Progrem Structure:
ano

Computszticnal Complexity

Dennis M, Ritchisa

;f..

jﬂl\u.pvﬂ?) l 96?

Comnither
O‘H :'nrger
:CHYHN

L0 S,
B’u;v\

SYNOPSIS

The major purpose of this thesis is to show that when tﬁe
language in which computations are described is restricted suitebly,
there can be an effective relationship between the complexity of a
program and that of the computaticon it describes.. We give two
exaniples.

The first example is that of Loop programs. A Loop progren is
g finite sequencé of instructions for menipuiating non-negative, un-
bounded integers stored in registers; the instructions allow incre-
menting registers by unity, setting registers to zero, and moving
the contents of registers. The only control instructions consist of
Loops; there is a kind of Loop for each nunber n > 1. A Loop with
n = 1 causes the execution of a pqrtion of the program to be repested
a predetermined number of times equal to the current contents of a
register. Loops may be nested, ons insid? another, to any fixed depth;
but Loops with n > 1 are defined so as o make a Loop of type n+ 1
equivalent to a variable depth of nesting of Loops of type n.

Each Loop program is assigned an ordinal @, where 0 < a < a?;
which is interded tc be the measure of complexity of the program.

The ordiral assigned ﬁo a program Cepends effectively on %“he progranm,
and. measures the depth of nesting of th2 various kinds of Loops.

The idea of Loop programs whos2 only Loops have n = 1, although
original with the author, is not unique to him; for sxample Minsky

[17, pp. 212-215] discuss=s briefly the sams idea. Som2 resuiis of

the theory of such Loop programs have been announced by the author
[22] and published by Meyer and the author [15,16]. The generaliz-
ation with Loop instructions for each n > 1 is believed to be entirely
new.

For each ordinal &, 0 <& < cnw, we define a funciion fa' The
function is recursive, strictly increasing, and if o > 8, fa majorizes

&

£ The definition of fa for finite ordinals ¢ is the same as the £

8"
of [15,16] and in general is a modification of the function W used
by Robbin [25] for much the same purposes. The major results on Loop
programs can be stated as follows: for each Loop program R assigned
ordinal ¢ there is a number ;rf' p effectively derived from E such that
P with inputs x,,...,X requires no more than fc(xp)(ma.x [xl, P ,xn])
steps to halt (Theorem (3.6)). The notation fép) means f composed
with itself p times. There are scme programs P assigned ordinal «
which do in fact require fép)(x) steps to halt when given input x
(Theorem (4.7)). A precise definition of the number of steps used
by & program is a by-product of a formalization of Loop programs pre-
sented in §2.

Furthar results on Loop rrograms, and muck off the rest of the
thesis, us2 heaviiy the notion of computation-time cissure. A set
of functiorns is computation-time closed whan bsth of the following
are true: If a function 7 is in the se3, a funciion % is in the set
where b bounds the time required %o compute f on a Turing machine;
if b is in the set and t bounds the tire requirsd to zompute f on a

Turing machine, £ 135 in the set.

if .ﬁa is the class of functions ccmputable by programs assigned
an ordinal less than or equsl to «, eachr .ﬂa for @¢ > 2 is computation-
time closed. This allows us to show the following: each class I‘La for
a > 2 is closed under limited recursion (Theorem (6.8)); each class
£ for o > 2 can be characterized in arithmetic terms, without refer-
ence to Turing machines or Loop programs (Theorem (&.3)); if a pro-
gram R assizned ordinal o requires onlyt'f(p)

N

its inputs where B < (¢, then R can be rzwritten effectively to yield

steps as a function of

& program f_’,' vhich is equivalent to P but is assigned ordinal 8. How-
ever, it is in general undecidable whether these hypotheses hold for
P (Theorem (12.6)).

The second exampls cf a restricted program languzgze I1s that
describing the multiple racursive functions [12,21]. Zach multiple
recursive function cen be défined by a formal system oF equations which
can effectively be assignad an ordinal & < «>, It Ra is the class of
functions defined by systams of equations assigned ordinal ¢, then
a<U R Rcz is the class of n-recursive functicns; Péter shows [21] that
the l-recursive functions are the same as the primitive recursive
functionsg. iuch the sanz theorsms are proved for Ra as for f’a' In
particular, Ra is computation-time closed for o > 2 {Theorem (9.3));

if fe Ra, f(x

@

yree .,xn) can be computed hy a Turing reachine in

(max(x.,.. .,x"}) steps for some D wiaich is effeciively found from

the recursion equations iafining f (Thaorem (9.1)); 2. = @’cx (Theorem

o

(2.3)). These facts alens show: for @ > 2, &

= f rar
140 = &, {Theoren (10.1)).

The same kind of techniques are applied to the hierarchies o-f
Axt [2], Grzegorczyk [9] and Robbin [25]. All of these hierarchies
are shown to be identical to a portion of the .f.a and Ra hierarchies,
and thus to each other. Specifically, if (?a, a < ®, are the Axt
classes, Ea = G‘a for a > 4 (Theorem (10.4)); if E‘,g, a < w, are the
Grzegorczyxk classes, [= 5&1 for 2 < @ < (Theorem (1C.9)); if-

(v
Ea, o< ww, are a trivial modification of the Robbin classes, .ﬁa = E‘,a
for o > 2 (Theorem {10.6)). All of these results are straightforward
using computation-time closure. Not all are new, however. According

to a personal communication, Axt showed@ oy = E:G for a > ao, ao ~]

a+l.
but used a different method. Meyer showed the same thing independently
[14], using a method like ours. Robbin [25] showed that o gmn Sa is the
same as the class of n-recursive functions; however, hs did not sub-
divide the letter class after the manner of our Ra. It should be
mentioned as well that Robbin established the identity of the n-recursive
functions and those functions defined by ordinal recursion over certain
"standard" well-orderings of type wmn, and also the classes of functions
§ccurring in a restricted version of the Kleene subrecursive hierarchy [13].
It seems likely that by closer study equality of these classes could
be established at each ordinal.

Chapters II, III, and IV studif Loop programs and multiple re-
cursive functions; Chapter V contains threse =pplicationiof the %ools

developed in the earlier chapters. The most important of these, as we

have indicat2d, is the idea of computatlon-iinre closure. An early

6 5

appearance of this idea, without an explicit name, was in R. W. Riﬁchie
[23], who used it to characterizing classes which form a hierarchy of
elementary functions. Cobham [8] pointed out how each Grzegorczyk [9]
class could be characterized in terms of the property, after the manner
of our Theorem (6.2), which states %a is precisely the class of functions
computable by a Turing machine in a time bounded by q;p) for some p.
As we mentioned, Meyer [14] and also Robbin [25] used the idea as well.
Chapter V, §13, discusses unnested and bounded n-recursion [20,
21] and their relation to the Ea classes thus strengthening some theorem*
of Péter [20,21]. §l4 examines the properties of computation-time closed
classes of functions in general; its major results are that each QJ in-
cludes & sequence of classes, all computation-time closed and closed under
limited recursion and substitutioq‘which is densely ordered under set
inclusion (Theorem (14.14)); also, qu includes an infinite sequence of
classes with the same closure properties but pairwise incomparable under
set inclu;ion {Theorem (14.15)). These two results were obtained in
collaboretion with Albert R. Meyer. §15 applies Lemma (14.13) to ob-
tain a strengthened version of the Super Speed-up theorem of Blum [4].
Among the consequences of our Theorem (15.3) is that there are functions
lying very low in the Ea hierarchy whose computation can be sped up,

in Blum's sense, very considerably.

