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SYNOPSIS 

The major purpose of this thesis is to show that when the 

language in which computations are described is restricted suitably, 

there can be an effective relationship between the complexity of a 

program and that of the cotr.putation it describes. We give two 

examp1es. 

The first example is that of Loop programs . A Loop prograr: is 

a finite sequence of instructions for mani pulating non-negative, un-

bounded integers stored in registers; the instructions allow incre-

menting registers by unity, setting registers to zero, and moving 

the contents of registers. The only control instructions cons i st of 

Loops; there is a k~nd of Loop for each nunfuer n > 1. A Loop with 

n = 1 causes the execution of a portion of the program to be r epeated 

a predetermined number of times equal to the current contents of a 

register. Loops may be nested, one inside another, to any fixed depth; . 
but Loops with n > 1 are defined so as to make a Loop of type n+ 1 

equivalent to a variable depth of nesting of Loops of type n. 

Each Loop program is assigned an ordinal a, where 0 ~ a < w00
/ 

which is inte~ded to be the measure of complexity of the progr~~ . 

The ordinal assigned to a program d.epend..s effectively 0:1 4;he progr!l.-:1, 

and measures the depth of nesting of the various kinds of Loops. 

The idea of Loop progr-3-rns ~-:hose onl:,r Loops haYe n = l .. alt"houg~ 

origlnal with the author, is not unique to him; for example !·!insky 

[17, pp. 212-215] discusses brieflJ the sa~e i1ea. So~e rr.s,ll: s cf 
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the theory of such Loop programs have been announced by the author 

[22] and published by Meyer and the author [15,16]. The generaliz-

ation with Loop instructi ons for each n > l is believed to be entirely 

new. 

For each ordinal o, 0 ~ a < m00
, we define a function f . The a 

function is recursive, strictly increas:i.ng, and if o > 13, fa majorizes 

r
13

• The definition of f0 for finite ordinals a is the same as the fn 

of [15,16] and in general ~. s a modification of the fuJ"!ction W
0 

used 

by Robbin [25] for much t he srune purposes. The major results on Loop 

programs can be stated as follows: for each Loop program P assigned ,..., 

ordinal o there is a munber .J¥r' p effecti vely deri. ved from ! such that 

! with inpttts x
1

, ... ,xn r equires no more than f~p)(max(x1 , ... ,xn)) 

steps to halt (Theorem (3. 6)). The notation f~p) mea.:;s fa composed 

with itself p times . There are some progra~s! assigned ordinal a 

which do in fact require f~p)(x) steps to halt when given input x 

{Theorem (4.7)}. A precise definition of thP. number of steps used 

by a progr~~ is a by-prod~ct of a formalization of Loop progr~~s pre-

sen ted in §2 . 

Further results on L~op programs, and mach of tr.~ rest of the 

thesis, use heavily the ~otion of computoa.tion-ti:::.e cl~sure. A set 

of functior.s is computation-ti~e closed xhan bet~ of the following 

are true: ~f a function ~ is ~n the se:, a funct:.on : i s in the set 

where b bo'..1..'1ds the time required to co~pute f on a T'.lring machine; 

if b is in the set and b bounds t~e ti~e required to ~?mpute f on a 

Turing macn~ne, f ~s in t~e set. 



If tex is the class of functi~ns computable by programs assigned 

an ordinal less than or equal to ex, each t for a > 2 is computation-ex -
time closed. This allOTtTS us to show the following: each class ta for 

a~ 2 is cl::>sed under lir:tited recursion (The~rern (6.8)); each class 

t for ex?: 2 can be chara~terized in arithmetic terms, without refer-

ence to 'l'u!·ing m.achines :)l' Loop progra:::s (Theorem (c .3)); if a pro­

gram _E assiz;:ted ordinal ex requires onll-'(~~) steps as a function of 
.._/ 

its inputs '·rhere f3 < o:, ~!1en P ca."l be reflritten effectively to yield ,..., 

a program P' which is eq,uivalent to P but is assigned ordinal t3. Ho'IT-,... ,.... 

ever, it is in ge~eral undecidable whether these hypotheses hold for 

P (Theorem (12.6)). ,..... 

The second exa~ple cf' a restricted progra'l! lang-...:age is that 

describing the !'!lul ti ple !.'ecursi ve furt·~ tions [19, 21]. Each mul tipl"=! 

recursive f'anction can be defined by a formal system of equations which 

can effectively be assi~ed ~~ ordinal a< rum. If ~a is the class of 

functions defined by syst~~s of equations· assigned ordinal a, then 

o:~aP Rex is the class of r.-re~ursive f~"lctions; Peter shows [21] that 

the 1-recursive functio!'!;; are ~he same as the pri.':tit:'..~re recursive 

functions. i·Iuch the sa.--:~ theo!'ens are provE:d for R
0 

as for £.
0

• In 

particular: aex :s compu t~~ion-tine closei for a~ 2 (:heorem (9.3)); 

iff € ~a' f(x1:···,xn) can be co~r-uted by a Tur~ng cachine in 

fi~(max{x:;_, · •• ,xn)) ste:p5 for SOz:1e p ~-:!:!.ch is effec"::..v-ely found from 

the recurs:..~n equat!.ons iefiP-~ng f (Thaorem (9.1)); t
1

+a € ~ex (Theorem 

(c.3)). These facts alc::e sh:>":·T: for a?: 2, Zl-ret = R~ (Theoren (10.1)). 
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The same kind or techniques are applied to the hierarchies of 

Axt [2], Grzegorczyk [9] and Robbin [25]. All of these hierarchies 

are shown to be identical to a portion of the ~a and 2a hierarchies, 

and thus to each other. Specifically 1 if (g a' a < m, are the Axt 

classes, ~a =&a for a~ 4 (Theorem (10.4)); if e~, a <m, are the 

G Grzegorczyk classes, fa= ea+l for 2 ~a <m {Theorem {10.9)); if -

ea' a <rom, are a trivial modification of the Robbin classes, fa= ea 

for a? 2 (Theorem (10.6)). All of these results are straightfonrard 

using computation-time closure. Not all are new, however. According 

to a personal cOII'.lllunication, Axt shot-ted (Ja = ~+l for a ~ a
0

, cx
0 

s:= 7 

but used a different method. Meyer showed the same thing independently 

[14], using a method like ours. Robbin [25] showed that U n e is the 
cx<m ex 

same as the class of n-recursive functions; however, he did not sub-

divide the latter class after the manner of our ~a· It should be 

mentioned as well that Robbin established the identity of the n-recursive 

functions and those functions defined by ordinal recursion ave~ certain 
n 

"standard" well-orderings of type ofD , and also the classes of functions 

occurring in a ·restricted version of the Kleene subrecursive hierarchy [13]. 

It seems likely that by closer study equality of these classes could 

be established at eacn ordinal. 
"rk 

Chapters II, III, and IV stud~ Loop progra~s and multiple re-

cursive funct:..ons; Chapter V contains three ~pplication~ of the tools 

developed in the earlier chapters. The most L~portant of these, as we 

have indicate1, is the idea of co~putat~on-~:..~e closure. An early 



(. 

appearance of this idea, without an explicit nwne, was in R. W. Ritchie 

[23], who used it to characterizing classes which form a hierarchy of 

elementa~ functions. Cobham [6] pointed out how each Grzegorczyk (9] 

class could be characterized in terms of the property,.after the manner 

of our Theorem (6.2), which states ~a is precisely the class of functions 

computable by a Turing machine in a time bounded by f~p) for some p. 

As we mentioned, ~!eyer [14] and also Robbin [25] used the idea as well. 

Chapter V, §13 1 discusses unnested and bounded n-recursion [20, 

21] and their relation to the ~a classes thus strengthening some theorems 

of Peter [20,21]. §14 examines the properties of computation-time closed 

classes of functions in general; its major results are that each ~a in­

cludes a sequence of classes, all computation-time closed and closed ur.der 

limited recursion and substitutionJwhich is densely ordered under set 

inclusion (Theorem (14.14)); also, ~a includes an infinite sequence of 

classes with the same closure properties but pairwise incomparable ~~der 

set inclusion (Theorem (14.15)). These two· results were obtained in 

collaboration ~dth Albert R. Meyer. §15 applies L~a (14.13) to ob-

tain a strengthened version of the Super Speed-up theore~ of Blum [4]. 

Among the consequences of o~ Theorem (15.3) is that there are functions 

lying very lo~·: in the tet hierarchy ~those computation can be sped up, 

in Blum's sense, very considerably. 




