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ABSTRACT

This paper describes an experiment to produce an AWK to C++ translator and an
AWK class definition and supporting library. The intent is to generate efficient and read-
able C++, so that the generated code will run faster than interpreted AWK and can also be
modified and extended where an AWK program could not be. The AWK class and library
can also be used independently of the translator to access AWK facilities from C++ pro-
grams.

1. Introduction
An AWK program [1] is a sequence of pattern-action statements:

pattern { action }
pattern { action }
...

A pattern is a regular expression, numeric expression, string expression, or combination of these; an action
is executable code similar to C. The operation of an AWK program is

for each input line
for each pattern

if the pattern matches the input line
do the action

Variables in an AWK program contain string or numeric values or both according to context; there are built-
in variables for useful values such as the input filename and record number. Operators work on strings or
numbers, coercing the types of their operands as necessary. Arrays have arbitrary subscripts (‘‘associative
arrays’’). Input is read and input lines are split into fields, called $1, $2, etc. Control flow statements are
like those of C: if-else, while, for, do. There are user-defined and built-in functions for arithmetic,
string, regular expression pattern-matching, and input and output to/from arbitrary files and processes.

The standard implementation of AWK is an interpreter: an AWK program is parsed into an internal rep-
resentation, which is then interpreted by a set of routines.

AWK is a closed language; there is no access to libraries or to separately written code. This often
forces users into contortions to do some operation that would be much more naturally expressed in some
other language. A translator into C++ provides a way to extend AWK programs, by combining them with
C++ code.

AWK is in some ways a seductive tool (see, for example, [2, 3, 4]) and there are numerous examples of
AWK programs that grew from sensible small versions into awkward large ones. A translator provides an
escape path: a program may be translated so that further development takes place in a more suitable lan-
guage.

Both of these uses require that generated code be especially readable and easy to work with. The pri-
mary goal throughout the experiment has been that the translated output should be as close as possible to
the original AWK input. This means that we want to define variables that have the semantics of AWK



variables and use them in the natural syntax in expressions with the usual C operators, C and AWK func-
tions, and C built-in data types. AWK syntax is close enough to C to make an exact match feasible in many
places, and provide a reasonable mapping in others.

It is necessary to duplicate AWK semantics, but that is not sufficient. There is already an excellent
AWK to C converter, that generates C that exactly matches the semantics of AWK. Roughly speaking, an
program will run about twice as fast as the corresponding AWK program, so if one wishes only to speed up
an existing AWK program, is quite satisfactory. The output of however, was never meant for human con-
sumption, and thus it is not appropriate for augmenting or extending AWK code.

This project has several components. Their development was carried on in parallel, since they are
related and activities in one area affect the other areas. I have tried to separate these as much as possible
but there is still room for confusion. Here is a sketch of the pieces and events.

The AWK interpreter is a C program originally written in 1977 and much modified since then. For
most people, the interpreter is AWK. The first step was to translate the interpreter into the C subset of C++
and then to make some minor changes in implementation to use C++ better. This version of the interpreter
could (but does not) replace the standard C version. There was also no need to make this a C++ program
but it was good practice.

The second step was to modify the interpreter so that instead of interpreting AWK programs, it trans-
lates them into C++; this program is called the translator and the C++ it produces is called generated code.

The generated code does not stand alone; it assumes that it will be compiled (by a C++ compiler)
with a header file that contains class declarations for AWK data types and loaded with a library of separately
compiled functions for input-output, field splitting, regular-expression matching, etc. Thus the third step is
the development of this header file and library. These are written in C++.

The translator, header file, and library are interdependent, since each performs actions or provides
services that the others depend on. There are often trade-offs among them, since one can do more work in
one place to simplify life in another. Among the issues that can be traded off are complexity, efficiency,
and readability of generated code.

2. Translation
The translator parses an AWK program creates a parse tree and walks it recursively; at each node it

calls a routine that generates C++ code. The translator makes only relatively simple use of C++ facilities;
its origin as a C program is very clear.

The generated code is meant to be compiled with a header file Awk.h, to be discussed in the next
section, and loaded with a library of run-time routines. The generated code is based on this template:

#include "Awk.h"

// declarations of user variables and functions, if any

main()
{

BEGIN(); // if there is a BEGIN block
while (getline() > 0) {

// code for pattern-action statement 1
// code for pattern-action statement 2
// ...

}
END(); // if there is an END block

}

// user function definitions, if any

Considerable effort has been devoted to generating readable code. For example, no redundant paren-
theses are produced for expressions, and no redundant braces are produced around non-compound state-
ments. The output is piped through the C beautifier cb so it is properly indented. Declarations of external
variables are sorted so that variables are easy to find in large programs. Default arguments and multiple
declarations are used for functions like substr and split that can be called with different numbers of
arguments.



There are some AWK notations that simply cannot be made to look the same in C++. For example,
there is no C exponentiation operator, so xˆy becomes pow(x,y). (The alternative, overloading the C ˆ
exclusive operator, must be rejected because its precedence does not match the AWK precedence for expo-
nentiation.) There is no explicit operator for concatenation in AWK; the translator generates a function call
instead of overloading some operator, because there is no suitably mnemonic C operator with the right
precedence. The common cases of concatenation of two or three strings are handled with cat(s1,s2)
and cat(s1,s2,s3); longer concatenations use nested function calls. Constant regular expressions
must be delimited by quotes instead of slashes, and an extra layer of backslashes must be added to protect
embedded backslashes.

The notation for fields is a problem, since there is no way to use ‘$’ as AWK does. After some exper-
imentation, I decided to use the variable F so that fields are called F(0), F(i+1), and so on. There are
also definitions for F0, F1, etc., so that an expression like $1 > $2 can be expressed as F1 > F2.

A small example will illustrate many of these points. This AWK program reads a list of numbers and
prints the list with serial numbers and percentage of the total:

{ x[NR] = $1; sum += $1 }

END { if (sum != 0)
for (i = 1; i <= NR; i++)

printf("%2d %10.2f %5.1f\n", i, x[i], 100*x[i]/sum)
}

The translator generates this code:

#include <stdio.h>
#include "Awk.h"

int i;
double sum;
Array x;
void END();

main(int argc, char *argv[])
{

Awkinit(argc, argv);
while (getline() > 0) {

x[NR] = F1;
sum += F1;

}
END();

}

void END()
{

if (sum != 0)
for (i = 1; i <= NR; i++)

printf("%2d %10.2f %5.1f\n", i, (double) x[i], 100 * x[i] / sum);
}

The basic type is an Awk, which captures the semantics of AWK variables mentioned in Section 1: a
string value, a numeric value, or both, depending on usage. In general, most variables in an AWK program
would be translated into Awks.

Since it is more efficient to use built-in types, however, the translator attempts to infer the simplest
type that will serve for each variable. For example, since the variable i is used only as the index of a loop,
it can be an int, while sum is a double, and x is an Array, a type that captures the notion of an AWK
array, i.e., an indexable collection of Awks. The coercion (double) in the printf is necessary to con-
vert the array element, of type Awk, to a number for printing. There is no need for a coercion for i, how-
ever, because its type already matches; in this case, type inference leads to more readable code and poten-
tially more efficient code.

Type inference in the translator is fairly ad hoc. A type is associated with each constant. Types are



combined at operators to produce a result type; for instance, the result of an addition is an int if both
operands are integer; otherwise it is double. Relational operators always produce int regardless of the
type of their operands. Types of variables are set by assignment statements and also by usage in expres-
sions and function arguments. The operands of an operator are assigned a tentative type based on the oper-
ator; for example, the expression x+y implies that x and y are used arithmetically. This may later be
changed to int because the variables are only used in int contexts. If a numeric variable is used in an
explicitly double context, such as sqrt(x), or if no further information appears, it will become
double. Array elements are always assumed to be of type Awk, as are fields, since it is too uncertain to
propagate an assumed type.

Ideally, one should do a data flow analysis to propagate type information, but instead several passes
are made over the parse tree; this way, information that ‘‘flows backwards’’ can be handled, so long as the
backward path is not too long. For example, in a sequence like

{ i = j; j = 2 * k; k = 1; x = y; y = z + 1; z /= 2 }

after two passes over the tree it will be concluded that i, j, and k are all of type int, while x, y, and z are
all double.

3. The Awk Class
It is easy enough and quite satisfying to generate clean, clear C++ code, with all the operators in

place, and no redundant parentheses or braces. It turns out to be harder to define a class that captures the
behavior of AWK variables so that the clean expressions produce the expected results. In this section we
will describe the Awk class, which is defined in the header file Awk.h.

The Awk data type keeps track of the value and state of a variable:

class Awk {
private:

double fval; // floating-point value if currently valid
String sval; // string value if currently valid
int state; // which values are currently valid
...

(The fragments of Awk.h presented here have been somewhat simplified to show the essence without bog-
ging down in details.) The state variable holds only two bits, which are set if the numeric or string val-
ues or both are currently valid. String provides reference-counted strings; it is a tiny subset of the stan-
dard C++ library string package.

The next step in the class definition is constructors to create Awks:

public:
Awk() : sval("") { fval = 0.0; state = STR|NUM; }
Awk(int i) { fval = i; state = NUM; }
Awk(double f) { fval = f; state = NUM; }
Awk(cchar *s) : sval(s) { state = STR; }
Awk(Awk &a) { if (a.state & STR) sval = a.sval;

fval = a.fval; state = a.state; }

The type cchar is an abbreviation for const char here and in the sequel.
Similar functions are necessary for assignment of values to Awks:

Awk &operator =(int i) { fval = i; state = NUM; return *this; }
Awk &operator =(double f) { fval = f; state = NUM; return *this; }
Awk &operator =(cchar *s) { sval = s; state = STR; return *this; }
Awk &operator =(Awk &a) { if (a.state & STR) sval = a.sval;

fval = a.fval; state = a.state;
return *this; }

and for increment operators like += and for ++ and --.
There are also ‘‘conversion functions’’ for fetching the numeric and string values of Awk variables:



operator double()
{ return state&NUM ? fval : (state |= NUM, fval = atof(sval)); }

operator cchar *()
{ return state&STR ? sval : (state |= STR, sval = ftoa(fval)); }

These are used implicitly when calling a normal C function that expects one of these types as an argument.
For example, since sqrt expects an argument of type double,

sqrt(awkvar)

is really

sqrt( (double) awkvar )

The alternative of requiring explicit casts for ‘‘downward’’ conversions from Awk to built-in types is unac-
ceptable because it severely affects readability; even a few casts are undesirable.

The real complications begin with the arithmetic and relational operators. In an AWK arithmetic
expression involving the operator +, there are five possible combinations:

Awk + Awk
Awk + int
int + Awk
Awk + double
double + Awk

Each of these produces a double value.
The obvious way to handle this is to overload the + operator as a friend function:

friend double operator +(Awk &, Awk &);

The arguments must be passed by reference since the function has to be able to cause the side-effect of
updating the numeric state of each argument if necessary. A friend function is required so that the left-
hand operand can be an int or double; if a member function were used, the left-hand operand would
have to be an Awk and this would preclude expressions like 1+Awk.

Unfortunately, the simple solution doesn’t work, because an expression like

Awk + int

is ambiguous; it could be parsed as either of

Awk + (Awk) int
(int) Awk + int

The problem is that basic types can be promoted ‘‘up’’ into Awks and Awks can be converted ‘‘down’’ into
basic types, and there is no way to state which choice is preferred. C++ provides an elaborate sequence of
rules that determines how type-matching of functions is done, but when it is finished, if there are two
matched functions, the construction is ambiguous.

The problem is that in AWK all possible conversions are legal; given both upward and downward
implicit conversions, the only way to capture this at compile time is to spell out all possible combinations:

friend double operator +(Awk &, Awk &);
friend double operator +(Awk &, int);
friend double operator +(Awk &, double);
friend double operator +(int, Awk &);
friend double operator +(double, Awk &);
// and so on for - * / %

All told there are 5×5 functions for arithmetic operations.
As it is for arithmetic operators, so it is for relationals, except that there are more combinations and

the semantics imposed by AWK are more complicated: it is necessary to look at the state of each variable in
a comparison to determine whether the comparison is numeric or string. This makes another 42 functions
(6 operators, 7 type combinations). Fortunately, most of these are trivial and can be expanded in-line.

By the way, it is necessary to distinguish int from double, rather than relying on the automatic



coercion that would otherwise take place. Consider the expression

Awkvar == 0

In the absence of explicit functions for ints, 0 can be a double or a char*, so this construction would
be ambiguous.

4. Fields
The next complication is the treatment of fields. Fields in AWK are for the most part the same as

ordinary variables except that they have potential side effects, and there are significant efficiency considera-
tions since field-splitting is expensive.

Each time a new line is read, the input record $0 is set, but it is undesirable to set $1, etc., until they
are actually needed. In addition, if any field is assigned to, that invalidates the value of $0, but it is unde-
sirable to recreate $0 until its value is needed again. Similarly, if $0 is explicitly assigned to, that invali-
dates $1, etc. Thus some form of lazy evaluation is called for.

To make all of this work, it is necessary to intercept every reference to any field. In the interpreter,
there is type information in each variable that indicates whether the variable is a field. That requires a run-
time test for each access to any variable, so it seems better in the generated C++ code to implement fields as
a separate type, thus moving the test to compile-time.

Thus fields are implemented as a new type, called a Field. The initial try was to derive Field
from Awk, so that most operations would be inherited, but this doesn’t work because operations performed
on derived objects may bypass the explicit assignment and conversion operations in favor of implicit ones
and thus avoid the code meant to trap references to fields.

A Field really isn’t an Awk, since it may never be used as a plain Awk without taking the side
effects into account. Thus a Field contains an Awk:

class Field { // an individual field
private:

Awk a;
void rvalue(), lvalue();
operator double() { rvalue(); return (double) a; }

public:
friend double operator +(Field &x, int d) { return (double) x + d; }
Field &operator =(Field &x) { x.rvalue(); lvalue(); ... }
// ...

};

Within this class definition, in every context where the value of the field will be used, a function
Field::rvalue is called to ensure that any necessary field-building is performed. In any context where
a field will be assigned to, a function Field::lvalue is called to build fields and to record any informa-
tion about invalid state. The lvalue function must also be called from a few functions such as sub and
gsub that can alter fields implicitly.

With one exception, there are no explicit variables of type Field; rather, fields are members of an
array managed by a class called Fields:

class Fields { // manages an array of Field’s
private:

Field fields[100];
public:

Field &operator()(int n) { return fields[n]); }
};

Fields F; // the fields are stored here

The only Fields operator is (), which is used to access an individual Field. Thus constructions like
F(0), F(i+j), and so on return a reference to the corresponding Field.

Since a Field does not inherit from an Awk, and since a Field can be converted to an Awk and
vice versa, it is again necessary to provide overloaded operators for all possible combinations of Fields



with other types, and to add some operators to class Awk for combinations of Awk and Field.
It is also necessary to deal with the AWK built-in variable NF, which records the current number of

fields. If NF is referred to, the fields must be computed, or at least counted. The easiest way to do this
turned out to be to make NF a variable of type Field and to add a bit of special code in the lvalue and
rvalue routines to handle it correctly. (The thought of adding another type and another 75 functions to
manage it was more than I could bear.)

5. Arrays
AWK arrays are implemented as a separate class Array. Thus Awk v[10] is not an AWK array in

the traditional sense, but Array v is. The specific implementation of an array doesn’t matter here; the
only visible operations are subscripting to implement associative arrays, membership test, and element
deletion:

class Array {
private:

// standard hash table here
Awk &lookup(cchar *); // install if not found

public:
Array();

Awk &operator [](Awk &s) { return lookup(s); }
Awk &operator [](Field &s) { return lookup(s); }
Awk &operator [](cchar *s) { return lookup(s); }
Awk &operator [](double f) { return lookup(ftoa(f)); }
Awk &operator [](int i) { return lookup(ftoa(i)); }
// etc.

};

Again, an explicit rule is needed for int; otherwise, x[0] is ambiguous since 0 is a double and a
char*.

6. Print Statements
The treatment of the AWK print and printf statements present some interesting problems. In

AWK, one writes

print e1, e2, e3 # print values of 3 expressions
print e4 > e5 # print e4, redirecting into file e5
print e6, e7 | e8 # print e6 and e7, piping output into e8

The es are arbitrary expressions. The goal is to generate code that looks as much as possible like this,
something that is natural for human readers and reasonably efficient. The translation has to be legal C++
and provide AWK semantics when executed: values are separated by the value of the variable OFS (usually
a space) and an ORS (usually a newline) is added at the end.

One solution is to define a print function that takes a fixed (large) number of arguments of a single
type, a ‘‘print arg’’. Constructors are defined that make a print arg from each kind of object that will be
printed. There is a default value that marks the end of the real arguments. Default arguments are used to
convert calls into the full-length list; short versions are provided for common cases.



class Prarg {
int t;
union {

cchar *sval;
int ival;
double dval;

};
public:

Prarg() { t = ’v’; ival = 0; } // void marks the end
Prarg(int n) { t = ’i’; ival = n; }
Prarg(double d) { t = ’d’; dval = d; }
Prarg(cchar *s) { t = ’s’; sval = s; }
Prarg(Awk &a) { t = ’s’; sval = a; }
Prarg(Field &a) { a.rvalue(); t = ’s’; sval = a; }

};

extern Prarg Prarg0; // will mark end of list

void print(const Prarg& = Prarg0, const Prarg& = Prarg0, // etc.
const Prarg& = Prarg0, const Prarg& = Prarg0);

Now print statements look exactly the same as they do in AWK, except that the list of expressions must
be parenthesized in all cases and there is an upper limit on the number of arguments.

Redirection is handled by a separate class:

class Redir {
char *buf;

public:
Redir(char *s) { buf = s; }

friend void operator >(const Redir &r, cchar *f);
friend void operator |(const Redir &r, cchar *f);

};

A function named Fprint, which is analogous to print, creates a string that can be printed by
Redir::operator >(Fprint,filename) or operator |(Fprint,filename). This permits
translation of an AWK statement like

print e1, e2, e3 > e4

into

Fprint(e1, e2, e3) > e4;

What about printf and sprintf? Here, the first argument is scanned for format conversion
characters that are used to infer the type of each expression in the list. If the type of the expression doesn’t
match the conversion character, a cast is generated, avoiding redundant parentheses if possible. So, for
example, the AWK statement

printf("%s %d %f\n", $1, $2+1, 123.4)

generates

printf("%s %d %f\n", (cchar *) F1, (int)(F2 + 1), 123.4);

The casts are unattractive but there seems to be no better solution.

7. Library
Most of the run-time library comprises either functions necessary to implement the operators, or

transliterations of functions from the interpreter for regular-expression matching, input and output, field
splitting, and so on. Most of these are much the same, although there are some changes in interfaces. Field
splitting is probably the most different, since it now has to interface to the different field-handling



implementation described above. The library also includes definitions for built-in variables like NR and a
routine Awkinit to set up the ARGC and ARGV variables.

One problem arising with the library echoes a previous problem. Consider defining the AWK built-in
function length, which returns the number of characters in the string value of a variable. The obvious
implementation is

inline int length(const Awk &a) { return strlen(a); }

Thus length may be called with any type; a constructor will convert this to an Awk, and operator
const char* will be called implicitly to coerce the string value for strlen.

One drawback is that calling a constructor is more costly than might be expected; in fact, even
though my constructors are all declared inline, some are not inlined because they are too complex. The
alternative implementation is again to write out every possible type explicitly. This obviates the problems
of constructors and unimplemented features, but it generalizes poorly to functions that have more than one
argument, such as cat or substr.

8. Status
Most of AWK can be handled properly. There are a handful of known bugs and constructions that

may never work; some of these are intrinsic to the way that I have made trade-offs.
Type inference creates some problems. Consider the program

$1 > $2 { i = NR }
END { print i }

This generates

int i;
void END();

main(int argc, char *argv[])
{

Awkinit(argc, argv);
while (getline() > 0) {

if (F1 > F2)
i = NR;

}
END();

}

void END()
{

print(i);
}

Notice that the type of i has been inferred as int. Suppose, however, that $1 is never greater than $2. In
the interpreter, the variable i will have a null value, so the output will be null. In the compiled code, how-
ever, since i is an int, the output will be a literal 0. This is an example of a trade-off. Is it better to do
type inference and get this one wrong, or not to do it and produce less readable code that runs more slowly?

There are minor problems with name clashes. For example, the standard version of rand has differ-
ent properties from the AWK version, which uses the name Arand. There are similar problems with
system, sprintf, C++ keywords, and probably others that I haven’t stumbled into yet.

The header file Awk.h is 625 lines long and the library is 1275, including comments and some
debugging code but excluding regular expression matching. The translator is 3700 lines. For comparison,
the interpreter in C is 4900 lines.

Performance is mixed, and it is difficult to decide which comparisons are most representative. On
some test cases, the compiled code is significantly faster than the interpreter, while on some others, it is
somewhat slower. For example, the prototypical AWK program is to compute a word-frequency count:



{ for (i = 1; i <= NF; i++) count[$i]++ }
END { for (i in count) printf("%4d %s\n", count[i], i) }

The code generated for this is

#include <stdio.h>
#include "Awk.h"

Array count;
Index i;
void END();

main(int argc, char *argv[])
{

Awkinit(argc, argv);
while (getline() > 0) {

for (i = 1; i <= NF; i++)
count[F(i)]++;

}
END();

}

void END()
{

For (i, count)
printf("%4d %s\n", (int) count[i], (char *) i);

}

This can also be expressed in C++ with standard libraries:

#include <String.h>
#include <Map.h>
#include <stream.h>

Mapdeclare(String,int)
Mapimplement(String,int)

main()
{

Map(String,int) count;
String word;

while (cin >> word)
count[word]++;

Mapiter(String,int) p (count);
while (++p)

cout << dec(p.value(),4) << " " << p.key() << "\n";
}

The following table shows running times for four implementations, on an input file of 320,000 bytes with
about 600 distinct words:

Map class 16.9 sec.
AWK interpreter 11.5
AWK-C++ 8.1
AWKCC 5.7

On another test, a large program that includes representative AWK statements, the results are less favorable:

AWK interpreter 117 sec.
AWK-C++ 71
AWKCC 39

Although it might appear that is uniformly faster, this is not true. Computing values of Ackermann’s func-
tion up to Ack(3,5) shows quite a different picture:



AWK interpreter 21.1 sec.
AWK-C++ 1.8
AWKCC 44.5

This stress test of the function calling mechanism appears to show the AWK-C++ translator in its best light.

9. Observations
The job has turned out to be harder than expected, even allowing for my learning curve and the fact

that it has been an oft-interrupted back-burner project. In part this is because it is difficult to match exactly
an existing program, warts and all, in a new medium; the task would be far easier if I were free to adjust the
problem to the solution, rather than being constrained in all directions.

I spent too much time stumbling around trying to get the overloaded operators right. In retrospect, it
is quite trivial, but I kept hoping for some alternative to writing out all possible combinations of operands
and operators. This would of course be easier if one needed conversions only in one direction, which is the
only situation that textbooks typically mention. It may also be easier with templates, but I have not studied
the issue.

There was a similar problem with fields, and a lot of trouble getting the semantics exactly the same as
the interpreter. Until the lvalue and rvalue functions were properly in place (in all places!) this just
didn’t work.

Reference parameters must be carefully thought through so that one does not incur unnecessary over-
head, create unwanted temporaries (current C++ implementations warn of this), or inadvertently modify
something that should be untouched. The meaning of const for reference arguments is in the hands of the
implementer; it is quite possible and sometimes desirable to change the value of a const object. For
example, updating the string or numeric state of an Awk does not change its value as far as the rest of the
program is concerned, so this is done even for const reference arguments.

One must be careful to respect the levels of abstraction when one is building a data type. Several
times I inadvertently used an operation on a type from deep within its implementation; this usually caused
an infinite recursion. A typical example is using the assignment operator for a type in some function that is
indirectly part of the implementation of that type.

Although most of the bugs I encountered were of my own making, I also uncovered perhaps a dozen
bugs in C++ (using a development version of cfront) and a handful of C compiler bugs. In general, these
were in areas where I was pushing hard on type matching, operator overloading, and conversion functions,
exercising them in unusual ways.

C++ has major advantages. Type checking finds lots of errors early in the game that would be terri-
ble to find in a conventional C program. Type-safe linkage extends this checking to separately compiled
routines. Operator and function-name overloading are often a help; they are obviously mandatory for an
exercise like this one.

C++ diagnostics are very good, pinpointing errors and often suggesting correct code. Compilation
and loading are slow, but not a serious problem, at least on a fast machine.

As others have observed, C++ is not a panacea: one can make many of the old mistakes and some
interesting new ones as well. In particular, because the meaning of names and even operators depends so
much on context, it is harder to see what is going on in ordinary expressions—more work is required to
trace through the meaning of an expression.

Nevertheless, the experience has been positive and instructive. C++ made it possible to undertake a
project that would have been infeasible in most other languages.
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