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We are grateful to be honored with a Test of Time award for our 2008 paper Robust De-
anonymization of Large Sparse Datasets [17]. Here we reflect on some lessons from the last decade
of de-anonymization research.

An old idea

If our paper has stood the test of time, it is because the core technical insight goes back at
least 60 years: a small number of data points about an individual, none of which are uniquely
identifying, are collectively equivalent to an identifier. Some of the early papers that explored this
idea are by Newcombe et al. [20], Fellegi & Sunter [10], and Schlörer [22].

But the focus of this line of research, up to and including Sweeney’s seminal work [25], had been
on demographic attributes, because that’s what was collected in databases at the time. Perhaps the
main lesson of our paper is that data collection has grown so comprehensive that de-anonymization
need no longer rely on demographic attributes. Techniques for protecting against de-anonymization
such as making a few attributes more coarse-grained break down for datasets of watched movies
or browsing histories or visited locations when these datasets contain hundreds or thousands of
observations per individual.

We and other researchers have since demonstrated robust de-anonymization techniques in many
other domains: social networks [18, 16], genetic data [12, 9, 8], location data [11, 27, 5], credit card
data [6], browsing histories [23], writing style [15], source code [3], and compiled binaries [2]. This
line of research has firmly established that high-dimensional data is inherently vulnerable to de-
anonymization. This is also supported by theoretical evidence [4]. When we consider the fact that
33 bits of entropy are sufficient to identify an individual uniquely among the world’s population,
these research findings should be no surprise.

Impact on research

Attacks only get better with time. The flood of de-anonymization demonstrations in the last
decade makes for a strong argument that database privacy should rest on provable guarantees
rather than the absence of known attacks. The flourishing research on differential privacy is thus
a welcome development.

The truism that attacks get better applies not only to de-identification, but also to other data
protection mechanisms such as searchable database encryption and privacy-preserving machine
learning. Schemes without provable guarantees in these areas were broken, too, by drawing on
the auxiliary information from public databases [19, 1, 14]. The awesome power of auxiliary data
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— especially public databases that yield large numbers of individual records, as well as statistical
distributions of the values for just about any attribute of interest — is often underestimated by the
designers of privacy and confidentiality mechanisms.

Impact on policy

Traditionally, removal of “personally identifiable information” was seen as the dividing line
between sensitive and non-sensitive data. De-anonymization research eroded the value of this
distinction, necessitating new regulatory paradigms [21].

This insight has gradually been gaining ground in the tech policy realm, but has often faced fierce
opposition. One reason is the wish to preserve the simplicity of the de-identification paradigm: the
(false) comfort of applying syntactic modifications to data and not having to think about privacy
afterward, regardless of how the data is used.

If there is value in de-identification, it is to keep honest people honest. For example, it can be
useful as an internal control mechanism — in combination with proper access controls, auditing
and other defenses — to minimize the temptation of employees to peek at the records of specific
individuals.

Today’s privacy regulations, including the GDPR, continue to put substantial weight on de-
identification. Our key recommendation is that the burden of proof be on the data controller to
affirmatively show that anonymized data cannot be linked to individuals, rather than on privacy
advocates to show that linkage is possible.

Impact on companies

There has also been resistance from companies to the idea that de-identification is insufficient
to protect privacy. To understand why, it is helpful to consider what happened when companies
did adopt differential privacy. Apple’s implementation was found to use an “epsilon” of 16 per
day [26], resulting in a privacy risk over a million times worse than recommended by scholars1.
This is arguably “differential privacy theater”: a use of differential privacy that gains Apple public-
relations benefits by leading to press articles touting Apple’s leadership and innovation on privacy,
but without actually providing meaningful guarantees.

The processes by which privacy features lead to user trust in products — which is the commodity
that companies should ultimately care about — are only very loosely connected to the technical
efficacy of those features. Consider that after decades of user education, we have not had much
success in teaching mainstream users the difference between the HTTPS lock icon and similar-
looking lock icons in the contents of web pages. For better or (mostly) for worse, the claim “Your
data is anonymized” makes users feel safe. Thus, one major benefit of de-anonymization is that
it, too, is relatively easily understood by the end users, helping disabuse them of the illusion that
their data is protected.

If we want sophisticated privacy technologies to be adopted, we need to work on the socio-
technical infrastructures that minimize the gap between privacy guarantees and perception of pri-
vacy. Those infrastructures are sorely lacking today.

1The privacy risk is proportional to eε, and ε ≈ 1 is typically considered acceptable.
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Looking forward: new privacy debates

We live in a world of massive aggregations of personal data. This leads to many privacy risks,
of which de-anonymization is just one. Paul Ohm warned of the “database of ruin”, a single,
massive database containing secrets about every individual, formed by linking different companies’
data stores [21]. Today there is a booming market for these linkages between different companies’
data stores. For the most part, this is not based on sophisticated de-anonymization techniques.
Linkages are possible despite assurances of anonymization because sensitive data being collected
and sold is often tied to oxymoronic “anonymous identifiers” such as hashed phone numbers or
email addresses.

Furthermore, over the last decade, we have come to realize the privacy implications of the
ability to infer sensitive facts about people from seemingly innocuous data, such as pregnancy from
shopping records [7] or psychometric traits from Facebook likes [13]. We have also come to better
recognize that these aggregations of data may result in harms to society and democracy, rather
than just to individuals, as illustrated by Cambridge Analytica’s activities. In contexts such as
behavioral advertising, scholars argue that the power to influence behavior is deeply problematic
even if the data is never linked to a real-world identity [24].

These are great motivations and provocations for research. Computer science research on
privacy is important — from developing privacy-preserving data analysis techniques to reverse-
engineering surreptitious data collection in our browsers and devices — but real impact will require
technologists to engage deeply with policy makers and privacy advocates.
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