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Abstract

Memory Management Units (MMUs) are traditionally
used by operating systems to implement disk-paged vir-
tual memory. Some operating systems allow user pro-
grams to specify the protection level (inaccessible, read-
only, read-write) of pages, and allow user programs
to handle protection violations, but these mechanisms
are not always robust, e�cient, or well-matched to the
needs of applications.
We survey several user-level algorithms that make use

of page-protection techniques, and analyze their com-
mon characteristics, in an attempt to answer the ques-
tion, \What virtual-memory primitives should the op-
erating system provide to user processes, and how well
do today's operating systems provide them?"

1 Introduction

The \traditional" purpose of virtual memory is to in-
crease the size of the address space visible to user pro-
grams, by allowing only the frequently-accessed subset
of the address space to be resident in physical mem-
ory. But virtual memory has been used for many
other purposes. Operating systems can share pages be-
tween processes, make instruction-spaces read-only (and
thus guaranteed re-entrant), make portions of memory
zeroed-on-demand or copy-on-write, and so on [18]. In
fact, there is a large class of \tricks" that operating sys-
tems can perform using the page protection hardware.
Modern operating systems allow user programs to

perform such tricks too, by allowing user programs
to provide \handlers" for protection violations. Unix,
for example, allows a user process to specify that a
particular subroutine is to be executed whenever a
segmentation-fault signal is generated. When a pro-
gram accesses memory beyond its legal virtual address
range, a user-friendly error message can be produced by
the user-provided signal handler, instead of the ominous
\segmentation fault: core dumped."
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This simple example of a user-mode fault handler is
\dangerous," because it may lead the operating-system
and hardware designers to believe that user-mode fault-
handlers need not be entered e�ciently (which is cer-
tainly the case for the \graceful error shutdown" ex-
ample). But there are much more interesting applica-
tions of user-mode fault handlers. These applications
exercise the page-protection and fault-handling mecha-
nisms quite strenuously, and should be understood by
operating-system implementors.

This paper describes several algorithms that make use
of page-protection techniques. In many cases, the algo-
rithms can substitute the use of \conventional" paging
hardware for the \special" microcode that has some-
times been used. On shared-memory multiprocessors,
the algorithms use page-protection hardware to achieve
medium-grained synchronization with low overhead, in
order to avoid synchronization instruction sequences
that have noticable overhead.

We have benchmarked a number of systems to analyze
how well today's operating systems support user-level
page-protection techniques. Finally, from these algo-
rithms we draw lessons about page-protection costs, the
utility of memory-mapping mechanisms, translation-
bu�er shootdowns, page sizes and other aspects of op-
erating system implementation.

2 Virtual memory primitives

Each of the algorithms we will describe require some of
the following virtual-memory services from the operat-
ing system:

trap: handle page-fault traps in user mode;
prot1: decrease the accessibility of a page;
protN: decrease the accessibility of N pages;
unprot: increase the accessibility of a page;
dirty: return a list of dirtied pages since the

previous call.
map2: map the same physical page at two di�e-

rent virtual addresses, at di�erent levels
of protection, in the same address space.
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Finally, some algorithms may be more e�cient with a
smaller pagesize than is normally used with disk pag-
ing.
We distinguish between \decreasing the accessibility

of a page" and \decreasing the accessibility of a batch
of pages" for a speci�c reason. The cost of changing the
protection of several pages simultaneously may be not
much more than the cost of changing the protection of
one page. Several of the algorithms we describe protect
pages (make them less accessible) only in large batches.
Thus, if an operating system implementation could not
e�ciently decrease the accessibility of one page, but
could decrease the accessibility of a large batch at a
small cost-per-page, this would su�ce for some algo-
rithms.
We do not make such a distinction for unprotecting

single vs. multiple pages because none of the algorithms
we describe ever unprotect many pages simultaneously.
Some multi-thread algorithms require that one thread

have access to a particular page of memory while others
fault on the page. There are many solutions to such
a problem (as will be described later), but one simple
and e�cient solution is to map the page into more than
one virtual address; at one address the page is acces-
sible and at the other address it faults. For e�ciency
reasons, the two di�erent virtual addresses should be in
the same page table, so that expensive page-table con-
text switching is not required between threads.
The user program can keep track of dirty pages using

protN, trap, and unprot; we list dirty as a sepa-
rate primitive because it may be more e�cient for the
operating system to provide this service directly.

3 Virtual memory applications

We present in this section a sample of applications which
use virtual-memory primitives in place of software tests,
special hardware, or microcode. The page protection
hardware can e�ciently test simple predicates on ad-
dresses that might otherwise require one or two extra
instructions on every fetch and/or store; this is a sub-
stantial savings, since fetches and stores are very com-
mon operations indeed. We survey several algorithms so
that we may attempt to draw general conclusions about
what user programs require from the operating system
and hardware.

Concurrent garbage collection

A concurrent, real-time, copying garbage collection al-
gorithm can use the page fault mechanism to achieve
medium-grain synchronization between collector and
mutator threads [4]. The paging mechanism provides
synchronization that is coarse enough to be e�cient and
yet �ne enough to make the latency low. The algorithm

is based on the Baker's sequential, real-time copying
collector algorithm [6].
Baker's algorithm divides the memory heap into two

regions, from-space and to-space. At the beginning of
a collection, all objects are in from-space, and to-space
is empty. Starting with the registers and other global
roots, the collector traces out the graph of objects reach-
able from the roots, copying each reachable object into
to-space. A pointer to an object from-space is forwarded
by making it point to the to-space copy of the old object.
Of course, some from-space objects are never copied into
to-space, because no pointer to them is ever forwarded;
these objects are garbage.
As soon as the registers are forwarded, the mutator

thread can resume execution. Reachable objects are
copied incrementally from from-space while the mutator
allocates new objects at new. Every time the mutator
allocates a new object, it invokes the collector to copy
a few more objects from from-space. Baker's algorithm
maintains the following invariants:

� The mutator sees only to-space pointers in its reg-
isters.

� Objects in the new area contain to-space pointers
only (because new objects are initialized from the
registers).

� Objects in the scanned area contain to-space point-
ers only.

� Objects in the unscanned area contain both from-
space and to-space pointers.

To satisfy the invariant that the mutator sees only to-
space pointers in its registers, every pointer fetched from
an object must be checked to see if it points to from-
space. If it does, the from-space object is copied to to-
space and the pointer updated; only then is the pointer
returned to the mutator. This checking requires hard-
ware support to be implemented e�ciently [25], since
otherwise a few extra instructions must be performed on
every fetch. Furthermore, the mutator and the collector
must alternate; they cannot operate truly concurrently
because they might simultaneously try to copy the same
object to di�erent places.
Instead of checking every pointer fetched from mem-

ory, the concurrent collector [4] uses virtual-memory
page protections to detect from-space memory refer-
ences and to synchronize the collector and mutator
threads. To synchronize mutators and collectors, the
algorithm sets the virtual-memory protection of the un-
scanned area's pages to be \no access." Whenever the
mutator tries to access an unscanned object, it will get a
page-access trap. The collector �elds the trap and scans
the objects on that page, copying from-space objects
and forwarding pointers as necessary. Then it unpro-
tects the page and resumes the mutator at the faulting
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instruction. To the mutator, that page appears to have
contained only to-space pointers all along, and thus the
mutator will fetch only to-space pointers to its registers.
The collector also executes concurrently with the mu-

tator, scanning pages in the unscanned area and un-
protecting them as each is scanned. The more pages
scanned concurrently, the fewer page-access traps taken
by the mutator. Because the mutator doesn't do any-
thing extra to synchronize with the collector, compilers
needn't be reworked. Multiple processors and mutator
threads are accommodated with almost no extra e�ort.
This algorithm requires trap, protN, unprot, and

map2. Traps are required to detect fetches from the
unscanned area; protection of multiple pages is required
to mark the entire to-space inaccessible when the ip is
done; unprot is required as each page is scanned. In
addition, since the time for the user-mode handler to
process the page is proportional to page size, it may be
appropriate to use a small pagesize to reduce latency.
We need multiple-mapping of the same page so that

the garbage collector can scan a page while it is still
inaccessible to the mutators. Alternatives to multiple-
mapping are discussed in section 5.

Shared virtual memory

The access protection paging mechanism has been used
to implement shared virtual memory on a network of
computers, on a multicomputer without shared memo-
ries [21], and on a multiprocessor based on interconnec-
tion networks [14]. The essential idea of shared virtual
memory is to use the paging mechanism to control and
maintain single-writer and multiple-reader coherence at
the page level.
Figure 1 shows the system architecture of an SVM

system. On a multicomputer, each node in the system
consists of a processor and its memory. The nodes are
connected by a fast message-passing network.
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Figure 1: Shared virtual memory

The SVM system presents all processors with a large
coherent shared memory address space. Any processor

can access any memory location at any time. The shared
memory address space can be as large as the memory
address space provided by the MMU of the processor.
The address space is coherent at all times, that is, the
value returned by a read operation is always the same
as the value written by the most recent write operation
to the same address.
The SVM address space is partitioned into pages.

Pages that are marked \read-only" can have copies re-
siding in the physical memories of many processors at
the same time. But a page currently being written can
reside in only one processor's physical memory. If a pro-
cessor wants to write a page that is currently residing
on other processors, it must get an up-to-date copy of
the page and then tell the other processors to invalidate
their copies. The memory mapping manager views its
local memory as a big cache of the SVM address space
for its associated processors. Like the traditional vir-
tual memory [15], the shared memory itself exists only
virtually. A memory reference may cause a page fault
when the page containing the memory location is not in
a processor's current physical memory. When this hap-
pens, the memory mapping manager retrieves the page
from either disk or the memory of another processor.
This algorithm uses trap, prot1, and unprot; the

trap-handler needs access to memory that is still pro-
tected from the client threads (map2), and a small pa-
gesize may be appropriate.

Concurrent checkpointing

The access protection page fault mechanism has been
used successfully in making checkpointing concurrent
and real-time [22]. This algorithm for shared-memory
multiprocessors runs concurrently with the target pro-
gram, interrupts the target program for small, �xed
amounts of time and is transparent to the checkpointed
program and its compiler. The algorithm achieves its
e�ciency by using the paging mechanism to allow the
most time-consuming operations of the checkpoint to
be overlapped with the running of the program being
checkpointed.
First, all threads in the program being checkpointed

are stopped. Next, the writable main memory space for
the program is saved (including the heap, globals, and
the stacks for the individual threads.) Also, enough
state information is saved for each thread so that it can
be restarted. Finally, the threads are restarted.
Instead of saving the writable main memory space

to disk all at once, the algorithm avoids this long wait
by using the access protection page fault mechanism.
First, the accessibility of entire address space is set to
\read only." At this point, the threads of the check-
pointed program are restarted and a copying thread se-
quentially scans the address space, copying the pages to
a separate virtual address space as it goes. When the
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copying thread �nishes copying a page, it sets its access
rights to \read/write."
When the user threads can make read memory refer-

ences to the read-only pages, they run as fast as with
no checkpointing. If a thread of the program writes a
page before it has been copied, a write memory access
fault will occur. At this point the copying thread imme-
diately copies the page and sets the access for the page
to \read/write," and restarts the faulting thread.
Several benchmark programs have been used to mea-

sure the performance of this algorithm on the DEC Fire-
y multiprocessors [33]. The measurements show that
about 90% of the checkpoint work is executed concur-
rently with the target program while no thread is ever
interrupted for more than .1 second at a time.
This method also applies to taking incremental check-

points; saving the pages that have been changed since
the last checkpoint. Instead of protecting all the pages
with \read-only," the algorithm can protect only \dirt-
ied" pages since the previous checkpoint. Feldman and
Brown [17] implemented and measured a sequential ver-
sion for a debugging system by using reversible execu-
tions. They proposed and implemented the system call
dirty.
This algorithm uses trap, prot1, protN, unprot,

and dirty ; a medium pagesize may be appropriate.

Generational garbage collection

An important application of memory protection is in
generational garbage collection[23], a very e�cient al-
gorithm that depends on two properties of dynamically
allocated records in LISP and other programming lan-
guages:

1. Younger records are much more likely to die soon
than older records. If a record has already survived
for a long time, it's likely to survive well into the
future; a new record is likely to be part of a tem-
porary, intermediate value of a calculation.

2. Younger records tend to point to older records,
since in LISP and functional programming lan-
guages the act of allocating a record also initializes
it to point to already-existing records.

Property 1 indicates that much of the garbage collec-
tor's e�ort should be concentrated on younger records,
and property 2 provides a way to achieve this. Allocated
records will be kept in several distinct areas Gi of mem-
ory, called generations. Records in the same generation
are of similar age, and all the records in generation Gi

are older than the records in generation Gi+1. By ob-
servation 2 above, for i < j, there should be very few or
no pointers from Gi into Gj. The collector will usually
collect in the youngest generation, which has the highest

proportion of garbage. To perform a collection in a gen-
eration, the collector needs to know about all pointers
into the generation; these pointers can be in machine
registers, in global variables, and on the stack. How-
ever, there very few such pointers in older generations
because of property 2 above.
The only way that an older generation can point to a

younger one is by an assignment to an already-existing
record. To detect such assignments, each modi�cation
of a heap object must be examined to see whether it
violates property 2. This checking can be done by spe-
cial hardware [25, 35], or by compilers [34]. In the latter
case, two or more instructions are required. Fortunately,
non-initializing assignments are rare in Lisp, Smalltalk,
and similar languages [25, 35, 30, 3] but the overhead
of the instruction sequence for checking (without spe-
cial hardware) is still on the order of 5{10% of total
execution time.
Virtual memory hardware can detect assignments to

old objects. If dirty is available, the collector can ex-
amine dirtied pages to derive pointers from older gener-
ations to younger generations and process them. In the
absence of such a service, the collector can use the page
protection mechanism [30]: the older generations can be
write-protected so that any store into them will cause
a trap. The user trap-handler can save the address of
the trapping page on a list for the garbage collector;
then the page must be unprotected to allow the store
instruction to proceed. At garbage-collection time the
collector will need to scan the pages on the trap-list for
possible pointers into the youngest generation. Vari-
ants of this algorithm have exhibited quite good perfor-
mance [30, 11]: as heaps and memories get larger the
this scheme begins to dominate other techniques[37].
This technique uses the trap, protN, and unprot

features, or just dirty. In addition, since the time for
the user-mode handler to process the page is indepen-
dent of page size, and the eventual time for the garbage
collector to scan the page is proportional to the page
size, it may be appropriate to use a small pagesize.

Persistent stores

A persistent store [5] is a dynamic allocation heap that
persists from one program-invocation to the next. An
execution of a program may traverse data structures in
the persistent store just as it would in its own (in-core)
heap. It may modify objects in the persistent store,
even to make them point to newly-allocated objects of
its own; it may then commit these modi�cations to the
persistent store, or it may abort, in which case there
is no net e�ect on the persistent store. Between (and
during) executions, the persistent store is kept on a sta-
ble storage device such as a disk so that the \database"
does not disappear.
It is important that traversals of pointers in the per-

4



sistent store be just as fast as fetches and stores in main
memory; ideally, data structures in the persistent store
should not be distinguishable by the compiled code of
a program from data structures in core. This can be
accomplished through the use of virtual memory: the
persistent store is a memory-mapped disk �le; pointer
traversal through the persistent store is just the same as
pointer traversal in core, with page faults if new parts
of the store are examined.
However, when an object in the persistent store is

modi�ed, the permanent image must not be altered until
the commit. The in-core image is modi�ed, and only at
the commit are the \dirty" pages (possibly including
some newly-created pages) written back to disk. To
reduce the number of new pages, it is appropriate to do
a garbage collection at commit time.
A database is a storage management system that

may provide, among other things, locking of objects,
transactions with abort/commit, checkpointing and re-
covery. The integration of virtual memory techniques
into database implementations has long been studied
[24, 31].
Compiled programs can traverse the data in their

heaps very quickly and easily, since each access op-
eration is just a compiled fetch instruction. Traver-
sal of data in a conventional database is much slower,
since each operation is done by procedure call; the ac-
cess procedures ensure synchronization and abortabil-
ity of transactions. Persistent stores can be augmented
to cleanly handle concurrency and locking; such sys-
tems (sometimes called object-oriented databases) can
be quickly traversed with fetch instructions but also can
provide synchronization and locking; e�ciency of access
can be improved by using a garbage collector to group
related objects on the same page, treat small objects
di�erently than large objects, and so on[13].
These schemes requires the use of trap and unprot

as well as �le-mapping with copy-on-write (which, if not
otherwise available, can be simulated using protN, un-
prot, and map2.

Extending addressability

A persistent store might grow so large that it contains
more than (for example) 232 objects, so that it cannot
be addressed by 32-bit pointers. Modern disk drives
(especially optical disks) can certainly hold such large
databases, but conventional processors use 32-bit ad-
dresses. However, in any one run of a program against
the persistent store, it is likely that fewer than 232 ob-
jects will be accessed.
One solution to this problem is to modify the persis-

tent store mechanism so that objects in core use 32-bit
addresses and objects on disk use 64-bit addresses. Each
disk page is exactly twice as long as a core page. When a
page is brought from disk to core, its 64-bit disk pointers

are translated to 32-bit core pointers using a translation
table. When one of these 32-bit core pointers is derefer-
enced for the �rst time, a page fault may occur; the fault
handler brings in another page from disk, translating it
to short pointers.

The translation table has entries only for those ob-
jects accessed in a single execution; that is why 32-bit
pointers will su�ce. Pointers in core may point to not-
yet-accessed pages; such a page is not allocated in core,
but there is an entry in the translation table showing
what (64-bit pointer) disk page holds its untranslated
contents.

The idea of having short pointers in core and long
pointers on disk, with a translation table for only that
subset of objects used in one session, originated in the
LOOM system of Smalltalk-80 [20]. The use of a page-
fault mechanism to implement it is more recent [19].
This algorithm uses trap, unprot, prot1 or protN,
and (in a multi-threaded environment) map2, and might
work well with a smaller pagesize.

Data-compression paging

In a typical linked data structure, many words point to
nearby objects; many words are nil. Those words that
contain integers instead of pointers often contain small
integers or zero. In short, the information-theoretic
entropy of the average word is small; furthermore, a
garbage collector can be made to put objects that point
to each other in nearby locations, thus reducing the en-
tropy per word to as little as 7 bits[9].

By the use of a data-compression algorithm, then, a
page of 32-bit words might be compressible to about
one-quarter of a page. Instead of paging less-recently-
used pages directly to the disk, they could be com-
pressed instead and put back into main memory.[36]
Then, when those virtual pages are again needed, it
might take much less time to uncompress them than it
would to fetch from the disk. Of course, compressed
pages could be sent out to disk after a long period of
disuse.

Of course, data-compression paging might be done
inside the operating system transparently to the user
process[28]. But since a garbage collector can move
objects to minimize their entropy, much better results
might be obtained if the user process can have some
control over how and when compression is done.

This algorithm requires trap, prot1 (or perhaps
protN with careful bu�ering), trap, and unprot. It
is necessary to determine when pages are not recently
used; this can be done by occasionally protecting pages
to see if they are referenced, or with help from the op-
erating system and hardware.
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Heap overow detection

The stack of a process or thread requires protections
against overow accesses. A well-known and practical
technique used in most systems is to mark the pages
above the top of the stack invalid or no-access. Any
memory access to these pages will cause a page fault.
The operating system can catch such a fault and inform
the user program of a stack overow. In most imple-
mentations of Unix, stack pages are not allocated until
�rst used; the operating-system's response to a page
fault is to allocate physical pages, mark them accessi-
ble, and resume execution without notifying the user
process (unless a resource limit is exceeded).
This technique requires trap, protN and unprot.

But since the faults are quite rare (most processes don't
use much stack space), e�ciency is not a concern.
The same technique can be used to detect heap over-

ow in a garbage-collected system[2]. Ordinarily, heap
overow in such a system is detect by a compare and
conditional-branch performed on each memory alloca-
tion. By having the user process allocate new records
in a region of memory terminated by a guard page,
the compare and conditional-branch can be eliminated.
When the end of the allocatable memory is reached, a
page-fault trap invokes the garbage collector. It can of-
ten be arranged that no re-arrangement of memory pro-
tection is required, since after the collection the same
allocation area can be re-used. Thus, this technique
requires prot1 and trap.
Here, e�ciency of trap is a concern. Some language

implementations allocate a new cell as frequently as ev-
ery 50 instructions. In a generational garbage collector,
the size of the allocation region may be quite small in
order to make the youngest generation �t entirely in
the data cache; a 64 Kbyte allocation region could hold
16k 8-byte list cells, for example. In a very-frequently-
allocating system (e.g. one that keeps activation records
on the heap), such a tiny proportion of the data will be
live that the garbage-collection time itself will be small.
Thus, we have:
Instructions executed before heap overow:

(64k=8)� 50 = 400k:

Instructions of overhead, using compare and branch:

(64k=8)� 2 = 16k:

If a trap takes 1200 cycles to handle (as is typical|
see section 4), then this technique reduces the overhead
from 4% to 0.3%, a worthwhile savings. If a trap were
to take much longer, this technique would not be as
e�cient.
Since there are other good techniques for reducing

heap-limit-check overhead, such as combining the limit
checks for several consecutive allocations in an unrolled

loop, this application of virtual memory is perhaps the
least interesting of those discussed in this paper.

4 VM primitive performance

Almost all the algorithms we described in this paper
fall into one of the two categories. The �rst category
of algorithms protect pages in large batches, then upon
each page-fault trap they unprotect one page. The sec-
ond category of algorithms protect a page and unprotect
a page individually. Since protN or prot, trap, and
unprot are always used together, an operating system
in which one of the operations is extremely e�cient, but
others are very slow will not be very competive.
We performed two measurements for overall user-

mode virtual-memory performance. The �rst is the sum
of prot1, trap, and unprot, as measured by 100 repi-
titions of the following benchmark program:

� access a random protected page, and

� in the fault-handler, protect some other page and
unprotect the faulting page.

This process is repeated 100 times to obtain more accu-
rate timing.
The second measurement is the sum of protN, trap,

and unprot. The benchmark program measures:

� protect 100 pages,

� access each page in a random sequence, and

� in the fault-handler, unprotect the faulting page.

Before beginning the timing, both programs write each
page to eliminate transient e�ects of �lling the cache
and TLB.
We compared the performance of Ultrix, SunOS, and

Mach on several platforms in the execution of these
benchmarks. For calibration, we also show the time
for a single instruction (add), measured using a 20-
instruction loop containing 18 adds, a compare, and a
branch. Where we have the data, we also show the
time for a trap-handler that does not change any mem-
ory protections; this would be useful for heap-overow
detection. The results are shown in Table 1. Note
that this benchmark is not an \overall operating sys-
tem throughput" benchmark [27] and should not be in-
uenced by disk speeds; it is measuring the performance
of CPU-handled virtual memory services for user-level
programs.
We also tried mapping a physical page at two di�erent

virtual addresses in the same process, using the shared
memory operations (shmop) on SunOS and Ultrix, and
on Mach using vmamap. SunOS and Mach permit this,
but Ultrix would not permit us to attach (shmat) the
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Machine OS add trap

trap
+prot1
+unprot

trap
+protN
+unprot map2 pagesize
a

a

Sun 3/60 SunOS 4.0
a

0.12
a

760
a

1238
a

1016
a

yes
a

8192
a

a

Sun 3/60 SunOS 4.1
a

0.12
a a

2080
a

1800
a

yes
a

8192
a

a

Sun 3/60 Mach 2.5(xp)
a

0.12
a a

3300
a

2540
a

yes
a

8192
a

a

Sun 3/60 Mach 2.5(exc)
a

0.12
a a

3380
a

2880
a

yes
a

8192
a
a

a

SparcStn 1 SunOS 4.0.3c
a

0.05
a a

*919
a

*839
a

yes
a

4096
a

a

SparcStn 1 SunOS 4.1
a

0.05
a

y230
a

1008
a

909
a

yes
a

4096
a

a

SparcStn 1 Mach 2.5(xp)
a

0.05
a a

1550
a

1230
a

yes
a

4096
a

a

SparcStn 1 Mach 2.5(exc)
a

0.05
a a

1770
a

1470
a

yes
a

4096
a
a

a

DEC 3100 Ultrix 4.1
a

0.062
a

210
a

393
a

344
a

no
a

4096
a

a

DEC 3100 Mach 2.5 (xp)
a

0.062
a a

937
a

766
a

no
a

4096
a

a

DEC 3100 Mach 2.5 (exc)
a

0.062
a a

1203
a

1063
a

no
a

4096
a
a

a

�Vax 3 Ultrix 2.3
a

0.21
a

314
a

612
a

486
a

no
a

1024
a

a

a

i386 on iPSC/2 NX/2
a

0.15
a

172
a

302
a

252
a

yes
a

4096
a
a

Table 1: Benchmark data.

Elapsed time in microseconds is given for each operation. For Mach we measured both the exception-port
mechanism (\exc") and the external-pager interface (\xp"). Time for trap is the operating system
overhead, plus the user-mode part of trap-handler as provided in standard library. For the prot1 and
protN benchmarks, the we show the time per page. map2 is whether the system supports mapping the
same page at di�erent addresses; see section 4. Pagesize is as reported by the operating system.

* The implementation of mprotect (which changes memory protection) on SunOS 4.0 incorrectly fails
to ush the TLB.

y estimated.

same shared-memory object at two di�erent addresses
in the same process.

Clearly, there are wide variations between the per-
formance of these operating systems even on the same
hardware. This indicates that there may be consider-
able room for improvement in some or all of these sys-
tems. Furthermore, several versions of operating sys-
tems do not correctly ush their translation bu�er after
an mprotect call, indicating that many operating sys-
tems implementors don't take this feature seriously.

It is important that these operating system services
be made e�cient. The argument here is much more
speci�c than a vacuous \E�ciency is good." For disk-
paging, a page fault usually implies a 20-millisecond
wait for the disk to spin around to the right sector;
so a 3- or 5-millisecond fault handling overhead would
be hardly noticed as a contributor to fault-handling la-
tency. But in the algorithms surveyed in the paper,
the fault will be handled entirely within the CPU. For
example, we have implemented a garbage collector that
executes about 10 instructions per word of to-space. For
a pagesize of 4096 bytes (1024 words) on a 20 MIPS
machine, the computation time to handle a fault will be
approximately 10 � 0:05 � 1024 or about 500 microsec-
onds. If the operating system's fault-handling and page-
protection overhead is 1200 microseconds (as is aver-
age), then the operating system is clearly the bottle-
neck.

If the program exhibits good locality of reference,
then the garbage-collection faults will be few, and the
operating system overhead will matter less. But for real-
time programs, which must satisfy strict constraints on
latency, even an occasional \slow fault" will cause prob-
lems. For example, if the client program must never be
interrupted for more than a millisecond, then a fault-
handler computation time of 500 microseconds doesn't
leave room for an operating-system overhead of 1200
microseconds! (This issue gets more complicated when
we consider multiple consecutive faults; see [11] for an
analysis.)

In order to compare virtual memory primitives on dif-
ferent architectures, we have normalized the measure-
ments by processor speed. Figure 4 shows the number
of adds each processor could have done in the time it
takes to protect a page, fault, and unprotect a page.

Our benchmark shows that there is a wide range of
e�ciency in implementing virtual memory primitives.
Intel 80386-based machine running NX/2 operating sys-
tem [29] (a simple operating system for the iPSC/2
hypercube multicomputer) is the best in our bench-
mark. Its normalized benchmark performance is about
ten times better than the worst performer (Mach on
the Sparcstation). Clearly, there is no inherent reason
that these primitives must be slow. Hardware and oper-
ating system designers should treat memory-protection
performance as one of the important tradeo�s in the
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Sun 3/60+SunOS4.0
a

aa a
a

Sun 3/60+SunOS4.1
a

aa a

a

Sun 3/60+Mach2.5(xp)
a

aa a

a

Sun 3/60+Mach2.5(exc)
a

aa a

a

SparcStn1+SunOS4.0.3c
a

aa a
a

SparcStn1+SunOS4.1
a

aa a
a

SparcStn1+Mach2.5(xp)
a

aa a

a

SparcStn1+Mach2.5(exc)
a

aa a

a

DEC3100+Ultrix4.1
a

aa a

a

DEC3100+Mach2.5(xp)
a

aa a

a

DEC3100+Mach2.5(xp)
a

aa a
a

�Vax3+Ultrix4.1
a

aa a
a

i386+NX/2
a

aa a

a

j j j
0 10,000 20,000

Figure 2: Instructions per prot + trap + unprot.

The black bars show the results when pages
are protected in large batches (protN), and
the white bars are the additional time taken
when pages are protected one at a time
(prot1).

design process.

5 System design issues

We can learn some important lessons about hardware
and operating system design from our survey of virtual-
memory applications. Most of the applications use vir-
tual memory in similar ways; this makes it clear what
VM support is needed|and just as important, what is
unnecessary.

TLB Consistency

Many of the algorithms presented here make their mem-
ory less-accessible in large batches, and make memory
more-accessible one page at a time. This is true of con-
current garbage collection, generational garbage collec-
tion, concurrent checkpointing, persistent store, and ex-
tending addressability.
This is a good thing, especially on a multiprocessor,

because of the translation lookaside bu�er (TLB) consis-
tency problem. When a page is made more-accessible,
outdated information in TLBs is harmless, leading to
at most a spurious, easily patchable TLB miss or TLB
fault. 1 But when a page is made less-accessible, out-
a

1On some architectures, in which a TLB entry can be present
but provide no access, it will be useful for the operating system's
fault handler to ush the TLB line for the faulting page. Other-
wise, the user-mode fault handler might make the page accessible,
but the stale TLB entry would cause a second fault. Flushing

dated information in TLBs can lead to illegal accesses
to the page. To prevent this, it is necessary to ush
the page from each TLB where it might reside. This
\shootdown" can be done in software by interrupting
each of the other processors and requesting it to ush
the page from its TLB, or in hardware by various bus-
based schemes[7, 32].
Software shootdown can be very expensive if there are

many processors to interrupt. Our solution to the shoot-
down problem is to batch the shootdowns; the cost of
a (software) shootdown covering many pages simultane-
ously is not much greater than the cost of a single-page
shootdown; the cost per page becomes neglible when the
overhead (of interrupting the processers to notify them
about shootdowns) is amortized over many pages. The
algorithms described in this paper that protect pages
in batches \inadvertantly" take advantage of batched
shootdown.
Batching suggested itself to us because the of the

structure of the algorithms described here, but it can
also solve the shootdown problem for \traditional" disk
paging. Pages are made less-accessible in disk paging
(they are \paged out") in order to free physical pages
for re-use by other virtual pages. If the operating system
can maintain a large reserve of unused physical pages,
then it can do its paging-out in batches (to replenish
the reserve); this will amortize the shootdown cost over
the entire batch.2 Thus, while it has been claimed that
software solutions work reasonably well but might need
to be supplanted with hardware assist [7], with batching
it is likely that hardware would not be necessary.

Optimal page size

In many of the algorithms described here, page faults
are handled entirely in the CPU, and the fault-handling
time (exclusive of overhead) is a small constant times
the page size.
When a page fault occurs for paging between physi-

cal memories and disks, there is a delay of tens of mil-
liseconds while the disk rotates and the head moves.
A computational overhead of a few milliseconds in the
page fault handler will hardly be noticed (especially if
there are no other processes ready to execute). For
this reason|and for many others, including the address-
ing characteristics of dynamic RAMs|pages have tra-
ditionally been quite large, and fault-handling overhead
has been high.
a

the TLB entry of the faulting page should not add signi�cantly
to fault-handling overhead. On architectures (e.g. MIPS) with
software handling of TLB misses, this extra complication is not
present.

2This algorithm must be carefully implemented to handle the
case in which a page is referenced after it is put in the reserve
but before it is shot down; in this case the page may be dirty in
some of the TLB's and must be removed from the reserve by the
shootdown procedure.
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For user-handled faults that are processed entirely by
user algorithms in the CPU, however, there is no such
inherent latency. To halve the time of each fault (exclu-
sive of trap time), it su�ces to halve the page size. The
various algorithms described here might perform best
at di�erent page sizes.
The e�ect of a varying page size can be accomplished

on hardware with a small page size. (In the VMP
system, the translation bu�er and the cache are the
same thing, with a 128-byte line size [8]; this archi-
tecture might be well-suited to many of the algorithms
described in this paper.) For prot and unprot oper-
ations, the small pages would be used; for disk paging,
contiguous multi-page blocks would be used (as is now
common on the Vax).
When small pages are used, it is particularly impor-

tant to trap and change page protections quickly, since
this overhead is independent of page size while the ac-
tual computation (typically) takes time proportional to
page size.

Access to protected pages

Many algorithms, when run on a multiprocessor, need
a way for a user-mode service routine to access a page
while client threads have no access. These algorithms
are concurrent garbage collection, extending addressabil-
ity, shared virtual memory, and data-compression pag-
ing.
There are several ways to achieve user-mode access to

protected pages (we use the concurrent garbage collec-
tion algorithm to illustrate):

� Multiple mapping of the same page at di�erent ad-
dresses (and at di�erent levels of protection) in the
same address space. The garbage collector has ac-
cess to pages in to-space at a \nonstandard" ad-
dress, while the mutators see to-space as protected.

� A system call could be provided to copy memory
to and from a protected area. The collector would
use this call three times for each page: once when
copying records from from-space to to-space; once
prior to scanning the page of to-space; and once
just after scanning, before making the page acces-
sible to the mutators. This solution is less desirable
because it's not very e�cient to do all that copying.

� In an operating system that permits shared pages
between processes, the collector can run in a di�er-
ent heavyweight process from the mutator, with a
di�erent page table. The problem with this tech-
nique is that it requires two expensive heavyweight
context switches on each garbage-collection page-
trap. However, on a multiprocessor it may su�ce
to do an RPC to another processor that's already
in the right context, and this option might be much
more attractive.

� The garbage collector can run inside the operating-
system kernel. This is probably most e�cient,
but perhaps that's not the appropriate place for
a garbage collector; it can lead to unreliable ker-
nels, and every programming language has a di�er-
ent runtime data format that the garbage collector
must understand.

We advocate that for computer architectures with
physically addressed caches, the multiple virtual address
mapping in the same address space is a clean and e�-
cient solution. It does not require heavyweight context
switches, data structure copies, nor running things in
the kernel. There is the small disadvantage that each
physical page will require two di�erent entries in the
page tables, increasing physical memory requirements
by up to 1%, depending on the ratio of page-table-entry
size to page size.
With a virtually-addressed cache, the multiple virtual

address mapping approach has a potential for cache in-
consistency since updates at one mapping may reside
in the cache while the other mapping contains stale
data. This problem is easily solved in the context of
the concurrent garbage-collection algorithm. While the
garbage collector is scanning the page, the mutator has
no access to the page; and therefore at the mutator's ad-
dress for that page, none of the cache lines will be �lled.
After the collector has scanned the page, it should ush
its cache lines for that page (presumably using a cache-
ush system call). Thereafter, the collector will never
reference that page, so there is never any danger of in-
consistency.

Is this too much to ask?

Some implementations of Unix on some machines
have had a particularly clean and synchronous signal-
handling facility; an instruction that causes a page-fault
invokes a signal handler without otherwise changing the
state of the processor; subsequent instructions do not
execute, etc. The signal handler can access machine
registers completely synchronously, change the memory
map or machine registers, and then restart the faulting
instruction. However, on a highly pipelined machine
there may be several outstanding page faults [26], and
many instructions after the faulting one may have writ-
ten their results to registers even before the fault is no-
ticed; instructions can be resumed, but not restarted.
When user programs rely on synchronous behaviour, it
is di�cult to get them to run on pipelined machines:
Modern UNIX systems ... let user programs actively
participate in memory management functions by allow-
ing them to explicitly manipulate their memory map-
pings. This ... serves as the courier of an engraved
invitation to Hell[26]
If the algorithms described are indeed incompatible

with fast, pipelined machines, it would be a serious
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a

a

Methods
a

trap
a

prot1
a

protN
a

unprot
a

map2
a

dirty
a

pagesize
a

a

a

Concurrent GC
a

p
a a

p
a

p
a

p
a a

p
a

a

SVM
a

p
a

p
a a

p
a

p
a a

p
a

a

Concurrent checkpoint
a

p
a a

p
a

p
a a

z
a

p
a

a

Generational GC
a

p
a a

p
a

p
a a

z
a

p
a

a

Persistent store
a

p
a

p
a a

p
a

p
a a a

a

Extending addressability
a

p
a

*
a

*
a

p
a

p
a a

p
a

a

Data-compression paging
a

p
a

*
a

*
a

p
a

p
a a a

a

Heap overow
a

p
a a

y
a a a a a
a

Table 2: Usages of virtual memory system services

* Extending addressibility and data-compression paging useprot1 only to remove inactive pages; the
batching technique described in section 5 could be used instead.

y Virtual memory-based heap-overow detection can be used even without explicit memory-protection
primitives, as long as there is a usable boundary between accessible and inaccessible memory (e.g.
the \break" in vanilla Unix).

z Dirty-page bookkeeping can be simulated by using protN, trap, and unprot.

problem. Fortunately, all but one of the algorithms
we described are su�ciently asynchronous. Their be-
haviour is to �x the faulting page and resume execu-
tion, without examining the CPU state at the time of
the fault. Other instructions that may have begun or
completed are, of course, independent of the contents
of the faulting page. In fact, the behaviour of these
algorithms, from the machine's point of view, is very
much like the behaviour of a traditional disk-pager: get
a fault, provide the physical page, make the page acces-
sible in the page table, and resume.

The exception to this generalization is heap overow
detection: a fault initiates a garbage collection that
modi�es registers (by forwarding them to point at the
new locations of heap records), then resumes execu-
tion. The register containing the pointer to the next-
allocatable word is adjusted to point to the beginning
of the allocation space. The previously-faulting instruc-
tion is re-executed, but this time it won't fault because
it's storing to a di�erent location.

The behaviour is unacceptable on a highly-pipelined
machine (unless, as on the VAX 8800 [10], there is
hardware for \undoing" those subsequent instructions
or addressing-mode side-e�ects that have already com-
pleted). In fact, even on the Motorola 68020 the use of
page faults to detect heap overow is not reliable.

Thus, with the exception of heap overow detection,
all of the algorithms we present pose no more problem
for the hardware than does ordinary disk paging, and
the invitation to Hell can be returned to sender; how-
ever, the operating system must make sure to provide
adequate support for what the hardware is capable of;
semi-synchronous trap-handlers should resume faulting
operations correctly.

Other primitives

There are other virtual memory primitives that oper-
ating systems can provide. For a persistent store with
transactions, it might be useful to pin a page[16] in core
so that it is not written back to the backing store until
the transaction is complete.
The Mach external-pager interface[1] provides at least

one facility which is lacking from the primitives we de-
scribe: the operating system can tell the client which
pages are least-recently-used and (therefore) about to
be paged out. The client might choose to destroy those
pages rather than have them written to disk. This would
be particularly useful for data-compression paging, and
extending addressibility. Also, in a system with garbage
collection, the client might know that a certain region
contains only garbage and can safely be destroyed[12].
In general, the external-pager interface avoids the

problem in general of the operating-system pager (which
writes not-recently-used pages to disk) needlessly dupli-
cating the work that the user-mode fault handler is also
doing.

6 Conclusions

Where virtual memory was once just a tool for imple-
menting large address spaces and protecting one user
process from another, it has evolved into a user-level
component of a hardware- and operating-system inter-
face. We have surveyed several algorithms that rely
on virtual memory primitives; such primitives have not
been paid enough attention in the past. In design-
ing and analyzing the performance of new machines
and new operating systems, page-protection and fault-
handling e�ciency must be considered as one of the pa-
rameters of the design space; page size is another im-
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portant parameter. Conversely, for many algorithms the
con�guration of TLB hardware (e.g. on a multiproces-
sor) may not be particularly important.
Table 2 shows the usages and requirements of these al-

gorithms. Some algorithms protect pages one at a time
(prot1), while others protect pages in large batches
(protN), which is easier to implement e�ciently. Some
algorithms require access to protected pages when run
concurrently (map2). Some algorithms use memory
protection only to keep track of modi�ed pages (dirty),
a service that could perhaps be provided more e�ciently
as a primitive. Some algorithms might run more e�-
ciently using a smaller page size than is commonly used
(pagesize).
Many algorithms that make use of virtual memory

share several traits:

1. Memory is made less-accessible in large batches,
and made more-accessible one page at a time; this
has important implications for TLB consistency al-
gorithms.

2. The fault-handling is done almost entirely by the
CPU, and takes time proportional to the size of a
page (with a relatively small constant of propor-
tionality); this has implications for preferred page
size.

3. Every page fault results in the faulting page being
made more accessible.

4. The frequency of faults is inversely related to the
locality of reference of the client program; this will
keep these algorithms competitive in the long run.

5. User-mode service routines need to access pages
that are protected from user-mode client routines.

6. User-mode service routines don't need to examine
the client's CPU state.

All the algorithms described in the paper (except heap
overow detection) share �ve or more of these charac-
teristics.
Most programs access only a small proportion of their

address space during a medium-size span of time. This
is what makes traditional disk paging e�cient; in dif-
ferent ways, it makes the algorithms described here e�-
cient as well. For example, the concurrent garbage col-
lection algorithm must scan and copy the same amount
of data regardless of the mutator's access pattern [4],
but the mutator's locality of reference reduces the fault-
handling overhead. The \write barrier" in the gener-
ational collection algorithm, concurrent checkpointing,
and persistent store algorithms takes advantage of local-
ity if some small subset of objects accounts for most of
the updates. And the shared virtual memory algorithms
take advantage of a special kind of partitioned locality

of reference, in which each processor has a di�erent local
reference pattern.
We believe that, because these algorithms depend so

much on locality of reference, they will scale well. As
memories get larger and computers get faster, programs
will tend to actively use an even smaller proportion of
their address space, and the overhead of these algo-
rithms will continue to decrease. It is important that
hardware and operating system designers make the vir-
tual memory mechanisms required by these algorithms
robust, and e�cient.
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