
Verified Software Toolchain

Andrew W. Appel

Princeton University
To appear in ESOP ’11: European Symposium on Programming, March 2011

Abstract. The software toolchain includes static analyzers to check assertions
about programs; optimizing compilers to translate programs to machine language;
operating systems and libraries to supply context for programs. Our Verified Soft-
ware Toolchain verifies with machine-checked proofs that the assertions claimed
at the top of the toolchain really hold in the machine-language program, run-
ning in the operating-system context, on a weakly-consistent-shared-memory ma-
chine.

Our verification approach is modular, in that proofs about operating systems
or concurrency libraries are oblivious of the programming language or machine
language, proofs about compilers are oblivious of the program logic used to verify
static analyzers, and so on. The approach is scalable, in that each component is
verified in the semantic idiom most natural for that component.

Finally, the verification is foundational: the trusted base for proofs of observ-
able properties of the machine-language program includes only the operational
semantics of the machine language, not the source language, the compiler, the
program logic, or any other part of the toolchain—even when these proofs are
carried out by source-level static analyzers.

In this paper I explain some semantic techniques for building a verified toolchain.

Consider a software toolchain comprising,

A Static analyzer or program verifier that uses program invariants to
check assertions about the behavior of the source program.

A compiler that translates the source-language program to a machine-
language (or other object-language) program.

A runtime system (or operating system, or concurrency library) that
serves as the runtime context for external function calls of the machine-
language program.

We want to construct a machine-checked proof, from the foundations of
logic, that Any claims by the static analyzer about observations of the source-language
program will also characterize the observations of the compiled program.

We may want to attach several different static analyzers to the same compiler, or
choose among several compilers beneath the same analyzer, or substitute one operat-
ing system for another. The construction and verification of just one component, such
as a compiler or a static analyzer, may be as large as one project team or research
group can reasonably accomplish. For both of these reasons, the interfaces between



components—their specifications—deserve as much attention and effort as the compo-
nents themselves.

We specify the observable behavior of a concurrent program (or of a single thread
of that program) as its input-output behavior, so that the statement Program p matches
specification S can be expressed independently of the semantics of the programming
language in which p is written, or of the machine language. Of course, those semantics
will show up in the proof of the claim! Sections 11 and 12 explain this in more detail.

But observable “input-output” behaviors of individual shared-memory threads are
not just the input and output of atomic tokens: a lock-release makes visible (all at once)
a whole batch of newly observable memory, a lock-aquire absorbs a similar batch, and a
operating-system call (read into memory buffer, write from memory buffer, alloc mem-
ory buffer) is also an operation on a set of memory locations. Section 2 explains.

The main technical idea of this approach is to define a thread-local semantics for a
well-synchronized concurrent program and use this semantics to trick the correctness
proof of the sequential compiler to prove its correctness on a concurrent program. That
is, take a sequential program; characterize its observable behavior in a way that ignores
intensional properties such as individual loads and stores, and focus instead on (exter-
nally visible) system calls or lock-aquire/releases that transfer a whole batch of memory
locations; split into thread-local semantics of individual threads; carry them through the
modified sequential proof of compiler correctness; gather the resulting statements about
observable interactions of individual threads into a statement about the observable be-
havior of the whole binary.

Because our very expressive program logic is most naturally proved sound with
respect to an operational semantics with fancy features (permissions, predicates-in-the-
heap) that don’t exist in a standard operational semantics (or real computer), we need
to erase them at some appropriate point. But when to erase? We do some erasure (what
we call the transition from decorated op. sem. to angelic op. sem.) before the compiler-
correctness proof; other erasure (from angelic to erased) should be done much later.

We organize our proof, in Coq, as follows. (Items marked • are either completed
or nearly so; items marked ◦ are in the early stages; my principal coauthors on this
research (in rough chronological order) are Sandrine Blazy, Aquinas Hobor, Robert
Dockins, Lennart Beringer, and Gordon Stewart. Items marked – are plausible but not
even begun.)

• We specify an expressive program logic for source-language programs;
◦ we instrument the static analyzer to emit witnesses in the form of invariants;
◦ we reimplement just the core of the static analyzer (invariant checker, not invariant

inference engine) and prove it correct w.r.t the program logic;
• we specify a decorated operational semantics for source-language programs;
• we prove the soundness of the program logic w.r.t. the decorated semantics;
• we specify an angelic operational semantics;
• we prove a correspondence between executions of the decorated and the angelic

semantics;
? we prove the correctness of the optimizing compiler w.r.t. the angelic operational

semantics of the source and machine languages;

2



– we prove the equivalence of executions in the angelic operational semantics in a
weakly consistent memory model and in a sequentially consistent memory model;

• we specify an erased (i.e., quite conventional) operational semantics of the ma-
chine language;

• we prove a correspondence between executions of the angelic and erased semantics.

The composition of all these steps gives the desired theorem. Q.E.D.
The ? verified optimizing compiler is not by our research group, it is the CompCert

compiler by Leroy et al. [24] with whom we have been collaborating since 2006 on
adjusting the CompCert interfaces and specifications to make this connection possi-
ble. Since Leroy et al.’s correctness proof of CompCert in Coq constitutes one of the
components of our modular verification, it seemed reasonable to do the rest of our ver-
ification in Coq. In addition, some of the logical techniques we use require a logic with
dependent types, and cannot be expressed (for example) in HOL (higher-order logic,
a.k.a. Church’s simple theory of types). We wanted to use a logic whose kernel theory
(in this case, CiC) is trustworthy, machine-checkable, and well understood. Finally, we
wanted a system with well-maintained software tools, mature libraries of tactics and
theories, and a large user community. For all these reasons we use Coq for our Verified
Software Toolchain (VST), and we have been happy with this choice.

2 Observables

Specifications of program behavior must be robust with respect to translation from
source language to machine language. Although the states of source- and target-language
programs may be expressed differently, we characterize the observable behaviors (or
observations) of source- and target-language programs in the same language [15].

Our source language is a dialect of C with shared-memory concurrency using sema-
phores (locks). The C programs interact with the outside world by doing system calls—
with communication via parameters as well as in memory shared with the operat-
ing system—and via lock synchronization (through shared memory). One thread of a
shared-memory concurrent program interacts with other threads in much the same way
that a client program interacts with an operating system. That is, the thread reads and
writes memory to which the other threads (or operating system) have access; the thread
synchronizes with the other threads (or OS) via special instructions (trap, compare-
and-swap) or external function calls (read-from-file, semaphore-unlock). We want the
notion of observable behavior to be sufficiently robust to characterize either kind of
interaction.

For each system call, and at each lock acquire/release, some portion of the memory
is observable. But on the other hand, some parts of memory should not be observable.1

In private regions of memory, compilers should have the freedom to optimize loads
and stores of sequential programs: to hoist loads/stores past each other, and past con-
trol operations, to eliminate redundant loads and stores, etc.—subject only to dataflow
constraints.

1 Of course, the operating system can observe any part of memory that it wants to. But the
O.S. should not “care” about the thread’s local data, while it does “care” about the contents of
memory pointed to by the argument of a write system call.

3



Of course, with a naive or ill-synchronized approach to shared memory, it is possible
for one thread to see another’s loads and stores, and therefore the compiler might alter
the output of a program by “optimizing” it. At least for the time being, we restrict our
attention to well-synchronized programs—in which any thread’s write (read) access to
data is done while holding a semaphore granting exclusive (shared) permission to that
data. In such a regime, we can achieve that loads and stores are not observable events.
This is an important design principle.

“Volatile” variables with observable loads/stores can be treated in our framework,
with each load or store transformed—by the front end—into a special synchronization
operation. Leroy has recently instrumented the front end of CompCert to perform this
transformation.

Extensional properties. This approach to program specification deliberately avoids in-
tensional properties, i.e. those that characterize how the computation proceeds. This
design decision frees the compiler to make very general program transformations. How-
ever, that means that we cannot specify properties such as execution time.

Permissions and synchronization. When a thread does a system call or a lock syn-
chronization, there is implicitly a set of addresses that may be “observed.” Our spec-
ification of observations makes this explicit as permissions. A thread that (at a given
time) has write permission to a memory address can be sure that no other thread (or
operating system) can observe it. Lock synchronizations and system calls can change
a thread’s permission in controlled and predictable ways. From the compiler’s point of
view, synchronizations and system calls are instances of external function calls, which
can change memory permissions in almost arbitrary ways.

The permissions have no concrete runtime manifestation—since, of course, we are
compiling to raw machine code on real machines. Instead, they are a “fictional” arti-
fact of static program invariants: a static permission-based proof about a program says
something about its non-stuck execution in a permission-carrying operational seman-
tics. Then, the permissions present in our decorated and angelic operational semantics
disappear in the erased operational semantics.

In fact, the difference between the decorated and angelic operational semantics is
in how the permissions change at external function calls. The decorated operational
semantics is annotated with sufficient program invariants to calculate the change in
permissions; the angelic semantics is equipped with an “angel” that serves as an oracle
for the change in permissions; see Section 8.

3 The programming language and compiler

Our VST project was inspired in part by Leroy’s CompCert verified optimizing C com-
piler [24]. CompCert is a remarkable achievement, on the whole and in many particu-
lars. For example, the CompCert memory model by Leroy and Blazy [25] supports stor-
ing of bytes, integers, floats, and relocatable pointers in a byte-addressable memory; is
sufficiently abstract to support relocation and the kinds of block-layout adjustments that
occur during compilation; and is sufficiently general that the same memory model can

4



be used for the source-level semantics, the target-machine semantics, and at every level
in between. The tasteful design of the memory model is one reason for CompCert’s
success.

CompCert “merely” proves that, whenever it compiles a C program to assembly
language, any safe execution in C corresponds to a safe execution in assembly with the
same observable behavior. But where do safe C programs come from, and how can one
characterize the observable behavior of those C programs? If those questions cannot be
answered, then it might seem that CompCert is like a highly overengineered hammer
without any nails.

Our Verified Software Toolchain uses C minor [24] as a source language. C minor
is the high-level intermediate representation used in CompCert for the C programming
language. CompCert compiles the C programming language (or rather, a very substan-
tial subset called C light [9]) through 7 intermediate languages into assembly language
for the PowerPC processor; the third language in this chain of 9 is C minor. For each
language in the chain, Leroy has specified the syntax and operational semantics in the
Coq theorem prover. Each of the 8 compiler phases between these intermediate lan-
guages is proved (in Coq) to preserve observational equivalence between its input (a
program in one intermediate language) and its output (a program in the next language).

We chose to use C minor (instead of C light) as the target for VST, for two reasons:
C minor is more friendly to Hoare-style reasoning as there are no side effects inside
expressions;2 and C minor can be used as a target language from source languages such
as ML or Java.

4 Oracle semantics

Remarkable as CompCert is, its original specification was too weak to express the in-
teraction of a thread with its context—whether that context is the operating system or
other concurrent threads. We want to remedy that weakness without making fundamen-
tal changes to the CompCert correctness proof.

We factor the operational semantics to separate core programming-language execu-
tion from execution steps in the operating-system/runtime-system/concurrency context,
which we call the oracle for short. We do this because the same oracle will be applied
to both the source- and machine-language programs; and because (conversely) different
kinds of oracles will be applied to the same source- or machine-language program.

The CompCert C compiler [24] is proved correct with respect to a source-level
operational semantics and a machine-level operational semantics. In early versions of
CompCert, the source-level semantics was big-step and the machine-level was small-
step. Each semantics generated a trace, a finite or infinite sequence of observable events,
that is, system calls with atomic arguments and return values.

This specification posed obstacles for integration into our verified toolchain: the
big-step semantics was inconvenient for reasoning about concurrent threads; the system
calls did not permit shared memory between client and operating system (e.g. did not

2 More precisely, because C minor is not a subset of C, we had some flexibility to negotiate with
Leroy a few modifications to the specification of C minor: e.g., unlike C minor 2006, C minor
2010 has no side-effects inside expressions.

5



permit the conventional model of system calls); the lack of shared memory meant that
a shared-memory concurrency model was difficult; the coarseness of memory-access
permissions meant that concurrent separation logic was difficult; and so on.

Therefore we worked with Xavier Leroy to adjust the specification of CompCert’s
source-level operational semantics. Now it is a small-step semantics, with a lattice of
permissions on each memory address. Instead of a trace model–in which the behavior
of a program is characterized by a sequence of atomic values read or written, we char-
acterize the behavior by the thread’s history of (shared-memory) interactions with the
oracle. Each state of the small-step semantics contains three components: oracle state
Ω, memory m, and core state q. A core step is a small-step of computation that is not
an external function call; an oracle step is taken whenever the computation is at an ex-
ternal function call. Each core step affects only m and q, leaving Ω unchanged; each
oracle-step affects only Ω and m.

What is the oracle? If we are modeling the interaction of a sequential C program
with its operating system, then the oracle is the operating system, and the external func-
tion calls are system calls. If we are modeling the interaction of a sequential C thread
with all the other threads in a shared-memory concurrent computation, then the external
function calls are lock-acquire and -release, and the oracle is all the other threads. An
early version of this oracle model of concurrency is described by Hobor et al. [20, 21].

The advantage of the oracle model is that, from the point of view of the C compiler
and its correctness proof, issues of concurrency hardly intrude at all. Still, Hobor’s ora-
cle model was only partly modular: it successfully hid the internal details of the oracle
from the compiler-correctness proof, but it did not hide all the details of the program-
ming language from the oracle. This was a problem, because it was difficult to charac-
terize the result of compiling a concurrent C program down to a concurrent machine-
language program. Dockins [15] has a substantially more modular oracle model, which
is the basis for the verified toolchain described here.

5 The program logic

Proofs of static analyses and program verifiers are (often) most convenient with respect
to an axiomatic semantics (such as a Hoare Logic) of the programming language; we
call this the program logic. Proofs of compilers and optimizations are (often) most
convenient using an operational semantics.3 Therefore for the source language we will
need both an axiomatic and an operational semantics, as well as a machine-checked
soundness proof that relates the two.

We intend to use the program logic as an intermediate step between a static analysis
algorithm and an operational semantics. We would like to do this in a modular way—
that is, prove several different static analyses correct w.r.t. the same program logic, then
prove the program logic sound w.r.t. the operational semantics. Therefore we want the
program logic to be as general and expressive as possible.

We start with a Hoare Logic for C minor: the judgement Γ ` {P}c{Q} means
that command c has precondition P and postcondition Q. Somewhat more precisely, if

3 At the very least, the particular proof that we want to connect our system to—CompCert—is
w.r.t. an operational semantics.

6



c starts in a state satisfying P , then either it safely infinite-loops or it reaches a state
satisfying Q. However, C minor has two control-flow commands that can avoid a fall-
through exit: exit n breaks out of n nested blocks (within a function), and return e
evaluates e and returns its value from the current function-call. Thus, Q is really a triple
of three postconditions; an ordinary assertion for fall-through, an assertion parameter-
ized by n (equivalently, a list of assertions) for exit and an assertion parameterized by
return-value for return.

To take a simple example, the judgement

Γ ` {∃x. (v⇓x)∗(x 4,π7→ 6)∗(x+4
4,>7→ x)} [v+4] :=4 0 {∃x. (v⇓x)∗(x4,π7→ 6)∗(x+4

4,>7→ 0)}

can be read as follows: Before execution of the store statement, local variable v points to
some address x; the current thread has partial permission π to read (but not necessarily
write) a 4-byte integer (or pointer) at x; the current 4-byte contents of memory at x is 6;
the thread has full permission > to read or write a 4-byte integer (or pointer) at x + 4;
the current contentents at x + 4 is x. Furthermore, by the rules of ∗ in separation logic,
x is not aliased to x + 4, though in this case we didn’t need separation logic to tell us
this obvious fact!

After the assignment, the situation is much the same except that the contents of
x + 4 is now a null pointer. The exit and return postconditions (not shown) are both
false since the store command neither exits nor returns.

The global context Γ maps addresses to their function specifications. The assertion
f : {P}{Q} means f has precondition P and postcondition Q.

Since C (and C minor) permits passing functions as pointers, in the program logic
one can write ∃v. (f ⇓v) ∗ (v : {P}{Q}), meaning that the name f evaluates to some
pointer-value v, and v has precondition P , etc. Since the function can take a sequence
of parameters and return an optional result, in fact P and Q are functions from value-list
to assertion.

The operators ∃, ∗, 7→, and : are all constructed as definitions in Coq from the under-
lying logic. We use a “shallow embedding,” but because of the almost-self-referential
nature of some assertions (“f(x) is a function whose precondition claims that x is a
function whose precondition...”), the construction can be rather intricate; see Section 7.

In a Hoare logic one often needs to relate certain dynamic values appearing in a
precondition to the same values in a postcondition. For example, consider the func-
tion int f(int x){return x + 1; }. One wants to specify that this function returns a value
strictly greater than its argument. We write a specification such as,

∃v. f ⇓ v ∧ v : (∀x : int.{λa.a = x}{λr.r > x})

or, using a HOAS style for the : operator, ∃v. f ⇓ v ∧ v : [int]{P}{Q}
where P = λxλa.(a = x) and Q = λxλr.(r > x). This notation permits the shared
information x to be of any Coq type τ , where in this example τ = int.

The use of HOAS (higher-order abstract syntax) hints that we shallowly embed the
assertions in the surrounding logical framework, in this case Coq, to take advantage of
all the binding structure there.

To reason about polymorphic functions or data abstraction, our Hoare logic permits
universal and existential quantification: ∀x : τ.P ∃x : τ.P

7



where τ can be any Coq type, and P can contain free occurrences of x. Of course this is
just Coq “notation” for the HOAS version: ∀[τ ]P ′ ∃[τ ]P ′

where P ′ is a function from τ to assertion.

It is particularly important that τ can be any Coq type including quantified asser-
tions. That is, the quantification is impredicative. Impredicativity is necessary for rea-
soning about data abstraction, where the abstract types in the interface of one module
can be themselves implemented by abstract types from the interface of another module.

To specify inductive datatypes, our program logic has an operator µ for recursively
defined assertions: µx.P (x) satisfies the fixpoint equation µx.P (x) = P (µx.P (x)),
(or in HOAS µP = P (µP )), provided that P is a contractive function [6].

Ordinary Hoare logics have difficulty with pointers and arrays, especially with up-
dates of fields and array slots. Therefore we use a separation logic, which is a Hoare
logic based on the theory of bunched implications. In an ordinary Hoare logic, the as-
sertion P ∧ Q means that P holds on the current state and so does Q. In separation
logic, P ∗ Q means that the current state can be expressed as the disjoint union of
two parts, and P holds on the first part while Q holds on the second part. The assert
emp holds on exactly the empty state, and true holds on any state. Thus the assertion
(P ∗ Q) ∧ (R ∗ true) holds on any state s that can be broken into two pieces s1 ⊕ s2,
where P holds on one and Q on the other; and such that R holds on some substate of
the state.

Our separation logic has a notion of partial ownership, or “permissions.” The asser-
tion x

π7→ y means that the current state has exactly one address x in it; the contents
of this address is the value y; and the current state has nonempty permission π to read
(or perhaps also to write) the value. Permissions form a lattice; some permissions give
read access, stronger permissions give write access, and the “top” permission gives the
capability to deallocate the address. In contrast to previous permission models [11, 29]
ours is finite, constructive, general, and modeled in Coq [16].

Partial ownerships and overlapping visibility mean that “disjoint union” is an over-
simplification to describe the⊕ operator; we use a separation algebra, following Calcagno
et al.; but we have a more general treatment of units and identities [16].

To reason about concurrent programs, we use a concurrent separation logic (CSL).
O’Hearn [28] demonstrated that separation logic naturally extends to concurrency, as it
limits each thread to the objects for which it has (virtual) permission to access. Portions
of the heap can have their virtual ownership transferred from one thread to another
by synchronization on semaphores. We have generalized O’Hearn’s original CSL to
account for dynamic creation of locks and threads [21]; Gotsman et al. made a similar
generalization [18]. The assertion `

π
; R means that address ` is a lock (i.e., semaphore)

with visibility (permission) π and resource invariant R. Permission π < > means that,
most likely, some other thread(s) can see this lock as well; if only one thread could see `
then it would be difficult to use for synchronization! Any nonempty π gives permission
to (attempt to) acquire the lock. Resource invariant R means that whenever a thread
releases `, it gives up a portion of memory satisfying the assertion R; whenever a thread
acquires `, it acquires a new portion of memory satisfying R. While ` is held, the thread
can violate R until it is ready to release the lock.

8



The basic CSL triples for acquire/release are

{` π
; R} acquire ` {R ∗ `

π
; R} {R ∗ `

π
; R} release ` {` π

; R}.

In summary, programs have pointers, we want to reason about aliasing, hence Sepa-
ration Logic rather than just Hoare Logic. Programs have higher-order functions, poly-
morphism, and data abstraction; hence we want impredicative quantification in the
logic. Programs have concurrency, hence we want resource invariants. Finally, different
front-end static analyses will make different demands on the program logic, so we want
the program logic to be as expressive and general as we can possibly make it. We end
up with impredicative higher-order concurrent separation logic.

6 Instrumenting static analyses

Hoare-style judgements can be proved in an interactive theorem prover by applying the
inference rules of the program logic. But there are many kinds of program properties
that, with much less user effort, a static analyzer can “prove” automatically. We are
interested in removing the quotation marks from the previous sentence.

One way to connect a static analyzer to a program logic is to have the analyzer
produce derivation trees in the logic. But this may require a large change to an existing
analyzer, or significantly affect the software design of an analyzer; and the derivation
trees will be huge. Another way would be to prove the analyzer correct, but analyzers
are typically large programs implemented in languages with difficult proof theories;
sometimes they have major components such as SAT solvers or ILP solvers.

We propose to instrument the analyzer in a different way. A typical analyzer infers
program invariants from assertions provided by the user. In a sense, the invariants are
the induction hypotheses needed to verify the assertions. We propose that the analyzer
should output the program liberally sprinkled with invariants. A much simpler program
than the analyzer, the core of the analyzer, can check that the invariants before and after
each program statement (or perhaps, program block) match up.

We will implement the core of each analyzer in the Gallina functional programing
language embedded in the Coq theorem prover. We will use Coq to prove the soundness
of the core w.r.t. our program logic. Then we use Coq’s program-extraction to obtain
a Caml program that implements the core. The toolchain then starts with the full (un-
trusted, unverified) static analyzer, whose results are rechecked with the (verified) core
analyzer.

My undergraduate student William Mansky conducted one successful experiment in
this vein [26]: he reimplemented in Gallina the concurrent-separation-logic-based shape
analysis by Gotsman et al. [19], and proved it correct4 with respect to our program logic.
He found that this shape analysis was simple enough that he could implement the entire
analysis including invariant inference in Gallina, without needing an unverified front
end.

4 Well, almost proved. The problem is that Gotsman et al. assume a Concurrent Separation Logic
with imprecise resource invariants, whereas our CSL (as is more standard [28]) requires precise
resource invariants. The joy of discovering mismatches such as this is one of the rewards in
doing end-to-end, top-to-bottom, machine-checked proofs such as the VST.

9



7 Semantic modeling of assertions

We want to interpret an assertion P as a predicate on the state of the computation:
more or less, s |= P is interpreted as P (s). Some of our assertion forms character-
ize information about permissions, types, and predicates that are nowhere to be found
in a “Curry-style” bare-bones operational semantics of a conventional target machine.
Therefore we use more than one kind of operational semantics: a decorated semantics
with extra information, an angelic semantics with partial information, and an erased
semantics with even less information.

We have erasure theorems—that any nonstuck execution in the decorated semantics
corresponds to a nonstuck execution in angelic semantics with similar observables, and
ditto for the angelic to the erased semantics. Assertions require the decorated semantics.

A judgement s |= 10 π17→ 8 ∗ 11 π27→ 0 means that s (in the decorated and angelic
semantics) must contain not only 8 at address 10 and 0 at address 11, but must also keep
track of the fact that there is exactly π1 permission at 10, and π2 at 11.

The assertions `
π
; R (meaning that ` is a lock with resource invariant R and

visibility π) and v : [τ ]{P}{Q} (v is a function with precondition P and postcondition
Q) are interesting in that one assertion is characterizing the binding of an address (` or
v) to another assertion (R,P, Q).

Somehow the decorated state s must contain predicates; which in turn predicate over
states. Achieving this—in connection with impredicative quantification and recursive
assertions—is quite difficult; the semantic methods of the late 20th century were not up
to the task. If we interpret assertions naively in set theory, we violate Cantor’s paradox.

We solve this problem using the methods of Ahmed [4] as reformulated into the
“Very Modal Model” [6] and “Indirection Theory” [22]. The recent formulation of
Birkedal et al. [8] could also be used. The basic trick is that each state s indicates a
degree of approximation (a natural number ks). When s |= `

π
; R, then the assertion

R can be applied to states s′ only strictly more approximately than ks. When the com-
putation takes a step s → s′, it must “age” the state by making sure that s′ is strictly
more approximate than s, that is, ks′ < ks.

In a decorated state an address can map to any of:

valπ v Memory data byte v with permission π
lockπ R Lock with resource-invariant R
funπ [τ ]PQ Function entry point with precondition P , post Q

In the angelic semantics the predicates are removed—leaving only valπ v, lockπ , funπ—
and in the erased semantics the permissions are removed.

8 Partial erasure before bisimulation

Our toolchain has, near the front end, a higher-order program logic; and near the back
end, an optimizing compiler composed of successive phases. Each phase translates one
language to another (or to itself with rewrites), and each phase comes equipped with a
bisimulation proof that the observable behavior is unchanged.

10



The fact that program-states s contain “hair” such as approximation indices and
predicates, poses some problems for the modularity of the top-to-bottom verification
of the toolchain. To verify the soundness of the program logic w.r.t. the operational se-
mantics, we need states s containing predicates. As explained in Section 7, Indirection
Theory requires that predicates embedded in states must be at specific levels of ap-
proximation, and these need to be “aged” (made more approximate) at each step of the
computation. On the other hand, to verify the correctness of the optimizing compiler the
predicates are unneeded, and the aging hampers the bisimulation proofs. For example,
a compiler phase might change the number of steps executed (and thus the amount of
aging).

Thus we erase the predicates in moving from the decorated to the angelic seman-
tics. But there are a few places where the predicates have an operational effect, and
we replace these with an angelic oracle that supplies the missing information. All of
our ageable predicates are within the Ω (oracle) component of the state; and thus this
erasure has no effect on the m and q components.

Let address `
π
; R be a lock (semaphore) in Concurrent Separation Logic, with

resource invariant R. R must be a precise separation-logic predicate, meaning that R is
satisfied by a unique subheap (if any subset) of a given memory. When a thread releases
this lock, the (unique) subheap satisfying R, of the current heap, is moved from thread-
ownership to lock-pool ownership.

The operational effect on fully-erased memory is only that the semaphore goes from
state 0 to state 1. The operational effect on decorated or angelic memory is that the
permissions π of the thread (and of the lock pool) change. The way the permission-
change ∆π is calculated, in the decorated semantics, is that R is fetched from the state
and (classically, not constructively) evaluated.5 That is, in a decorated state, at each lock
address, is stored the resource invariant R.

Unlike decorated states, angelic states contain no predicates. Instead of calculating
∆π from R, the angel is an oracle that contains a list of all ∆π effects that would
have (nonconstructively) satisfied from deleted predicates. At each semaphore-release
operation, the next ∆π is consumed from the angel.

Dockins [15] shows the proof that For each safe execution in the decorated seman-
tics, there exists an angel that gives a safe execution in the angelic semantics with the
same observable behavior.

9 Bisimulation

After the static analyzer or a program verifier has proved something about the observ-
able behavior of a source program in the decorated semantics, we partially erase to the
angelic semantics. The compiler-correctness proof, showing that source-language and
machine-language programs have identical observables, is done in the angelic seman-
tics of the several intermediate languages.

5 Our own proofs (and those of CompCert) do not use classical axioms such as choice and ex-
cluded middle; we use only some axioms of extensionality. But classical axioms are consistent
with CiC+extensionality, so the user of our program logic may choose to use them. Therefore
we do not assume that the satisfaction of R must be constructive.

11



The original CompCert proofs were done by bisimulation, with respect to a simple
notion of finite or infinite traces of atomic events, with no shared memory. Because the
CompCert languages are deterministic, the bisimulations reduce to simpler simulation
proofs. These proofs rely on a set of general lemmas about simulations and bisimula-
tions in small-step semantics equipped with observable traces.

We are able reuse the existing CompCert proofs with very little modification, by en-
suring that our oracle/observable interface is as compatible as possible with the original
trace-based specification. From oracles and observables, Dockins [15] proves a set of
simulation lemmas very similar to the original versions in CompCert. From these, Leroy
can easily adapt the CompCert proofs.6 The fact that the operational semantics is an-
gelic is almost invisible in the CompCert bisimulations, because the angel is consulted
only at certain of the external function calls, and never during ordinary computation
steps corresponding to instructions emitted by the compiler.

If there had been predicates in the heap (i.e. the decorated semantics), the bisimu-
lations would have been harder to prove (and require more changes to the CompCert
proofs), because the aging of predicates required by Indirection Theory would age the
state by different amounts depending how many instructions a compiler optimization
deletes.

Even so, there have been a few changes to the CompCert specification to accom-
modate our verified toolchain. In addition to the new notion of observables, CompCert
now has an address-by-address permission map. Leroy has already modified CompCert
(and its proof) to accommodate these permissions (CompCert 1.7, released 03/2010).

The need for permissions in the (angelic) operational semantics is in response to a
problem explained by Boehm: “Threads cannot be implemented as a library.” [10] He
points out that hoisting loads and stores past aquire/release synchronizations can be un-
safe optimizations, in shared-memory concurrent programs. He writes, “Here we point
out the important issues, and argue that they lie almost exclusively with the compiler
and the language specification itself, not with the thread library or its specification.” In-
deed, the permissions in our decorated or angelic semantics form such a specification,
and CompCert is proved correct with respect to this specification.

10 Weak memory models

The angelic semantics (and its management of permissions) must be preserved down
to the back end of the compiler, so that each optimization stage can correctly hoist
loads/stores past other instructions. Only then can full erasure of permissions be done,
into the erased semantics.

At this time, the program is still race-free, and the permissions in the angelic se-
mantics allow a proof of this fact. This suggests that executions in a weakly consistent
memory model should have the same observable behavior as sequentially consistent
executions. It should be possible to prove this, for a given memory model, and to add
this proof to the bottom of the verified software toolchain. Recent results in the formal
specification of weak memory models [31, 12] should be helpful in this regard.

6 As of mid-2010, CompCert is not yet fully ported to the new model of observations.

12



11 Foundational verification

Foundational verification is a machine-checked formal verification where we pay par-
ticular attention to the size and comprehensibility of the trusted base, which includes
the specification of the theorem to be proved, the axiomatization of the logic, and the
implementation of the proof checker.

It is instructive to use Proof-Carrying Code as a testbed for gedanken experiments
about what constitutes the trusted base of a formal method for software. Then in the
next section we can apply this methodology to the Verified Software Toolchain, and
compare both the size of the trusted base and the strength of what can be proved.

Consider the claim that Program P in the ML (or Java) language does not load or
store addresses outside its heap. What is the trusted base for a proof of this claim of
memory safety? Implicit in this claim is that P is compiled by an ML (or Java) compiler
to machine language. A full statement of this theorem in mathematical logic would
include: (1) the specification of the operational semantics and instruction encodings of
the machine language, (2) the specification of memory safety as a property of executions
in the machine language, and (3) the entire ML (or Java) compiler. A verification is a
proof of this theorem for P , and naively it might seem that part of this proof is a proof
of correctness of the ML (or Java) compiler.

ML and Java are type-safe languages: a source-language program that type-checks
cannot load or store outside the heap when executing in the source-language operational
semantics. Consequently, the machine-language program should also be memory-safe,
if the compiler is correct. Proof-carrying code (PCC) [27] was introduced as a way
to remove the compiler from the trusted base, without having to prove the compiler
correct—machine-checked compiler-correctness proofs seemed impractical in 1997.
Instead of relying on a correct compiler, PCC instruments the (untrusted, possibly
incorrect) compiler to translate the source-language types of program variables (in
the source-language type system) to machine-language types of program registers (in
some machine-language type system). Then one implements a program to type-check
machine-language programs. Let P ′ be the compilation of P to machine-language; now
the theorem is that P ′ is memory-safe. The trusted base includes the machine-language
type-checker, but not the compiler: that is, one trusts that, or proves that, if P ′ type-
checks then it is memory safe.

Proof-carrying code originally had three important limitations:

1. There is no guarantee that P ′ has the same observable (input/output) behavior as
P , because the compiler is free to produce any program as output so long as it
type-checks in the machine-language type system;

2. For each kind of source-level safety property that one wishes to proof-carry, one
must instrument the compiler to translate source-level annotations to checkable
machine-level annotations;

3. The claim that Any program that type-checks in the machine-language type system
has the desired safety property when it executes is still proved only informally; that
is, there was a LATEXproof about an abstraction of a subset of the type-checker.

Foundational proof-carrying code [5] addresses this third point. We construct a for-
mal specification of the machine-language syntax and semantics in a machine-checkable

13



logic, and a specification of memory-safety in that same logic. Then the theorem is,
Program P ′ is memory-safe, and neither the compiler nor the machine-language type
annotations need be trusted; the type annotations are part of the proof of the theorem,
and the proof need not be trusted because it is checked by machine.

The Princeton foundational proof-carrying code (FPCC) project, 1999-2005, demon-
strated this approach for core Standard ML. We demonstrated that the trusted base could
be reduced to less than 3000 lines of source code: about 800 for a proof checker, writ-
ten in C and capable of checking proofs for any object logic representable in LF; a few
lines for the representation of higher-order logic (HOL) in LF; and about 1500 lines to
represent instruction encodings and instruction semantics of the Sparc processor [32].
We instrumented Standard ML of New Jersey to produce type annotations at each basic
block [13] and we built a semantic soundness proof for the machine-level type system
[1]. Other research groups also demonstrated FPCC for other compilers [17, 14].

The late-20th-century limitation that inspired PCC and FPCC—that it is imprac-
tical to prove the correctness of an optimizing compiler—no longer applies. Several
machine-checked compiler-correctness proofs have been demonstrated [23, 24, 30].
Proof-carrying code is no longer the state of the art.

12 What is the trusted base?

Our main theorem is, Claims by the static analyzer about the source-language program
will characterize the observations of the compiled program.

How is this statement to be represented in a machine-checkable logic? We may
choose to use complex and sophisticated mathematical techniques to prove such a state-
ment. The compiler may use sophisticated optimization algorithms, with correspond-
ingly complex correctness proofs. We can tolerate such complexity in proofs, because
proofs are machine-checked. But complexity in the statement of the theorem is unde-
sirable, because some human—the eventual consumer of our proof—must be able to
check whether we have proved the right thing.

A “claim” by a static analyzer relates a program p to the specification S of its ob-
servable behavior. That is, let A be the static analyzer, so that A(p, S) means that the
analyzer claims that every observation o of source-language program p is in the set
S. Let C be the compiler, so that C(p, p′) means that source program p translates to
machine-language program p′. Let M be the operational semantics of machine lan-
guage, so that M(p′, o) means that program p′ can run with observation o.

Then the main theorem is, ∀p, p′, S, o. A(p, S) ∧ C(p, p′) → M(p′, o) → o ∈ S.
That is, “if the analyzer claims that program p matches specification S, and the compiler
compiles p to p′, and p′ executes on M with observation o, then o is permitted by S.”

The statement of this theorem is independent of the semantics of the source lan-
guage! If we expand all the definitions in this theorem, the “big” things are A, C, S,
and M . The consumer of this theorem doesn’t need to understand A or C, he just needs
to make sure that A and C are installed, bit-for-bit, in his computer. The definition S is
just the specification of the desired behavior of the program, and this will be as large or
as concise as the user needs. The semantics M is only moderately large, depending on

14



the machine architecture; in the FPCC project the Sparc architecture was specified in
about 1500 lines of higher-order logic. [32]

What is not in the statement of this theorem is the operational or axiomatic seman-
tics of the source language, or the semantic techniques used in defining the program
logic! All of these are contained within the proof of the theorem, but they do not form
part of the trusted based needed in interpreting what the theorem claims.

It seems paradoxical that a claim about the behavior of a program can be inde-
pendent of the semantics of the programming language. But it works because of the
end-to-end connection between the program logic and the compiler. The theorem can
be read as, “When you apply the compiler to the syntax of this program, the result
is a machine-language program with a certain behavior.” That sentence can be uttered
without reference to the particular source-language semantics.

What else do you need to trust? The analyzer A and compiler C are written in Gal-
lina, the pure functional programming language embedded in the Coq theorem prover.
Coq contains software s1 to check proofs about Gallina programs, and software s2 to
translate Gallina to ML. The OCaml compiler s3 translates ML to machine-language;
the machine language runs with OCaml runtime-system s4. All of these are in the
trusted base, in the sense that bugs in the si can render the proved theorem useless.

FPCC had a much smaller trusted base, avoiding s1–s4.7 But at least these compo-
nents s1–s4 are fixed for all proofs and projects, and well tested by the community; and
perhaps some of the techniques used in the FPCC project, such as a tiny independent
proof checker, could be applied here as well to remove the si from the trusted base.

13 Conclusion

Highly expressive program logics require different semantic methods than compiler-
correctness proofs. Proofs about a sequential thread require different kinds of reason-
ing than proofs about operating systems and concurrency. A top-to-bottom verified
toolchain requires all these kinds of reasoning, and thus we choose the right formal-
ism for each component, and prove the relationships between the formalisms. In this
way we achieve a system that is sufficiently modular that its major components can be
built and proved by entirely separate research groups.

In the process, more work goes into thinking about specifications and interfaces
than into the individual components. This is not a bad thing, in the end.

A formal proof may be “wrong” for either of two reasons: There may be a mistake
in one or more steps of the proof, so that the “proof” fails to prove the stated theorem;
or the statement of the theorem may be not what was intended. Using a proof assistant
to mechanically check the proof prevents the first kind of problem, but not the second.
This is why I find it so important to do a big top-to-bottom system and connect all the
components together in the same metalogic. For example, our paper in LICS’02 [2]
was a correct proof of a nice-looking theorem (semantic model of a type system with
mutable references, polymorphism, and recursive types) but only in the application to
the big Foundational Proof-Carrying Code project did we discover that it was the wrong

7 For the explanation of why no compilers are in FPCC’s trusted base, see [7, §8.2]. Unfortu-
nately that argument does not apply to the VST.

15



theorem: the type system had predicative quantification, but we needed impredicative.
We had to go back to the drawing board and figure out how to do impredicativity as well
[3, 4]. Footnote 4 describes one such incident in the VST project, and there have been
many more along the way. Big “systems” projects have an important place in research
on the formal semantics of software.

Acknowledgments. Gilles Barthe, Lennart Beringer, Alexey Gotsman, Julia Lawall,
Aleks Nanevski, Gordon Stewart, and Shaz Qadeer all gave me very helpful sugges-
tions on how to organize and present this material. This research was supported in part
by the Air Force Office of Scientific Research (grant FA9550-09-1-0138) and the Na-
tional Science Foundation (grant CNS-0910448).

References

1. Amal Ahmed, Andrew W. Appel, Christopher D. Richards, Kedar N. Swadi, Gang Tan, and
Daniel C. Wang. Semantic foundations for typed assembly languages. ACM Trans. Program.
Lang. Syst., 32(3):1–67, 2010.

2. Amal Ahmed, Andrew W. Appel, and Roberto Virga. A stratified semantics of general refer-
ences embeddable in higher-order logic. In 17th Annual IEEE Symp. on Logic in Computer
Science, pages 75–86, June 2002.

3. Amal Ahmed, Andrew W. Appel, and Roberto Virga. An indexed model of impredica-
tive polymorphism and mutable references. http://www.cs.princeton.edu/˜appel/papers/
impred.pdf, January 2003.

4. Amal J. Ahmed. Semantics of Types for Mutable State. PhD thesis, Princeton University,
Princeton, NJ, November 2004. Tech Report TR-713-04.

5. Andrew W. Appel. Foundational proof-carrying code. In Symp. on Logic in Computer
Science (LICS ’01), pages 247–258. IEEE, 2001.

6. Andrew W. Appel, Paul-Andre Melliès, Christopher D. Richards, and Jerôme Vouillon. A
very modal model of a modern, major, general type system. In Proc. 34th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL’07), pages
109–122, January 2007.

7. Andrew W. Appel, Neophytos G. Michael, Aaron Stump, and Roberto Virga. A trustworthy
proof checker. J. Automated Reasoning, 31:231–260, 2003.

8. L. Birkedal, B. Reus, J. Schwinghammer, K. Stovring, J. Thamsborg, and H. Yang. Step-
indexed Kripke models over recursive worlds. submitted for publication, 2010.

9. Sandrine Blazy, Zaynah Dargaye, and Xavier Leroy. Formal verification of a C compiler
front-end. In Symp. on Formal Methods, pages 460–475, 2006.

10. Hans-J. Boehm. Threads cannot be implemented as a library. In PLDI ’05: 2005 ACM
SIGPLAN Conference on Programming Language Design and Implementation, pages 261–
268, New York, 2005.

11. Richard Bornat, Cristiano Calcagno, Peter O’Hearn, and Matthew Parkinson. Permission
accounting in separation logic. In POPL ’05, pages 259–270, 2005.

12. Gérard Boudol and Gustavo Petri. Relaxed memory models: an operational approach. In
POPL, pages 392–403, 2009.

13. Juan Chen, Dinghao Wu, Andrew W. Appel, and Hai Fang. A provably sound TAL for back-
end optimization. In PLDI ’03: Proc. 2003 ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 208–219, June 2003.

14. Karl Crary and Susmit Sarkar. Foundational certified code in the twelf metalogical frame-
work. ACM Trans. Comput. Logic, 9(3):1–26, 2008.

16



15. Robert Dockins and Andrew W. Appel. Observational oracular semantics for compiler cor-
rectness and language metatheory. in preparation, 2011.

16. Robert Dockins, Aquinas Hobor, and Andrew W. Appel. A fresh look at separation algebras
and share accounting. In 7th Asian Symposium on Programming Languages and Systems
(APLAS 2009), pages 161–177, December 2009.

17. Xinyu Feng, Zhaozhong Ni, Zhong Shao, and Yu Guo. An open framework for foundational
proof-carrying code. In Proc. 2007 ACM SIGPLAN International Workshop on Types in Lan-
guage Design and Implementation (TLDI’07), pages 67–78, New York, NY, USA, January
2007. ACM Press.

18. Alexey Gotsman, Josh Berdine, Byron Cook, Noam Rinetzky, and Mooly Sagiv. Local rea-
soning for storable locks and threads. In Proceedings 5th Asian Symposium on Programming
Languages and Systems (APLAS’07), 2007.

19. Alexey Gotsman, Josh Berdine, Byron Cook, and Mooly Sagiv. Thread-modular shape anal-
ysis. In PLDI ’07: 2007 ACM SIGPLAN Conference on Programming Language Design and
Implementation, 2007.

20. Aquinas Hobor. Oracle Semantics. PhD thesis, Princeton University, 2008.
21. Aquinas Hobor, Andrew W. Appel, and Francesco Zappa Nardelli. Oracle semantics for

concurrent separation logic. In Proc. European Symp. on Programming (ESOP 2008), pages
353–367, 2008.

22. Aquinas Hobor, Robert Dockings, and Andrew W. Appel. A theory of indirection via ap-
proximation. In POPL 2010: Proc. 37th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 171–184, January 2010.

23. Gerwin Klein and Tobias Nipkow. A machine-checked model for a Java-like language, vir-
tual machine and compiler. ACM Trans. on Programming Languages and Systems, 28:619–
695, 2006.

24. Xavier Leroy. Formal certification of a compiler back-end, or: programming a compiler with
a proof assistant. In POPL’06, pages 42–54, 2006.

25. Xavier Leroy and Sandrine Blazy. Formal verification of a C-like memory model and its uses
for verifying program transformations. Journal of Automated Reasoning, 41(1):1–31, 2008.

26. William Mansky. Automating separation logic for Concurrent C minor. Undergraduate
thesis, May 2008.

27. George Necula. Proof-carrying code. In 24th ACM SIGPLAN-SIGACT Symp. on Principles
of Programming Languages, pages 106–119, New York, January 1997. ACM Press.

28. Peter W. O’Hearn. Resources, concurrency and local reasoning. Theoretical Computer
Science, 375(1):271–307, May 2007.

29. Matthew J. Parkinson. Local Reasoning for Java. PhD thesis, University of Cambridge,
2005.

30. Norbert Schirmer. Verification of Sequential Imperative Programs in Isabelle/HOL. PhD
thesis, Technische Universität München, 2006.

31. Peter Sewell, Susmit Sarkar, Scott Owens, Francesco Zappa Nardelli, and Magnus O.
Myreen. x86-tso: a rigorous and usable programmer’s model for x86 multiprocessors. Com-
mun. ACM, 53(7):89–97, 2010.

32. Dinghao Wu, Andrew W. Appel, and Aaron Stump. Foundational proof checkers with small
witnesses. In 5th ACM SIGPLAN International Conference on Principles and Practice of
Declarative Programming, August 2003.

17


