
Experience with Tcl/Tk for Scientific and Engineering Visualization

Brian W. Kernighan
AT&T Bell Laboratories

Murray Hill, New Jersey 07974
bwk@research.att.com

ABSTRACT

This paper relates experience gained while building a
graphical user interface for a system that helps design
and implement indoor wireless communications facili-
ties. In this paper, I will describe this interface briefly,
and draw some conclusions about what works well and
what does not. I will also compare Tcl/Tk with Visual
Basic for the same application.

1. Overview
For the past 18 months we have been developing a

system for design and optimization of indoor wireless
communications systems. The input is a description of
the coordinates and composition of the walls of a build-
ing, and myriad parameters for power, frequency,
antenna types, signal to noise ratios, etc. A family of
programs computes radio energy throughout the build-
ing to predict the behavior of the system, optimize the
locations of base-station transceivers to minimize sys-
tem cost, and analyze coverage, sensitivity, etc. The
overall system is described in [F95].

The user interface is a Tcl/Tk program that coordi-
nates the activities of these programs. It displays plan,
elevation, and perspective views of a building, and
shows in living color the power received at each loca-
tion for given base-station positions. The picture may
be scaled and panned over; station locations and param-
eters may be set interactively.

Figure 1 shows the plan and elevation views of one
floor of the Hynes Convention Center in Boston as it
appears through this interface. A base station (the small
blue circle) has been placed at the center of the circular
area near the bottom left, three meters above the floor.
The coverage map in the plan view shows received sig-
nal strength at a height of one meter throughout the
building, using the color scale shown near the upper
right corner. Areas below a selectable threshold (here
–78 dBm) are shown in gray. (Normally this appears in
brilliant color; you may be seeing a gray scale copy,
which is not nearly as nice.)

Each menu button across the top of the display
raises a sub-menu of further choices, some of which in
turn raise other top-level windows. For example, the
Parameters menu provides submenus for setting
parameters of prediction algorithms, radio properties,
grid spacing, optimization, and color map. It also pro-
vides for saving and restoring current parameter settings
and base locations, and for restoring all parameters to
their default state. Figure 2 shows the Predictor and
Radio parameter sub-menus to illustrate the general
style.

The most important component of the system is a
C++ program that predicts radio coverage throughout a
building, given parameter values and building geometry
and composition. This program (dubbed ‘‘bounce’’
because it works by tracing rays as they bounce around
the building) reads ASCII input files of parameters and
wall data, and produces ASCII output files giving, for
example, coverage at each point of a grid that covers
the building. Figure 3 shows a small sample of input
and output files.

A second component is an optimizer that attempts to
improve coverage by moving base stations; it calls
bounce as a subroutine. There are also a handful of
supporting programs. All of these are controlled by the
user interface.

The components of this system have been in contin-
uous evolution since the fall of 1993; in particular, there
have been many versions of the user interface. Quite
early, I decided not to use any extended version of Tcl
or Tk, nor to write C code to be bound into the same
executable as Wish; all communications would be with
standalone programs, through files or pipes. This has
simplified portability to our user population, who are
not comfortable with importing any public domain soft-
ware, let alone an amalgam from multiple sources. At
the same time, it does not seem to have cost much in
development time or efficiency.

In any case, the system structure clearly reflects this
decision. The Tcl/Tk interface handles drawing and
user interaction, and is currently about 3000 lines long.



Figure 1: Interface view of Hynes Convention Center, Boston

A separate program, originally in AWK and now in C++,
manages data structures for wall and receiver grid coor-
dinates. This program is about 1400 lines long. These
programs are described further in the next section.

The split into two components was encouraged and
ultimately forced by two issues. First, Tcl’s notation
for arithmetic expressions is clumsy; it is easier to write
most expressions in C. More important, however, Tcl
is not very good at data structures, since it provides
only associative arrays and strings (upon which a
veneer of linked lists can be applied). Again, C or C++
is more expressive and the code is much easier to main-

tain. These operations also run significantly faster in
C/C++; this more than compensates for any extra file
traffic.

2. Canvases
The user interface makes extensive use of the can-

vas widget. One can draw a variety of graphical objects
on canvases, including lines, rectangles, circles,
ellipses, text, and arbitrary polygons, in any color, with
outlining, shading, etc. Each object can be tagged with
any number of strings so that groups of objects can be
treated as a unit. Any group of objects can be scaled or
moved independently of others.



Figure 2: Menus for predictor and radio parameters

The plan and elevation views of a building are
drawn with a modest number of lines; coverage maps
are drawn with lots of colored rectangles, one for each
grid point. For example, the Hynes convention center is
about 140 by 175 meters and has 313 walls (on the one
floor shown); bounce automatically generates a grid of
2329 rectangles of 3 meters on a side to cover this area.
AT&T’s facility in Middletown, NJ, has 4320 walls on
five floors; this is the largest building for which we
have done serious experiments.

Tags
The tag mechanism provided by canvases is indis-

pensable. Each wall is tagged with the name walls so
that all walls can be manipulated at once. Each wall
also has a unique tag and an encoded composition so
that its identity and properties can be displayed when
the mouse is clicked on it. Each colored rectangle is
tagged with its power and delay values so these can be
displayed when the mouse is pressed on any point in the
building. Other objects are tagged with type names and
serial numbers.

Tags are also used in conjunction with Tk’s raise
and lower commands to control visibility. For exam-

ple, we can hide the walls behind the coverage or raise
them above by a single command. We also use tags to
make sure that base stations are always displayed above
walls, which are normally above coverage data. Rulers
may be added or removed; again, tags make it easy to
treat a group of related objects as a single unit for mov-
ing or deleting.

Specific events are bound to specific tags; for exam-
ple, base stations and portable transceivers can be
moved in plan or elevation view and the corresponding
object tracks in the other view. Walls may be moved
only if the capability is explicitly enabled; users are dis-
turbed by walls that move unexpectedly when touched
with the mouse. Most other objects can not be moved
under any circumstances. Touching any point on the
canvas displays its coordinates in building space.

Finally, tags are the only way to keep track of
objects that appear in more than one canvas. For exam-
ple, a base station appears in both the plan and elevation
views, and when it is moved (by the user) in one view,
the other view has to change as well. The code that is
bound to button 1 on a base or portable identifies the
object in the original view, finds the object in the other



filetype bounce
output coverage
prediction image
nbounce 1
ndiffract 0
antenna isotropic qw-monopole
power 34
freq 1.92
threshold -70
nxmit 1
xmit 1 19.7 7.3 3 power 34 azimuth 0 tilt 0 antenna isotropic
...

(a) Input parameter file

filetype wall
title law office
wall 1 0.914 8.839 0.000 5.486 8.839 3.657 2 3
wall 2 5.486 10.058 0.000 7.010 10.058 3.657 2 3
wall 3 7.010 8.534 0.000 11.277 8.534 3.657 2 3
wall 4 11.277 7.315 0.000 16.763 7.315 3.657 2 3
...

(b) Wall description file

filetype rcvr
grid 0.9295 1.034 1 0.5 0.5 0 43 31 1
...
nrcvr 729
nxmit 1
xmit 1 19.5 6.3 3 antenna isotropic power 34 azimuth 0 tilt 0
rcvr 1 0.9295 9.035 1 -53.8572 1.77397 0
rcvr 2 0.9295 9.535 1 -63.7057 1.78578 0
rcvr 3 0.9295 10.034 1 -61.7194 1.60315 0
...

(c) Output file

Figure 3: Input and output file excerpts.

view that has the same name tag, then moves them in
unison.

Almost all interactions take place on button 1, with
cursor changes to indicate special states, like preparing
to add or delete a base or portable, or measuring a path.
Users much preferred a single button model to the more
conventional (on Unix) use of three buttons.

Coordinate Systems
There are too many coordinate systems. Distances

are measured in meters or feet, and users want to view
either, so conversion functions are ubiquitous. In the
plan view, real life has the Y coordinate going up, while
Tk has it going down; we finesse this issue by convert-
ing building coordinates once and for all. The same
problem arises with Z coordinates, but it is harder to
avoid, since there is a clear meaning to up and down in
this dimension. More conversion functions. We also

stretch the Z coordinate in the elevation view, normally
by a factor of two, by another conversion function.
On-screen building displays can be scaled, which adds
another conversion; furthermore, for really large build-
ings, another scaling is needed to shrink them so the
range of the slider that controls scaling isn’t too big.
Selecting the largest or smallest value on the scale
slider scales the whole picture by a factor of 40, but the
slider itself always shows a range from 0 to 40.

Of course it is not sufficient merely to scale every
item on a canvas. The small colored circles that repre-
sent base and portable stations have to remain a con-
stant size as the building is scaled. Fortunately, this one
is easy: scale everything, then use tags to rescale the
bases to cancel the original scaling. Another conver-
sion function is needed.

There are also some potential problems of lost pre-
cision in the coordinates of bases and portables. They



are stored in most places in terms of their centers, but
Tk stores them in terms of their bounding box. Another
set of conversion functions is needed.

Coordinate transformations have been a continuing
irritation and a fertile source of bugs. Some of the
problems could have been obviated by better design
ahead of time, but foresight has been difficult in a pro-
gram that has gone through nearly 30 releases.

Canvas Limitations
Although canvases are remarkably flexible, there are

some limitations. Canvases are not bitmaps in Tk 3.6,
so it is difficult to do arbitrary drawing on them. In par-
ticular, since the most effective perspective algorithms
are based on raster-filling in the proper Z order, we use
a separate program to draw perspective views of build-
ings. The perspective viewer is invoked and controlled
from the Tk interface, but it is implemented (with code
from Tom Duff) as a standalone Xlib program of about
1400 lines of C++.

One of the features of the interface is a mechanism
for collecting multiple displays onto a single canvas,
where they can be arranged and annotated, then saved
in Postscript. Unfortunately, it is not possible to make a
direct copy of an item from a canvas. Instead one must
interrogate the type and properties of each item, then
instantiate a new item with the same type and proper-
ties. This is excruciatingly slow. Even a small building
requires several minutes of computing time to copy the
main canvas onto the clone window.

The X color map that underlies Tk limits us to 256
colors on the screen at one time. The color scale in the
interface has been restricted to about 150 colors so that
there is little danger of running out, but if some other
program is also using a lot of colors, Tk will go into
monochrome mode.

3. Interprocess Communication
As mentioned above, the interface is split into two

main pieces: a Tcl/Tk portion that handles interaction
with the user, and a C++ component that manages wall
and receiver-grid information. The two halves of the
interface communicate through files and a two-way
pipe. The C++ program uses normal C structures to
handle wall and receiver coordinates, and converts the
output of prediction programs to Tk commands. For
example, a wall-file line like

wall 1 138 61 0 138 53 8 1 2

is converted into Tk commands to draw it on two can-
vases (plan .c and elevation .h):

.c create line 690 305 690 265
-fill black -width 2 -tag {walls #1 w2}

.h create line 690 80 690 0
-fill #444444 -width 2 -tag {walls #1 w2}

The multiple tags name the wall and encode its compo-
sition; a gray scale in the elevation view gives some
illusion of depth. The commands are written to a tem-
porary file, which is read into Tk with a source com-
mand. The scaling is done by the C++ program; there
is another set of coordinate transformation functions
here too.

The two-way pipe requires synchronous communi-
cation. In a typical interaction, the interface sends a
one-line command (an ASCII string) to the C++ pro-
gram, with a flush to force the output. The C++ pro-
gram performs the requested operation, then replies
with a single line that either contains the entire answer,
or points to a file that the Tcl/Tk program reads with a
source command; again a flush is needed. For exam-
ple, if the user selects Predict received power from
the Predictors menu, the interface creates an input file
for bounce, runs it, then sends a command to the C++
program to load the data computed by bounce. That
data is converted by the C++ program into Tk com-
mands to be loaded with source.

The prediction (bounce) and optimization programs
are completely independent of the interface. They are
called by Tcl exec commands and all communication
is by command-line arguments, files, and status returns.
Since some of these operations can take a very long
time, the commands are set running asynchronously
(using exec &). To keep track of their status, every
few seconds the interface runs ps|grep and displays
its output; when the process goes away, the results can
be converted to Tk commands and displayed. The pro-
cess id can be used to kill the job early if necessary; a
Kill button is displayed as long as the process is run-
ning. This is somewhat tricky to set up and the output
of the ps command is system dependent, but overall
the mechanism works well.

The separation of the interface into Tcl/Tk and C++
halves has also been successful; each half concentrates
on what it does well, and there is less need to force a
language into a task that it wasn’t meant for. At the
same time, there are some definite problems. The most
serious issue is that an uncomfortable amount of infor-
mation is stored in both halves, and must be kept con-
sistent.

For instance, the scale is needed by the interface for
display and by the C++ program so that already-scaled
Tk commands can be generated. Keeping the scale
purely in the interface would work, although every time



data was loaded from the C++ program it would have to
be scaled (and then the bases and portables would have
to be unscaled). Scaling is fast enough that this would
likely be feasible.

A more serious problem is keeping track of bases
and portables in both halves. New bases and portables
are usually generated by the user with the mouse, and
then passed to the C++ program; coordinates have to be
unscaled and converted from bounding box to center.
But bases and portables can also come from data files,
so they may be seen first by the C++ program. Further-
more, bases and portables have a display size that is
independent of scaling, and color attributes that have to
be dealt with by both halves. Keeping these possibili-
ties straight has been an ongoing nuisance.

A final issue is how to handle wall editing. Users
want to be able to add, delete, and move walls with the
mouse, but the information about walls is kept in the
C++ program. This requires further coordination
between the two halves, and more coordinate transfor-
mations.

4. Visual Basic
It was clear from the outset that our intended user

population really wanted the whole set of programs,
including the interface, to run on a PC under Microsoft
Windows.

After we had enough experience to believe that the
interface was somewhat stable, I undertook a subset
implementation for Windows 3.1. The prediction and
optimization C++ code needed almost no changes;
those programs are now identical on Unix and Win-
dows. The real issue is the interface. There are a cou-
ple of preliminary versions of Tcl/Tk available for
Microsoft Windows, but these were not yet robust
enough to be seriously considered. It was also unclear
whether they would provide an interface that had the
right look and feel for Windows users. And of course
our users would be even less happy depending on these
untried and unsupported packages.

The obvious alternative is Microsoft Visual Basic, a
popular user interface builder for Windows. VB pro-
vides a set of about 20 ‘‘controls’’ that are analogous to
Tk’s dozen widgets; for example, there is a ListBox
control that looks much like Tk’s list widget, and a
pair of ScrollBars that match Tk’s scale widget.
Each control comes with a set of properties directly
equivalent to Tk’s configuration parameters; these may
be set statically or at run time. Each control also comes
with a set of methods — the operations that can be per-
formed on it (like inserting a line into a list box) — and

a set of events that it responds to. Again, though details
vary quite a bit, the analogy with Tk is strong, and
familiarity with one system makes it easy to understand
the other.

To program in VB, one interactively selects controls
from a menu, places them on a Form (a control rather
like Tk’s frame), and sets initial properties from
another menu. Still another set of menus gives access
to templates for the code to be executed for events; this
is equivalent to the code one writes for the -command
operation of a widget or for the bind command, but
VB is more structured in how this is expressed. For
example, the subroutine for the event that occurs when
a button is pushed is always called button-
name_Click.

Syntax is checked as code is entered so trivial errors
are caught instantly; global errors like missing declara-
tions or misspelled names are caught when execution
begins. If the program contains no errors, all of the
code and control windows are hidden, so the screen
looks as it will when the application is real use. The
cycle of editing and testing is very convenient in VB,
though the facilities for viewing and editing text are so
primitive that one yearns for a powerful editor like ed.

Figure 4 shows a set of VB windows during design
of the interface. The top window is VB’s main control,
the left window is the tool bar for the available controls,
and the right window is the property list for the hori-
zontal scrollbar HScroll1, which is the currently-
selected control. The window labeled ‘‘WiSE for Win-
dows 0.2’’ is the interface itself (undergoing construc-
tion) and ‘‘FORM1.FRM’’ is the code window, show-
ing parts of two subroutines. The top, Form_Load, is
executed when the main window is first loaded. The
bottom, HScroll1_Change, is executed when the
scaling scrollbar (to the right of the word ‘‘Scale’’) is
changed.

Most operations that can be done at form-creation
time can also be done during execution, but VB is not
as dynamic as Tcl/Tk; in particular, there is no equiva-
lent of the source command. There is a clear-cut sep-
aration between ‘‘compilation’’ and execution, so it is
not possible to create code on the fly as one can do in
Tcl.

Figure 5 shows a similar prediction to the one seen
in Figure 1, using the Visual Basic interface on Win-
dows.

The version of the wireless interface with VB is
incomplete, as are any conclusions that might be drawn
from the experience. Nevertheless, it is clear that VB is
an effective way to create interfaces for Windows pro-
grams. Here are some specific observations.



Figure 4: Visual Basic Design Screens

VB provides an interactive facility for creating the
initial geometry of an interface (something that Tk does
not, though packages like XF do). This is convenient
for getting started, much easier than Tk’s pack com-
mand. In effect it is an interactive version of Tk’s
place command. But Tk’s packer wins hands down
when one wants to create windows that change size. Its
dynamic adjustment of sub-window sizes and positions
is completely automatic; in VB, one has to write code
for all this tedious geometry (as one would have to do
with place).

Tk provides a richer set of events (inherited from X)
than VB does, and they can be combined and used

much more freely. VB does provide built-in Drag,
DragOver and DragDrop methods for some controls,
which are convenient if one can use them, but otherwise
inflexible and non-extensible.

VB provides a common dialog control for file sys-
tem browsing and selection; it is the standard Microsoft
file browser, and is easy to use. Tk provides no such
standard, unfortunately, so each user has to cobble one
together and each one looks and acts different. More
generally, a major strength of VB is that applications
written with it share a common and familiar look and
feel; this is an important selling point for any piece of
software.



Figure 5: Visual Basic interface on Windows

VB provides a helpful ‘‘setup wizard’’ that gathers
all the components needed for an export package, and
compresses them onto a minimal set of diskettes. The
package includes a standard installation program so the
recipient can install the program on another machine,
using the conventional A:\SETUP mechanism. The
recipient need not have a copy of VB; enough of its
functionality is automatically included in the export
package. And again, the installation process looks con-
ventional and familiar to the recipient.

VB’s extension language, a dialect of Basic, is
clumsy but a vast improvement on the Basic of years
ago. It provides integers, single- and double-precision
floating-point numbers, strings, arrays, and structures.
It has control flow, functions, subroutines, and real
scope rules. There is an excellent on-line help system.
As a purely personal reaction, it took me perhaps a day
to internalize VB’s conventional syntax and semantics,
where it took me months to become comfortable with

Tcl. Figure 6 shows a straightforward VB function that
parses a string into blank or tab-separated fields that it
stores in a global array FF. VB itself provides nothing
that does this parsing operation.

Figure 7 shows a more graphical piece of code, an
excerpt from the subroutine that reads received power
information from a file, parses each line with
Getfields, and draws colored rectangles in the plan
view.

One of the most important properties of VB is that it
is easy to connect VB code with dynamic link libraries
(.DLL’s), which are the standard way in which compo-
nents are packaged in Windows. These libraries can be
one’s own code or code from others. This is analogous
to the tclAppInit mechanism, but simpler and
cleaner. (VB can only link to 16-bit .DLL’s, perpetuat-
ing the arcane problems of the original PC architecture.)
There is also a substantial third-party industry creating



Function Getfields (s As String)
Dim nf As Integer, inword As Integer, i As Integer
Dim c As String

nf = 0
inword = 0
For i = 1 To 20

FF(i) = ""
Next i
For i = 1 To Len(s)

c = Mid(s, i, 1)
If c = " " Or c = Chr$(9) Then ’ tab

inword = 0
ElseIf inword = 0 Then

nf = nf + 1
FF(nf) = c
inword = 1

Else
FF(nf) = FF(nf) & c

End If
Next i
Getfields = nf

End Function

Figure 6: Input Field Splitting in Visual Basic

Open fname For Input As fn
Do Until EOF(fn)

’ w, n, x0, y0, z0, pwr, dly
Line Input #fn, s
n = Getfields(s)
If FF(1) = "rcvr" Then

x0 = HScroll1.Value * CDbl(FF(3))
y0 = HScroll1.Value * CDbl(FF(4))
pwr = CDbl(FF(6))
ntot = ntot + 1
If pwr >= hscrThresh.Value Then

nin = nin + 1
Line (x0 - dx, y0 - dx + Dy)-Step(2 * dx, 2 * dx),

Colormap(pwr + 100), BF
Else

Line (x0 - dx, y0 - dx + Dy)-Step(2 * dx, 2 * dx),
RGB(100, 100, 100), BF

End If
...

Figure 7: Received Power Display in Visual Basic

new VB controls to be included in arbitrary programs,
and adventurous users can do the same. This is equiva-
lent to writing new Tk widgets and appears to be of
similar complexity.

By far the most serious limitation for the wireless
interface application is that VB provides nothing
remotely approaching the canvas widget in capabilities,
and the thought of programming equivalent behavior in
Basic is daunting. At the bottom, the VB Form control
provides only the graphics primitives of lines, circles,
and rectangles. There are no tags, so one has to keep
track of objects for oneself. Graphic objects appear to

be handled strictly as bitmaps, with only a minimal
notion of Z order, so moving an object (for example a
base) can leave a hole behind. Much painful code
would have to be written; the best approach would
probably be to create a Canvas control.

VB also suffers from having to run in the awful
Windows environment, where the least provocation can
cause one’s entire machine to go catatonic. Interpro-
cess communication in the Unix sense is difficult in
Windows; mechanisms like DDE and OLE are compli-
cated beyond description, and a simple notion like the
pipe is non-existent. Newer systems like Windows NT



and Windows 95 appear to be incompatible, but they
are still complicated. Compilers, though blessed with
elaborate user interfaces, are bug-ridden and shaky.

As a rough summary, for the specific purposes I
have used it for, Visual Basic is significantly better than
Tcl/Tk for the purely visual part (creating the interface
on the screen and having it look somewhat like a com-
mercial product), worse for programming, and
extremely unsatisfactory for interprocess communica-
tion. Each is the easiest interface-building tool in its
native environment.

5. Observations and Conclusions
I began building interfaces with conventional tools,

with toolkits like Xt and widget sets like Motif. These
were incredibly frustrating: it was necessary to study
hundreds or even thousands of pages of manuals and
write voluminous code to achieve even the simplest
effects. By this standard, Tcl/Tk is wonderfully pro-
ductive; in a few hours one can accomplish what might
well take days or even weeks with C-based tools.

For the wireless application, this has been especially
important: since I am implementing for an application
area in which I am not an expert, it is vital to adapt
quickly to the needs of the real users. I have done a
great number of experiments to refine the interface; this
amount of evolution and refinement simply would not
have been possible with another tool.

Tk is efficient enough for most purposes; some
components, like text widgets, are so fast that one is left
wondering how they could work so well. Other aspects,
such as parsing input, seem surprisingly slow, and can-
vas copying is unusable. It would be helpful to have a
cost model for various Tcl and Tk constructs, to help
predict what will be fast and what will not.

Fortunately, however, it has proven straightforward
to partition tasks between Tcl and C++ to match each to
what it does best. The Tcl mechanisms for inter-
process communication are reliable and fast, so this
works well. Extending the system by writing code to
be loaded directly with the Tcl library, as Ousterhout’s
original design intended, gives better efficiency and
simpler program structure at a modest cost in portabil-
ity.

I am not convinced that Tcl would survive by itself;
it has many competitors. But coupled with Tk, there is
nothing else in the Unix world that comes even close
for building interfaces. The package is extremely
robust, very well documented, and has an active and
cooperative group of users. The source code is freely
available and of exceptionally high quality. It is clearly
possible to build production-quality user interfaces with
Tcl/Tk, and to do so far faster than with competing
tools.

Acknowledgements
I am deeply indebted to the other members of the

group that has worked together on the wireless system:
Steve Fortune, David Gay, Orlando Landron, Reinaldo
Valenzuela, and Margaret Wright. Their endless
patience and helpful suggestions have contributed
greatly to the interface and to my enjoyment in building
it. I am also grateful to John Ousterhout for creating
and disseminating a tool of such value.

References
[F95] S. J. Fortune, D. M. Gay, B. W. Kernighan, O.

Landron, R. Valenzuela, M. H. Wright, WISE
Design of Indoor Wireless Systems. IEEE
Computational Science and Engineering , 2, 1,
pp. 58–68, March 1995.


