Functional Programming

Editor: Philip Wadler, Bell Laboratories, Lucent Technologiesdler@research.bell-labs.com

SSA is Functional Programming

Andrew W. Appel

Static Single-Assignment (SSA) form is an intermedipoint refers to the most recent definition, so we know
ate language designed to make optimization clean amdhere to use, as, Or as, in the program at right.

efficient for imperative-language (Fortran, C) compil- For a program with no jumps this is easy. But where

ers. Lambda-calculus is an intermediate language ”}9\}0 control-flow edges join together, carrying different

makes optimization clean and efficient for funCt'Onali/alues of some variabla we must somehow merge the

language (Scheme, ML, Haskell) compilers. The SSA

i . s) two values. In SSA form this is done by a notational
community draws pictures of graphs with basic blOCkﬁick, the ¢-function. In some node with two in-edges,

and flow edges, and the functional-language communime expression(ar, as) has the value, if we reached

writes lexically nested functions, but (as Richard Kelse}his node on the first in-edge, angif we came in on the
recently pointed out [9]) they're both doing exactly theSecond in-edge '

same thing in different notation. . .
Let'’s use the following program to illustrate:

SSA form. Many dataflow analyses need to find the

use-sites of each defined variable or the definition-sites i1
of each variable used in an expression. @k&use chain J1
is a data structure that makes this efficient: for each state- k—0
ment in the flow graph, the compiler can keep a list of while £ <100
pointers to all thaisesites of variables defined there, and if j <20
a list of pointers to altlefinitionsites of the variables used Je
there. But when a variable hag definitions and\/ uses, k—k+1
we might needV - M pointers to connect them. elge

The designers of SSA form were trying to make an im- jek

k—k+2

proved form of def-use chains that didn’t suffer from this
problem. Also, they were concerned with “getting the
right number of names:” the programmer might use some
variablei for several unrelated purposes in the same pro- First we turn this into a control-flow graph (CFG):

returny

cedure —for example, as the loop counter for two different i1}
loops — and we can do more optimization if we spliito jo1
different variables; andi,. K0

In SSA, each variable in the program has only one defi-
nition — it is assigned to only once. The assignment might
be in a loop, which is executed many times; so single-
assignment is atatic property of the program text, not a
dynamic property of program execution.

\4
i< 100]°

4 A
[ifj <20]® [return j]*

» A
a — T+y ap «— x+ty j i 5 j <k 6
b «— a-—1 bl — (L1—1 k « k+1 k « k+2
a — y+b az — y+bh A K
b — -4 by <« x-4 I
a «— a-+b as <« ao+ by

To achieve single-assignment, we make up a new vari- Now, the question is, where to put thefunctions and
able name for each assignment to the variable. For eltow to rename the variables. rdally crude approaclis
ample, we convert the program at left into the singleto split every variable at every basic-block boundary, and
assignment program at right. At left, a useafit any put¢-functions for every variable in every block:

To appear iPACM SIGPLAN Notices©)1998 by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of part

or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prio
specific permission and/or a fee. Request permissions from Publications Dept, ACM Inc., fax +1(212)869-0481, or permissions@acm.org.

Functional Programming

i< 1 1 in the functional program. We see that teé-hand side
j1 <1 of the ¢ assignment is thiormal parameteof the corre-
ki <0 sponding function; and eaclyht-hand sideargument of
v the ¢ assignment is thactual parameteof some call to
ir « @(i7, i) 2 the corresponding function. That’s what | mean when |
j2 « 207 j1 say that SSA form is a kind of functional programming.
ko — 8(k7, kp) The “g-functions” are not really functions, but they do
if ko <100 correspond (in an inside-out way) to the real functions.
T)‘3 Ai i) |4 We can express this functional program in a nicer way
3 <&l 4 < . : .
iz < a(ip)) using the idea of nested scope. Then the inner-nested
ks < 8(ko)| | kg —a(ko) functions won't all need so many parameters; they can
ifj3< 20 return j use non-local variables from the functions in which they
y are nested. This idea will be familiar to Pascal program-
i5 —o(g) |° [ig —e(a)]° mers (and Scheme, ML, Haskell programmers), and (if
ji5 < 2(j3) ic < 2(i3) there are any of you left) Algol-60 programmers as well.
ks —o(kg)| |ke —a(k)
jg < i5 Jo < ke letiy, =1, j1 =1, ky =0
kg « ks+1 |kg « Kg+2 in let function f2(jo, k2)=
A X ; if k3 < 100
i7 « 8(is, ig) then let functionf, (js, k4) =
i7 < 28, Jo) J2(Ja, ka)
k7 « @ (kg,kg) in if jo <20

then !etjg =1, ks=ko+1
L . " n f7(j3,k3)
Yuck! This isn't “the right number of names!” There else letis — ko, ks = ko + 1
are too many variables and useless copies. More about in f‘r;(% k;) °

th|S Iater. else returry'Q
Meanwhile, we can view this program as a set of mu- in f2(j1, k1)
tually recursive functions, where each function takes ar-

guments, j, k: But what'’s the algorithm for finding the best way of
nesting the functions to eliminate unnecessary argument-
functionfy () = passing? The algorithm is the one for converting pro-
letiy =1, j1 =1, kv = 1in fa(i1, j1, k1) grams to SSA form!
function fa(iz, ja, ko) = : 1
if k9 < 100 then fg(ig,jg, kg) else f4(i2,j2, kg) !1 - i
functionfg(ig,jg, kg) = li:::: : 0

if j3 < 20 then f5(i3, js, k3) else fo(i3, j3, k3)
fUﬂCtiOﬂf4(i4,j4, k4) = j4
fUnCtionf5(i5,j5, k5) =

let jg = i5, ks = ks + 1in fr(is, js, ks)
fUﬂCtiOﬂfﬁ(iﬁ,jﬁ, kﬁ) =

let jg = kﬁ, ko = kg + 11in f7(i6,j9, kg)
function f7(iz, j7, kr) = fa(iz, jr, k)

Y
i2-2(a iD]?
k2 - ﬂ(k4, kl)
if ko < 100

A A
[ifjo<20® [returnp|*

» A
- n 5 T 6
This gives us some insight into what, exactly, is¢a “ JI3<n js < ko
function.” Compare the expressign — ¢(j7, j1) (in the ks « kotl] |ks < kot+2
really crude SSA program) with the function-declaration jA 5 ‘j() 7
4 < 3 15,

f2(~~.,j2,...)=...

and function-calls

kg — @ (k3,ks)

This is the Static Single-Assignment form of the pro-
faleooygry-o) falooyga,-n) gram with optimal placement af-functions. It's much

Functional Programming

nicer than the crude version that had too many variabl€é/e assume that every variable has an initializing defi-
and too manyy-functions. This program has “the right nition in the start node.) Therefore, the rule for placing
number of names.” And notice how it corresponds exs functions is:Whenever node contains a definition of
actly to the nested functional program — functifjncor- some variable:, then any node in the dominance frontier
responds to block, parameteyj; corresponds to variable of n needs ap-function forz.

ji» and so on. Wherever there is a formal parameter of a
function (in the functional form), there isga(in the SSA
form). Wherever the functional form refers to a non-loc
variable, the SSA form has avoided the need for a

Efficient algorithms for computing the dominator tree
a?nd dominance frontiers can be found in any good com-
piler textbook [3, 4, 5, 10, 15]

Once we have the SSA form, we can make appropriate

linked data structures connecting the uses of each variable
Algorithm for optimal placement of ¢'s. The only tg the definition, and the definition to all the uses. Then
place we really need @-function in SSA form is where e can run efficient optimization algorithms: instead of
two different definitions reach (along control-flow edgesysing costly bit-vector dataflow analysis, we can follow
the same point. For example, in the original CFG (the firginks to quickly find the uses for each definition, and vice
diagram above), only one definition ofeaches block 2, yersa, as needed.
so we don't need &-function fori in that block. This is
true even though there are two edges leading into block
2 — it's because the definition f(in block 1)dominates rynctional programming in Fortran? So now we
block 2. Any path to block 2 must go through block 1. know that the SSA conversion algorithm is really doing

We use the notion of dominance addminance fron- With its dominance frontiers: it is automatically convert-
tiersto calculate the minimum set gffunctions. In gen- ing a Fortran or C procedure into a well-structured func-
eral, nodez in a flowgraph dominates nodewhen any tional program with nested scope. Actually, I've only
path from the start node tbh must go throughu. Now, shown what to do with the scalar variables. Arrays are
consider the region of the graph dominatedibimagine handled in high-powered (parallelizing) compilers using
that this region has a “border” or “frontier” separating itsophisticated dependence analysis techniques [15], which
from the rest of the graph. We call this the dominanci another way of extracting the functional program hid-
frontier of a. In particular, whenever there is an edgéng inside the imperative one.

b — ¢ from a nodeb dominated bya to a nodec not

strictly dominated by:, we say that is in the dominance

frontier of a. What SSA users can learn from functional program-
ming. An important property of SSA form is that the
definition of a variable dominates every use (or, in the
case of a uses withingfunction, dominates the a prede-
cessor of the use node). This property is often unstated in
explanations of SSA, but it is necessary for many of the
analyses and optimizations on SSA — it is part of SSAs
semantics. In a functional program with nested scope,
this restriction is explicitly and statically encoded into
the structure of function nesting. The notionsafopes

of variableshelps us to structure the intermediate form.

For example, in this graph node 5’s dominated region
is shown in grey, and the border of that region is cross
by edges — 4, 8 — 5, 8 — 13, and7 — 12. So we
say that nodes, 5, 12, 13 form the dominance frontier of
node 5.

%hat functional programmers can learn from SSA.
People who use SSA tend to draw flowcharts with boxes,
assignments, conditionals, and control-flow edges. This
notation, while subject to abuse, is often better for ex-

The importance of dominance frontiers is this: If nodglaining ideas and for intuitive visualization of algorithms
5 contains a definition of variable then any node in the and transformations. Functional programmers often get
dominance frontier of 5 is reachable from two differentost in the notation of functional programming, which is
definitions ofz; one in node 5 and one in the start nodea shame.

Functional Programming

History and literature. SSA form was developed by References

Wegman, Zadeck, Alpern, and Rosen [1, 11] for efficient

computation of dataflow problems such as global valud1]l Bowen Alpern, Mark N. Wegman, and F. Kenneth Zadeck.
numbering, congruence of variables, aggressive dead- Detecting equality of variables in programs.Rroc. 15th
code removal, and constant propagation with conditional ACM Symp. on Principles of Programming Languages
branches [14]. Cytron et al. [7] describe the efficient pages 1-11, New York, January 1988. ACM Press.

computation of SSA form using dominance frontiers. ~ [2] Andrew W. Appel. Compiling with ContinuationsCam-
bridge University Press, New York, 1992.

Wolfe [15] describes several opt|m|zat|qn algorithms [3] Andrew W. Appel. Modern Compiler Implementation in
on SSA (which he callfactored use-def chaijs C. Cambridge University Press, New York, 1998.

Church [6] invented\-calculus, a language of func- [4] Andrew W. Appel. Modern Compiler Implementation in
tions with nested scope. Strachey [13] showed how Java Cambridge University Press, New York, 1998.
to encode control flow as function calls wontinua- [5] Andrew W. Appel. Modern Compiler Implementation in
tion functions. Steele [12] showed how to use continu- ML. Cambridge University Press, New York, 1998.
ations as the intermediate representation of a compile{6] Alonzo Church. The Calculi of Lambda Conversion
Kelsey [9] showed the correspondence between SSA and princeton University Press, Princeton, 1941.

continuation-passing style (CPS), and gave algorithmsfom Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N.
converting each to the other. Wegman, and F. Kenneth Zadeck. Efficiently computing
static single assignment form and the control dependence
graph.ACM Trans. on Programming Languages and Sys-
tems 13(4):451-490, October 1991.

Cormac Flanagan, Amr Sabry, Bruce F. Duba, and
Matthias Felleisen. The essence of compiling with contin-
uations. InProceedings of the ACM SIGPLAN '93 Confer-
ence on Programming Language Design and Implementa-
tion, pages 237-247, New York, 1993. ACM Press.
Richard A. Kelsey. A correspondence between continua-
tion passing style and static single assignment form. In
Proceedings ACM SIGPLAN Workshop on Intermediate
Representationaol. 30, pages 13-22, March 1995.
Steven S. MuchnickAdvanced Compiler Design and Im-
plementation Morgan Kaufmann, San Francisco, 1997.

Appel [2] improved upon CPS by binding every non-
trivial value explicitly to a variable. Flanagan et al. [8]
showed Administrative-Normal Form (A-Normal Form
or ANF), which binds every nontrivial value to a variable [8]
without being full CPS. The functional notation | have
used in this paper is a variant of ANF or CPS.

Advertisement. Chapter 19 of my newodern Com- [9]
piler Implementationiextbooks [3, 4, 5] has readable and
detailed coverage of many relevant topics:

e SSA form and its rationale; [10]

Dominance frontiers and calculation of SSA form; [11j

The Lengauer-Tarjan algorithm for efficient calcula-
tion of dominators;

Optimization algorithms using SSA: dead-codg12]
elimination, conditional constant propagation; con-
trol dependence; construction of register interfer13]
ence graphs;

Structural properties of SSA form;

Functional intermediate representations (CPS, ANH}4]
and their relation to SSA.

Barry K. Rosen, Mark N. Wegman, and F. Kenneth
Zadeck. Global value numbers and redundant computa-
tions. InProc. 15th ACM Symp. on Principles of Pro-
gramming Language®p. 12—-27, New York, Jan. 1988.

Guy L. Steele. Rabbit: a compiler for Scheme. Technical
Report AI-TR-474, MIT, Cambridge, MA, 1978.

C. Strachey and C. Wadsworth. Continuations: A mathe-
matical semantics which can deal with full jumps. Techni-
cal Monograph PRG-11, Programming Research Group,
Oxford University, 1974.

Mark N. Wegman and F. Kenneth Zadeck. Constant prop-
agation with conditional branchesACM Trans. on Pro-
gramming Languages and Systerh3(2):181-210, 1991.

visit[15] Michael Wolfe.High Performance Compilers for Parallel

Computing Addison Wesley, Redwood City, CA, 1996.

For more information about the book,
http://www.cs.princeton.eduappel/modern.

Andrew Appel is Professor of Computer Science at

Acknowedgment. Kenneth Zadeck improved my un- Princeton University. His research interests include pro-
derstanding of SSA form through many conversationgramming languages and compilers, functional program-
and told me all along that SSA is a functional program. ming, and language support for modularity and security.

