+p > 2 implies f((zp)(x) > 2. This

completes the proof of (3.4)

(3.5) Definition. A function g: N" » N is bounded by f:
N - N whenever for all).cm, we have g(;cm) < f(max[}-cm]), where

max(;cm) is the largest member of)-(m.

(3.6) Bounding Theorem. Let P be a program in L,. Then
there is a number p, which can be found effectively
from 2, such that f((xp) bounds TP’ the running time

of P.

~

Proof. The proof is by induction on @ and Definition (1.1). Say
P e La, let P use k registers, and let m be an abbreviation for
max[xk) where X, are the numbers initially in Reg (2). There

are four main cases corresponding to the clauses of (1.1).

=

Case 1. @ = 0. Then P has no loops and so T, is identically

P
equal to the length of P; if p > 0 is this length, then

(%) = 2 < £5P)(0) < £P)(m)

by (3.4.v), (3.4.vi).

Case 2. P e L, by (1.1.ii), so that Pie LB with B < @. By
the induction hypothesis we have have q so Tp(ik) < féq)(g). But
by (3.4.viii), if we let p = ta)(B) and if x g p, then fa(x) > fB(x).
By (3.4.v), f((xp)(g) >m+p, so f((xp+q)(x) = fép)féq)(x) > Tp(ik).

Case 3. P e L, by (1.1.iii), so that Pis g conca.ten:ted with
Rand Q, R € L,. By the induction hypothesis, let féﬂ) and fé‘r)

bound TQ and TR respectively. After execution of Q let the registers

~

of P contain i}'(Then TP()-ck) = TQ()-ck)+ TR()—(;{); we have

1,05 < 28 (m) + 57 (max(3y))

But after execution of Q, the largest integer in any register is at
most m + fc(ZQ)(g), since each instruction execution can increase the

largest register by 1 at most. But by (3.4.v) and (3.4.ix),
m + féq)(m) < f‘c(xq+l)(m) since @ > 1, g > 1. Thus
- (a) (r) . (g+l)
TP(xk) = (m) + LA (m)
< 2-f(§‘1+r+1)(g) by (3.4.vi)

< féq+r+2)(_rg) by (3.4.ix)

‘.
-
]
3 . N '
-t i
0 ‘
4 (= & \ {
‘ -) 3 -
<) (&2, . =)
% (= .
< = e -y L
$ o} w o
. . w =
e "y . { t 4
Y s ¢ i o 4
Gy 1 B ;
= ») 0 i -~
=] T 4
0
~ |
A 1

But even if m = 0, Ty(X) = 2, so Tz(ik) < _I”E(,q+4)(g) for all X, -

~

This concludes the proof for n = O.

Now we assume the lemma for some n > 0, and prove it for n +1.

P is then

100P(n+2) X
Q

~

END
which is equivalent to

LOOP(n + 2 1y N '
: X

LOOP(n +1) X

~

END
END

J \ where x > 1 is the number initially in X. IFx="1, TP is bounded

(asbsa), o0 o (q+b+8)
B LOTSE B2

and by the obvious induction, for each x > 1,

by f is bounded by f since tn(B+ @) =03

T (%) < f(q+b+4x)
l’,xk ~ B+ () ‘
< f6+af‘x+1(q+b_+5£ +1) by (3.4.vi) and (3.2)
+b +5m +1 by (3.4.vii
< an(xﬂ)(q m+1) y (vii)

< g (q+b+5m+1) by (3.4.vii)
~ B+w'(q+b+5m+l) =

: - o o n+ es e o LI
Now 1fB—a)m'bm+ + W lbn+l+a.)n‘bn+ +a)bo, let B

; n+ . n
a)mbm+ cee 4 W :Lbn+l' Then B+w (q+b+5m+1) =
B! +(Dn(q+b+bn+5_n_1+ 1) and furthermore B' is the least ordinal

with this property. Thus by (3.2),

Tz(xk) < fB'+wn+l(q +b +b, +5m+1)

= fsﬂp,rl(q +b+b +5m +1) by definition of B
+b+b,+1
< ;igH_ln)(Sg) by (3.4.v)
(q+b+by+1) (3) :
=Ll £, (m) by (3.4.ii)
+b+b,, +4
< f;?ﬂpﬂn)(9) by (3.4.vii)
(q+b+bp+4)

But even if m= 0, T(X) =2<¢ (m) by (3.4.v). Since

BaaPtL

t...(B) = ¢ (B)+bn = b+b , the lemma is proved, concluding Case 4.

n+l n

Since in each of the four cases the p such that fc(xp)bounds TP

~

was found effectively, Theorem (3.7) is proved. We also have imme-

diately

(3.8) Corollary. ILet P € L, be a Loop program, and let m
be the largest number initially in Reg (2). Then
there is a number p so that fép)(g) bounds all the

numbers left in the registers of 2 by execution of P.

Proof. Since each instruction execution can increase the largest
register by 1 at most, the numbers left in Reg (2) are all bounded
by _n_1+Tp(>.(k) <m +fc(lp)(g). If @ > 1, by (3.4.ix) m+ fép)(g)

~

< féml)(m). The proof for ¢ = 0 is obvious.

and if B is the least ordinal so a = B+ wn, let

g‘a be the program

LOOP(n+1) X

F
~p
END

It is immediate that Ea € La by Definition (1.1).

(4.4) Lemma. Let ?a be the function computed by (de,x). Then

i f : ? ef.
if x >0, £ (x) 2> £,(x). Also, £, €L

Proof. ?O(x) =x+2 > fo(x) for all x by definition. Say that
a = B+ 1; then Ea is

100P(1l) X

%

END

which is equivalent, when x > 0 is in X initially, to

oo 3 2

g

(x-1)

Ger AUTER T

So ’f\‘a(x) = géx)(x) > fﬁ?‘éx_l)(x) >0 >f

> féx)(l) = £ (x) if x

\%

0.

1

Now if B is the least ordinal for which a = B+ u)n+ and if

x > 0 is in X, then ’E:a is equivalent to

N
%

b

LOOP(n+ 1) X

X
LOOP(ni-l) X
END
. X
END

But this is exactly the program EB+an' S0 1f x >0, gz(x) =

? (x) >

f x) = f (x); this concludes the proof of (4.4).
) 2 Tg i (6) = £,00; P (4.4)

- - € .
(4.5) Theorem. For a > 1, qa %a

Proof. fl(x) = 2x+ (1:x) is in ﬂlvia the program F =

LOOP(1) X
G=G+1
G=G+1

END

F=F+1

LOOP(1) X

. F=0G

END

where (E)X,F) computes fl' For a > 2, we defer the proof until
Chapter IV. The only facts we will need for the remainder of this
chapter are given by Lemma (4.4). It is possible to construct a

program for fa in Ld’ but a surprising amount of labor is involved.

It is convenient to introduce at this point a property of

the classes £O which follows almost immediately from its definition. ,

(4.8) Definition. The operations of substitution consist

of the following methods of obtaining a function f

from given functions g, h:

. (1) Substituting a constant: obtaining f from g

where f(ih) = g(in,c) for some number c;

(ii) Permuting and identifying variables: obtain-

ing £ from g where f(in) = g(§l,...,§m) and
each Ei, 1<i<m is one of the X,
(iii) Composition: obtaining f from g, h where
h(x)).

£(x) = glx ., o

n

Also, if ¢ is a class of functions, C is closed ~,

under substitution whenever any function f obtained

from functions in C by substitution is also a member

of C.

(4.9) Theorem. For all a < a?ﬁ La is closed under sub-

stitution.

¥
o}
o]
Y
(9]

Say (g,iﬂ,H,G) computes g, (g,in,H) computes h, and f(in) =

(. y hix
g\ n’ \ n

o

). We assume that Reg (G) N Reg (H)= (in,H] and that
neither G nor H uses registers Zn. These conditions can of course
be brought about by changes in names of the registers used by G

and H. Let F be the program

~

1 7%

% mik
n n
"

L=%

X =%
n n
G

Then (E,in,G) computes f. This proves that Sa is closed under com-
position; proofs for the other possibilities, substitution of a
constant and permutation and identification of variables, are

-

entirely analogous and are omitted.

-~
= | ' |
(| 0 | A ey
. : -l -
d b C ‘ |
5 {
-y . 4) . 2 » | -
1 T ‘ ? 4 -
5 { A\ 1= 4 (o) 77
£ - [0l ol $! +
¢ . Gt
&~ (+ C 1
& ord - i
$ 4 1 i
Ly L 2 ¢ { —
(S 3 ' 42 0
- - —f - Q -
{ + =4 q 1 L £ &)
1 v 1 2] { o o ey
+ f) C o 3 .
) ! oy 3 ! { -
o ~ ‘ . 1 = = v
- 2 » . L - ' . s
p ¢ - : ’
1 = ~ ‘
. c 4 2 a3
- o . ’ ¢ ¢
. » ‘
z =
g ‘e Y [3 =)
= v X
¢ o> 9]
- . . 3 -) v ey
" el 3 ~—
— 5
q et
b Pl
+2 ~ <
q = o) s A (=

that no two quintuples of Qthave the same first two components.

The first and last components of the quintuples of kacomprise the
states of WM;j the second and third components comprise the symbols

of :. One of the states, 4y is distinguished as the initial state,
and one of the symbols, Sg» 1s called "blank" and is also written
"B". Associated with the Turing machine is a tape, which consists
of a two-way infinite sequence of squares; each square has printed
on it one of the symbols of m. If the symbol printed og a square

is S the square is blank, and at any time almost all of the squares
on a tape are blank.

One square on the tape is scanned by m. A situation consists
of a particular printing of the squares of the tape, a particular
square on the tape (the scanned square) and a particular state; the
machine is in that state.

Given a situation, mmay perform a step as follows: if the ma-
chine is in state a; and the symbol on the scanned square is SJ’ and
gof (qi,sj,sk,d,qﬂ) € me then the symbol on the scanned square is
replaced by Sy the scanned square moves one square to the left or
right according as d is "L" or "R", and the machine goes into state
Q- If no quintuple of QWIbegins with q;» Sj then no act is per-
formed and the machine has halted; in this case the situation is
terminal.

The Turing machine is used by choosing some situation in which
to start it; the machine then successively performs steps until it

-halts, and the contents of the tape in the terminal situation determine

)

the output. Specifically, let s, be the symbol "1". Represent the

1
natural numbers 0, 1, 2,... by "1", ™1", "111",..., so that in the
representation of x there are x+1 occurrences of "1". Also, re-
present an n-tuple xl,...,xn by juxtaposing the representations

of the x, separated by "B" so that the representation of (0,2,1,3),
for example, is "1B111B11B1111".

A Turing machine computes the (partial) function f: N® - N if
when the Turing machine is started in state 9 with the representa-
tion of in on its tape, which is blank otherwise, and with the square
Just to the right of the representation of in the scanned sguare, then
the Turing machine eventually halts with a total of f(in) ""s to
the left of the scanned square in the terminal situation, providing
f(in) is defined. If f(in) is not defined, the Turing machine does
not halt.

For example, if a Turing machine computes x+ Yy, when started

in the situation

+ BUIRBINIIB v
t

%

it may halt in the situation

. B1B111B1BB11l1B ...
t

%
where no quintuple starts with Q;» B. The notation for situations

should be cbvious.

- o

(5.1) Theorem. Let mbe a Turing machine which computes
the function f: N© - N. Then there is a Loop pro-
gram with input and output (TM ,Xn,S,P) where TM_ €L,
which computes a function TM_: N LN with the

following property: if s exceeds the number of steps

required to compute f(in) using M, then f(in) = TMméin’s)'

Proof. For simplicity, the theorem will be proved only for the case
n =1, and for M a 2-symbol machine with symbols {B,1}. Exactly the
same methods apply when n and the number of symbols of M are unre-
stricted.

The heart of the construction is an Ll program Step which in
effect carries out a single step in the Turing machine computation.
Step uses several main registers Q, TL’ TS’ TR which contain re-
spectively the number of the current state, and representations of
the tape to the left of, on, and to the right of the scanned square.

Suppose the non-blank portion of the tape is

o BB B g v By BB o B B B
where each S, is "B" or "1" and 8o is the scanned square. Then T,
contains
u-1 u-2 0
I N R O

where each t, is 0 or 1 according as Si is "B" or "1". Likewise Tq

contains to and TR contains

e)]

It is easy to see that if Qcontainsi and T contains j, then

S
cij-= 1, but C,, =0 for i # k or j # £.
‘ Now let the quintuples of m be (ml, o .,mr] - Let Quinks be
the program
Decode
mm
=0
=0

AEEE ®

8

Here if m, is the guintuple (qi,sj,sk,d,qz) and d is "L" then

Mi is the program

LOOP(1) C..
ij
Tg = 8
g |
Q¢ =4
END

If' a 1i8' "R", M. is the program

LoorP(1l) c..
@ Ty = O
R =1
Q =14
END
‘ Here we use the obvious abbreviation "TS = sk" for
TS =0
if s, = "B", and

TS =0

TS = Ts+-l
‘ it 8, = "1". Likewise, "Q = £" is an abbreviation for
Q=0
Q=Q+1
3 L

e Q=arl

Thus if the number of a state is in register Q and the contents

of the scanned square are in register TS’ Quints causes the next

-

state to appear in Q and the new symbol for the scapned square to be

placed in T,. Quints sets registers L and R so that L = O and

S
R =1 if a rightward move is to be made, while L = 1 and R = 0 if a
leftward move is to be made. If the situation is terminal, Q and TS
remain unchanged and L = R = O.

Given the interpretation above f'ér the numbers in TL’ TS’ TR’

the effect of a rightward move of M can be reflected by replacing

TL by 2-TL +TS, 3

Here we use "TL", for example, to refer both to the register and its

contents. Also, rm(x,y) is the remainder upon division of x by y,

replacing T, by rm(TR,Z) and replacing Tp by TR/Z.

l and x/y is the integral quotient of x and y: the greatest integer z
g so z-y < x. Arbitrarily, we set x/0 = 0.
These functions can be carried out in Ll' Consider the follow-

ing program RM ("rightward move").

ep

! +

2 (W)
:
~

& | (
o

an input number, produces the corresponding initial situation, and
to find a program which, given a tape situation, yields an output
number from the final tape representation.

According to the formalism agreed upon above, if the input
number is x, .the tape representation is astring of x+ 1 "1"s just
to the left of the scanned square; in other words, we want TL to
contain 2x+1_ 1 and TS, T, to contain zero. The job is done by the

R

L2 program Input:

Q=20
T, = 0
TS =0
TR =0]
X =X+1
LOOP(1l) X
o x+l_
LOOP(1) TL & TL 2 1
TL = TL+1
END
. '1'L = TL+ 1 /
END

Next, the output number is to be the total number of "1"s oc-

curring in the binary expansion of T The L, program Qutput =

L°
P=20
LOOP(1) TL

g +~rm(TL,2)

T, «—TL/z
IoOP(1) T

P=P+1 P &<P+T
END

END

14

leaves in P the correct number. We have used, for example,
"T'ﬁ-rm(TL,Z)" as an abbreviation for a program which puts rm(TL,Z)

into T without destroying the constants of T The necessary pro-

L
grams appear as part of the program RM above.

Finally, let TM be the L2 program

InRut
Result
N\-\M'vgn

Output

Then (TM ,X,S,P) computes TMatwith the properties required, and

Theorem (5.1) is proved. -

(5.2) Theorem. For each n > O there is a Turing machine EPn
which computes a function LPn: Nn+l =+ N with the follow-
ing property: if (g,in,P) is a Loop program with input
and output which computes f: N -+ N, then there is a
number e so that LPn(e,in) - f(in). Furthermore, if T,
is the running time function of P, then there is a con‘j
stant ¢ so that the total number of tape squares ever
scanned in the computation of LPn(e,in) is no more than

Tl

c-(e+-max[in]-+TP(in)

Proof. We will not actually construct LP,, but we will give enough
details so that it should be clear to anyone with some familiarity
with computation by Turing machines that EFQI exists. Actually, the
first part of the theorem is immediate from the intuitive computa-

bility of functions defined by Loop programs.

@
T o

IR p— — s

Y e

T

b .o
i Iy
MANn
N
= 1 ‘
" il
mneals

) » -
i al .
'

- Pn 1S
s NN

B | Ly
IOl Lowe

where

vl o

rewril o

1S an

| & 1
ant v

I'ne tap

T L 4 St > 3 IS . 'v:'»h +
¥

o have value 2,...,

ve valu . We will let the blank "B" have digit value O.

. ~ . ~ .
age of P). all this sequence of symbols €. Of course,

any program P there is a unique number e associated

21y n the ther hand, not every number e has a corres-

2, all those numbers which contain signi-

Mt o . ; = - M"Han " IS 3 .
Y , followed by x 41 "1"s. We write this initial tape

ik BIerB . Biaie B XOrB e i
— =1 -7

. : M"m-an
mderlined letters x represent a string of x+ 1 "1"s.

rms as follows: first go to the representation of e and

as its base 9 representation (which, as explained above,
the

nger than the .length of e; in fact the replace-

done using no more tape than is consumed by e itself.

£F§1 is then ready to begin simulating P. In general, just before
beginning a step in the simulation, £¥, will have on its tape the

following sequence of symbols, if the current state is (ir,i,L,p).

1 A4 bl 215223
1 2 3[4 5

..Be|Bx B"fBzr Bi |BL|BBa BaZIB...EgkllBB...BBa Ba, B...BEijBB...

The representation of the state used in region 2-4 is obvious. The
contents of region 5, which represents the pushdown store, are inter-
.preted as follows. The object at the top of the pushdown store is
(all, a21,...,akll). More generally, the object at the m-th level
of the pushdown store is (alm, a2m""’akmm)' Tuples on the push-
down store are separated by double blanks, and members of a tuple

are separated by single blanks.

What is the length of this representation of a state? The length
of region 1 is no more than e+ 1. Suppose the simulation has run for
s steps, and let m be an abbreviation for max[in], that is, the largest
number initially in the registers. Then each of the Xy in region 2
is no more than m+s. So the length of region 2 is no more than
r-(g-fs-rz). But according to the encoding we have chosen, r is cer-
tainly less than e. So region 2 has a length of less than e-(m+s+2).
Again, the number i represented in region 3 corresponds to the in-
struction about to be executed, which is a number certainly less
than e, so region 3 has a length less than e+ 2 squares. The 4 of

region 4 is either O or 1, and so the length of region 4 is 3 at most.

5
75

- —————r e

and that by using a binary encoding of the numbers making up a

state, the present theorem would remain true with a bound on tape

consumption of d-log2(1+ e+m+s) for some constant d. Q‘/,
Granting that £F% is able to replace the representation of (:L}

a state by the representation of the next state without using more

tape than is consumed by the states themselves, the theorem fol-

lows immediately. For SF; simply keeps simulating P until a final

state is reached, then erases all of the tape but the pértion con-

~

taining Xy and halts on the rightmost square of the representation /<x?SZL//

of X, . Thus £8, has computed (P,in,xl); and since the program runs <:;;;
for Tp(in) steps by definition, the total tape consumption is bounded
by co(e+_n_1+TP(;cn))3 = c-(e+-max(§n]-+TP(in))3. This concludes the

~

proof of (5.2).

(5.3) Theorem. For each n > O there is an 32 function M :
N+2 = N so that for any Loop program (P,in,P) which
computes f: N =+ N, there is an e such that Mn(e,in,s) =

f(xn) provided s > Tz(xn).

Proof. By (5.2) there is a Gddel number e for (E,in,P) so that
LPn(e,in) = f(in), and LP is computable by a Turing machine £
whose total consumption of tape'is no more than c-(e+max{>-cn]+TP(in))3
squares. For brevity let this number of squares be t. Now sa; LR
has g states and uses k symbols. Then the total number of distinct

; . . ; t :
tapes appearing in the computation is no more than k°, since each

T 1 S g S st P o i s

gt

tape square can have printed on it one of the k symbols. At each
situation oécurring in the computation the Turing machine is scan-
ning one of the at most t squares, and is in one of the q states;
therefore at most q-t-kt different situations can arise in the com-
putation. If one of these situations is ever repeated, the whole
computation must be caught in an endless loop; but this does not
happen, so the Turing machine must halt>within q-t-kt steps, that
‘is, within a number of steps

c-(e+max{in}+Tg(in))3

q-c-(e4—max{in)4-TP(in)) -k

~ b

= B(e,:'cn,TP(;cn))

Remembering that g, c, and k are fixed numbers, it is easy enough
to show that B is actually a member of £2. Alternatively, it is
easy to show
2(e+xl+--o+xn+TP(in))
B(e,x ,Tp(x)) < 2 =
for large enough arguments. Since fz(x) = 2* and ?2(x4-1) > fz(x),
there is a constant b so

B(e,x ,T.(x_)) < ?(2)(e-+x 4+ ++0 +x +T (x)+D)

s el L G : n "P''n

2 1

~ ~

B' (e:in:TP(;Cn))

But B' is a member of Lz since it is obtained by substitution from
members of 32. The function x+ Yy, for example, is in Sl via the

program A =

LOOP(1)- X

where (A,X,Y,Y) computes x+ y.
Recall that the Turing machine £P, of (5.2) is a particular,

fixed machine. Apply (5.1) to this machine to get an £2 function

™
ey

to halt,

so that if z exceeds the number of steps required for LF,

TMEPn (e,in,z) = LPn(e,in)

Then take Mn(e,)-cn,s) - TMspn(e,in,B'(e,}-cn,s)). By the fact that B'

is iﬁcreasing, the proof of (5.3) is complete.

T Y I e R T T N Ty

§6. All the investment in labor of §8§2-5 now begins to pay off.
We have several easy theorems which characterize the classes La
‘ for @ > 2 in three ways, and which show each class £a for a > 2
: has two important closure properties. Finally, 'ta%-l has a universal

function for .{',a, and 'Ca+l has a very small function not in £a.

(6.1) Theorem. For o > 2, a function f: N® +N is in .Ca
‘ if and only if there is a program (P,)-(n,P) which com-

putes f such that TP is bounded by fép) for some num-

ber p.

Proof. The "only if" part is simply the Bounding Theorem (3.6).
; - (p) - = - 3(p)
Conversely, if Tz(xn) <f (ma.x(xn]), then Tz(xn)sfa (xl+ s 4 X+ 1¥s
This latter function is in f‘a' Then by (5.3) there is an e so
£ N = 2(p) ;

f(xn) = Mn(e,xn,fa ()c:L F) SSTEhEE 1)). Since M € 1',2, by substitu-
tion f € .&',a for a > 2.

This theorem is interesting because it shows that if we have

any program E which computes f, no matter how deeply the loops of

#(?)

P are nested, so long as the running time of P is bounded by A

then P can be rewritten as an La program.

(6.2) Theorem. For o > 2, f,a is the class of functions which
are computable by a Turing machine where either the

running time of the Turing machine or its consump-

. tion of tape is bounded by fép) for some number p.

Proof. Immediate by (5.1), (5.3), and the argument of (6.1).
Theorems (6.1) and (6.2) provide further evidence for our
basic claim that the complexity of a function can be measured by
the ordinal assigned to its Loop program. In particular, (6.2)
assures us that the hierarchy of sets fb does not arise because
of some peculiarity in the definition of Loop program, but that
in fact if some function f is in 26 but not in £B (where o > B)
then f is more difficult to compute than any function in £B even

if the computation is done by the familiar Turing machine.

(6.3) Theorem. The n-argument functions of %2 are pre-

cisely the functions expressible in the form
sy = (D) -
f(xn) = Mh(e,xn,ﬁu (max(xn]))

for some numbers e, p, and where Mn is a particular

function in 32.

Proof. That each f is expressible in the required way is an imme-
diate consequence of (6.1) and the Bounding Theorem (3.6). The
converse follows from Theorem (4.5) and the closure of %a under
substitution.

Theorem (6.3) characterizeg £d in a purely arithmetic manner,
without reference to Loop programs or Turing machines. Notice,
howéver, that we have not yetrproved Theorem (4.5) which shows
that ﬂ: € £a; thus to avoid circularity we will refrain from using
(6.3) until (4.5) is proved. Theorems (6.1) and (6.2) do not de-

pend on (4.5).

@

56

e e ——

) I A TN B e ety < gy -

£ T A R TR

=

74

(6.4) Definition. A class C of functions is computation-

time closed if whenever f € C, there is a function -

s. € C such that s. pointwise bounds the number of

f f
steps required to compute f on a Turing machine,
and if conversely whenever there is an sf eC

which bounds the number of steps required to com-

pute some function f, then f ¢ C.
(6.5) Theorem. For a > 2, Ed is computation-time closed.

Proof. Immediate, using (6.2) and the fact that f_ e g end £ (x)
> £ (x) for x >0
= 0]

It can be proved that evéry class of functions which is closed

under substitution, computation-time closed, and containing a suf-

ficiently large function is also closed under the operation of limited

recursion defined below; we will use another, more direct method

to show each Ra is closed under limited recursion. The proof
yields a corollary which indicates the power of the classes £O

for a < w.
(6.6) Definition. If f obeys the conditions

£(x ,0) = e(x)

f'(xn,y+ l) = h(xn:y’f(xn,y))

then f is said to be defined by primitive recursion from

¢ and h. We allow the case n = 0, so that g may be a

function of O variables, that is, a constant.

(6.7) Definition. If £: N"'* >N is defined by primitive

recursion from functions g and h, and if in addition
we have f(in,y) < b(in,y) for some function b and all
)-cn, Y, then f is said to be defined by limited

recursion from g, h, and b.

(6.8) Theorem. For ¢ > 2, i',a is closed under limited
recursion. That is, if f is defined from g, h, be .C,a

by limited recursion, then f ¢ .Ca-

Proof. We have

£(x,,0) = g(x,)
f(in:Y*'l) = h(in)}’;f(;{n;y))
£(x,,¥) < b(x»¥)

where g,h,b € .Ea. Let (E,)-(n,G) be a program for g where 9, € La
and G does not destroy registers }-(n and Y. Let (E,in,Z,F,H) be
a program for h where again ’li € La and H does not destroy the
contents of }-(n, Z, F. We also assume that the registers of G
and E do not overlap except for)-(n. Such programs are easily

found given any programs for g and h. Then let E be the program

o
F=0
Z=0
LOOP(1) Y
L
F=H ,
2= 741 @
END

L N I ST e e ——

+ "
+
. —
— -~ {
4 > + " — .
) 3 s - — - ¢
< A + > = -
1 Ot c — C [
} X — 4 0
- " + —
- D - U S
" tey ¢ ~—~ - =
. = 1 = i S o .
| 5 %
) | — - = ’ N n
- g e —- &4 G4 ¥
) - — { -3 » . -
$ 4 - = | N I & >
3 | S (R - b . 1
{ 4 = ~N J . 1=
D 4 \ - - —
. - - . " "\“ ~— "
1 ¥ o = ” -
- - " = : 4 -
- . |) - S 3 i c
. — - ¢ : "~ - .
| . ' - -
! 0! + = .
S8 ¥ 1 -~ O
3) - o
i) i -
I | + Vi — 13
\ ’ \ | .
’ 1 — 2
+ £ ; — .
— |
| ﬁ z
/
|
V1 v v
] |]
- | {

o —
) —
= ~
[MY
s
-

.

3 L

3 * £y
A)

IITI. MULTIPLE RECURSIVE FUNCTIONS

§7. This chapter studies the theory of the multiple recursive
functions. Many of the results in this theory have exact counter-
parts in the theory of Loop programs developed in Chapﬁer 163 34
also turns out that the .methods of proof of the corresponding
theorems are often quite analogou§. In large measure the similar-
ity in the development of the two theories occurs simply because
the theories are, in fact, very similar; it is also due to a coﬁ-
scious attempt to draw the appropriate parallels. This attempt is
made in the belief that both the author and the reader benefit from
the technical economy achieved by using a. few tools rather than a
large collection. Finally, we believe the methods used here and
in Chapter II are of great utility in the characterization of sets
of computable functions; support for such a claim can only come
from successful use of these methods.

The theory of Loop programs may be regarded as an attempt to
examine the result of restricting the notion of program in such a
way that the structure of a program controls the cémplexity of the
operations the program performs. The theory of Loog programs is
thus in the tradition of the Turing-computable functions: those
functions computable by Turing machines. Here we take "Turing
machine" in the broad sense of referring to all the various theo-
retical machines which serve as models for digital computers. But

it is well-known that several quite different ways of defining

—— . e

-~

— e

i -

L
B

¢
_‘Ec
§

v
|

£
§
H

.

"effectively computable" all lead to exactly the same class of

functions. Chief among these alternative approaches is the defini- :
tion of functions by Herbrand-Gddel-Kleene recursion equations.

We summarize this approach, following Kleene [12, §54].
Imagine a formal language built up from several basic symbols:
= (equals), ' (successor), O (zero), (,) (left and right paren-
theses), f, g, b, £;, g By,--., (function letters), x, ¥, 2z, X,
Yyr Zyreeeo (variables for natural numbers), and , (comma). From
these symbols are constructed several kinds of formal expressions.
The numerals are O, 0', O",...; these stand for the natural numbers

0, 1, 2,... . The formal expression which is a numeral for a number

x we write v(x). Terms are O, any variable letter, expressions of

the form t' where t is a term, and f(tl,...,tn) where f is a function

letter and t "tn are terms.

10"
Next we have equations of the form t = s where t and s are

terms. Systems of equations are finite sequences el,...,en of

equations. The systems of equations are the basic objects of study.

A system of equations may have a principal function letter:

the first (left-most) function letter of the last equation of the

system. From a system of equations formal deductions may be made.

The deductions are precisely analogous to deductions in formal

logic from a set of postulates. There are two rules of inference:
(Rl) From an equation containing a variable letter,

we may pass to the equation obtained by substituting

¥
i
>
i
il
S
e
=
v
<
=l
%
e
-
L

a particular numeral for every occurrence of

the variable letter.

(R2) From an equation of the form f(v(xl),...,v(xn))
= y(x) and another equation r = s, we may péss
to the equation which results by substituting
v(x) for one or more occurrences of f(v(xl),...,v(xn))
in the equation r = s.
Then a deduction of an equation e from a system of equations E is a
sequence of equations, each of which is either one of the eguations
of E or obtained from one (or two) of the earlier equations of the
deduction by an application of Rl (or R2).
A system of equations E defines thg function @ recursively when-
ever the following holds: f is the principal function letter of E,
and for all Xys++5% the equation f(v(xl),...,v(xn)) = v(x) is
deducible from E if and only if @(xl,...,xn) =%, If'a (total)

function has a system of equations which defines it recursively,

the function is called general recursive. Kleene shows that the

class of general recursive functions is precisely the same class as
the functions computable by a Turing machine.
The class of multiple recursive functions may be defined in an

analogous wey; we will instead use a slightly different approach,

and then discuss its relationship with the Kleene formulation.

=
\

! .iv}

T ST AR Y] IR T T LR g T i ot T

(7.1) Definition. For some n > 1 and m > O, suppose

~~

defined by n-recursion from 8128y

the function f‘:Nn+m -+ N satisfies the o equations:

£(0,.4,0,% 1+ 1,o,§m) = F,
f(xl-fl,...,xn+-l,ym) = an
where Fl,...,an are formulas built up from constants,
variables in’ im’ and functions g ,.--,8, bY sub-

stitution. Suppose also that Fl contains no occurrences

of f, and in each other equation

where each Ei is either "xi+ 1" or "O", each occurrence

of T iufs has a k, 1 < k < n, so f appears in the context
o s n "
f(gl"'"gk-l’xk’rk+1""’Tn’sm) where §k is xk+-l , and

T T ,ér are terms (i.e. formulas) built up from

2 R

variables §m and those x, for which £, = "xi+-l" by ap-

plication of Byret 28y and f. Then f is said to be
T

Example. f is defined by 2-recursion from Byre18y

if f satisfies

f(0,0;Y) = gl(YJB)
f(O,XZ '*'lylv') = f(o)xz)gz(y))
f‘(xl+l,0,y) = f(xlxgs(f(xl)xl:y+l))}G}_‘(y))

£(x) +1,%, +1,¥) = g5(£(x,T(x) +1,%5,¥),¥))

2

SN O S 0 o v AR R T AL WU TR R T

(7.3) Definition. For each ordinal O < a?ﬁ ®, is the least
class of functions sétisfying

(i) 1r 0

s(x)

#1) If B<@, aﬁg@a

(iii) ®, is closed under substitution

0 contains the successor function
J

x+1 and the identity function i(x) = x

(iv) If @ = B+ for some n > 0, and f is de-

fined by (n +1)-recursion from €ps- 18, € QB,

then f € Ry
We will call R = U u)ﬁﬁ the multiple recursive functions.
a<w Y
Also, for each n > 1, u ﬁa is the class of n-recursive

a<
functions.
It will be seen that if a function f is defined by n-recursion
from well-defined, total functions gl"'”gn’ then f is in fact a
well-defined, total function. The proof is by induction on the
well-ordering of n-tuples of intégers under the lexicographical

ordering.

(7.4) Definition. The n-tuple in is lexicographically less
than the n-tuple &n (in symbols, (in) < (in)) whenever

there is a u such that xu < yu and for all i < u, x; = vy

Notice that this relation is a well-ordering of order type

af by the mapping

() e Up-l-xl + o004 aex

n

&>

(7.5) Theorem. If f is defined from total functions

Byre a8, by n-recursion, f is a total, well-

defined function.

Proof. We have the equation f(O,...,O,&m) = Fl. By the definition,

F, cannot contain any occurrences of f; so f(O,...,O,ih) is uniquely

defined for all im' Now suppose f(in,im) is uniquely defined for
all y_and all z with (zn) < (xn). Then f(xn,yh) = Fj’ where Fj
is a formula built up from (some of) ByreeB, and occurrences of

..,Tn,S .,Sm are terms and, by

17° 17°"

definition, (Tn) < (in). Thus f(in,im) is uniquely defined.

f of the form f(%n’gm) where T

Now by Definition (7.3) each function f € Rd is defined by a
sequence of equations, each of which defines a new function used in
the definition of f. The initial equations in the sequence define
functions from the initial functions s(x) and i(x); and each equation
in the sequence is either an instance of substitution which defines
a new function from functions defined earlier, or part of an instance
of the schema of n-recursion from functions defined earlier. These
equations can of course be translated into the formal equations of
Kleene; this is really nothing more than a one-for-one replacement
of the informal symbols of the defining equations by the formal
symbols of the recursion equations. Conversely, it should be ob-
vious that each system of formal equations which obeys a few purely
syntactic rules defines a multiple recursive function; The rules
are: each equation e is either of the form f(&l,...,gn) = T, where
T is a term containing no function letters, or is of the form
n, m

.,) = T where £, is either "0", "x,
25 s 1 2

T

NP ——————y— o=

"

or "x, + 1", and where T is a term containing function letters de-
fined by earlier equations (formal substitution), or is part of the
(formal) scheme of n-recursion corresponding to the (informal) De-
finition (7.1). We also require that each system of equations be
consistent: that it not define the same function letter twice, nor
use the same function letter with varying numbers of arguments.
Again, this restriction is purely syntactic. We may also attach

an ordinal @ to each function letter used in such a restricted
system of equations: if a function letter f is defined by (formal)
substitution from function letters fl,...,fr, attach to f the

ordinal @ = max{Q ..,ar] where al""’ar are the ordinals attached

1"

,f 3 or if r = 0, so f is defined by substitution from the

to fls--- L

empty set of functions, & = 0. Also, if f is defined by (formal)
(n+1)-recursion from SRR assign f the ordinal @ =

1 s o .
max (& ..,Or]-+Jf. Then assign toc a system of equations the or-

TEQH
dinal of its principal function letter, and let R, be the set of
those systems of equations with ordinal less than or equal to @.
The point is that the systems of equations in R,y have a purely
syntactical definitionj; furthermore, given a sequence of formal
symbols, we can effectively test whether the sequence is in Ra.
Finally, each member of Ry is a system of equations in the Kleene
sense, so deductions may be made from such a system in exactly the

same way as they are from the more general systems of equations.

It should be clear that a function f is in ﬁb if and only if there

is a system of equations in R, which defines f recursively.
Other writers use definitions of n-recursion somewhat differ-
ent from ours. Péter [12, Z1], for example, uses a slightly less

general scheme in which f obeys

m) if Xy tees X = 0

~<

£(Xn :ym) = g

f(x +l,...,xn-+l,§m) =F otherwise

1

where each occurrence of f in F has the form

f(x .,Tn,§m). Our development could just

@B I 7o S D (5 R 2la
’ Ao i P e

1

as easily have been carried out in this way. Robbin [25] uses a more

general scheme.

]
=

£(x ¥)

- if (in) 2 (05 evsy0)

(6)

1}
=

f(xn,ym)

if (in) % (0y5550)

where F_ is a formula not containing f, and every occurrence of f
(o)

in F is of the form f(T ..,Tn,S "Sm) where T > n,Sl,...,S

17 17°° 12" &

are formulas and for all (in) £ (0,...,0), (Ih) < (in). The only
problem with this scheme for our purposes is that given a pair of
equations in the above form, it is not clear from their syntactic

structure that f is properly defined, because the condition (Ih) < (in)

is not a syntactical property, but depends on the values of the functions

involved. In fact, given a pair of equations like the above, it is
effectively undecidable to determine in general whether the condition

(Tn)< (in) is met. All of these approaches have the common property

.

-

that a function is defined by induction on the lexicographical well-

ordering of n-tuples. As we will discover, all the variations are

‘ equivalent in that the

r lead to the same classes of functions.

[

§8. This section corresponds to §§3-4 of Chapter II in that it

establishes the rate of growth of the largest functions of each
class ﬁﬁ. There is a Bounding Theorem for ﬁh’ much like Theorem

(3.6), showing that each function in ﬁh is bounded by f for

(p)
1+
some p; and a Hierarchy Theorem for Rd’ which proves the inequality

R, o R, for a > B by demonstrating that fl

e € Rd for ¢ > 1. Thus

X
the Bounding Theorem for @3 is different from that for SO, in that
the former limits the size of the functions of Qa, whereas the latter
bounds the computation time of functions of £d' The bound on the

functions of Za came as a corollary to the bound on computation time;

the reverse will be true of Rd'

(8.1) Bounding Theorem for ﬁa. If £:N" - N is a function

< ¢(P)

in ®_, there is a such that f(x
ik o P E (n) = 1w

max(x_});
(max(x_));
p depends effectively on the recursion equations de-

fining f.

Proof. Like that of the Bounding Theorem for Loop programs, this
proof is by induction on Definition (7.3) of RO' There are four
cases corresponding to the four clauses of (7.3) which exhaust the

ways by which a function f may be a member of Q&'

Case 1. f(x) = x+1 or f(x) = x. We have immediately that
)

e(x) < £ (x) < £ (x)
Case 2. f € Ry and B < a. Then we have a p so that f(in) <
f&i&(max[i“7) by the induction hypothesis for RB and (3.4.viii).

es

Case 3. f is defined by substitution from functions Bysce a8, € RO'
The theorem is immediate by Lemma (3.4).]
Case 4. f is defined by (n+1)-recursion from functions
yrveeaBy in RB, where Q = B-+u?. This case is proved by induction

on n. Suppose F is a formula built up by substitution. We define
the depth of F by induction on its structure as follows: the depth
of a variable or a constant is one; the depth of g(Fl,...,Fm) where

Fys-+-,F_ are formulas is max{depth(Fj)]+ y U

1

Now consider the base of the induction, n = 0. Then @ = B+ 1

and f is defined by l-recursion from g,,...,g. € R;. We have
it r B

£(0,¥) = F;
f(x+1,y) = F,

Let a be the greater of the depths of F, and F,, and let b be suf-

1 21
. L b
ficiently large so f§+g bounds each of SERERET -4 and also all the
constants occurring in Fl and FE' Then
= (ba) =
(O,
£("m) <f.s (max[ym])

Suppose Tor each z < X where x > 0 we have

z+1
elz,y) < f(ba)

o) < T1i8 (max{z,im])

By definition, f(x +l,§m) = FZ' But since each occurrence of f in

F, is of the form f(x,fm), by the increasing property of f1+ﬁ and

the hypotheses on FZ and £,

-

)(max[x-+i,§m})

Thus, if we write m for max[X,§m},

x+1
)

8.7,) < 252 i)

m+1
Sl

ba2+l4-m)

IA

= f1+a(

< flya féba+l)(9)

< i

We have thus proved the following for n = O:

(8.2) Lemma. If f is defined by (n+ 1)-recursion from

SRR - and if the greatest depth of the formulas

I . ()
Fl,...,F2n+l defining f is a, and fl+B bounds all of
gl""’gr as well as all the constants of Fl,...,F2n+l,
then f is bounded by f§}:§+t+2), where O = B+a)n and

t = tn(B).

Proof. The basis n = O has already been done, so we will assume

the lemma for some n > O and prove it for n+ 1. Thus, a function

f(x,xo,...,xn,ﬁm) is being defined by (n+ 2)-recursion. For each

fixed x, let f(x)(xo""’xn’im) = f(x,xo,...,xn,im). On examining
n+2 . o e . n+l

the 2 equations defining £, it is found that'the first 2 of

them constitute a definition of f(O) by (n +1)-recursion, for these

)

PRI e e MRRGREE s VT BRI i SRR A sEEE 0 4

a\

equations specify the value of f(x,x.,-. ..,xn,f}m) when X = 0. Thus

(ba+t+2)
LBl (E):

where m is ma,x[xo, . .,xn,frm} end t = tn(B) . Suppose for some x

by the induction hypothesis, f(o)(xo,...,xn,im) <f

that

f((ba.+t+2)x+1) . |

L lf s v V) <
(x)*70 w2 148+ (x+1)

Again, by the definition (7.1) of n-recursion, f(x+l) is defined by

(n+1)-recursion from gy -8, and f(x)' The depth of the defining

formulas is still a, and by (3.4.viii) and the induction hypothesis

for gl,...,gr, the function

o

> ((batt+2) x+l)

1+8+af (x+1)

bounds all of SRR - f(x) - Thus, now letting m be

max (x +l,xo, g ’xn’i;m]’

((ba.+‘t;+2‘)x+l . a.+t+2)

f(x+1)(x0)°- ':xn;i’m) & fl+B+(1P(X+2) (E)

- ((ba+t+2) x+2)
= f1+f3+cn“(>§+2) o

Thus, we have shown where m is ma.x{x,xo,...,xn,ym},

-

1 ((ba+t+2)x+l)
f(x,xo, - ,xn,ym) < fl+3+w“(x+l)
f{(ba+t+2)3‘+g)

= 148+ (m+l)

(m)

(1)

m+2
Sfl+B+a}‘(g+l)+l((ba+t+2)— J

<t (A) where A = (ba +t+2)%*2

1+B8+a) <A

[1t-13

e —

I
¥

R

PEERRTRA AN Y B 35T ARG Y L T AR Rt i R R aR Rt Ea | i L G

ql

- 8 L n+l . e o
Now if B = w bS + + W bn+l + .‘,+ w bo,_let B' =
uf-bs eglioh + aP+1'bn+l' Thus B' is the least.ordinal S0 ¢ = B'4-QP+1,
and 1+8 +f'-(ba +t +2)2 = 1 4 4o ((ba +t +2)0+2 +b). Then
F00%0r e+ %0 ¥) 2 Bapiggn. (avo_) A+)
m+2
= f1+a((ba+t+2)- +bn)
(ba+t+b +2)
m
= "1+ =

But since tn+l(B) = t-+bn by definition of t, this proves Lemma (8.2)
and thus Theorem (8.1). -

Unfortunately, the somewhat more attractive conjecture that ﬁép)
bounds the functions of Rd fails. This matter will be discussed

after (8.3).

. : > s
(8.3) Theorem. For each o > 1, L € &,

n+2

Proof. Consider the function h, : N - N defined by (n+2)-

B,n

recursion from f_.:

p

ha,n(§01-°°:§n:o) =1

(05.4:,0,x+1)

hﬁ,n fﬁ(x+-l)

13
hB’n(go,...,>n_l,xn+l,x+l) hB,n(go"'"gn-l’xn’hﬁ,n(go’""gn-l’xn+1’x))

hB,n(EO’""gn-z,xn-l+l’o’x+l) = hB,n(go’f'"gn-z’xn-l’x+l’x+1)

hB’n(xO +1,050..,0,x+1) = hB’n(xo,x+l,O,...,O,x+l)

I -

~at
-~

TR R R WHOReBE AL B < Wi

Each equation containing a & is schematic’'in that it represents all
the equations obtained by replacing £, by "xi4-l" or "0". We show

that when B8 is of the form B = ﬁ'+—ap for some B', then

(xo, .,xn,x) = f6+7(x) where v = aP-xO + cee + ap-xn. The in-

B:n
duction is on y. If y= 0, so e 0, then hB,n(O""’O’X)

= fg(x) by the first and second equations. If 7y is a successor, so
Y =05+1 where & = a?~x0 - R, a?-xn, the third equation applies:

n(goy-")gn_l:xn"'l)x'H-) = (gox"' -1’ hB)n(§O""’§n-1"xn+l’x))
By the induction hypothesis for & and the first equation,Awe have

5 n(x R +1,0) = 1
(x ..,xn_l,xn+l,x+l) =f h ’ (xo,...,xn_l,xn+1,x))

B,l’l B"'S(B,n

But for fixed x ,xn, these are the same equations defining fB+6+l

s
= fg,y» by Definition (3.2). Finally, if v is a limit, so y =5 o

where m < n and & = aP-xO 4+ cee + ap-m+l-xm_l-+uP-m-xm, we have
hB,n(xO’ R ’xm-l’xm +1,0,...,0,0) = 1
B,n(x .,xm_l,xm+1,o,.u,0,x+1)==hB,n(xO,.“,xm_l,xm,x+1,o,...,O,x+l)

Combining the equations and using the induction hypothesis for 5,

hB,n(xo,...,xm_l,xm+l,0,...,0,x)‘= fB+8+aP-m'l-x(X)

= fﬁ*.'Y(x)

by Definition (3.2).

T -5

-

R ———

L TN) BN Bl R, JMRT e AR Ak a el

Now consider the equations

f(O:Y) = ¥+l

f(x + lJY) = f(x:f(x;y))

which are an instance of l-recursion. We show that f(x,y) = y+2*.

This is clearly true for x = 03 if it is true for x,

f(x+1,y) = f(x, f(XJY))

f(x,y) + 2%

.
I

g2 4 2% 5

g y_*_2x+1 <

So f € ﬁl and f(x,d) = fz(x).
: w
Now let @ be an ordinal, 1 < @ < &y , and assume that fl+ﬁ € RB

for 1 < B<a. Ifaisa sﬁccessor, & = B+1, then flya is obtained

from fl+5 by iteration (Definition (3.1)); which is a 'special case

of l-recursion, so fl+B € Ry. If @ is a limit ordinal, let B be the

+1

least ordinal so @ = B +a By definition, h) g is obtained by
*)

(n +2)-recursion from fl+B’ and so by the induction hypothesis,

hl+5,n € Rl+5+ap+l' But hl+B,n(x’O""’o’x) = f1+ﬁ+ap-x(x)=:f1*3(x)’

S0 by closure under substitution, flya € Ry- This concludes (8.3).
The rather unpleasant need to use f1+a to bound &, rather than

iz

o2 Stems from the difference between l-recursion and primitive re-

cursion. The equations above,

LH-te |

VIR RN K 12 AR O R TR RS S B R i

f(O)y) =y+1

flx+1,y) = £(x, £(x,y))

: X . AT :
which make f(x,y) = y+ 2", are not an instance of primitive recursion,
because in the latter scheme the parameters must remain fixed, not
variable, in the defining formulas. In other words, the schema of

primitive recursion may be written

f(oyym) = Fl

f(x+ 1,§m) = F,

where F1 does not eontain f, and where every instance of f in F2 is
of the form f(x,&m); here l-recursion would have f(x,fm) where im
are formulas. The difference is between "nested" and "unnested"
formulas. This matter will be discussed more fully in Chapter V.

Notice, incidentally, that if Q >W 1l+a = Q.

The above results give

(8.4) Hierarchy Theorem for Ry If a> B, ﬁb :>RB.

Proof. Immediate by (8.1), (8.3), and (4.6).

§9. The task of this section is to establish the computation-time
closure of Ra for each @ > 2. The path we take is essentially the
same as that followed for Eu: show that the computation time of
each function in RO is bounded by another function in RO’ and then
find a function in ﬁz which mimics the actions of an arbitrary
Turing machine for a given number of steps. We base the proof

for the first half of the result on the use of deductions from the
formal recursion equ;ticns defining a function in R&' This method
is by no means the only way to carry out the proof, but it seems

to offer the fewest technical difficulties and will be applicable

as well to later work.

(9.1) Theorem. For each @ < &9% if £ € R, then f can be
computed by a Turing machine in such a way that the ~

number of steps required to compute f(in) is bounded

(p) =
bnyQMQdﬂJ)fM‘mmep.

Proof. We will show that for each f € Ra there is a set of equations

(q)

E defining f recursively and a number q so that f1+a

(max[in]) bounds
the number of equations in a certain deduction of the equation
f(v(xl),...,m(xn)) = y(x) from E. Then we will arrange for a
Turing machine to perform the deduction and conclude the theorem.

If f € R, then f(in) = X;+c or f(in) = ¢ for some constant

¢. Thus f is definable by one of the equations

e B RO e
f(xn) = #y

N T ORI T AR S N P A BRI TR R R B AT D R

or

= G AT
f(xn) =0

A deduction of the equation f(v(xl),...,v(xn)) = v(x) simply con-
sists of the n+ 1 equations which start with the original defining
equation and have the vgriables xl,...,xn successi&ely replaced by
v(xl),...,v(xn). Thus the number of equations is bounded by a con-
stant, n+ 1, and a fortiori by f§h+l)(max[in]).

Now suppose f € R, where @ > 1. If f € R because f € RB’
with B < @, the claim is trivial by Lemma (3.4.viii). If f is de-
fined by substitution from functions in Ra, the proof follows from
arguments similar to, but si&pler than, ?hose used for the next

case. We omit the details.

There remains the case in which f is defined by n-recursion
from functions in ®,, where @ = B-+aP-l for some n > 1. We have

B

the 2" equations

T . n
(&, 9,) = Fs Pcd=e

where each equation is obtained by allowiné each gi to be either
"xi+-l" or "O". The functions &)1 18, appearing in the formulas
Fj are all bounded by fggg for some q by Theorem (Stl). Define for
each i, 1 <i <r, a function L.gi:Nni - N such that lgi(xl,...,xni)

bounds the number of equations in the deduction of the equation

g; (V(x)y e e 5v(xy,)) = v(x).

How do we deduce the equation f(v(xn),.v(ym)) = v(x)? (We have

written vixn) for v(xl),...,v(xn).) First select the applicable

equation on the basis of which X, are.zero:

and then substitute the desired numerals for the En to get

£(v(x,) v(yy)) = v(Fy)

where v(Fj) is F, with a numeral substituted for each corresponding
variable in Fj' This requires n+m+ 1 equakions. ?yen replace one
of the innermost function letters by the numeral which is its value.
This will require a subsidiary deduction of the proper equation.
Then, similarly, replace one of the remaining innermost function
letters by making a second subsidiary deduction, continue until

all the function letters are removed from V(Fj); we then have

£S(WE), V7)) = Wx)

for v(x) a numeral. Thus the total number of equations is no

more than
n+m+l+Z[Lhk(Tl,...,'Tsk) +1]

equations, where the sum ranges over all literal appearances in Fj
of a function letter h, in the form hk(Tl""’TSk) and where TpeeosT
are formulas. Notice that we include f itself in this census of

function letters, so terms- of the form £T(Tl,...,Tn+m) will appear

Sk

-2

in the expression above; this function letter represents the number

of equations required to deduce f.

Thus we arrive at the 2" equations

{f(§n:ym) = ZJ

These define the function %r by n-recursion from gl,...,gr,

4L ,...,4_ , f, and addition. Each X, is a formula n+m +1 +
& g, 3
Z[&hk(Tl,...,Tsk)+ 1] like the one derived above. Now consider the-

following modified equations:

G(ELy,) = 2%

Here =% is the formula arrived at by repiacing each occurrence of

(qi) .
gi(Tl""’TSi) by fl+B (Tl+ cee 4 Tsi)’ vwhere q, is chosen so the

latter function bounds the former; likewise, tgi(Tl""’Tsi) is re-
f(Pi)
148
is guaranteed by Theorem (8.1) and the induction hypothesis for

placed by its bound (Tl + *+++ + Tg). That such bounds exist

1

lgl,...,£gr. Finally, replace each occurrence Of.f(Tl""’Tn+m) in
1 * S 3 o3 1 1 z*
Zj by Cf(Tl, ’Tn+m) By the way in which the formulas 3 were

defined, 1; is thus obtained by n-recursion from the functions x+ y

and flfB; so by Lemma (8.2), £¥ is bounded by fii;ﬁnn'l for some g.
¥, - - 4P - - *, - - - -

But we also have tf(xn,ym) 2-£f(xn,ym) and Lf(xn’ym) 2>f(xn,yh), for

L; is defined from increasing functions which bound those defining

Lf and f, and the formulas defining l; are of equal or greater depths.

Thus the deduction of f(V(xﬁj, v(ym)) = v(x) contains no more than

f(q) l_l(max(;.n,:}m}) equations.

1+84a)”

. . ¢ SPRRGHINEE FOLS T 0 PR SRR 1Y R R e R Y &

Next, it should be clear that there is a c so the t-th equation
; tamax(x ,¥,) :
in the deduction will contain no more than ¢ characters.
For substituting a numeral v(x) in an equation can increase its
length by at most d-v(x) for some fixed d; and each numeral which
is substituted is either one of the in’ ﬁm or already appears as

part of an earlier equation. Since fz(x) = 2x, there is an s so

the total number of characters in a deduction, namely

(q)(ma.x{x ,y })-6 (_?;(max{)—(n,frm])+max[;cn,§m])
is bounded by f(s)
Now a Turing machine can certainly carry out the deduction
we have ouﬁlined. Given input in’ &m, it simply forms the equation

f(x_ ,y) = Fj’ and proceeds to derive the succeeding lines of the
deduction exactly as suggested above. Even if none of the deduction
is erased from the tape, the total number of tape squares used

need be no more than

(s)

Xpheo X Ny e '+ym+m+f1+a(m8‘X{xh’ym])

Then by exactly the same argument as that given in {5.3), the total
number of steps required is no more than f(p)(max[x ﬁn]) for some

P, so long as @ > 1. Even if g = 0, the theorem remains true; for

suppose f(in) = X;+c. Then f can be computed as follows: move to

the left over the representation of xl,...,xn, erasing the tape,

until x, is reached; pass over X;, and then add c-1 "1"s to its .

left. Continue to the left, erasing Xs_q2°° .,xl. Then move right

again until X+ ¢ has been passed, and stop. The total number of '
‘ steps is no more than f‘.(Lp)(max{:-{n]), for suitable p. This con-
cludes the proof of Theorem (8.1).
A fuller discussion of the use of Turing machines to carry

out deductions from recursion equations is given by Kleene $2Z, §69];

‘ readers who mistrust our sketch of such mechanized deductions should

Theorem (9.1) constitutes half of the proof that Ra, a>2,
is computation time closed; the other half follows from the next

theorem.

(29.2) Theorem. Let M be a Turing machine which computes
: n . '] . 3 .
the function f:N — N. Then there 1s an Rz function “

T™ :N -+ N with the following property: if s exceeds

Proof. This proof can be made by giving a direct construction of
'T‘Mm, but a simpler method is to show that Ra > ﬁa for g < W, and
. then use Theorem (5.1) to conclude (9.2).

As we have remarked, 3? = RO, for each function in both classes

can be written in one of the forms f(xn) = x; +c or f(xn)= c for

some constant ¢. Now suppose ﬁa =, i',a for some a, 0 < a<W, and

‘ let P ¢ LQ_ be a Leop program with Reg(P) = {Xl, ...,Xn].

~

MR T I) ~ > O & 2 TR A B2 B
SAARET WO W =21 8 L4 TR TR L0 Ll I

For each i, 1 < i <n, let fi:Nn - N-be the function computed
by (P, in’ Xi). By definition, each f, € Ed. Now consider the

function
*.—
fi(xn,o) = X;
%, = _ * - oo
fi(xn,z+-l) = fi(fl(xn),...,fn(xn),z)

which is defined by l-recursion from fl,...,fn; by the hypothesis

on T teRaiE ey .o i) Let P be the program

1 n 5 o+l”
LOOP(1) Z
P
END

Now we assert that f:(in,z) is the function computed by (ff,xn,z,xi).
This is certainly the case when z = 0; for then Ef is equivalent to
the empty program. If the assertion is true for initial contents of

7 = z, let the initial contents of Z be z+ 1, and the initial contents

of X be x . P*is thus equivalent to

< 3

&’U

LHd

The program P leaves fl(in),...,fn(in) in registers X;,...,X ; and
by hypothesis, if the contents of in are &n at the beginning of the

execution of the program E& above, then Ek leaves f;(yl,...,yn,z)

ip register Xi' Thus when the initial contents of Z are z+ 1, P¥

* - = _ k(T : ; :
leaves fi(fl(xn),...,fn(xn),z) = fi(xn,z4-l) in register X;; so
(px, in,Z,Xi) computes f;(in,z). If register Z is one of the X,,
say Z is register Xj’ then(zﬁgin,xj,xi) computes f;(in;xi).

The foregoing establishes our claim that Id g;ﬁa for o < A

for the functions of ﬂa computed by programs of the form

LOOP(1) X
. R

~

END

When we have a program of the form

o g

the claim follows from the closure of ﬁa under substitution.
Thus for o < ®, Ea g_ﬁa; in particular by Theorem (5.1), the
desired function TszE &2 and Theorem (9.2) is proved.

Theorems (9.1), (9.2), (8.1) and (8.3) give immediately

(9.3) Theorem. For each a > 2, ﬁb is computation-time

closed.

——

R VA g (B TR F O LR R

IV. IDENTICAL HIERARCHIES
§10. The following very important result is now straightforward.
w
(10.1) Theorem. If 2 <®< W, Ry =L 4

Proof. If f € Ra, the time required to compute f ﬁsing a Turing
~h 3 3 (p)] 4 u A(p) AV
machine is bounded by flyx for some p. By (Yo (X, + 4—xn+l)
(p) - (p)
> flgz(max[xn)) and £ (x ket e V) £, .o+ Then by the com-

putation-time closure of £l+a’ f e £l+a' Conversely, if f € £l+0’
the computation time of f is bounded by fii& for some g; but

ii&(x g N xn) € Ra, so by the compgtation—time closure of Rb,

s &a'

Notice that this gives

Proof of Theorem (4.5) concluded. We showed fl € £1 directly;
£, € £2 follows by (6.9); (8.3) and (10.1) give fo € {o for @ > 3,
yielding the theorem.

Theorem (10.1) follows from just two importané characteristics
of each £1+a and R,: First, each class (for @ > 2) is substitution
and computation-time closed; second, the two classes contain fuﬁctions
of the same size, in that ary function in the one class is bounded
by some function in the other. Thus it appears that any class of

functions which has these two closure properties is essentially

characterized by the size of the functions it coﬁtains.

105

This same approach using computation-time clcsure is applied
below to three examples of other hierarchies mentioned in the .

literature; we show that each of these hierarchies is identical

to a portion of the £, hierarchy. Not all the theorems are proved
solely on the basis of computation-time closure -- sometimes ad hoc
methods are easier -- but mostly we make use of this powerful closure
property.

A hierarchy similar to the Ra hierarchy where @ < W was de-

fined by Axt [2]. We have

(10.2) Definition (Axt). For each @, 0 <G < W, let Py,
be the smallest class of functions satisfying
(1) The successor function s(x) = x+ 1 and the
ider;r,i‘.;j.r.I‘uncfion i(x) = x are in Py,
(ii) 1If > B, Py oPg;
(iii) P, is closed under substitution,
f is defined by primitive recursion from

functions g,h € PB’ then f € @, where & = B+1.

It is obvious that P, the class of primitive recursive functions,

is precisely

See Definition (6.10). The difference between the Ru hierarchy for

a < W and the Pa hierarchy is that where ﬁa is defined using 1-

s
9]
=
e]
4]
oo
[

3
=
=
(6]
bS]
T
i
—

M
&)
177}
0

eneral schema of primitive

I+ should be clear intuitively that the function TMm which

mimics Turing machines i1s primitive recursive. In fact, this re-
sult follows from proofs of the Kleene Normal Form Theorem; see,

for example, Kleene [12, §58] or Davis |7, Pp. 63]. This fact alone

would put TMnlin Pa for each @ > Q& , where ao is a fixed
less than . The next lemma, therefore, is of interest

cause it shows & to be no greater than 4.
=)

(10.3) Lemma. The function TMvtOf Theorems (5.1) and

(9.2) is inP). Also, egch function used in the

definition of TM_ is bounded by fé

L p) for some p.

ordinal

only be-

Proof. The proof of the lemma consists merely of an enumeration

of the defiftions of various functions, concluding with

that for

TMwé this together with a verification that the function so enumer-

ated have the properties ascribed to them. The verification is left
mostly to the reader. Instead of giving the details here we segre-

gate them in §11, since, as remarked above, the real content of the

lemma is already obvious: that TMm {(ﬂz for some & < &, and there-

fore that TMvzvan be defined using functions bounded by fép) for

some & and p.

(10.4) Theorem. For 4 <@ < w, £, =P,.

Proof. By Corollary (6.¥) and the closure of £, under substitution,

£. =P, for all @ > W, On the other hand, since f. € Pl and fa+

1 1

is defined from f. by a special case of primitive recursion,

f, € P, for each @ > 1; thus vy (6.3) and (10.3), Py 2 &, for

We remark that the first half of this proof, that £, 6 oP.,
a="Q

could have been shown as follows: prove that each function in P. is

1
bounded by f(p) for some p. Then by Lemma (8.2), each function in
l 2
. is bounded by P(p) for some p. Finally, Theorem (9.1) applies,

il
a fortiori, to® as well as ﬁu, since primitive recursion is a
special case of l-recursion; thus each function inﬁ’a can be com-

puted in fewer than fép) steps. Then by the computation time closure

Other hierarchies may be cobtained by starting with a fixed set
of functions and closing under substitution and limited recursion.

The next example is essentially the one studied by Robbin [25]; his

¥
P,

initial function was 2 rather than fO’ but otherwise he used functions

like ﬂj.

(10.5) Definition (Robbin). For each ordinal a, a < of®,

let Fa be the smallest class of functions satisfying

(1) R} contains the successor function, the function

(6

max(x,y), and 23’

(43) .6

8 is closed under substitution,

(iii) E& is closed under limited recursion.

107

T ——

Proof. Say a > 2. Then £ contains all the starting functions of
€ , and by (6.8) and (4.9), £ is closed under limited recursion

and substitution. Thus £ o &€ . Conversely, if f € ﬂc, by Theorem

f(x.) = M \e,x,.ﬁ%' (max(xl,...,max(xn_l,xn)...)))

for some e and p. Since M is obtained by substitution from TMW
18
for some M, by closure under substitution and Lemma (10.3), Tsze (A

for all the recursions defining TMW in (10.3) are bounded by fép).

Then by (6:3), £ € &

Grzegorezyk [9] studied & similarly defined hierarchy

{€7: a < w). His starting functions, however, are somewhat different.

(10.7) Definition. For each @, 0 < a < ®, let €y be the

function defined as follows:

go(%,¥) = y+1

3
o
~
i
-
"
+
120
~
—
e
+
-
~

108

109

Proof. By lefinition,

C -
7 G
(0,7) = (v +2)
N 1 Y | .- -
=z + Y >».'(l"'.\'\":/))
9 9 ~
Abbreviate (v+ 2)% by k(v Then we as rt+ that
previate \Yy <) oy Kly). inen we assert tnat

The equation holds when x = O3

.
-
\'
o

Now k(y) = (y+2)° <y if y > 2. Therefore,

110

e I)S’
(S) :
< B 4x+r) % il e Sl o
(x)

‘(y) for all x, y. Thus k()(y) € .L',Z, for it
is definable by limited recursion (in fact limited iteration) from
functions in £.,. Then g, € L. by closure under substitution.

Now for 3 < o <, r‘cz+ is obtained from ga by l-recursion.

)

By Theorem (10.1) and the definition of Ra, 41 © f,a. This

immediately proves £ o t';;ﬂ, since £ contains the starting

~

. o ol - -
functions of E'C;+l and has the same closure properties.

Now we show ;50_‘_,‘(;(.},’) > f‘gx)(y) for 1 <a < For

(¥

2 2 #0(y) a y

g5(0,y) = (y+2)% 3]

—~
)

+

r—l

1V IV I
l—” L) ()
-~

<

1s]

N
~

>

<
S
N

1V
H

2
Bven if x = 1, g,(1,y) = ((y+2)%+2)% > f](_l)(y). For 1 < a< w,

B3 (0Y) = 8o (¥ +1,y+1) > féy+l)(y+ 1) > féi{(y)
8 s(1y) = B (0,8 ,5(0,7)) > £V)(y) > £l (y)
Bz X+ 1Y) = 8 (%58 2(x,¥))

(x) (x)
2 f.a):l fail(Y)

< f,(;(+1)(

2 forn) if x>1

So in particular, (352) 2 fa(x). Since clearly ga+1(x,y) >

o
L7a+l

max(x,y), there are functions in Siﬂa which bound fa(max(x,y)).

=
But since by Lemma (10.3), ™ € 6;, by using Theorem (6

G 2 21\ e e = Q
€O+l ;)ﬁd for 2 < a <®; this concludes (10.9).

§11. The major purpose of this section is merely to prove Lemma
(10.3), which proof is, apparently of 'r;e;:essity, somewhat long-
winded. A minor purpose is to demonstrate that a few other functions
are in variog.s classes Pa, so that these functions may be used in

the sequel without further proof of their claimed properties.

Proof of Lemma (10.3). The construction is éonceptually identical
to that of (5.1), except that there a Loop program was written, and
here a primitive recursive function is defined. The approach here
constructs TMWtdirectly, in contrast to that of Theorem (9.2), which
showed that 1-recursions could perform the functions of LOOP(1) in-
structions, and concluded the theorem indirectly via (5.1). We
remark that this latter method may, in fact, be used successfully

to prove (10.3), but that without some complexities it succeeds only

in showing that TMm € Ps.

The following functions are all in Pl.

x+0 =Xx

x+(y+1) = (x+y)+1
For each fixed n,' nex =X + *°* +x

0-1=0

(x+1)=1 = x

p(x:O) = X
p(x,y+1) =0

1-x = p(1,x)

—~

113

yessyh 7d¥e given functions such that at .
any argument, the function f de-

btained from the given functions and X+ Y,

be defined by cases. We have

p(h, (x),g,(x) + +p(h (x),g.(x)) +

(%),58(g, (x) + - -+ FE(g (%)) ;

18 o il

is closed under definition by cases. The following

jefined by a single recursion and substitution from

= X*y+X

The following functions are all defined by a single recursion from

functions already defined, and thus are in P, ;
o)

|0 if |rm{x,y) +1-y| =0
rm(x+1,y) = £
'er(;-: ,v)+ 1 otherwise

-:/./;; +1 if '(x/y+ 1)y=-x=-1

x/y otherwise

NO = 0O
: Jx +1 if‘|(~rx+l)2-x-l =0
NS = -,

Nx otherwise

3
i
—
%
~
Il
~
'
=2
Z
v
A

The functions 1, T, T, are pairing functions with the proper-

ties 'r(rrl(:-). r.(z)) = z, nl(T(x,y)) = X, TTZ(T(X,y)) = y. Define,

using substitutions from already-given functions,

(X)Q =, (x) |
= 7r17r2(x)
. (x)g = mmymy(x)

(x)R = Trzvzvz(x)

E(xl)xz)xs)xu) = T(xl) T(xzi T(xs')xu)))

—
»
et
|

' These last five functions provide the basis for the function

about to be defined which mimics a Turing machine. If x

Q’ XL’ XS’
respectively represent the state of the Turing machine and its
R

tape to the left of, on, and to the right of the scanned square, then

E(x p'e

)

if z represents a situation, (z)

Q’XL’XS’ will represent the whole gurrent situation. Conversely,

represénts the state in that situ-

Q
ation; similarly for (z)L, (z)S, (z)R. Let the Turing machine M have

u symbols Sgre+28, and v states Qg+ 229, 97 88 before, the tape

will be represented by a number which, in a base u notation, is an

image of the corresponding portion of the tape.

Now let Qm(z) be that function, defined by cases, which is j

whenever the quintuple (q(z)Q, s(z)s, s,.0 4, q,j) is a quintuple of W;

Qm(z) = (Z)Q if such a quintuple does not appear. Likewise let.Sm(z)
‘ be the function which yields the next symbol to be placed on the
scanned square, and let Dm(s) be O if M has halted, and 1 or 2 re-
spectively if M moves left or right. It should be clear that for
each machine M, Q‘Jli Sm’ and Dm are defined by cases, and hence by

‘ substitution, from functions already given. Now define

118§

Q. (z)u=(z). +8 (2) (z ,(Z
(2) +8 (2),rm((z),u), (2)p/u)

€ ¥, and if z is the representation of a situation,

. Step_(2z) is the representation of the next situation. Now say

Result (z,s+1) = :V“/VE“DJR(R»?:‘,ulf:m(z,s))

P/

Then R‘i'v”lt,n(r,s) € P),; it is the situation resulting after s steps

v,

have been performed by M when started with z. Define for a parti-

cular u

Ones(b,0) = u-b+1

Ones(b,x +1) = u-Ones(b,x) + 1

Ones € P_, and when Ones(b,x) is written in base u notation, it con-

0

sists of the digits of b followed by x+1 "1"s. Now let

‘ 1:’:})‘,1‘.‘:‘(;:) = Ones(u-Ones(.. .\,;-Dnes(O,xl) e 'xn-l)’xn)

so that, for example, Input,(x consists, in base u notation, of

2 l"x

5)

x.+1 "1"s, followed by O, followed by x.+ 1 "1"s. Then say
'

. I:lf"ial_n(_x) = E(0, Ix’xp11?’,n()-(n), 0, 0)

T R TSI T T O FINRAYE ¢ TN e N Bt 1 IO G AR NG FNERE G T

\W\ 1

Initialn(in) is the encoding of the initial situation of M with in-

put X

Then define

Output*(z,0) = 0

1+ Output*(z,x) if Irm(z/ux,u) -1| =0

Output*(z,x+1) = :
Output*(z,x) otherwise

Output(z) = Output*(z,z)

Output € PS’ and Output (z) is the number of "1"s occurring in the

base u representation of z. Finally, define

™ (xn,s) = Output((Result

“ Initial(in),s))L)

a(
TM;”z is the desired function. It should be obvious that all the
functions used in the definition of TMWlare bounded by fép) for some
p except perhaps Resultw{ Even this is bounded, however; for Resulth
is in each case an encoding of four numbers. The encoding is a poly-
nomial in the numbers encoded, and the numbers themselves represent
tapes. But by the representation of a tape we have used, the size of
the encoding of a tape is expoﬁential in the length of the tape; and.
this length is linear in the numbgr of steps taken. Thus Result‘m
grows exponentially at worst; this makes it straightforward to show

Resulthis bounded by fép) for some p, since f,(x) = 2%. Finally

2

TMm eﬁ’a, so (10.3) is proved.

§12. Summarizing Theorems (10.1), (10.4), (10.8), and (10.8), we

immediately

(12.1) Theorem. For 3 <a <, { =R =8 =& = 5G

For 2 <a< w, £ =R =05
- O+ 1 Q

Therefore each of the theorems of §6 discussing EO applies, mutatis

mutandis, to the other classes as well. The following characteriza-

tion is also interest.

(12.2) Theorem. For a > 2, Fd is the closure under substitution
of the (finite) set of functions (Ml, T, Mys Ty, fa].

Proof. T, T, T, are the pairing functions defined in $§11 with the

-~~~

properties T(Wl z),m.(2)) = z, nl(f(x,y)) = X, vz(r(x,y)) =y. $§i1

shows these functions are in 82 and thus in £a for a > 2. Also, Ml

and qa are in fﬁ by Theorems (5.2) and (4.5). Therefore, the closure

of these functions is included in la. Now if f:Nn - N is in Ea, there
is an £%:N = N so £* € £_ and f(x)= £*(v(x,, (%, 7(x_,0)...)));
(@7 n 1 2 n

simply take f*(x) = f(vl(x),nlw?(x)....,w Wén-l)(x)). Then by Theorem

“ ' 1l
(6.3),

flx) = Ml(e,r(xl,...,T(xnﬁﬁ)”

n -),Qép)(T(xl,...,r(xn,o)...))

for some e and p, since T(x,y) > max{x,y}. This concludes (12.2).
Theorem (12.2) answers in the affirmative the. question posed by
Grzegorczyk [S, p. 41] whether his classesEg were definable by sub-

stitution from a finite set of functions.

118

B . ol R G o e gl

1o

5 - - - - - 4 Y
(12.3) Definition (Csillag-Kalmar). The class &€ of

elementary functions is the least class such that >

(33 2 3& mlose ' ler. anthetitutsi
sl is closed under substitution,
(iii) £ is closed under the operations of limited

sum and limited product: the operations which

- N+l e n+l
. take gZ:N - N into s:N -+ N, where

s (% = Ev o % i
s(k,»y) = & 8lx,1)

+1

and into p:N = —+ N where

i n

p(x _,¥) = i g(x ,i)
n 0
Grzegorczyk was able to show that his class Gg is identical to the

elementary functions [9, Theorem 4.4]. Thus, immediately,
(12.4) Theorem. £, = &.

Although the foregoing theorems show that all the hierarchies we
have defined eventually become identical, we have not discussed much
the relationships of the various classes at the bases of the hier-

. archies. Figure (12.5) depicts the known set-theoretic inclusions
among these classes. The figure is to be read as follows. A vertical
double line between two sets indicates that the set higher on the page
is known to include properly the lower set, and that the proof of the

. inclusion is either given explicitly or follows immediately from ex-

plicit proofs. A double line one of whose members is dotted means

& s
P
G
£, = &5 =&
l * e
& P
G
g
2 (x +1)2
______ e e
G
& =&
| e
& 7.4 5
@ r
G
% =% l ;
| 0
£o = fp =Pp

FIGURE (12.5) Set-theoretic Relationchips.

o
T

-
*

1 TR T 1 & T Oh VORI B L T T T TV R R i | e

2

that there is a proper inclusion between the two sets but that we
withhold -the proof. The only such situations which require much
thought are to show F%

single solid line means an inclusion shown to exist but not known

5 £l and £2:3 fé, especially the latter. A

to be proper.

The horizontal dashed lines sefarate the sets into strata ac-
cording to the functions whose rate of growth characterizes the sets
in a stratum. Since each set in the stratum of £ includes f, and
each function in such a set has a p so f(p) bounds that function,
it is impossible that a set in a lower stratum should include, prcper-
ly or not, a set in a higher stratum. However, the inclusion relation-
ships not explicitly indicated among the sets of a given stratum are
uncerfain. I conjecture that all the sets shown in the figure as
incomparable are in fact incomparable, except that it seems likely
that Rl = ﬁ‘-é

Granting that sets in different strata cannot be equal, why are
all the sets in a given stratum not identical? The answer, of course,
lies in their failure to be computation-time closed. This failure
comes about in two ways, corréspcnding to the two parts of Definition
(6.4). First, a function may fail to be in a class although the class
contains a function bounding its computation time. This occurs be-
cause the particular functions TMm are not in the class; such is the
case with, for example, E%, Ei, % and (perﬁaps) - Second, there
may be a function in the class whose computation time is not bounded

in the class; this occurs with 80 and 61.

|
l
t
|
i

ersely, given that above a certain point all the classes
come computation-time closed, why should the hierarchies eventual- :
. 1y become identical? After all, l-recursion, for example, seems a
nsiderably more powerfiil operation than primitive recursion: as we
showed. with a single l-recursion the function 2= can be defined,
while any function defined by a single l-recursion is bounded by a
. linear function. This fact might lead us to suspect that one
l-recursion was worth two primitive recursions,and thus to the con-
jecture that ®, =R for o > a,. The reason this does not occur

is that while l-recursion is more powerful than primitive recursion

in terms of the size of functions definable, the functions definable
by l-recursion are larger by a fixed amount -- in fact, only exponential -

ly larger. Once the class § is reached, functions of exponential

growth are available and the advantage that l-recursion has can be
overcome by using substitution.
As we remarked in §7, there are variant definitions of the schema

of n-recursion. Robbin [25] would allow a function f to be defined by

£y) = B if (x) = (0,...,0)
‘I' f(in';m) = F J5 g (xn) % (0;,54550)

so long as each occurrence of £ in F has the form f(Tn,Sm), where
[Sw are formulas and (xn) > (Tn). We rejected this scheme be-
1 i

cause it is in general impossible to determine by examination whether

‘ (x.) > (T) nholds. On the other hand, perusal of Theorem (8.1) indi-

cates that the only fact actually used about the occurrences of

ion being defined is that demanded by Robbin's definition:
namely that the n-tuple of values occurring as the arguments of the 7y
definiendum on the right=-hand side should be lexicographically less
than its arguments on the left. Thus Theorem (8.1) holds as well
if the definition of R] is modified so that Robbin's, rather than
our, use of the term n-recursion is meant. Theorem (9.1) likewise
does not depend on the particular form of our definition, but goes
through as well with the more general one. (Actually, (9.1) needs
to be supplemented with a little more argument, but we omit the de-
tails.) It follows that the modified Ra is identical to the actual
ﬁ&’ at least for a > 2. (In order to make recursion possible at all,
the initial function x=1, at least, has to be added. Otherwise it
would be impossible to get off the ground, since there is no function
r € RO such that x > r{x).)

On the other hand, neither do more restricted definitions of
n-recursion affect the results. For example, we have allowed what Péter
calls "replacement of parameters". In other words, in the schema

of n-recursion f(x_,y_) may be defined in terms of f(Tn,§m); the

parameters ¥ need not remain constant. It would make no difference

if we required the occurrences of f on the right to be of the form
£(T,,¥,)s for in Theorem (10.3), TM_, T, T,,T were defined without al-
lowing replacement of parameters, and by Theorem (8.3), £, may be

defined without using parameters at all. Then by (12.2), the class

RO where n-recursion takes place without replacement of parameters is

identical to the original Ra. We could also require that on the right

123

A

hand side of the schema of n-recursion, the function letter being
defined should not be nested within itself be;ow‘the second level --
that is, that the defined letter, say f, may appear as part of an
argument of f, but that these inner oécurrences of £ should not
themselves contain f. Since in the proof of neither (8.3) nor
(10.3) did we need to violate this Cohdition,.once again the classes
ﬁb would not be changed if the condition were imposed. However, we
will show that the situation is different if no nesting whatever is
allowed.

By Theorem (6.2), fa for o > 2 is precisely the class of
functions computable by a Turing machine in a number of steps
bounded by fép) for some p. Consider any device or formalism what-
ever for computing functions, so long as this device has a notion of
"step" which can be related to the steps of a Turing machine: in
particular, that there are functions kl(x,s) and kz(x,s) so that
if this device is given input x and halts within s steps, a Turing
machine can produce the same output in kl(x,s) steps; and conversely,
if some function is computed by a Turing machine, and if the function
is computable at all by such a device, then when the Turing machine
takes s steps for input x, -the function can be comfuted by our de-
vice in no more than kz(x,s) steps.

It should be clear from the foregoing arguments that if qz is
the class of functions computable by such a device within qu) of its
steps, we will have the theorem q: = £d for o > ao so long as kl and

k2 are bounded by some multiple recursive function. It seems unlikely

;@/Qﬁ

that any formalism for computation could be put forward seriously
to which these considera£ions would not apply.

This reasoning above provides some justification for not giv-
ing in full detail the proofs of Theorems (5.2) and (9.1). The
former theorem showed how to construct Tufing machines to simulate
the Loop programs, and the latter how to make Turing machines carry
out deductions in the Herbrand-Godel-Kleene formalism; in both cases,
an unproved, though not unsupported, assertion was made that the
simulation could be performed within a certain time. The essential
content of each theorem is simply the fact that there is only a
fixed time loss involved in transferring from the one formalism to
the other, not what this loss factor actually is; thus verification
that it is at most exponential is merely an interesting detail.

The original problem which motivated this thesis was that of
relating the complexity of a program to the complexity of the function
it computes. A final theorem will complete the investigation of the

main question.

(12.6) Theorem. Say a > 2. Given a program in Ib’ or a
set of recursion eq?ations in Rd’ it is effectively
impossible to decide whether there is a B { a so that
the program (or the equations)couldlbe rewritten so as

to give the same result, and yet be in LB (or RB).

v T
WSy

Proof. A trivial modification of the constructions of §11 or Theorem
(5.1) yields a function ngx,s) which is one if Turing machine 9 with
input x halts in fewer than s steps, and is zero if it does not.
Consider the derivations (in Ra) of the functions uyo,for each yo,
where

uyo(X) = C(v5:%) 'f1+q(x)
Let M be a Turing machine such that the set H = (yozwzhalts with in-

almost everywhere;

put yo] i3 non-recursive. If y, € H, uyo L3 S

thus Uy # ﬁa for B< a., If Yo $ H, uyo(x) = 0 for all x, so Uy € ﬂo.
Then if we could decide whether the function qyo‘was in Ro, we could
decide whether M hults with input Yo? and so H would be recursive,
contrary to hypothesis. Clearly the same methods work also for
programs in Hl'

We have thus established the following statements about Loop
programs .

(1) Loop programs can compute a broad and interesting class
of functions, namely-the multiple recursive functions.

(2) Given a program, we can effectively find the least & for
which the program is in Ly 5

(3) For every program in IU’ we can effectively find a p so
that with inputs in’ the program halts in fewer than qu)(max[in])
steps.

(4) There are some programs in %2 which actually do run ﬁép)

steps.

but thi§ is not very satisfying, since the whole point of the kind
of analysis we have been doing is to avéid gé hoc methods and use
a. general method ingtead.

There is one further problem. Suppose examination of a program
has revealed £hat the program with input x will halt within fs(x)
(say) steps or seconds or whatever.. We are interested in input 17
and therefore insist on inguiring as to the value of f5(17). To
put iﬁ in recognizable form, we must compute f5(17) but to do this --
in fact even to write down the answer -- requires a time which is
essentially f5(17) again! We would have been better off running the

program itself; at least it had a chance of halting immediately.

)@/7)’\

X

§135. At the end of the last section several variant possibilities
for a definition of n-recursion were mentioned and it was argued
that all were essentially identical, in the sense that all would

ces R . This section studies two operations

based on n-recursion which are strictly weaker than n-recursion:

unnested n-recursion and 1imited n-recursion. We will be able to

= o

- . A s
strengthen results of Peter on the two operations and to answer a

question of Grzegorczyk on the latter one.

(13.1) Definition. The schema of unnested n-recursion is

the same as the schema of n-recursion with the fol-
lowing additional restriction: if the function f is
being defined, no occurrence of f on the right-hand
side of the defining equations has another appearance

of £ in the formulas constituting its arguments.

péter was able to show [21, p.74] that the operation of unnested
recursion does not lead out of the primitive recursive functions;
that is, that the class P is closed under this operation. Our ana-
lysis will confirm the result by showing in what class a function

defined by unnested n-recursion from gl,.--,gr must lie if

n+1l

(13.2) Definition. Call a 1-1 function En:N - N
satisfactory for a, ¢ if E_ is monotone increas- R

ing in each variable, and if for each i, 1 < i <nm,

o
e
o
)

all x_, ¥ the following inequality holds:

E (xx;_l,x:+l,x:+l,...,xn,y)

> E (xx;_l,xE,E,...,E,y)
where b = f

Such an encoding E_provides to a certain extent an order-
preserving map from N into N for each value of the parameter y.
Of course, En for n > 1 cannot be perfectly order-preserving, be-
cause the order type 1? for n > 1 is strictly greater than the order

type w. A perfectly order-reserving map would have b arbitrarily

large in Definition (13.2).

(13.3) Lemma. For each n,c > 1 and @ > 2, there is an

E €

I » .
L so E is satisfacto for Ce
n an-1 " n £as ry a,

Proof. Induction on n. Ifn = 1, take El(xl,y) = Zx-Sy, and the
lemma is immediate. When n > 1, let En be satisfactory for a, c+ 2

and assume Er(ip,y) > max{in,y]; this is certainly the case when

(a)
2a+n—l

n=1. SinceE € § E (x v
n “o4n-1’ n(n’“)

IA

(max[in,y]) for some

U

number q, by Theorem (8.1). Take d = q+c¢ +3, write ini-x for

x +x,...,xr+-x, and define

1

132

i, (a(x+1))
x+1.3y_5En(xn+x+y+l’y).7f&+n—l

fé::llfégg_l(En(in+x+y+1,y))

(En(in+x+y+l,y))

En+l(x+l,xn,y) = 2

‘I” > 2%.3%.5

Now for all En’ X, ¥

En(xn+x+y,y).7

#(a)

En(zn+x+y,y) < a+n_l(max[zn+x+y])

< gla+2)
5 L

n-l(W[x’;'n’y])

R T e -

Therefore, if b = glc) (max{x,x_,y)}), putting b for z.,...,z_, we
- = “o#n-l n & 1 n

have

2-E_(bH+x+y, .- ,bix4y,y) < Z-f(q+CIZ)(max[x,in,y])

n(a4n

< glaredd) o tn .2 ,3))
o+n-1 n

using (3.4.iii). But since by definition d = q+c+3, and max(x,in,y]

<E (in-+x +y+1,¥),

- i

I () =
2'E (D+X+Y <00 Y »
E_(btx+y, s DHx+y,y) < fa+n_l(En(xn+x+y+1,y))
So by the above,
o 1 dx
‘ ; 5 n”(xn+x+y,y) fc(z)(2 -En(E+x+y, .o oy DAXHY,Y))
E . (x+l,x ,y) > 2%.3%.52 1 .5
n+l n
) (dx) . ; .
E_(D+X+Y, « - « yDHX+Y,¥) %X (E_(b+x+y,..., b+x+%]
> oX,z¥.5 B = = & n'— A4

= EI‘.+1(X’E’ voe ;E;Y)

which is the inequality (**). Therefore E ., satisfies Definition

+1

133

13.3). Then for each i; 1 < i <n, the function -

l (13.4) Lemma. Let E_ be the encoding function of Lemma
:
:
!

. Proof. Grzegorczyk [Y, p.13] showed that the function (x)', is ele-
J

the exponent of the y-th prime in the prime-

power decomposition of x. The O-th prime is taken to be 2, so, for

example, (2'-3y)“ = 50" (?x'f“)l = y. Then by Theorem (12.4),
n

(x)e '€ X, . Now r(z) = (z), since E](x,y) = B AN, L ﬁl,...,ﬂ2

II;+.J.(T) . L.) "

(13.5) Theorem. Say a > 2. If f is defined by unnested

n-recursion from functions in £ then £ € £ :
) St o4n

S b ; 5 o . n s
Proof. The function f satisfies the 2 equations

F, is a formula. Each occurrence of f in one

or

i

‘I’ where f TECR N s v : a
of the formulas F. is of the form f(ﬁn,Tm), where §n, Tm are formulas

“134

not containing £. Thus these formulas represent functions in Sa-

/.\ _
Let ¢ be great er h s ﬁ%" bounds all Sn appearing in any for- '
mula F, in the context £(8 ,T). Then by Lemma (13.3) choose an

; - S : n n
encoding E_ satisfactory for , ¢, and let n’,...,nn be the decod-

ing functions for E . Now consider the function ? satisfying

Lo P 4
B

I
ey
e
Il

o

s P n

=)

]
.
|

n
ni(x+l) =0

, if ?l(x+l)
£ 7 (x+l) ™ _(x+1)=0 nn(x+l) >0
S B n-1 » Ty
f(x+l,y) = :
if ':Ti(x+l) Gtlo (N 1rg(x+l) >0
s

=D

=i

Zn, f, is the formula which results from Fj

*

Here for each j, 1 < j

- 3 - o " A n
by replacing each occurrence of x., 1 <i<n, by vi(x-+l) = 1, and

~
replacing each occurrence of f(gr Tm) by
::.‘A: i 3'- (é 12X v + A '-
(w-r(‘n\ 3 maa{ym)) l,r)_Tm)

Here, of course, min(a,b) is the smaller of a and b. We assert that

~
these equations define a unique function f, and that

£(E (x ,max(y)+1),¥)

-+
~~
"1
~
~
~—
|

The first half of the assertion is immediate by the form of the equa-
(0,7) is defined outright, and Flx+ 1,7_) is defined

in terms of known functions and values of £ of the form ?(Z,Tm) where
z < x+1, since on the right-hand side the first argument of ?is

always min(E,x) for some formula E, and min(E,x) < x.

is

and

o3

But s

3

since o ae
st afant v
Satlslas X

ince each Si’ as a function of

efinition of n-recursion Sn < En.

y for a, ¢, we have

ight might as well be of the form

135

136

rus £(E_ (& ,max{y }) +1,y) = f(x ,¥_) which completes the trans-

~
The schema of which the definition of f is an example is called

urse-of-values recursion with replacement of parameters. In the no-

Ul

parameter case course-of-values recursion differs from primitive re-
. warsion by defining f(x+ 1) not merely from the immediately preceding
value f£(x), but also using several earlier values f(rl(x)),...,f(ry(x))

where r.(x),...,r (x) < x. The term "replacement of parameters" is

~ ~ -
used because f(x+1;y) is defined using not only f(ri(x),ym) where
A - -
= = s sra o Aaf it Ry - .
Ii(x) < X, but values ol The form '\ri(x).’ “’l(x’ym)""’gm(x’ym))’ SO K
the parameters y do not stay fixed.
’ P = P . - . *

Péter [21, §3, §5] shows how such kinds of recursions can be re- ™,

duced to primitive recursion. The essential idea for course-of-values

recursion can be demonstrated by an example. Let py be the y-th prime,

where the C-th prime is 2; as mentioned in the proof of (13.4), (x)y

is the exponer f the y-th prime in the prime-power factorization of
X. DAy

g(0) = a

g(x+1) = h(x, g(r(x)))
where r(x) < x. Define a new function g* as follows:

~~
[

h(x, (8%(x)), ()

X+1

g*(x+ 1) = g*(x)p

137

' Therefore if @ > 2, and g is defined by course-of-values recursion

A similar argument can be applied when replacement of param-
‘ - = : , ; e o B AN
eters takes place. Thus the function f defined above is in &

since it is defined by course-of-values recursion with replacement

of parameters from functions in L . This completes the proof
2 n-1
o\ / \
f Theorem (13.95) .,

(13.8) Definition. If f is defined by n-recursion from
g yeeeyg and if in addition there is a function

2 so f(x ,v.) <g_.,(x ,y), then £ is said to

o«’ - 1 - » - . »
Peter showed that limited n-recursion, like unnested n-recursion,

-ad out of the primitive recursive functions [21, p.113; 20].

(13.7) Theorem. Say a > 2. If f is defined by limited

n-recursion from functions in £ then £ € { .
. o’ a+n

138

Proof. In the proof of Theorem (9.1), which showed that each function

(p)

1+’ we s

f in R could be computed by a Turing machine within time f
o I A
arrived at the following intermediate result: if f is defined by n-

recursion from g, ,...,& ., the number of equations {f(xn,ym) required

to deduce the equation f(Vinj. V(ymi) = y(x) is given by another n-

recursion as follows

where each ZJ is a sum of the form
1 SIEp m m
n+m+1 + L[thk(Ll,...,Isk) +1]

and the sum ranges over literél appearances of function letters hk

in Fj' Now all the functions COERRRRT - £gl,...,Lgr, f in each Z%

are bounded by fgié for some ¢, so each function hk(Tl""’T

L

) oc-
Sk

; : (c)
i ~ aacrh mas c .. .
curring in each ij may be replaced by f (Tl + + Tg) Here

hk ranges OVer g,,--+,8.; £gi,...,£gr, f; the function f can be in-

cluded because of the bounding condition. But now observe that the
function {; which results bounds £f’ and &; is defined by an unnested
n-recursion from functions in Ea if a > 2. Then {; is bounded by
ﬁgii for some d, by Theorems (13.5) and (8.1); the rest of Theorem

(8.1) goes through unchanged, and if o > 1, f can be computed by a

: : ; - e
Turing machine in time f()

for some e of € and eorem
a4n 3 RS £a+ ? Th

n
(13.7) is proved.
It might be thought that Theorems (13.5) and (13.7) are pessi-

mistic; although we have shown that if f is defined by limited or

o=

2]
\h
7

from functions it ') f e
rom function LR then Ebwn’ perhaps

t a-1 re
n fact we always have T ¢ 34. This is not the case.
(13.8) Theorem. usay o > 2. Then for eachn > 1 there is
a function T € £ - L such that T is definable
o4n 4n-1

by a single instance of limited, unnested n-recursion

from functions in Ea.

Proof. Recall from Theorem (5.2) that Ml(e,y,z) is the function
computed by the Loop program with Gddel number e, when the input is
y and the program halts in fewer than z steps. M1 € £2 by Theorem

(5.2). Now define by unnested n-recursion from sg, M,, q::

7(0,...,0,e,y,2) = sg(M,(e,y,2))
n-l’xn+ 1,e,y,2) = T(gn-l’x re)y:fa(z))
T(gn_zyxn_l"‘lyoye)y:z) = T(gn_z:xn_liz:esy’l)

T(En_3,xn_2+-l,O,O,e,y,z) = T(En-S’xn-z’z’o’e’y’l)
T(xl +1,0,...,0,€,¥,2) = T(xl)zyo) vee50,€,y,1)

As usual, the equations containing a E are schematic: !r represents
all the r-tuples obtained by letting each §i be either "xi-+1" or "0".

Then it is easy to verify that

: (x) (xy) (x,)
T(xu.o,y,z) = Sg(Ml(e’y’fa+n-l QQ+n—2 3 ga (2)))

We omit the details. Now, recalling that sg(0) = 0, sg(x+1) =1,

N

we have T(ip,e,y,z) < 1; so this is an instance of limited n-recursion.

140

‘.!’,‘, v — n(8 { =3 1 iy !
U\ ulv) = E\C3yVUas sy -.-_q"l)
= Ty (‘3, 2
T (ML NELY, 1+,_‘(M)))

(6.12), U is universal for the character-

Then, by the argument

istic functions of ‘1+” _3 so U and hence T cannot be members of
y . But T € £ _ by Theorem (13.5) or by Theorem (13.7). This

Grzegorczyk [9, p.41] posed the

te]
=
(4
1]
ct
)
O
=
{o N
O
D
1]
ct
B
o
O
(o]
(4]
]
)
o+
ot
O
=
O
e]

(=]

n

5 ° s M . . el
imited Z2-recursion lead outside the class SG 7 Since £ = &

- 0! o+’

Theorem (13.8) answers the question affirmatively.
q

n

Theorems (13.5), (13.7) and (13.8) have to be modified slightly
when n-recursion takes place without replacement of parameters, and
since this restriction is imposed by Péter and probably is implied
by Grzegorczyk, the situation is worth some discussion. However, de-

tailed proofs will not be given.

m

In the case of limited n-recursion, the constructions may be

) Theorem. Say @ > 2. If f is defined by limited

—~
[
C
O

n-recursion without replacement of parameters from

functions in £ , f € and for n > 1, there

* .
o’ “o4n-1’

is an f so defined such that f € H:+n-l- £a4n-2'

£, fhe el Yl fallows by observing that the function £ oc-

Wrring the praaf of Theorem (13.5) is defined, in this case, by
q limited cours of values recursion without replacement of param-
from functions in £ . This can be converted to a limited
Hn-1
recursion trom functions in £1+n 1? and we know already by Theorem
(6.6) that & is closed under this operation. It follows that

oA=L

'

& L()-H;-] 7
On the other hand, in the proof of Theorem (13.8) only the

parameter z (the last argument of T) is subject to replacement.
Thus the definition of T can be regarded as an (n+ 1)-recursion
without replacement of parameters, simply by considering z a re-
cursion variable rather than a parameter. Thus for n > 1 the function
e efined by limite -re i € - .. This
[can be d d@ by limited n-recursion, and T QQ+n-l £d+n-2
completes (13.9).

The same method can be adapted to show

(13.10) Theorem. If for @ > 2 and n> 1 f is defined from

functions gy, € £d by unnested n-recursion

without replacement of parameters, then f € £d+n-l’

and there is an f so defined such that f‘efb&n-l-£b+n-2'

The proof is omitted. The requirement n > 1 must be included since
unnested l-recursion without replacement of parameters is essentially
primitive recursion, which is known to be capable of defining functions

in £ - from functions in £ .
o+l o = (o4

-

§14. The study of the several hierarchies carried out in Chapters
II-IV depended heavily on the properties of computation-time closure, ’
closure under substitution, and in some cases closure under limited
recursion. Since the same classes arose again and again in spite of
the various ways in which the hierarchies were defined, it is natural
to wonder to what extent the closure properties alone characterize a
set of functions. Might it be, for example, that every class of
multiple recursive functions with the above closure properties and
containing (say) £2 must be either one of the £d or the whole class
of multiple recursive functions? This possibility seems, if anything,
enhanced by the existence of two ways of refining the ﬂa hierarchy
studied by R. W. Ritchie and by Cleave.

Ritchie [24] defines a hierarchy [Fi:i € N} whose union he calls

the predictably computable functions, and which turns out to be pre-

cisely the set of elementary functions; that is £2. FO may be taken
to be the linear functions; then Fi+1 is defined as the smallest
class of functions computable on a Turing machine whose consumption
of tape is bounded by a function in Fi' The input and output of the
Turing machine are by Ritchie's convention in a binary encoding; it
can be shown that 2X e F -F 22x € F,-F
oilowl i L= 1 O, 2 l,

bly computable" arises from the fact that if a function is in Fi’ it

etc. The term "predicta-

can be computed using an amount of tape bounded -- that is, predictable --
by a function in F*-l’ which in turn is predictable by a function in

F and so forth.

i-27

143

o

F., Ritchie showed that each
iad the property of mputation-time closure. Each class F.

{ also under "explicit transformations" -- equivalent to

finition (4.8), parts (i) and (ii) -- but, as the example abc
"

indicates, F. fails to b osed under composition. However,

osed under a certain limited form of composition which is suf-

'
-
)
bt
o
o
(7]

ficient to prove the desired results. The F, individual

An analogous hierarchy {(E_:a < 1?) was considered by Cleave [5].
He considers a kind of simple computer, the "unlimited register ma-
*hine" of Shepherdson and Sturgis [26]. The classes Ea arise by re-
stricting the number of "transfer" or "jump" instructions carried out
in a given computation. Thus E. is the class of functions computable
in such a way that the number of transfer instructions executed is
bounded by a constant; given E_, E_ . is the class of functions com-

; (0 Q+l

putable in such a way that the number of transfers is bounded by a
function in E_ . The analogy here with the predictably computable

functions is evident. At limit ordinals, the functions obtained so

Ly = U B
(W r+s

Thus at limit ordinals, the effect is that of definin

whose elementary operations consist of those functions definable in

Cleave is able to show that if the basic arithmetic operations
of his machine allow addition, multiplication, and testing for zero,
then Qw-s = 8§+2 for each s € N, s > 1; that is, Bhra = £h+1' Thus,
part of the £a hierarchy appears again; but emce more the classes %a
fail in general to be closed under limited recursion and substitution.

For a fixed s, the classes E are analogous in several ways to

W-s+r
the Ritchie classes Fr’ but apparently it is not true tpnx lr = Br'

The work of Ritchie and of Cleave tends to reinforce the natural-
ness of the £a in two ways. First, certain of the qa classes reappear
in each of these contexts; and second, both methods of refining the
hierarchy result in classes which fail to have the attractive closure
properties of the £d.

Nevertheless, the hierarchy £d can be refined in such a way that
the closure properties of £a are retained. In fact, we will demonstrate
the existence of an almost embarrassing richness of classés which are
closed under limited recursion, substitution, and have the property of
computation-time closure. There are several preliminary definitions
and theorems.

We recall some useful notation common in the literature.

(14.1) Definition. If ®is a Turing machine, let e be the
Gédel number of WM. Then Cpe:Nn -+ N is the (partial)
function computed by ® with input X , and oezu“ -N
is the (partial) function giving the exact number of

steps required for M to.halt with input)-% Also,

¥
Y
k,
i
:
:
g
{
]

JPETUSTIT WSUIA, S S L SN FPRTSIRA 0 PN

B - L e R e L)

e R 0 FOL I

b

é

say that e is the index of f when f is the function

wmes an arithmetization of Turing machines
which has not been carried out. However, the task has often been

y -

performed in the literature; see the remarks following Theorem (14.3

(14.2) Definition. If P is a predicate, we will say that P is

a member of a class of functions if a representing

function for P is in the class; that is, a function f
so £(x) = 1 if P(x) is true, f(x) = 0 if P(x) is
false. If P is a predicate [P(ir)] will denote the
4
representing function of P.
Then, for example, x = ¥y is a predicate in £2, because

[x = y] = sg|x-y| =1=* |x-¥|.

(14.3) Theorem. The predicate given by [®e(in) = y]
s in £. as a function of e, in’ and y; there is

>
C

an ?2 function U so if z > ®e(§n), Un(e,in,z) =

Proof. As we have mentioned, to consider statements of this type
requires an arithmetization of Turing machines. It is well known,

however, that there exists a Godel numbering of Turing machines such

that for each n, T € L., where Tp(e,in,y) 1 if the Turing machine

(5]
n (4

with Godel number e, given input in’ halts in precisely y steps, and

)i

145

T (e,x ;v) = O otherwise. Than, of course, [¢e(in) =yl= Tn(e,in,y).

.

Likewise U € [.: here U 1is precisely analogous to the function LPr .
It i

of Theorem (5.2). See, for example, Davis [7, pp.56-62]. Davis

notes only that his construction yields primitive recursive functions,

but since it is readily shown that all the recursions are bounded by

—~
~—
(=

r some p, it is immediate that Tn and Un are in £,. Kleene
([

[1°,8§§56-57] carries out a similar arithmetization for recursion

(14.4) Definition. A recursive function f is honest
whenever the number of steps required to compute

f is bounded by an £. function composed with £} -,
> ’

_,,
o
+
¥
7]
'
=
.
—
o
~—
1}

1 - - -
U (e,xn.r(xn,f(xn))) for some

n n

The term "honest" is used because if f is honest, the value of
f(x_) accurately reflects the difficulty of computing f(in). No dis-
approval of functions which are not honest is implied. In fact highly
dishonest functions, for example complicated characteristic functions,
are rather more interesting than honest functions; much of the time
required to compute an honest function is spent merely in writing
down the result.

We note that a somewhat broader definition of honest was used

by Robbin [£5].

Although we have called computation-time closure a closure

property, it differs from other such properties, for example,
closure under limited recursion, in an important sense. When we
speak of the least class ol functions containing given functions
and closed under limited recursion, we refer to a well defined
entity, namely the intersection of all classes of functions which
contain the given functions and which are closed under limited re-
cursion. That this intersection is indeed closed under limited
recursion follows from the fact that given three functions there is
at most one function defined from them by limited recursion.

On the other hand, it is not clear that there must be any
smallest class containing givén functions and having the property
of computation-time closure. For if a function is in such a class,
the class is required to contain also some bound on the computation
time of the function. But there are many such bounds, corresponding
to many ways to compute the function, and there is no guide to se-
lecting which bound should be included in the class The problem
is quite real; indeed, one of the results in the sequel implies
that there are sets of functions such that there is no smallest
computation-time closed set containing the given set.

The next theorem relates the notions of computation-time
closure and closure under limited recursion; thus it allows us to
generate computation-time closed classes having desired properties

without encountering the problem just discussed. The theorem also

148

provides an alternative proof of the closure of the classes %a under

limited recursion.

(14.6) Definition. If a class of functions is such that

every member of the class is bounded by an increas-

J ing function in the class, the class is called
|

monotone. Also, for brevity, a class which is

closed under substitution and is computation-time

closed is called fully closed.

(14.7) Theorem. Let C be a class of functions containing
32. Then ¢ is monotone and fully closed if and only |
is the closure under limited recursion and sub-

stitut.ion of a set of honest functions.

Proof. First assume (" is monotone and fully closed, and say |

5 \ . S { |
£(x ,0) elx)

L)
—
B
~
.-
—
~—
1

h(in;y:f(in)Y))

. where g:h.b € . Define }

£#(2,x ,0) = min(&,un(eg,in,&))

(1 --':-” 2y +1) = min(L’Un+2(eh’in’y’f*({";‘n) »2))

f*(L,x ,y) <2
n —

T T T A i e - o ey

ﬁg,”'n«-; Wy

where e and e are indices for g and h, and ¢, and ¢, are bounded
n g h
by functions in . Notice that f* ¢ £,. Now by the hypotheses on C,
let, ©'(x ,¥) > b(x ,y), and say b' is in C and increasing. Likewise,
let £ € C be an increasing function with £(x_,y) > 0. (x
! (&)z oa i

o

{(iﬁ.y) > dwn(ih.;.L';i_.g)). and {(in.y) > b(in,y). Then it is easy
to show that f(x_,y) = S*({(i,.y).iq.y), so £ € C. That is, C is

-ed recursiony in fact, C is the closure under sub-

closed under 1
stitution and limited recursion of its honest functions.
Conversely, let C be the closure under limited recursion and

substitution of any set of honest functions. If f € C, me € C where

rnf(xn,i) = O :

L‘Q
+
1
k&
rv
—
b4
=]
w
_
o
<
e
e
IA
H
_
51
-
<
+
H
S

m.(x ,y+1) =
il
mf(in.y) otherwise
ma(X sy) <y

This function has the property that f£(x ,znf(in,y)) is not less than
any of f(x_;0),...,f(x
increasing in y, and bounds f. By applying the same technigue to
the other variables of f, one finds a function in C which bounds f
and is strictly increasing in each variable; thus C is monotone.
Now since C contains SZ’ all the honest functions of C have
computation times bounded by functions in (. It is easy to show

that if f is defined by substitution from functions whose computation

times are bounded in C then the computation time of f is likewise

150

bounded in €. There remains the

limited recurs from g, h, b as above.
Jiven X , ¥, there is an obvious method for using a Turing
machine t mpute f:i firs ompute g(x._) = f(xn,O); use this re-

case in which f is defined by

and e, are indices for g and h, the num-

(a)

o (Xn.l- l,f(xn,l -1))+f‘2

h

where the last term is added to cover the cost of bookkeeping.

functions in €, this number of steps is less than some function of A

thus C is computation-time closed

in ¢, C has the function TMm for each W

recursion is presented by Ritchie [24].)

(14.8) Theorem. If f is

,.\
s 4
<
~—

(82) &

That is,

honest and increasing, the

s also honest.

£(x_,0)) = f(in,l); continue until f(in,y)

(max(x_,¥})

%e s %, , and f are bounded by monotone

(A more detailed discussion of

to compute functions defined by limited

151

152

() = 2] = 58 2 (LW = x]-[(w)y, = 20-Te(y,w)]

[*\f”x‘ . 2] is in £, and £'¥/(x) is thus honest.

14.9) Theorem. Let f be a recursive function. Then
herx an ! reasing function h so

h(x) > f(x); ard if @ > 2 and f € £ h can be

Wi+h our conventions for input and output, if @p is any re-

1 © e &Y. 7
Let e be an index of f3; then use the construction of Theorem (14.7)

. ' P 2 , R Bve -
to find an {, function m SO Eﬂ\m\x)) is not less than any of

?ﬁ(v), ¢ (1),...,% (x). Take h(x) = ¢e(m(x))<+x-+l; h is increasing,

“I’ and

[h(x) =y] = [y >x]- ([z = m(x)]-[o_(2) = (y+x):1])

z < X

h is honest. Moreover, if f € Ia, e can be chosen so ¢e € Iy

(14.10) Definition. If f is any strictly increasing
function, £:N = N, then the inverse of f,
. A3 T ; - =3,
written £ ©, is the function defined by: £ (x)

is the largest y such that f(y) < x if such a

exisgt

m

i
. £ “(x) is 0 if y does not exist.

ot
<

(14.11) Theorem. If f:N =N is a strictly increasing

=}
function, f = has the following properties:

(i) £~* is nondecreasing, f—lf(x) = x, and if
x > £(0); ff-l(x) < x;

4 : -1 . ;
is recursive, f = is recursive;

e = = =l po
(iii) If £ is honest, £ ~ € Lo

—~~
[—h
~r
|

£

L)

]

Proof. If x > f£(0), there exists a y so f£(y) < x, by taking y = O.
Since f is increasing, there are at most finitely many y so f(y) < x,
SO f-l is well-defined. Now f-lf(x) = x, since f-lf(x) is the largest
y so f(y) < f£(x); by the increasing property of £, x = y. Also

ff'l(x)

1A
"

if x > £(0). For in this case there is a y so f(y) < x;

ff-l(x) < x is immediate by definition. Also, f-l is nondecreasing;

eor by deginition, £(£ X (x #1)+1) > x+1. Bub if £ ix+1)+1 <23 (x),

2

since f (x) < x we have a contradiction. This completes (14.11.i).

If £ is honest, [f(y) .= x] is in £,. Say

2
£7(0) = 0
{ f4(x)+1 if [ﬁf*%x)+1)= x+1]
¢

£ \X+_;)=
f"l(x) otherwise.

fnl(x) < x

SR

(

5-26
e

Since f-l is defined by limited recursion from functions in £2,
e £,. We omit the proof that £™% g0 defined in the inverse of
f. Even if [is only recursive, [f(y) = x] is recursive and the

above limited recursion defines f-l effectively, so f-l is recursive.

This completes (14.11.ii) and (14.11.iii).

(14.12) Definition. Let r be an increasing, recursive
function, and let f, g be functions. If for all
y and x, x > r(y) implies f(y)(x) < g(x), write
f <.g. If there exists anr so f <. 8, we will

also say f < g.

It should be obvious that.< is a partial ordering on functions.
3 acgily ahs = . a

It is easily shown that f, <. Ty, where r(y) = 2-y+1. If fand g
are recursive, it !s an interesting question whether the proposition,
"for all y, g majorizes f<y)", implies the existence of a recursive

: L ¥
r so f <r g

The next lemma shows < provides a dense ordering on the multiple
recursive functions; it is basic for the major results of both this

section and §15.

(14.13) Lemma. Suppose f and h are increasing, honest
functions and f <« h. Then there exists an in-

creasing, honest g so f < g <h.

Procf. Say f <p h. By Theorem (14.9), take s honest, increasing,

and such that s(x) > hr(xz). Tet t = g - and observe that t(x) <
R
V(r’lh'l(x)). Now define g:

Added wn(LUQ%¥> Tt doea e § A WA VOP5 SO &&)uQJ

glx) = f‘(’ (.\:)+_1)(x)

ince t is nondecreasing and f is increasing, g is increasing; g is

est since 1 ¢ {_ by Theorem (14.11.iii) and [f(y)(x) =2z] € 22
<, & viar, =s. For if x > s(y), t(x)+1 >y so

convenience, write F(y,x) for f(y)(x). We

0
0

) < Py 1) (86 () 4 1) 1)

If v = 0, the assertion is immediate by definition of g. If y > 0,

assume the assertion for y; then
(y+2) v+1 .
i (%) = xﬂ(j)(X) '

F(‘,z’_(y*‘l)((y+l)(x))

x) + 1,g

Pt (x) + 1,F((y+ 1) - (4™ (x) + 1) ,x))

IA

?(-g(y+1)(x)+-1,F((y+1)-(tg(y+l)(x)4-l),x))
(ﬁr(y+1)

IA

(x) +1-+(y4-1)-(tg(y+l)(x)+ 1),x)

I
=3

= 7 (y+2)- (g (x) + 1) ,x)

and the assertion is proved. Take rz(y) = r((y-+l)2); now f(o)(x) =

X = g(o)(xj < h(x) if x > r(0). Since r2(0) > r(0), g(o)(x) < h(x)

iE X > (0).
ILf q(y)fx) < h(x) whenever y > re(y), by substitution in the

ineguality asserted above

‘i rloeR ’ 156

(y+l)() < F((y+1)-(th(x)+1), x) for x> rz(y)
< F((y+ 1) (V(r™(x)) + 1) ,x)
< F(r_l(x),x) for = > rz(y+l) ;

‘ = #lx71(x)) (x)

The third line follows since it is easily shown that (y+1)-(l(x)+1)

iz
L |

‘ r((y+ 2)2) > (y+ 2)“. Then since rr-l(x) < x if x > r(0), and since

< r'l(x) when x > (y~+a)2; but since r is increasing, r, (y+1

-1
for all y rz(y) >p(0)) elr (x))(x) < h(x) by the assumption on r.

Y

! Therefore g(y)(x) < h(x) for x z'rz(y); that is, g <r, h. Lemma

(14.13) is proved.

(14.14) Theorem. Say 2 <P <Qa < «5°. Then there is a

family D of classes of functions such that '
(32 I D €D, Eﬁ (=5 = ﬂa; ~

(ii) D has a dense, linear ordering under set
inclusion;

(iii) If D € D, D is fully closed and closed
under limited recursion;

(iv) If D., D, € D and Dl < Dy, D2 contains a

. universal function for Dl. '

Proof. By Theorem (14.9), choose an honest, increasing function

tg € g sO LB(X) > fa(x). Let ta(x) = téx)(x); then t, is increas-

ing, ty € &, and, by Theorem (14.8), ty is honest. Finally,

‘ tg <r ty via r(y) = y+ 1.

Then by Lemma (14.13), there is a set T of honest, increas'

functions, all of which bound tB, all of which are in fu, and which
has a dense, linear orderingunder <. For each function t € T wijh

t # ty end t # tg, put O in D, where D is the closure under sub-

stitution and limited recursion of {t, s, max); here s is the suc-

cessor function, s(x) = x+1. Each D, € D is fully closed by Theorem

(c)

(14.7). Clearly every function in Dt is bounded by t for some

fixeci c, so by definition of <, if tl < tz then Dtl c ntz; thusa is
densely ordered. Finally, if D € D, .CB c D c £, and for each t"é Ty
tf‘» < t.

Finally, if Dy , Dy, € D and D¢, © Dy, By < By thus

U e,x,tz(x)+ e) is universal for the one-place functions of Dtl" by

1

exactly the same arguments as Theorem (6.12). This proves (14.14.1v).

(14.15) Thecorem. Say 2<B<a< «°. Then there is an

infinite family I of classes of functions such *

that

(1) If e, E,Bca‘lcf.a;

(ii) The members of I are pairwise incomparable
under set inclusion;

(iii) If # € I, 7 is fully closed and closed under
limited recursion;

(iv) 1f #,, 7, € I and & 4 7,, there is a charac- '

o
%)

teristic function in Jl- °72'

157

P

Proof’. The construction of Theorem (14.14) yields an infinite set

: T of functions all of which are honest and increasing, and such L
u /"” \ X
‘ that T is linearly ordered by <; also, T c .Cu and each member of (\‘,,’

[increases faster than any member of .CB
For each t € T, let dt- be the function

t(x) if x € range t

' ; 0 otherwise

Kach d, is honest, for

[t(x) = y] 1f 5_[6(1) = x] 4 0
[d,(x) = ¥] =

[y = 0] otherwise

Then for each t € T, let the set #, be in I, where 7, is the closure

uwnder limited recursion and substitution of [dt’ fﬁ’ max, s}. As
before, s is the successor. function. (14.15.i) and (14.15.1ii) are
imnediate.

Now consider a set v € I. We assert that each function f ¢ Jt,

‘ (bg) -1 .
has constants 2, and b_ so that nf(y) < f‘B t “(y), where nf(y) is

the function giving the number of n-tuples ()-cn) with ma.x()'(n] < y and

/
- (as)
‘ such that £(x) > fg " (y). That is, n.(y) is the cardinality of the
set
= 8e
{x : max{x } <y&f(xn) >f5 (y)])
‘ Sue nstants certainly exist for f‘B, max, and s; and the cardinality

159

{x: x<y & dt(x) > fﬁ(b’)]

=P

recursion from functions for which the assertion above holds, the

is no more than t'l(y) +1< f t-l(y). If f is defined by 1in',ed

assertion holds for f immediately by the bounding condition. If

f is defined by substitution, f may be written

f(xn) = h(gl(in)" . sgm(;(n))

and where we may assume there are suitable constants ah’bh’al’bl"”’am’
bm so that the assertion holds for h, Bysee .,gm. By taking sse of

8yoe a8y to be constant or identity functions, any instance of sub-

i

stitution may be written in this form.

Let & = ma.xl_al....,am], bg = ma.x{bl,...,bm}, and say a-= 2,08,
(x vy, F(x (8) (o) only & o P % -
If ma.xs..”] S("')’(‘xn) > f£3 (y) only if all of gl(xn), ,gm(xn) are .
& : - - (a)
s P B (< but g et
bounded by fa (y) but h(gl(xn)_ ,gm(xn)) > fB (y), or one or

= (a.)
petof g, (X) yeesn i & .
more of 5',](‘n) %(Xn) exceeds f‘3 (y). In other words, the
number of n-tuples (:Tcn) with ma.x[;(n} < y and such that f(;cn) iféa)(y)
is no more than nf,(y), where

(v,) (a_) (b;)

ot T, 3y o 17, =1

i v = t Z‘
“a(u) fB e fB (Y) + i=1 fB t (

Now by examination of the construction of the function t € T in

Lemma (14.13), for each .such t there is a non-decreasing function

r so t(x) = z‘ér(x))(x). Then for any c,
f‘éc)t(x) = féc+r(x))(x) ‘
o(e),
5 i‘(C‘H‘fB (A))(X)
= tf(c)(x)

B

=}
Py applying t = to both sides of this inequality,

11 ()i (%) < () (x)

t_l féc)(y) < féc)t-l(y) for y > t(0)

By choosing b sufficiently large, then !p
£ féag)(y) < féb)t-l(Y)

But then | :
ng(y) < fébh+b)c‘l<y>+-m-f;bg't‘1<y) < f;bf)t'l(y)

for suitable b,; this concludes the proof of our assertion. The
next step in (14.15) is to show that if t, u € T and T < U, there
, . (b).-1 &
are no numbers a, b soO ndt is bounded by fB u ~ 3 we conclude that
d, § Jh. Because f. < t, for each number a there is a constant c
v P

so the cardinality of

(x: x<y & dt(x) > féa)(Y)]

(2)(y)

; =1 a L
is greater than ¥ (y) - ¢. Given any b, choose Y5 SO u(yo) >t)

+ ¢ and t(yﬁ) > féb)(yo); this is possible because fB <t <u. Then

#

”it(“(yo)) > g'l(u(yo))~ e
> t(yo)-t-c- e
> 7))
= féb)u_l(u(yo))

(b)u-l; hence d, ¢ 7 .

(e)

Therefore, for no a, b is “dr bounded by f

On the other hand, every function in Jt is bounded by t for

N - c
some c3 but if t < u, du is not bounded by t() for any c¢c. Thus

d, ¢ 9,5 and so J and 7 are setwise incomparable, proving (;!;15.11).
(14.15.iv) will follow immediately from the next theorem, which is

interesting in

(14.16) Theorem. Let C and D be fully closed classes

containing £, with C - O # ¢. Then there is

a characteristic function in C - 9.

Proof. Pick an arbitrary constant a and let f*(x,b) be the sq!llest

number k so k is unequal tc all of Ul(O,x,féa)(max[x,b))),

(a)

U ’l,x,f2 (max{x,b}));.0.,U x,x,f(a)(max[x,b])). It should be clear

l(2

Umtf*ﬁﬁ%amdfﬂxﬁ)§x+2.

Now take any function g € C -9, and let h € C be a bound on
the computation time of g. Then put f(x) = £*(x,h(x)); £ € C by
closure under substitution. We assert that if e is any index for

(s -
f, ®el(x) > f;a)(maxtx,h(x)]) for almost all x. For if this E%
1 89 @el(x) < féa)(max[x,h(x)]); then
f(x)#(ijw_,x,féa)(max(x,h(x)])) by definition of £, but f(x) =
(2) ’

Jl(ETﬁ’?Z (max(x,h(x)})) by the properties of U - This is a contra-

false, there is an.x > e

Now let c(x,y) = [f(x) = ¥]; ¢ € C is immediate. Consider the

follewing procedure for computing f, given c: successively compute

il

162

[f(x) = 0], [f(x) = 1],...,[f(x) = x+2]; one of these must yield

1 as a result. Let f(x) be the y for which [f(x) = y] = 1. If e, .

is an index for ¢, the number of steps required is bounded by
(a .
£,)(maxtx.‘ X ®62(X;Y)])

for some fixed d. Then if 09?(x,y) < h(x) for infinitely many x,

the number of steps required to compute f is less than
féd)(max(x,(x+5)-h(x)}) for infinitely many x. But we showed above

that any machine for f must require at least féa)(max[x,h(x)])ﬁkteps

for almost all x, where a was arbitrary; we conclude by this reductio

that every index e, for ¢ has ®ez(x,y) > h(x) for almost all x. Then

if ¢ € D, a function bounding.h would also be in D by the full closure
property of D, and hence g would be in D; but g € C- D, so ¢ $ D.

Then also c* € C- O where c*(x) = c(vl(x),vz(x)), for c(x,y) = c*(T(x,y)),.
which proves (14.16). ‘

Theorems (14.14) and (14.15) may reasonably be interpreté§§as
casting doubt on the naturalness of the classes qu. For if, as im-
plied by Theorem (14.14), there is a dense, linearly ordered hierarchy
of classes of functions whose union is the multiple recursive functions
such that all the classes have the same strong closure properties as
the EO' the Ea themselves no longer seem so significant. For example,
given the dense hierarchy, we can find a subordering of any denumera-
ble order type we please. Theorem (14.14) even implies the e£§gtence
of uncountably many fully closed classes of multiple recursive functions

with a linear set theoretic ordering. Likewise, Theorem (14.15) can

be extended to yield uncountably many incomparable classes which

are fully closed.
One development is possible which would restore the importance

of the classes £ . Suppose C is any fully closed class of multiple

-
(

recursive functions. Say C[0] = C; given C[a] for a < aﬂﬂ let
Cla+ w') for n > 0 be the closure under substitution of C[a] and
all functions obtainable by (n+ 1)-recursion from functions in C[a].

Then it seems possible that for any such C, there are @, B < ue)such

that Cla] = 33; that is, by applying multiple recursion several times

n

to any "in-between" class C, eventually one of the £a classes is

reached. This possibility has not been seriously investigated except

by trying the few examples which suggested it.

1164

V)

B o

§18. Blum has recently published some remarkable results on the
complexity of recursive functions [4]. One of his theorems is the »

following.

(15.1) Speed-up Theorem (Blum). Let r be a total recursive
function, r:N~ - N. Then there is a total recursive s
L

characteristic function f with the property that to

every index i for f there corresponds another index

for f such that for almost all x, ®i(x) > r(x, oj(x)).

i
o

Blum's theory is machine independent. For example, he does not
demand of the step-counting function ®J(x) that it actually give the
steps used by the j-th machine with input x, but merely that for each
j and x that ¢.(x) converge if and only if wj(x) converges, a&i that
the predicate [®ﬁ(x) = z] be recursive. As we have seen, if $j
measures the actual number of steps taken by a Turing machine,
[®j(x) = z] is in 22. that is, an elementary predicate.

The Speed-up Theorem implies, for example, that there is a re-
cursive function f so if wi computes f, there is another index j for

o (x

f so that wj(x) St for almost all x; that is, given any machine
for f there is another machine which computes f and halts in gﬁly
about the logarithm of the number of steps required by the first ma-
chine. However, as Blum shows, the faster machines cannot in general
be discovered effectively.

Blum also proved a more powerful version of the Speed-up Theorem

which shows that the r of Theorem (15.1) can be as large as ¢, itself.
ES

'{I}!

AU

theorem (Blum). Let g be a total

1 there exists a recursive

(ii) To any index i for f, there corresponds an

for £ such that Qi(x) > QJQJ(X) for

almocst all x.

This theorem has the Speed-up Theorem as an immediate conse-

guence. ;

uzht that the function f whose computation can

-
=]
e
om
-+
-
C
&

be sped up must be enormously more complex than the r of Theorem

(15.1) or the g of Theorem (15.2). By agreeing that ¢j(x) has its

of Lemma (14.13) may be adapted

natural interpretation, the methods

to prove a stronger version of the Super Speed-up Theorem in which

is. in a reasonable way, only slightly more complex than g, and
\

A~ 2

that there are functions lying very low in the £a hierarchy whose

=1 &

computation can be sped up quite considerably.

(15.3) Theorem. Let g be an honest, increasing function
. X

with g(x) > 27, and r be an unbounded, nondecreas-

ing recursive function. Then there is a recursive

sacteristic function f such that:

(i) If i is any index for £, ¢.(x) > g(x) for

166

#
(ii) There is an index j for T such that
(r(x y
®.(x) <;;"r(v))(x) for almost all x; .
J =
' (iii) For each index i for f, there is another
index j for f such that for all c,
(e) A
0. (x) > ¢ ‘(x) for almost all x.
' ’ Proof. ' The proof consists of a main Lemma (15.4), which is a strength-
: i

.
ening of Blum's lemma for the Super Speed-up Theorem [4, p.330], then
the construction of f, and finally several lemmas on the properties of
f. Two of these latter are slightly modified versions of Lemmas 1 and

2 used by Blum [4. p--"‘Cl’].

(15.4) Lemma. Let g and r satisfy the hypotheses of Theorem

(15.3). Then there is a function qs(x) such that

¥

(i) For each s and all x, qs(x+l) > qs(x); %

(x) <q_(x);

id » each 8 ar 11
(ii) For and all X, q_ 4 <a

—~
-
]

~
=i
o]
i~
o
|)
-
192}

and ¢ and almost all x,

qizi(X) < gq_(x);

S

(r(x))(x)

(iv) Tor all s and almost all X, g

. > a (x) > g(x);

(v) As a function of s and x, qs(x) is honest.

T = ' \ &t
Proof of Lemma. By (14.9), choose an honest increasing function b

X

2
so for all x b(x) >x, b(x) > g)(x), b(x) > g(r(x)+l)(x), and
il s
. such that b (x) < r(x) for almost all x. Then let ts(x) = b(2 +2)(x).

As a function of s and x, ts(x) is honest by Theorem (14.11). Then

187
— -l
“"l(x) is in £, where by t_ (%) we mean the greatest y so ts(y) <x
if y exists; L:l():) = 0 if it does not. Then say .
@ (t3H(x)+1)
q (x) =g ° (x)
Parts (i), (ii), (iv), and (v) of the Lemma are immediate. Now if
(v Vbl :
x > ts(y)‘ g)(:{) < %(a)(x) < qs(x); thus g<t8 q- Since
' tn+l(x) = bbt_(x) = bt_b(x) > qj;c(xz), by the argument of Lemma
= - = = S O
(14.13),
<
qs+1 r. qs
R A8 A eals
where rs(y) = t_((y+1)"). This proves part (iii) and thus Lem:ga
(15.4).
The proof of (15.3) now continues with the construction of L.

First we define a function fuv and an associated set Kuv each of
which depend on the input x. Given x, compute fuv(x) and Kuv(x)

as follows.

Set K (—l\ = ¢

uv
If x > 0, find the smallest k, k<x, b5
‘ so that all of the following are true:

(a) x<v, orx>vand k <uj

(b) o, (x) < qu(x);
o ¢ K -
(¢) k¢ “uv(x 1)

. If such a k exists, set Kuv(x) - Kuv(x-l) u {x},

and put £ (x) =1 imk(x); if no such k exists,

v

: e ('. = - ’ = .
put }"*x'-/‘x) Kuv(x 1), fuv(x) 0

Then the function f af Thesrem (15.3) is fOO' We can also construct

learer that it has the properties

we ascribe to it. Te simplify the presentation, we will use certain

ations not yet introduced. If P(x_,y) is a predicate, the pre-

licates (3 y)< :lfih.;\ and (V,v)< H P(ir,y) are obtained from P

the meaning of the former, for example,

'he predicates of £2 are closed under

O

his follows immediately from the closure of

£, under limited sum and limited product. The predicates of {, are
also closed under ti

he Boclean operations &, v and ~. Finally, £2

is closed under limited minimization: obtaining uk< ¢ P(xn,k) from a

predicate P, where the notation means the least k such that k < x and

P(x ,k) is true; or zero if there is no such k. The closure of {

c

under this operation follows directly from the closure of 32 under

J
~

limited recursion.

czyk discusses all these operations more

.
~

Construet functions ¢, K*, f* as follows.

?+1(((x <v)v(x>ve&k>u))

& (By)fla(x) =y] & (Aw), [o(x)

< Sy K
& (Vi) . [(K); # k+1]

v [k +1])

1}
”

168

w])

169

J’ 1 if c(u,v,b,1,0) = 1 -
V:*(I. r 3) - .
| ' |
¢ otherwise :
® |
k*(u,v,b,x) if e(u,v,b,K*(u,v,b,x),x+1) = x+ 2 i
]
K*(u,v,b,x+l)= '
% g
K*(u.v,b,x)-pl+c(u’v’b’x (u,v,b,x),x+1) StHdteie |
x+1 :
, &)
X 1
. K*(t}_\j‘}\’}:) S I ;,f"’_.
0 if (X*(u,v,b,x)). =0
R = X
£#(u,v,b,x) = 2
iy Ul((x*(u,v,b,x))x; 1,x,b) otherwise
£(x) = o4(u,v,05(v) + g (x),%)
If, 4n the informal algorithm, Kuv(x)-Kuv(x— 1) = {k}, we wild say P)
is spoiled for x in X . Notice that if P is spoiled for x in Kuv’ {
v ‘

then fuv(x) = 1= mk(x) 4 mk(x). (Blum uses the term "cancelled".)
It is clear that £* defined above is elementary. It is not so

clear that rwv(x)=f*(u,v,qo(v)-+qu(x),x); nevertheless, we will omit

the detailed proof. The representation of Kuv used by K¥* is as fol-

lows: if @, has been spoiled for some y < X in Kuv’ then the prime-

and no other prime in the factorization has an exponent k+ 1. If @

has not been spoiled for any y < X in Kuv’ the prime-power factoriz-

ation.of K*(u,v.qﬁ(v)-+qu(x),x) contains no prime with an exponént of
‘ k+ 1. The ecrucial fact which assures that f* has the correct p:‘roper-

ties is that in the calculation of fuv for u < v, we are called upon

to know the values of qi(x]. qu+l(x),...,qx(x) if x > v, and
a, (%), g, (x),e. 05 q(x) if x < v. In view of (15.4.1i) and (15.4.ii),
2ll of these are bounded by q‘,\‘('\/) +q_1(x) = b. Then since k < %, the

truth value of (3y)_ ,([q, (x) = v] & (3 w)< y[d>k(x)= w]) is the same

as that of & (x) < q (x).

P
K

(15.5) Lemma (Blum). For each u there exists a v such

that f = T = f.
uv 00 T

Proof. For each u there are only finitely many k with k < u, and in
particular there are only finitely many wk with k < u ever spoiled for

any x in K.

Choose v > u so v bounds all x such that k < u and mk
is spoiled for x in K..-

Now K (-1) = K_(-1) = @#; assume x > O is the least number so

(c). But then if Kuv(x) # Koo(x), it must be that x > v and there

isak<uso®(x)<qg (x)andk ¢K _(x-1) =K (x -1). Butpthen
- 2k uv 00 W

k(

¢, is spoiled for x in Koﬁ(x), and by choice of v, if k < u and @ _1is§
v

spoiled for x in KOD then'v > x. Sincebyconstruction of v, X > v, we

have a contradiction. Therefore, we have shown Kuv(x) = Koo(x) for

(15.6) Lemma (Blum). If @, = £, then ¢i(x) > q.l(x)

for almost all X.

170

171

Praof Suppose for contradietion that there are infinitely many

there are only finitely many k with

ust be a number x which bounds all

k < i such that o is spoiled for y in K .« If X 18 the least of
k - 00 n Y07

... which ex-eeds this x, the conjunction of clauses (a), (b)

.

and (c) in the definition of f. . = f is true foEEx = X k=1 and

.".;j’_

for no smaller k. "Thus . is spoiled for xnv

a contradiction.

(15.7) Lemma. There is an increasing ﬁz function h so for each

u, there is an index j far f such that

Proof. Recall that £ (x) = f*(u,v,qo(v)+ qu(x),x) and f* € 32.
By the honesty of q, and q , there are £2 functions to ang tlﬁsvﬁ-

o

the computation times of q. and are bounded by t (v,-"
0 % OREAL

tl(u,x,q”(x)) respectively; alsc, the computation time OIS

is bounded by tf(u.v.z,x) and tf is in 12. Thus there iSpfﬁt_h\'

function t so t is increasing and t(u,v,qo(v)+ qu(x),x) bounds the

computation time of f*(u,v,qo(v)+ qu(x),x). Let h(z) = t(z,z,2-2,2).

(%]
i
<
(4
-
s
=
-
=
)
1]
[

Lemma (15.5) to find a v so fuv = fOO = f, and let j

Then

R——

which completes Lemma (15.7).

'or all x. But for large x, q (x) exceeds

v
=
—~
jee)
3
—
+
Lo

Proof of Theorem (15.4) (concluded). 2B

index for f then for almost all X,

.

large enough s¢

(a), |
Q5 41 0%) >0y 15 SEEERERR s qi+1h(x

In particular, if h is the function of Lemma (15*;
to find an index j for f such that h(q{+l(x))

x3 then

Temmas (15.7) and (15.4.iv). Thus
Theorem (15.3) is stronger tha

in two ways: first, as mentioned

bl f being ST p 1

have an index j for 1 soO
x3; Blum's theorem had 2

Thus, as an example,
exists an f 80 if i is

for £ such that all of the

hold for almost all X. ';.

o

decreasing, recursive, unbounded*func

creasing, then f can be computed in apm

Ackermann, W.
Math.

AXE 5 Pl
Math,

Cleave, J. P.3§
Zeit. f. ms
pPp. 331-345

Cobham, A., "
Proc. 1964}
Science,

Davis, M.;

York (195

Godel, K., 4
Mathemat

u. Physif

Grzegorczyk,
Rozprawy B

Hartme .
plexity
(1965),

Kleene, S.C.,
Math. Annalg

.

Princeton,

)
functions

Meyer, A. Rd
and proge

Programs

Thompso

Myhill, J.

80-165,

Péter, R.

Robbin, J.
Princetor

Shepherdson
functions

Suppes;, P.

Turing, A.M.
the Ents
42 (1938

