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Typed Assembly Languages (TALs) are used to validate the safety of machine-language programs.

The Foundational Proof-Carrying Code project seeks to verify the soundness of TALs using the

smallest possible set of axioms—the axioms of a suitably expressive logic plus a specification
of machine semantics. This paper proposes general semantic foundations that permit modular

proofs of the soundness of TALs. These semantic foundations include Typed Machine Language

(TML), a type theory for specifying properties of low-level data with powerful and orthogonal type
constructors, and Lc, a compositional logic for specifying properties of machine instructions with

simplified reasoning about unstructured control flow. Both of these components, whose semantics
we specify using higher-order logic, are useful for proving the soundness of TALs. We demonstrate

this by using TML and Lc to verify the soundness of a low-level, typed assembly language, LTAL,

which is the target of our core-ML-to-sparc compiler.
To prove the soundness of the TML type system we have successfully applied a new approach,

that of step-indexed logical relations. This approach provides the first semantic model for a type

system with updatable references to values of impredicative quantified types. Both impredica-
tive polymorphism and mutable references are essential when representing function closures in

compilers with typed closure conversion, or when compiling objects to simpler typed primitives.

Categories and Subject Descriptors: F.3.2 [Logics and meanings of programs]: Semantics of
Programming Languages; D.2.4 [Software Engineering]: Software/Program Verification

General Terms: Languages, Verification

Additional Key Words and Phrases: Typed Assembly Languages, Proof-Carrying Code, Semantic
Models, Logical Relations, Control Flow

1. INTRODUCTION

Typed Assembly Languages (TALs) [Morrisett et al. 1999; Morrisett et al. 2002;
Morrisett et al. 1999; Hamid et al. 2002; Crary 2003; Chen et al. 2003] are used to
prove the safety of machine-language programs. The soundness property for a typed
assembly language is that if a TAL program type checks, then the corresponding
machine-language program obeys a predetermined safety policy. Unfortunately, to
express the constructs of a real source language as compiled by a real compiler to a
real target machine, a TAL must be quite feature-laden and complex. Therefore, its
soundness proof is huge, and too tedious for anyone to check by hand. Furthermore,
a real TAL is an industrial software artifact just like a compiler, and is modified
regularly just like any software, which means that the soundness proof never stands
still. For both of these reasons, it is essential that the proof of soundness be machine
checked, and that this machine-checked proof be modular and maintainable.
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The central goal of the Foundational Proof-Carrying Code (FPCC) project [Ap-
pel 2001] at Princeton is to build a machine-checked and modular soundness proof
for a realistic TAL. The guiding principle of the FPCC project has been as fol-
lows: Everything, including the soundness of TALs, should be verified with respect
to the smallest-possible trusted computing base (TCB). This poses the intellectual
challenge of understanding the minimal set of assumptions one must make in con-
structing a protection mechanism, and yields a system that is fundamentally more
secure.

To achieve a minimal TCB, we follow the semantic approach [Appel and Felty
2000] to FPCC. We start with an architecture specification (i.e., machine seman-
tics), defined using some simple, yet expressive, logic. This logic should consist of
a small set of axioms and definitional principles from which it should be possible to
build up most of modern mathematics. For the FPCC project, we use higher-order
logic extended with a few axioms of arithmetic. The architecture specification, as
well as a predetermined safety policy, can easily be defined using axioms of higher-
order logic and arithmetic. Based on the foundation of logic and machine semantics,
we define the denotational semantics of the syntactic types and typing judgments
of TALs. Intuitively, the semantics of each type characterizes the safe operational
use of values of that type. We can then prove TAL typing rules as individual lem-
mas, instead of having to trust them as axioms. Finally, we prove the soundness
theorem, which says that if a program type checks, then it is safe according to the
safety policy. Using this approach, since the typing rules are proved as lemmas, a
TAL typing derivation is converted into a safety proof that relies on the smallest
possible set of axioms—i.e., axioms of logic plus machine semantics (Figure 1).

Fig. 1. Foundational Proof-Carrying Code.

The Compiler translates an ML program

into an LTAL [Chen et al. 2003] program and
the corresponding machine-language pro-

gram. MLRISC is the SML/NJ compiler’s

untyped back end. Chen adapted it to
type-preserving compilation without modi-

fying its internals [Chen et al. 2003]. The

Checker first reads the trusted base (Ax-
ioms and Architecture Spec.), then reads the

LTAL rules, then reads and checks a proof

of soundness of the LTAL w.r.t. the trusted
base. Then it applies the (syntax-directed)
LTAL rules to the LTAL program and the
machine-language program, which verifies
both that the LTAL is type-safe and that

it correctly assembles to the given machine-
language program. If all of this succeeds,

then we know that the program is safe. The
only trusted components are the Axioms,
Architecture Specification, and the Checker;
the LTAL need not be trusted because it is

proved sound in a way that can be checked
by the Checker.

LTAL
Program

OK!

Code
Machine

ML program

Axioms & Architecture SpecTCB

ST
A

TI
C

 P
R

O
O

FS

proofs of LTAL rules

LTAL rules

FLINT

Machine-checked

MLRISC
Typed back
end

 LTML

Typed closure
conversion

C
O

M
PI

LA
TI

O
N

Checker

c

Proofs about register conventions,
instruction decoding, etc.

Semantic model
and proofs described

in this paper

run if
OK

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.



Semantic Foundations for Typed Assembly Languages · 3

In this paper, we explain how our FPCC system modularly organizes the sound-
ness proofs of Typed Assembly Languages. Modular soundness proofs present a
challenge since the design goals of a typical TAL—including syntax-directed type
checking, accommodating low-level optimizations, and dealing with particulars in
the target machine—complicate the soundness proof. Instead of directly proving
the soundness of a TAL with respect to machine semantics, our solution is to design
and implement an intermediate layer between the machine semantics and the TAL.
This layer has orthogonal and primitive features that TALs can use to justify their
soundness. Given this design, we first prove the soundness of our intermediate layer
with respect to the machine semantics, and then prove the soundness of TALs based
on the interface provided by the intermediate layer (see Figure 1). All of our proofs
are machine checked in higher-order logic using the Twelf system [Pfenning and
Schürmann 1999]. The TAL of FPCC is the Low-level Typed Assembly Language
(LTAL) of Chen et al. [2003], but LTAL has many engineering details that we will
not describe in this paper; instead, we will show how to prove soundness of a much
simpler example TAL.

Our intermediate layer (for FPCC and in this paper) consists of two parts: a
Typed Machine Language (TML) plus a control logic Lc. When verifying properties
of assembly-language programs, we need the ability to specify properties of both
machine states (data) and properties of assembly instructions (code). TML is
designed as an expressive type theory that can specify rich properties of machine
states, while Lc supports specification of properties of assembly instructions in the
style of Hoare Logic. This separation is by design, since the logic Lc is parameterized
by a specification language for machine states. In FPCC and this paper, we use
TML as the specification language for machine states.

TML is an expressive type theory with orthogonal type primitives, including
intersection types, union types, recursive types, mutable references, polymorphism,
existential types, address-arithmetic types, and so on. Type checking in TML is not
syntax directed; however, the type constructors of a TAL (with syntax-directed type
checking) can be expressed as combinations of TML operators. These operators can
express a wide variety of TALs for a wide variety of source languages, but TML
is not infinitely general: for example, languages with “weak updates” (i.e., type-
invariant mutable references) can be modeled, but not those with “strong updates”
(i.e., mutable references whose type may be changed dynamically).

Because TML has such a rich set of operators, constructing a semantic model
for TML based on machine semantics is a nontrivial problem. We require a model
that can handle the various circularities that arise in the presence of features such
as recursive functions, recursive types, impredicative quantified types, and mutable
references. In particular, we wish to model general references—that is, updat-
able references that can store values of any type, including functions, as well as
references and values with recursive types or impredicative existential types (i.e.,
we need a model that can handle cycles in the store). A naive semantic model
cannot be well-founded in the presence of such features. We have addressed this
challenge using the technique of step-indexed logical relations. While most logical
relations in the literature are defined simply by induction on the type structure,
step-indexed logical relations are indexed not just by types, but also by the number
of steps available for future evaluation. This stratification is required for ensuring
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that the definition of the logical relation is well-founded, even in the presence of
(semantically) challenging features such as recursive types, mutable references, and
impredicative polymorphism.

Our control logic Lc is a generalized Hoare logic of multiple-entry and multiple-
exit program fragments that permits reasoning about control flow in a very modular
way. The control-flow constructs of TALs—including individual instructions, basic
blocks, conditional branches, indirect jumps, functions, labels, continuations, and
loops—can all be expressed using a few simple and general primitives of Lc.

Having the intermediate layer provides a separation of concerns. For instance,
the primary design goal for the layer is to be expressive, not to support decidable
type checking or type inference. Therefore, it is not well suited as the language for
a compiler to communicate proof witnesses to a checker. That role is fulfilled in
the FPCC system by LTAL, whose types and rules are specialized for the FPCC-
ML compiler and the sparc: they are less orthogonal and less general, but they
permit syntax-directed type checking. Furthermore, since TML and Lc are largely
language-independent and machine-independent, they can provide semantic foun-
dations for different TALs—in particular, they provide expressive and orthogonal
primitives with which more complicated features of TALs can be encoded.

The major contributions of this paper are as follows.

—We have designed and implemented a general and powerful intermediate layer,
consisting of Typed Machine Language (TML) and a control logic Lc, that serves
as a semantic foundation for Typed Assembly Languages, and permits modular
and maintainable soundness proofs for TALs.

—To define semantics of TML types, we have successfully applied a new approach,
that of step-indexed logical relations. As far as we know, this is the first semantic
model of a type system with mutable references, (contravariant) recursive types,
impredicative polymorphism, and code pointers. These advanced types are es-
sential for compiling ML to machine code—for instance, the representation of
ML function closures demands mutable references to impredicatively quantified
types. We specify the semantics of TML by induction over both the structure of
types, as well as the number of future evaluation steps.

—The semantic approach described in this paper scales to real systems: it has
been demonstrated in a complete system that includes a type-preserving opti-
mizing compiler from core ML to a typed assembly language for the sparc called
LTAL [Chen et al. 2003], a type-checker for LTAL expressed as syntax-directed
Horn clauses [Wu et al. 2003; Wu 2005], a machine-checked proof of the sound-
ness of the Horn clauses, and a tiny trustworthy LF proof-checker that can both
check the soundness proof [Appel et al. 2003] and interpret the Horn clauses [Wu
et al. 2003].

In the rest of the paper, we first specify the untyped operational semantics for von
Neumann machines and our safety policy (Section 2). We then present the syntax of
TML and demonstrate its ability to encode complicated types (Section 3). We show
how to build a semantic model for TML type constructors—including mutable and
immutable references, recursive types, and impredicatively quantified types—using
step-indexed logical relations (Section 4). We then introduce the second component
of our intermediate layer, a compositional logic for control flow, or Lc (Section 5).
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.
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To illustrate the power of our intermediate layer, we present a simple TAL and
demonstrate how the TAL’s type soundness is established on top of TML and Lc

(Section 6). We wrap up with a historical overview of the FPCC project (Section 7)
and a discussion of related work (Section 8).

2. MACHINE MODEL AND SAFETY POLICY

We specify a small-step operational semantics that characterizes both the “raw”
machine semantics and the safety policy. This specification makes no reference to
any particular type system—only to the untyped syntax and semantics of the target
machine. For the FPCC project’s target machine we formally specified the sparc
instruction-set architecture [Michael and Appel 2000; Appel 2001]. For simplicity
in this paper, however, we use an imaginary machine with a simple instruction set.
The imaginary machine we axiomatize for this paper machine operates on infinite-
length integers, though the FPCC project’s sparc specification performs modular
arithmetic on 32-bit integers.

A machine state S is given by a pair 〈R, M〉 of a register bank R and a memory
M , both of which are modeled as finite maps from addresses (numbers) to contents
(also numbers). Every register in the machine is assigned an index in the register
bank. On the sparc, for example, we have 0–31 as general-purpose registers.
Special registers, including the program counter and the condition-code register,
are assigned indexes that are greater than 31. For readability, we use r0, r1, . . . , r31
for the indexes of general-purpose registers. We use pc for the index of the program
counter. We use the metavariable r to range over the concrete registers r0, r1,
etc., of the machine, and the metavariable l to range over locations (addresses) in
memory.

The machine instructions supported by our operational semantics are as follows.
Each instruction is assumed to be of size one.

(machine instructions) i ::= add rd, rs, n | ld rd, rs[n] | st rd[n], rs
| goto l | bz rs, l | bnz rs, l | jmp rd

The instruction “add rd, rs, n” adds n to the contents of register rs, and puts the
result in register rd. The instruction “ld rd, rs[n]” loads the memory contents at
address rs + n into register rd. The instruction “st rd[n], rs” puts the contents of
rs into the memory slot at address rd +n. The branch-always instruction “goto l”
unconditionally jumps to the absolute address l. The branch-if-zero instruction
“bz rs, l” jumps to l if the value in rs is zero, and falls through to the next instruction
otherwise. The branch-if-not-zero instruction “bnz rs, l” behaves analogously if the
value in rs is not zero. The indirect-jump instruction “jmp rd” jumps to the address
in register rd. Note that the machine does not have a “halt” instruction. Instead,
we axiomatize a “return address” that a program can jump to in order to exit safely
(see discussion of return addr(l) later in this section, page 7).

Modeling Machine Instructions. A machine instruction i is modeled as a relation
between two machine states. For example, the semantics of the load instruction,
“ld rd, rs[n]”, is specified as follows, where 〈R, M〉 represents the state in which
the load instruction is executed and 〈R′, M ′〉 represents the state after executing
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the load.

(ld rd, rs[n])(〈R, M〉, 〈R′, M ′〉) ,(
R′(pc) = R(pc) + 1

)
∧
(
R′(rd) = M(R(rs) + n)

)
∧
(
∀x /∈ {pc, rd}. R′(x) = R(x)

)
∧
(
∀x. M ′(x) = M(x)

)
∧ readable loc(R(rs) + n, 〈R, M〉)

The semantics specifies that the load instruction increments the program counter
and loads the value at the memory address R(rs) +n into the register rd, while the
contents of all other registers, as well as the contents of memory, remain unchanged.
The semantics of other instructions are defined in a similar fashion.

One important property of our machine semantics is that it is deliberately partial:
unsafe operations are omitted from the semantics. Our FPCC system uses memory
safety as the safety policy. Unsafe operations, therefore, are those that read from
unreadable addresses, and those that write to unwritable addresses.

In the FPCC system, we axiomatize the set of readable and writable locations
using the following predicates:

readable loc(l, 〈R, M〉) , . . .

writable loc(l, 〈R, M〉) , . . .

The readable loc predicate specifies whether a memory address l is readable, while
writable loc specifies whether a memory address l is writable. Note that both
predicates take the machine state 〈R, M〉 as an argument. This is necessary so
that we may rely, for instance, on heap allocation information stored in the registers
and memory when determining whether a given location is readable or writable.
In particular, the convention of the SML/NJ compiler specifies a heap area and a
register-spilling area using values of special registers. Then, we axiomatize that the
heap area and register-spilling area are both readable and writable.

Let us return to the semantics of the load instruction above. The reader may
have noticed that the definition of “ld rd, rs[n]” uses the readable loc predicate to
ensure that the address being read from is readable. To see the ramifications of this,
suppose that in some state 〈R, M〉 the program counter points to a ld instruction
that would, if executed, load from an address that is unreadable. Then, since the
semantics of the ld instruction requires that the address must be readable, there
does not exist a state 〈R′, M ′〉 such that (ld rd, rs[n])(〈R, M〉, 〈R′, M ′〉).

To model von Neumann’s idea that integers can encode instructions, we define
a decode relation decode(n, i) that decodes a machine integer n into a machine
instruction i. The decode relation is straightforward to define using arithmetic in
higher-order logic.

Step Relation and Safety. The machine operational semantics is modeled by a
step relation, 7→, that steps from one state 〈R, M〉 to the next state 〈R′, M ′〉. The
next state 〈R′, M ′〉 is the result of decoding the current machine instruction i (in
state 〈R, M〉), and then executing i.

〈R, M〉 7→ 〈R′, M ′〉 , ∃i . decode(M(R(pc)), i) ∧ i (〈R, M〉, 〈R′, M ′〉)

We write S 7→j S′ to denote that there exists a chain of j steps of the form
S 7→ S1 7→ . . . Sj where Sj is S′. The step relation is partial; some states have no
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.
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successor states and we call them stuck states. One example of a stuck state is a
state in which the program counter points to an integer that cannot be decoded
into an instruction. Our modeling of machine instructions makes the step relation
even more partial; for example, if the current instruction in a state S is a load
instruction that would load from an unreadable address, then S is a stuck state.

Using this partial step relation, we can define safety. A state S is safe for k steps
if it will not reach a stuck state within k steps. We say a state S is safe if it is safe
for any number of steps.

safe state(S, k) , ∀S′. ∀j < k. S 7→j S′ ⇒ ∃S′′. S′ 7→ S′′

Safe Machine Code. Machine code C is a finite map from addresses to integers
(the encodings of machine instructions). We define a predicate loaded(C, S) to
specify that the code C is loaded into state S.

loaded(C, 〈R, M〉) , ∀l ∈ dom(C). M(l) = C(l)

Next, we specify safety for machine code. Given a program start address startLoc,
we say machine code C is safe if, for any machine state S, if C is loaded in memory
in state S, the program counter in state S points to startLoc, and S satisfies some
initial conditions (which we explain below), then S is a safe state.1

Definition 2.1 (Safe Machine Code).

safe code(C, startLoc) ,

∀R,M. loaded(C, 〈R, M〉) ∧ R(pc) = startLoc ∧ init cond(〈R, M〉)
⇒ ∀k. safe state(〈R, M〉, k).

The init cond(S) predicate axiomatizes the initial state. One component of the
initial conditions that S must satisfy specifies a return address such that machine
code C can always jump to that address to reach a safe state.

return addr(l) , ∀R,M. R(pc) = l ⇒ ∀k. safe state(〈R, M〉, k)

In our implementation, we designate register 15 to store the return address, which
means that return addr(R(15)) is part of the specification init cond(〈R,M〉). Thus,
according to the definition of safe code(C, startLoc), a terminating program is safe
as long as it jumps to the return address at the end. There are other conditions
specified by init cond(S) that constrain how registers and memory are organized in
the initial state; we omit further details.2

A Foundation for Semantic Models. The small-step relation 7→ specifies how ma-
chine instructions execute and also, by omitting certain steps (or more specifically,
by omitting the ability to load from and store to certain addresses), specifies a

1In our FPCC system, we handle position-independent code—that is, we prove a program safe no

matter where it is loaded. However, to simplify the current presentation, we have assumed that

the addresses where machine code is loaded are fixed, and that program execution begins at the
address startLoc.
2In Section 4.6, we will introduce the notion of a valid state (specified by the valid state predicate),
which is an invariant on machine states. The init cond predicate subsumes the conditions required
by valid state, thus ensuring that the initial state is also a valid state.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.



8 · A. Ahmed, A. W. Appel, C. D. Richards, K. N. Swadi, G. Tan, and D. C. Wang

safety policy. The trusted computing base for our system is comprised solely of the
the step relation, together with the axioms of higher-order logic — that is, nothing
defined after this section is in the TCB. We are interested in proving the soundness
property for the type-checker and assembler of a Typed Assembly Language, which
says: If a TAL program type-checks and assembles to a machine-language program
C, then C will execute in conformance with the safety policy. The remainder of
this paper shows how to construct semantic models of TALs such that soundness
can be proved. These semantic models will make use of the step relation 7→, the
notion of machine states 〈R, M〉, the decode relation decode(n, i), the definition of
safe machine code, as well as other predicates defined in this section.

One could imagine safety policies more sophisticated than memory safety. In
particular it seems natural to achieve a type-safety policy: “This module will be
safe when linked against such-and-such an interface specified in the type system of
ML or Java.” The semantic methods we describe in the rest of the paper should
be capable of such policies. But we wanted to demonstrate that type systems are
useful for guaranteeing even those safety properties that don’t explicitly mention
types at all. Therefore, we wanted to avoid mentioning types in the safety policy.

Furthermore, if the safety policy is type safety rather than memory safety, then
the type system itself would have to be part of the trusted base—part of the speci-
fication of the theorem to be proved. In the FPCC project we wanted the simplest,
smallest, and clearest specification of a nontrivial safety theorem to be proved about
machine-language programs. That is, the type system is part of the proof, not part
of the statement of the theorem to be proved. Just because the memory-safety pol-
icy is simple does not mean that proving adherence to it is trivial: it is, of course,
undecidable in general and difficult in practice—unless one has the right technique.
The right technique is provably sound type systems.

3. TYPED MACHINE LANGUAGE

We present a low-level type system called Typed Machine Language (TML) that
is intended to serve as a semantic foundation for types in TALs. TML provides an
expressive set of orthogonal type constructors that can be combined in a variety
ways to specify properties of data and machine states.

3.1 TML Type Constructors

We show the primitive TML type constructors in Figure 2. They include the top
type, the bottom (or empty) type, the integer type int, intersection and union types,
and the singleton integer type const(n), which contains only the integer value n.
These type constructors will be given semantic interpretations in Section 4; here
we show how to combine them to synthesize other types.

Integer-comparison types include less-than, equal-to and greater-than types. For
example, int<(const(n)) contains all integers that are less than n. Other comparison
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.
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type t ::= top contains all values
| bottom contains no values

| int integers
| t1 ∩ t2 | t1 ∪ t2 intersection and union types

| const(n) singleton integer type

| int<(t) | int=(t) | int>(t) integer-comparison types
| plus(t1, t2) | times(t1, t2) | mod(t1, t2) arithmetic types

| readable | writable safety-property types

| box(t) | ref(t) immutable and mutable reference types
| codeptr (t) code-pointer type

| rec (t) recursive type

| forall(t) | exists(t) quantified types
| n | subst(t1, t2) type variables and substitutions

| {t1 : t2} single-slot vector type
| kd scalar(t) | kd numeric(t) kind coercions

Fig. 2. TML type language.

types and a range type can be defined as follows.

int≤(t) , int<(t) ∪ int=(t)
int≥(t) , int>(t) ∪ int=(t)
int6=(t) , int>(t) ∪ int<(t)

range(m,n) , int≥(const(m)) ∩ int<(const(n))

Arithmetic types serve to capture arithmetic operations at the type level. They
include plus, times, and modulo types. Other arithmetic types can be synthesized
from these, for instance:

minus(t1, t2) , plus(t1, times(const(−1), t2)).

TML also has types that model safety properties of addresses. Specifically, the
readable and writable types contain all addresses that are readable and writable
(respectively) according to the safety policy. In addition, TML has types for im-
mutable references (box (t)) and type-invariant mutable references (ref (t))—that is,
ref (t) is the type ascribed to references whose contents may be updated, but only
with values of type t.

Note that we model mutability separately from the permission to read or write
a memory location. Thus, we can model, for instance, a reference cell that cannot
be written by the current program, but whose contents may change (due to the
actions performed by another process). In programming languages such as ML, a
mutable-reference type implicitly carries the capability to read from and write to
the cell. An ML reference can therefore be modeled by the following combination
of TML types:

ref (t) ∩ readable ∩ writable.

An address belongs to type codeptr (t) if it is safe to jump to the address provided
that the precondition t is met. TML also has recursive types rec (t), universally
quantified types forall(t), and existentially quantified types exists(t).

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.
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Recursive types and quantified types introduce new type variables. We use de
Bruijn indices to represent type variables. The notation n denotes the nth outer-
most bound type variable, with indices starting at 0. Therefore, in type forall(t),
the index 0 in t refers to the quantified type variable. TML has no explicit type
functions—just expressions with free de Bruijn variables that may be bound by
quantifiers or other operators—and we do not need higher-order kinds. (A sim-
ple first-order kind system will be introduced later.) The type subst(t, t1) in TML
substitutes t1 for de Bruijn index 0 in t.

Vector Types, Kinds, and Kind-Coercion Types. The types we have introduced
so far are all scalar types, in the sense that they type a single value. For example,
a single address belongs to type codeptr (t) if it is safe to jump to the address given
the precondition t. In the process of designing TML, we found that it is sometimes
necessary to type a sequence of values at once. For instance, on a von Neumann
machine, the precondition t in a code-pointer type codeptr (t) usually describes the
types of the entire register bank. For instance, the type t may say that register 1 is
of type int, and register 2 is of type ref (int). In this case, we need to type a sequence
(vector) of values in the register bank, not just a single value in a particular register.

TALs usually have different kinds of types for scalar values and vector values.
For example, the Cornell TAL [Morrisett et al. 1999] has register-file types that de-
scribe register banks. This means that there are several different syntactic classes
of variables. If we had N different classes of variables in TML, each with a different
semantic meta-type, then we would need N different binding operators. Further-
more, since we are using de Bruijn indices, we would need N2 inference rules.3

To avoid such duplication, we made the design decision to fold different classes of
values into a single class of vector values. Thus, all TML types characterize vector
values. A scalar type happens to judge only slot zero of a vector value.

A single-slot vector type {t1 : t2} constrains only one slot of a vector value. A
vector value v belongs to type {const(n) : t} if and only if v(n) (the contents of
the n-th slot of vector v) belongs to type t. Using single-slot vector types together
with intersection types, we can constrain multiple slots of a vector value, as with
the type {const(1) : int} ∩ {const(2) : ref (int)}. For readability, when there is no
ambiguity, we write types of this form as { 1 : int, 2 : ref (int) }.

Since TML models scalar types and vector types using the same (higher-order
logic) meta-type, we need to introduce a kinding system. For example, the type
{t1 : t2} does not make sense if t1 is a single-slot vector type of the form {t3 : t4}.
TML has a simple kinding system to rule out such pathological types. It has kinds
vector , scalar , and numeric. A type of vector kind is one that judges a sequence of
values, such as the contents of a register-bank or a formal-parameter list. A type
of scalar kind is one that judges only slot zero of a vector value—for instance, the
types int and const(n) are both scalar. A type has numeric kind if it behaves like
const(n), for some n—so the type const(n) is numeric but the type int is not. Thus,
the single-slot vector type {t1 : t2} makes sense if and only if t1 is a numeric type
and t2 is a scalar type.

3With N classes of variables, we would need N different shift operators and N2 inference rules
for commuting variables with shift operators.
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We can calculate the kinds of various types:4 for example, the type box (int) is
scalar, while the type plus(const(3), const(4)) is numeric. But what is the kind of the
type variable 0? To handle type variables, we find it useful to apply an appropriate
kind coercion on uses of type variables—that is, we have expressions containing
kd numeric(0) or kd scalar(0) instead of a “bare” type variable 0. Specifically, we
have kind-coercion types kd numeric (similarly, kd scalar) such that kd numeric(t)
is equivalent to t if t is indeed a numeric type; otherwise kd numeric(t) is equiva-
lent to bottom. In some sense, the kd numeric(t) type is an intersection type that
intersects t with a predicate that enforces the numeric property of types—we make
this intuition precise in Section 4.9 when we present the semantics of kind-coercion
types.

With kind-coercion types, we can define quantified types that quantify over nu-
meric and scalar types. For example, a universal quantifier that quantifies over
numeric types is defined as follows.

forallnum(t) , forall(subst(t, kd numeric(0)))

That is, all occurrences of the variable 0 in t are substituted with its numeric
restriction kd numeric(0). This approach is similar to that taken by Crary [2000]
when defining inclusive subtyping.

No coercion is needed when quantifying over vector types since the set of vector
types is semantically equal to the set of all types. That is, if we had a kd vector
coercion it would be equivalent to the identity function.

3.2 Combining Type Constructors

We have discussed some simple examples of combining TML constructors, and we
further demonstrate such uses of TML in this section.

Booleans, 32-bit Integers, and Pairs. Boolean types and 32-bit integer types can
be encoded easily:

bool , const(0) ∪ const(1)
int32 , range(0, 232)

Next, we encode a pair type that has two immutable fields. To do this, we first
define an offset type and a field type.

offset(t1, t2) , plus(t2, times(const(−1), t1))
field(n, t) , offset(times(const(4), const(n)), box (t))

pair(t0, t1) , field(0, t0) ∩ field(1, t1)

To understand offset types, let us consider the type offset(const(n1), t2). Informally,
the definition of offset types says that a value n has type offset(const(n1), t2) if and
only if n + n1 has type t2. Now let us relate this to what the definition actually
says. Note that offset(const(n1), t2) is essentially defined as plus(t2, const(−n1))—
so, intuitively, this says that n has type offset(const(n1), t2) if and only if n has type

4We can validate many kinding rules once we have defined the semantics of kinds. In Section 4.9,
we will present our model of kinds together with some of these kinding lemmas (see Figure 4 on
page 29).
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“t2−n1.” The latter, if we “add” n1 to both n and “t2−n1,” is the same as saying
n+ n1 has type t2.5 Note that the plus operator can sensibly add a scalar type to
a constant type, or a numeric type to a numeric type. Thus we can reason about
address arithmetic as we do here in defining offset and field types. Finally, note
that in the above definitions we assume that each field occupies four bytes6—hence,
the use of const(4) in the definition of field(n, t).

ML Datatypes. The option type for integers, written in ML as

datatype int option = None | Some of int,

can be encoded in TML as const(0) ∪
(
int6=(const(0)) ∩ box (int)

)
, where we use

integer 0 for the None case, and a boxed value (at a nonzero address) for the integer
case.

More complicated datatypes such as the list type

datatype List = Nil | Cons of Int ∗ List

can also be encoded. Compilers can choose to have either an untagged or tagged
representation for this type. In an untagged representation, we can represent the
list type as

rec
(

const(0)︸ ︷︷ ︸
Nil case

∪
(
int6=(const(0)) ∩ field(0, int) ∩ field(1, 0)︸ ︷︷ ︸

Cons case

))
For the Nil case, we use the value 0, hence the left side of the union type. For the
Cons case, we have a pointer to the memory location containing a record of two
fields, the first of which is the data, while the second is the pointer to the next cell.
The rec operator binds a de Bruijn index—note that 0 is the type variable bound
by the recursive type; it is not the integer 0.

In a tagged representation, each case in a datatype is uniquely associated with a
tag, or a natural number. The representation has the tag as its first field, followed
by the other fields in the datatype.

rec
(

field(0, const(0))︸ ︷︷ ︸
Nil case

∪
(
field(0, const(1)) ∩ field(1, int) ∩ field(2, 0)︸ ︷︷ ︸

Cons case

))
Function Closures. A function closure is a package that has both a code pointer

and an environment. We can encode function closures using existential types and
the field constructor, where the existential abstracts over the type of the closure’s
environment. Consider, for example, a type cont(t) that models a closure of a con-
tinuation. The closure is a record of two fields: a code pointer and an environment.
When called, the code pointer takes an argument of type t in register 1, and the
environment in register 2. Here 0 is the type variable (for the type of the environ-
ment) bound by the existential type. (Recall that the type { r1 : t, r2 : 0 } below is
shorthand for { const(r1) : t, const(r2) : 0 }.)

cont(t) , exists
(
field(0, codeptr ({ r1 : t, r2 : 0 })) ∩ field(1, 0)

)
5The semantics of plus will be defined in Section 4.4; we encourage the reader to revisit the
definition of offset types after reading that section.
6We have not attempted a general treatment of byte- and word-addressibility. Our prototype
TML system treats word-addressed references, structure-fields, and arrays.
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Dataflow Dependency. In Typed Machine Language, it is possible to specify de-
pendencies between registers since TML types characterize vector values. For in-
stance, the type existsnum({ r1 : int<(0), r2 : int=(0) }) specifies that register 1 is al-
ways strictly less than register 2. (The type existsnum is the existential type that
ranges over numeric types; its definition is analogous to that of forallnum given in
Section 3.1.) The ability to encode dependencies between registers allows TML to
encode dataflow analyses such as tag discrimination [Chen 2004].

4. A STEP-INDEXED MODEL OF TML TYPES

In this section, we describe the construction of a semantic model for TML types
based on the foundation of higher-order logic and machine semantics. Our model is
based on the indexed model of recursive types introduced by Appel and McAllester
[2001]. We generalize that result to a language with general references—that is,
mutable references that can store values of any type, including code pointers, ref-
erences, recursive types, and impredicatively quantified types.

Our semantic model is essentially an instance of the method of logical relations.
Specifically, we use unary logical relations, or logical predicates, which are predicates
on terms, defined by induction on the structure of type expressions. The idea,
roughly speaking, is to associate with each type a predicate (or invariant) that is
preserved by the primitive operations of that type. Proof that the predicates are
preserved by the relevant primitive operations is in turn sufficient for proving safety.

Logical relations may be based on denotational models [Plotkin 1973; Statman
1985; Pitts 1996] or on the operational semantics of a language [Tait 1967; Girard
1972; Pitts 1998; Birkedal and Harper 1997; Pitts 2000; Crary and Harper 2007].
Our semantics of TML is an instance of the latter—also known as operational
or syntactic logical relations—since we associate with each type a predicate that
defines the semantics (or meaning) of the type in terms of the operational semantics
of the machine.

It is straightforward to construct logical relations for languages with simple type
systems (e.g., with product, sum, and function types) since the relation can be
defined by induction on the structure of types. However, for languages with richer
type systems, such as those with recursive types or mutable references, the condi-
tions required of the logical relation rule out definition by induction on types. In the
case of recursive types, for instance, the predicate associated with the recursive type
µα.τ is naturally specified using the predicate for its one-step unfolding τ [µα.τ/α],
which is clearly not a strictly smaller type. In the absence of a well-founded def-
inition of the logical relation, one has to prove that a relation that satisfies the
“circular” specification actually exists. Unfortunately, establishing the existance
of the logical relation is usually nontrivial [Pitts 1996; Birkedal and Harper 1997;
Melliès and Vouillon 2004; Crary and Harper 2007].

The indexed model of recursive types introduced by Appel and McAllester [2001]
takes a different approach, where logical relations are indexed not just by types,
but also by the number of steps available for future evaluation. This permits well-
founded definition of the logical relation: the predicate associated with µα.τ at k
available steps is specified using the predicate for τ [µα.τ/α] at k−1 available steps,
intuitively, since “unfolding” consumes a step. In essence, the extra information
about available steps is sufficient for solving recursive equations on types.
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Induction on types alone also fails to yield a well-founded definition of a logical
relation for a language with general references—i.e., mutable references that may
store other references, code pointers, recursive types, and even impredicative quan-
tified types. In fact, a central challenge in building a semantic model for TML is
how to construct a model of mutable references. We start below (Section 4.1) by
explaining why induction on types does not suffice in the presence of references—we
describe how one might näıvely construct a model for mutable references and show
that such a model is not well founded. We then sketch how Appel and McAllester’s
step-indexing idea can be used to construct a well-founded model of mutable ref-
erences that store values of any type. We shall see that the modeling of mutable
references essentially dictates the overall shape of the semantic model for TML
(yielding a model very different from that of Appel and McAllester [2001] who
considered a purely functional language with recursive types). Unfortunately, this
last model cannot directly be represented in higher-order logic as we shall explain.
Therefore, in Section 4.2, we describe the structure of a slightly different model
that can be encoded in higher-order logic; this is the model of TML that we have
actually implemented as part of our FPCC prototype. In the rest of the section
we give details of this model and the semantics of various TML types (Sections 4.3
to 4.11).

4.1 Towards a Model of Mutable References

We wish to construct a model of TML that supports updatable references. Proving
type safety for a language that permits updates to aliased locations is not an easy
task. Languages like ML and Java deal with the aliasing problem by allowing only
type-preserving updates or weak updates. We adopt the same restriction for TML;
that is, the TML type ref (t) introduced in Section 3 is the type ascribed to mutable
references whose contents must always be of type t.

In this section, we motivate our semantics of TML by sketching out a näıve
model and attempting to refine it. Let us consider how to model TML types.
Intuitively, for each closed TML type t (i.e., one with no free type variables), we
wish to define a predicate ϕ that specifies the set of values that belong to that type.
We refer to ϕ as a (closed) semantic type, or as the semantic interpretation of t,
also written [[t]]. Modeling a semantic type as a predicate on values is sufficient
when interpreting simple types (e.g., integers, arithmetic types), but it does not
suffice when interpreting more advanced types such as references or code pointers.
For instance, to ensure that a location l belongs to the semantic interpretation
of ref (t), we must check that the contents of memory at location l belong to the
interpretation of type t. Similarly, to ensure that l belongs to the interpretation of
codeptr (t), we must check that the instructions in memory M at address l behave a
certain way. This suggests that we should model semantic types ϕ as predicates on
states 〈R, M〉 as well as values v. Unfortunately, for the semantics of type-invariant
mutable references, even that will not suffice.

Modeling Permissible Updates. Type-preserving updates imply that only values
of a particular type may be written at each allocated location. Thus, we need
a model that, for each allocated location, keeps track of this type. For this, we
introduce a store type Σ, a finite map from locations to closed semantic types. For
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each allocated location l, we keep track of the type of updates allowed at l. A
semantic type ϕ would then be a predicate on three arguments: a store type Σ, a
state 〈R, M〉, and a value v. Then a location l should belong to the interpretation
of ref (t) if the store type Σ says that the permissible update type for location l is
[[t]], and if the value in memory at location l satisfies [[t]].

[[ref (t)]](Σ, 〈R, M〉, v) , Σ(v) = [[t]] ∧ [[t]](Σ, 〈R, M〉,M(v))

An Inconsistent Model. Unfortunately, there is a problem with the above defini-
tion and proposed model. We want to model (closed) semantic types as predicates
on store types Σ (a finite map from locations to closed semantic types), states S,
and values v. The types of these logical objects are as follows.

store-type = location ⇀ closed -sem-type
closed -sem-type = store-type × state × value → bool

Notice that the metalogical type of closed -sem-type is recursive, and furthermore,
it has an inconsistent cardinality—the set of closed semantic types must be bigger
than itself.

Stratifying Semantic Types. Returning to our flawed semantic interpretation of
ref (t) above, notice that t is a “smaller” type than ref (t), and that to define [[ref (t)]],
we only consider those locations in the store type whose permissible update types
are [[t]], or more generally, are interpretations of types “smaller” than ref (t). This
suggests a rationale for constructing a well-founded model: semantic types should
be stratified so that a semantic type at level k relies only on a store type that
maps locations to semantic types at level j for j < k. This leads to the following
hierarchy of semantic types.

closed -sem-type0 = ∅
store-typek = location ⇀ closed -sem-typek

closed -sem-typek+1 = store-typek × state × value → bool

By stratifying semantic types we have eliminated the circularity. We can now
rewrite the interpretation of ref (t) so that semantic types and store types are an-
notated with levels to reflect the existence of a (semantic) type hierarchy. In-
tuitively, the interpretation of ref (t) at level k in the hierarchy (i.e., [[ref (t)]] ∈
closed -sem-typek) may be defined as a predicate on a store type Σ ∈ store-typek−1,
a state 〈R, M〉, and a value v as shown below. We informally write ϕk and Σk in
place of “ϕ such that ϕ ∈ closed -sem-typek” and “Σ such that Σ ∈ store-typek”
respectively.

[[ref (t)]]k(Σk−1, 〈R, M〉, v) , Σk−1(v) = [[t]]k−1 ∧ [[t]]k−1(Σk−1, 〈R, M〉,M(v))

We still need to formalize what the levels of the type hierarchy signify and when
the semantic interpretation of a closed TML type t belongs to some level k—i.e.,
when [[t]] ∈ closed -sem-typek.

Stratification via Syntax is Not Quite Good Enough. We observed above that t is
a “smaller” type than ref (t)—informally, t has fewer nested occurrences of ref than
ref (t). In terms of the type hierarchy then, [[ref (t)]] belongs to closed -sem-typek if
and only if [[t]] belongs to closed -sem-typej for j < k. Informally, when [[t]] belongs
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to level k of the type hierarchy, we want that to mean that at level k we have
sufficient “information” to conclude whether or not a value v has type t. The
notion of having sufficient information at some level suggests that for each closed
TML type t there exists a finite level kmin such that [[t]] ∈ closed -sem-typekmin

and
[[t]] /∈ closed -sem-typek for j ≤ kmin.

Consider for the moment a language with only primitive types (say int and
const(n)) and mutable references. We could use the number of nested occur-
rences of ref in t to determine whether the interpretation of the type t belongs
to closed -sem-typek for some k ≥ 0. Specifically, let the semantic interpretations of
all primitive TML types (e.g., [[int]] and [[const(n)]]) belong to level 0; if [[t]] belongs
to level k, then [[ref (t)]] belongs to level k+ 1; and if [[t]] belongs to level k, then [[t]]
belongs to level k+1 (since if we have sufficient information at level k to determine
if v has type t, then at level k+1 we still have sufficient information to conclude that
v has type t). Thus, level 1 of the type hierarchy contains, for instance, [[ref (int)]]
and the interpretations of all level 0 types, but not [[ref (ref (int))]]. For any (finite)
type expression there is some level in the type hierarchy powerful enough to contain
its interpretation.

Unfortunately, stratification by syntax breaks down when we add quantified types
to the language. Consider, for instance, the type ∃α.ref (α) (written in TML as
exists(ref (0))); we must determine if there exists some k ≥ 0 such that [[∃α.ref (α)]]
belongs to level k in the type hierarchy. If we know that the interpretation of α
belongs to level k, then we can conclude that the interpretation of ref (α) belongs to
level k+ 1 and that of ∃α.ref (α) belongs to level k+ 1 (and that of ref (∃α.ref (α))
belongs to level k + 2 and so on). But α is a type variable, so we cannot know
how complex the type that witnesses α is—or, in the case of universal types, how
complex the type that instantiates α will be. Furthermore, we wish to model
impredicative quantified types, which means that α, which we assumed is a level
k type, may be witnessed by ∃α.ref (α) itself, which we just concluded is a level
k + 1 type—but this implies that α should be a level k + 1 type, but that in turn
would mean that ∃α.ref (α) must be a level k + 2 type. Hence, there is no finite
level of the type hierarchy that is guaranteed to be powerful enough to contain the
interpretation of ∃α.ref (α).

In earlier work [Ahmed et al. 2002], we relied on the syntactic complexity of a
type t in order to determine the level of the type hierarchy that is guaranteed to
contain [[t]]. As we have just seen, this approach cannot accomodate references to
impredicative quantified types.

Stratification via Semantic Approximation. Instead of requiring that levels in the
type hierarchy correspond to the syntactic complexity of type expressions, we will
treat levels as an indication of how many more steps the program can safely execute.
Informally, we want (Σk−1, S, v) ∈ [[t]]k to mean that v “looks” like it has type t for
k steps—perhaps v does not actually have type t, but any program that takes an
argument of type t must execute for at least k steps on v before getting to a stuck
state. Hence, levels in the type hierarchy correspond to approximations of a type’s
behavior.

We call k the approximation index or step index following Appel and McAllester’s
indexed model of types [Appel and McAllester 2001]. The latter gave a semantics
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of recursive types for a purely functional language. In this model, a value v belongs
to [[t]] to approximation k if, in any computation running for no more than k steps,
the value v behaves as if it has type t. We use this intuition to stratify types in our
model of mutable references. In particular, consider the interpretation of ref (t) to
approximation k. The assumption that a location l (with memory contents v) has
type ref (t) cannot be proved wrong within k steps of execution if and only if (1)
the assumption that v has type t cannot be be proved wrong within k − 1 steps
(since accessing v from l would require an extra dereferencing step) and (2) the
store type Σ tells us that location l’s permissible update type for k − 1 steps is t
(which guarantees that any value v′ assigned to l must be such that the assumption
that v′ has type t cannot be proved wrong in k− 1 steps, where k− 1 suffices since
the update consumes a step).

The use of semantic approximation to stratify type interpretations helps us model
mutable references to quantified types by allowing us to “pick a level” (i.e., an ap-
propriate approximation index) for a type variable. Suppose that in some execution
the witness type for ∃α.ref (α) is ref40(int) (where refn(t) denotes n applications of
ref to t), but we intend to run the program for only 10 steps. Then it’s all the same
whether the witness type for α is ref40(int) or ref10(⊥) since in 10 execution steps
the program cannot dereference more than 10 references, and thus, cannot tell the
difference between values of these two types. The same idea applies in the pres-
ence of impredicative quantification, such as when the witness type for ∃α.ref (α)
is ∃α.ref (α) itself. To define the interpretation of ∃α.ref (α) to approximation k—
intuitively, the set of values that have type ∃α.ref (α) for k steps—we only need
to know the interpretation of the witness type (i.e., ∃α.ref (α)) to approximation
k − 1. Here k − 1 suffices since one execution step is consumed by dereferencing
(and perhaps one more step is consumed when unpacking the existential, though
we shall discuss this point further in Section 4.8).

Representing Stratified Types in Higher-Order Logic. Using semantic approxima-
tion to stratify types, we model types as sets of tuples of the form (k,Σ, S, v), where
k is the approximation index or step index, and Σ is a store type mapping locations
to k − 1 approximations of type interpretations. Notice that the metalogical type
of Σ here depends on the step index k, suggesting that we need a dependent type
theory to capture this dependency (of the type of Σ on the term k). In particular,
the metalogical types of our closed semantic types and store types are as follows.

closed -sem-type0 = ∅
store-typek = location ⇀ closed -sem-typek

closed -sem-typek+1 = natural × store-typek × state × value → bool

closed -sem-type =
⋃

i≥0 closed -sem-typei

The stratified metalogical types above cannot be described using higher-order logic.
We need a single type of closed -sem-type instead of an infinite number of them.

Since our FPCC implementation uses higher-order logic, we have to tweak the
above model somewhat. In the rest of Section 4, we describe a model of TML that
is representable in higher-order logic, but which tries to capture the spirit of the
above model (and the idea of a hierarchy of semantic types) as closely as possible.
In particular, we make store types Σ a finite map from locations to type expressions.
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We still model closed semantic types ϕ as sets of tuples of the form (k,Σ, S, v), but
now, since Σ maps locations to type syntax, the type of Σ no longer depends on
k; hence, the model can be encoded in higher-order logic. To capture the essence
of the stratified semantic model above, we ensure that the interpretation of any
type t to approximation k—to be precise, the predicate [[t]](k,Σ, S, v)—does not
rely on the interpretation of types in the codomain of Σ (i.e., on any [[Σ(l)]]) beyond
approximation k − 1. The resulting model has only one weakness compared to the
one with a hierarchy of semantic types; this has to do with quantified types and we
discuss it further in Section 4.8.

Ahmed [2004, Chapter 3] gives a set-theoretic model (with a hierarchy of semantic
types) for a λ-calculus with mutable references and impredicative quantified types,
and briefly describes [Ahmed 2004, Chapter 5] a representation in the Calculus of
Inductive Constructions (CiC). We do not describe that model here.

4.2 A Model of TML Representable in Higher-Order Logic

Intuitively, the predicate for a TML type t should define a set of values that belong
to the type. For each type t, we define a predicate [[t]](ρ)(k,Σ, S, v). Informally, this
says that “root value v in machine state S has type t to approximation k, given
environment ρ to provide context for the free type variables of t, and given store
type Σ to constrain the types of mutable references in S.” The metalogical types
of all the relevant components of the model are given below.

approx -index k : natural
store-type Σ : location ⇀ type

state S : register -bank ×memory
root-value v : number → number

closed -sem-type ϕ : approx -index × store-type × state × root-value → bool
environment ρ : natural → closed -sem-type

sem-type τ : environment → closed -sem-type
meaning function [[ ]] : type → environment → closed -sem-type

Step Index k. The step index (or approximation index) k is a natural number
that, informally, denotes the number of (future) computation steps available to
the program. If a value belongs to a type t to approximation k, then the value is
“good enough” for any program that runs for at most k more steps. As a concrete
example, consider a location l in state S such that l contains an integer, and a
program that is well typed assuming l has type ref (ref (int)). Strictly speaking, l
has type ref (int). But if the program runs for only one more step then treating
l’s type as ref (ref (int)) is good enough since the program can perform at most
one dereferencing step—thus, l belongs to type ref (ref (int)) to approximation 1.
Similarly, l also belongs to the type ref (ref (ref (int))) to approximation 1.

Store Type Σ. The store type is a mapping from memory addresses to closed
type expressions; we write type to denote the set of type expressions. The store
type Σ prescribes the type of the contents of memory addresses. When a reference
is allocated, we extend the current store type Σ so that it maps the newly allocated
location l (where l /∈ dom(Σ)) to the intended type of its contents. We require that
any future Σ′ be a superset of Σ so that the permissible update types of locations
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cannot be changed. Finally, to ensure that updates of mutable references are type
preserving, we check that the type of the new value being assigned to a location—at
some point in the future when the store type is Σ′—matches the type prescribed
by Σ′.

State S. As before, a state S is a pair of a register bank R and memory M .
Recall from Section 4.1 that in order to determine if a value v belongs to the
interpretation of ref (t) or codeptr (t) we need access to the current machine state.
Thus, in the presence of references and code pointers, the semantic interpretation
of a type t—given by the predicate [[t]]—relies on the current machine state S.

Root Value v. Since TML types can type a whole register bank, we define a root
value v to be a vector of integers. This vector of integers can be the vector of
values in a register bank, or a vector of parameters passed to a function, or a list
of addresses. Modeling root values as vectors allows us to support scalar types as
well as vector types. A scalar type such as int<(t) judges only one scalar value. As
we will see, the model of a scalar type constrains only the scalar value in slot zero
of the vector.

Environment ρ. TML types include type variables (n) and type-variable binders
(rec, forall, exists). Thus, we need to parametrize the interpretation of TML types
with an environment ρ that gives the meaning of type variables in the types. TML
uses de Bruijn indices for type variables. Therefore, the environment ρ is a mapping
from de Bruijn indices (natural numbers) to the meanings (interpretations) of closed
types—i.e., to closed semantic types.

Semantic Type τ . As stated above, [[t]] is a predicate on (ρ)(k,Σ, S, v), where
ρ must map all de Bruijn indices (i.e., free type variables) that appear in t. We
call any predicate on (ρ)(k,Σ, S, v) a semantic type and use the metavariable τ to
denote semantic types. Later, we will define the properties that a semantic type
should satisfy, or what a valid semantic type is (see Section 4.10).

Closed Semantic Type ϕ. A semantic type applied to an environment ρ is a
predicate on (k,Σ, S, v). We call a predicate on (k,Σ, S, v) a closed semantic type
since it gives semantics to closed types. We use the metavariable ϕ for closed
semantic types.

4.3 Preliminaries

We define semantic subtyping and equality (to some finite approximation k) for
closed semantic types ϕ and lift that notion to environments ρ as well as semantic
types τ .
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Definition 4.1 (Semantic Subtyping and Equality).

ϕ ⊆k ϕ
′ , ∀j ≤ k. ∀Σ, S, v. ϕ(j,Σ, S, v) ⇒ ϕ′(j,Σ, S, v)

ϕ ≈k ϕ
′ , (ϕ ⊆k ϕ

′) ∧ (ϕ′ ⊆k ϕ)
ρ ≈k ρ

′ , ∀i. ρ(i) ≈k ρ
′(i),

τ ⊆k τ
′ , ∀ρ. τ(ρ) ⊆k τ

′(ρ)
τ ≈k τ

′ , ∀ρ. τ(ρ) ≈k τ
′(ρ)

Most properties discussed hereafter are defined up to some approximation—that
is, they are parametrized by a step index k up to which the property holds but
after which there are no guarantees. Unlike standard domain theory, which takes a
limit of finitary approximations, we avoid taking limits. Everything remains at an
approximation.

Definition 4.2 (Approx). The k-approximation of a closed semantic type ϕ is
the set of tuples (j,Σ, S, v) in ϕ such that the index j is no greater than k.

(bϕck)(j,Σ, S, v) =
{
ϕ(j,Σ, S, v) if j ≤ k
false if j > k

The important point about the k-approximation of a closed semantic type ϕ is
that in order to determine the truth of bϕck(j,Σ, S, v), we only need to know if
ϕ(j,Σ, S, v) holds for j ≤ k; we need no information about how ϕ is defined for any
j > k.

We write ρ∅ to denote an empty type environment, which maps every type vari-
able to the (semantics of the) bottom (or empty) type.

Definition 4.3 (Environment Cons). For an environment ρ, we define a list
cons operator to concatenate a closed semantic type ϕ to the beginning of ρ.

(ϕ • ρ)(n) =
{
ϕ if n = 0
ρ(n− 1) if n > 0

Finally, we say a constant vector, written cv(n), is a vector in which every slot is
mapped to the number n.

Well-Founded Semantics. Next, we present the semantics of TML type construc-
tors t. Our semantics is well founded since it is defined by induction on the step
index and (nested induction on) the syntax of types. Put another way, whenever
the semantic interpretation of a type t relies on semantic interpretations of other
types, either the step index decreases, or the step index remains the same and the
syntactic complexity of the type decreases.

4.4 Simple Type Constructors

The semantic interpretations of several TML type constructors can be defined sim-
ply by induction on the syntax of the type expression. The interpretations of these
types are given in Figure 3.

The semantic interpretation of top admits every value (regardless of step index
k, store type Σ, or state S) since every value v has type top, while that of bottom
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[[top]](ρ)(k,Σ, S, v) , true

[[bottom]](ρ)(k,Σ, S, v) , false

[[int]](ρ)(k,Σ, S, v) , true

[[t1 ∩ t2]](ρ)(k,Σ, S, v) , [[t1]](ρ)(k,Σ, S, v) ∧ [[t2]](ρ)(k,Σ, S, v)

[[t1 ∪ t2]](ρ)(k,Σ, S, v) , [[t1]](ρ)(k,Σ, S, v) ∨ [[t2]](ρ)(k,Σ, S, v)

[[const(n)]](ρ)(k,Σ, S, v) , v(0) = n

[[int<(t)]](ρ)(k,Σ, S, v) , ∃n. [[t]](ρ)(k,Σ, S, cv(n)) ∧ v(0) < n

[[int=(t)]](ρ)(k,Σ, S, v) , ∃n. [[t]](ρ)(k,Σ, S, cv(n)) ∧ v(0) = n

[[int>(t)]](ρ)(k,Σ, S, v) , ∃n. [[t]](ρ)(k,Σ, S, cv(n)) ∧ v(0) > n

[[plus(t1, t2)]](ρ)(k,Σ, S, v) , ∃n1, n2. [[t1]](ρ)(k,Σ, S, cv(n1)) ∧ [[t2]](ρ)(k,Σ, S, cv(n2))
∧ n1 + n2 = v(0)

[[times(t1, t2)]](ρ)(k,Σ, S, v) , ∃n1, n2. [[t1]](ρ)(k,Σ, S, cv(n1)) ∧ [[t2]](ρ)(k,Σ, S, cv(n2))

∧ n1 ∗ n2 = v(0)

[[mod(t1, t2)]](ρ)(k,Σ, S, v) , ∃n1, n2. [[t1]](ρ)(k,Σ, S, cv(n1)) ∧ [[t2]](ρ)(k,Σ, S, cv(n2))

∧ n1%n2 = v(0)

[[readable]](ρ)(k,Σ, S, v) , readable loc(v(0), S)

[[writable]](ρ)(k,Σ, S, v) , writable loc(v(0), S)

[[n]](ρ)(k,Σ, S, v) , ρ(n)(k,Σ, S, v)

[[subst(t1, t2)]](ρ)(k,Σ, S, v) , [[t1]]
“`
b[[t2]]ρck

´
• ρ

”
(k,Σ, S, v)

[[{t1 : t2}]](ρ)(k,Σ, S, v) , ∃n. [[t1]](ρ)(k,Σ, S, cv(n)) ∧ [[t2]](ρ)(k,Σ, S, cv(v(n)))

Fig. 3. Semantic Interpretation of Simple TML Type Constructors

(the empty type) admits no values. The integer type int also admits every value
because the values in any root v are already integers.7

The intersection type t1 ∩ t2 (union type t1 ∪ t2) admits values v that are in the
interpretation of t1 and (or) t2. The singleton integer type const(n) admits root
values v such that v(0) = n. Note that const(n) is a scalar type and judges only
slot zero of the vector value v.

For the interpretation of int<(t), we first assert that there exists some number
n such that the constant root value cv(n) belongs to type t, and then check that
v(0) < n. Consider, for instance, the interpretation of the type int<(const(10)),
which admits all integers less than 10.

For the interpretation of plus(t1, t2), we first require that there exist two numbers
n1 and n2 such that cv(n1) and cv(n2) belong to types t1 and t2, respectively. Then,
we check that n1 + n2 = v(0). For the interpretation of type readable (or writable),
we simply need to check that v(0) is a readable (or writable) location.

For a de Bruijn index n, we simply look up its interpretation in the environment ρ.
For a substitution type subst(t1, t2), which substitutes t2 for de Bruijn index 0 in t1,
we must interpret the type t1 in a new environment that maps 0 to the interpretation
of t2 and maps de Bruijn indices n where n > 0 to ρ(n−1). Specifically, to determine
if root value v belongs to subst(t1, t2) for k steps given environment ρ, we check
that v belongs to t1 for k steps with the modified environment that maps 0 in
t1 to b[[t2]]ρck, the k-approximation of [[t2]]ρ. By mapping 0 to b[[t2]]ρck instead of

7Readers may wonder why we need int at all if its model is the same as top. Though, in this
paper, we have assumed for simplicity that all numbers are integers, in our FPCC prototype we

actually do not make that assumption. Instead, we have a predicate isInt to constrain numbers.
As a result, in our FPCC prototype, the interpretation of int is different from that of top.
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[[t2]]ρ, we ensure that our definition is well founded. Moreover, b[[t2]]ρck suffices
here due to a property of semantic types called nonexpansiveness. Intuitively, if the
interpretation of t1 is nonexpansive then, if we only want to know whether v belongs
to t1 for k steps (i.e., we want the k-approximation of t1), it is all the same whether
we map 0 to [[t2]]ρ or to b[[t2]]ρck. Every one of the TML type interpretations we
define is nonexpansive.

The single-slot vector type {t1 : t2} constrains only one slot of the root value,
intuitively, the slot specified by t1. For its semantics, we first check that there exists
some number n such that the constant root value cv(n) belongs to type t1; this tells
us that the type constrains the nth slot of the root value v. We then check that the
value in the nth slot of root value v belongs to type t2. As an example, consider
the interpretation of the type {const(3) : readable} which specifies that the value in
slot 3 of a root value is readable.

4.5 References

In Section 4.1, we informally explained when a value belongs to the mutable ref-
erence type ref (t). We now give a formal definition of the interpretation of ref (t).
The semantic interpretation of mutable-reference types is as follows.

[[ref (t)]](ρ)(k,Σ, 〈R, M〉, v) ,


[[t]](ρ)(k − 1,Σ, 〈R, M〉, cv(M(v(0))))
∧ [[Σ(v(0))]](ρ∅) ≈k−1 [[t]](ρ) if k > 0

true if k = 0

When k equals 0, the type ref (t) admits any value, reflecting the intuition that
there are no steps remaining in which the program could exhibit unsafe behavior.

When k is greater than 0, the interpretation of ref (t) admits a root value v for
k steps if v(0) is a location such that the following conditions are satisfied. First,
the contents of memory M at location v(0) must belong to the interpretation of t
for k− 1 steps. Here, the decremented step index (k− 1) suffices since the program
must take one step to fetch the referenced value. Second, it must be the case that
the location v(0) can only be updated with values that belong to the interpretation
of type t—that is, t must be the permissible update type for location v(0). Hence,
we require that the type t match the type prescribed for location v(0) by the store
type Σ, to approximation k−1. Here approximation k−1 suffices since the program
must take one step to update the reference cell. Furthermore, since the store type
Σ maps locations to closed type expressions, the closed TML type Σ(v(0)) can be
interpreted in the empty environment ρ∅. The type t, meanwhile, may contain free
type variables, so it must be interpreted in the environment ρ.

It is easy to see that the interpretation of ref (t) is well founded since the definition
of [[ref (t)]] to approximation k only makes use of the interpretations of types t and
Σ(v(0)) (whatever these types may be) to approximation k − 1. Furthermore, the
presence of impredicative polymorphism does not complicate matters. Consider, for
instance, the interpretation of type ref (0) in an environment ρ that maps de Bruijn
index 0 to the closed semantic type ϕ = [[exists(ref (0))]]ρ and where Σ(v(0)) =
exists(ref (0)). Syntactically, the type of the contents exists(ref (0)) is bigger than
the reference type being interpreted ref (0)—which makes it difficult to establish
well-foundedness for traditional logical relations that are defined by induction on
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types alone—but this is not problematic since our logical relation is defined by
outer induction on the step index and nested induction on types.

Next, we give the semantic interpretation of immutable references.

[[box (t)]](ρ)(k,Σ, 〈R,M〉, v) ,


[[t]](ρ)(k − 1,Σ, 〈R, M〉, cv(M(v(0)))) ∧
[[Σ(v(0))]](ρ∅) ≈k−1 [[const(M(v(0)))]](ρ) if k > 0

true if k = 0

The interpretation of box (t) admits any value v if v(0) is a location whose current
contents in memory M belong to the interpretation of t, and if these contents remain
unchanged in the future. Thus, the crucial difference between the interpretations
of ref (t) and box (t) lies in their uses of the store type Σ. In the mutable case, we
may update location v(0) with a new value only if that value has the type t; hence,
we require that the type prescribed by Σ matches type t. In the immutable case,
however, we may update location v(0) with a new value only if that value is equal
to the current contents, namely M(v(0)). We enforce the latter by checking that
the type prescribed by Σ matches the singleton integer type const(M(v(0))).

4.6 Code Pointers

Informally, we say that an address l is of type codeptr (t) if it is safe to jump to
l when the precondition t is satisfied. In formalizing this intuition, however, we
encounter a problem. It may be the case that we know that an address l is a code
pointer, but the program will not jump to l until some point in the future. The
following example illustrates the problem.

{r7 : codeptr ({r1 : int})}
now : instruction1

...
instructionn

future : jmp r7

Suppose that before executing the first instruction we have established that register
7 is a code pointer that we can jump to if register 1 contains an integer. But it
is only after executing a series of instructions—none of which write to r7—that
the program decides to jump to register 7. Between now and that future point in
time, the program may update mutable references and construct additional data
structures (by writing to currently unallocated parts of memory). We need to find
a systematic way to establish that despite any memory allocation and updates, the
address pointed to by register 7 is still a code pointer with precondition {r1 : int}
at that future point in time. In essence, we have to show that the types of memory
locations are preserved over time. Our solution to this problem is to use a possible-
worlds model.

Possible Worlds. To restrict our attention to only those future states that are
possible during the execution of the programs that we consider, we construct a
possible-world extend-state relation (v) that constrains the evolution of a state.
This is a relation on pairs (S,Σ) of a machine state S and a store type Σ. Informally,
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it relates a current state S and store type Σ to a future state S′ and store type Σ′.

(S,Σ) vk (S′,Σ′) , Σ v Σ′ ∧ ` S :k Σ ∧ ` S′ :k Σ′

∧ convention((S,Σ), (S′,Σ′))

Σ v Σ′ , dom(Σ) ⊆ dom(Σ′) ∧ ∀l ∈ dom(Σ). Σ(l) = Σ′(l)

` 〈R, M〉 :k Σ , ∀l ∈ dom(Σ). [[Σ(l)]](ρ∅)(k − 1,Σ, 〈R, M〉, cv(M(l)))

convention((S,Σ), (S′,Σ′)) , valid state(S,Σ) ∧ valid state(S′,Σ′)
∧ convention extend((S,Σ), (S′,Σ′))

The definition of (S,Σ) vk (S′,Σ′) is also indexed by k. First, the definition asserts
that Σ v Σ′, which says that the store type can be extended as long as all the old
types are preserved.

Second, in all possible worlds, the store should satisfy its store type. The relation
` S :k Σ means S satisfies Σ to approximation k. That is, for each location l, we
look up the type Σ(l) and then check whether [[Σ(l)]] in the empty environment ρ∅
accepts value cv(M(l)) to approximation k− 1. Since dereferencing M(l) must use
one step in any computation, k − 1 is good enough.

Finally, the machine code we are judging is with respect to some architecture,
and comes from some compiler that manages their registers, stack frames, the
allocation heap, and so on. The architecture and the compiler use certain low-level
conventions, which are captured by convention((S,Σ), (S′,Σ′)). The convention
predicate first checks that each state is a valid state. The valid state(S,Σ) predicate
enforces conventions on a single state. For example, on sparc, the register 0 always
has value 0. The convention extend((S,Σ), (S′,Σ′)) predicate enforces conventions
across states, and is reflexive and transitive. We omit the exact definitions of
valid state and convention extend, since they depend on particular architectures
and compilers.8 We only note that it should be straightforward to adjust these
definitions for a different compiler and architecture as long as the compiler uses the
same heap-allocation model.

8For the SML/NJ compiler and the sparc architecture, we list the set of conditions in the two

predicates below. In valid state: (1) the register 0 has value 0; (2) values in registers and memory
are 32-bit natural numbers (our axiomatization of the SPARC does not assume 32-bit registers); (3)

memory locations in the register-spilling area and the heap area (defined by the SML/NJ compiler)

are readable and writable; (4) the register-spilling area and the heap area are disjoint; (5) values
in virtual registers are 32-bit natural numbers (virtual registers are for memory allocation and
include a base pointer, a limit pointer, and a boundary pointer; see Section 6).

In convention extend: (1) reserved registers remain the same (stack pointer, frame pointer,

return address; SML/NJ does not generate stack pushes and pops, because it uses heap-allocated

activation records, but we preserve these registers in order to return cleanly to the operating
system when the program finishes); (2) the set of readable (writable, respectively) locations in the
second state is larger than the set of readable (writable, respectively) locations of the first state

(that is, we can allocate heap memory but we never deallocate it); (3) The base and the limit
virtual registers remain the same.
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It is easy to verify the following properties of the extend-state relation.

Lemma 4.4 (Properties of v).

(1) (Reflexivity) If valid state(S,Σ) and ` S :k Σ, then (S,Σ) vk (S,Σ).
(2) (Transitivity) If (S1,Σ1) vk (S2,Σ2) and (S2,Σ2) vk (S3,Σ3), then

(S1,Σ1) vk (S3,Σ3).

Having defined the extend-state relation, we can now formalize the semantic
interpretation of code-pointer types.

[[codeptr (t)]](ρ)(k,Σ, S, v) , ∀j < k,Σ′, R′,M ′.(
(S,Σ) vj (〈R′, M ′〉,Σ′) ∧ R′(pc) = v(0)
∧ [[t]](ρ)(j,Σ′, 〈R′, M ′〉, R′)

)
⇒ safe state(〈R′, M ′〉, j)

This definition quantifies over all possible future states that are reachable from the
current one. If the program counter of the future state 〈R′, M ′〉 points to the
address v(0), and the precondition t is met, then the future state should be safe.
The future state is required safe only for some j < k steps, since we assume it takes
k − j steps to get from the current state to the future state.

This definition is based directly on the notion of safety, and consequently we have
the following theorem.

Lemma 4.5 (Code Pointers Imply Safety). In any well-typed state where
the program counter has type codeptr (t) and the register bank has type t, it is safe
to execute any number of steps.

valid state(〈R, M〉,Σ) ∀k. ` 〈R, M〉 :k Σ
∀k. [[t]](ρ)(k,Σ, 〈R, M〉, R) ∀k. [[codeptr (t)]](ρ)(k,Σ, 〈R, M〉, cv(R(pc)))

∀k. safe state(〈R, M〉, k)

4.7 Recursive Types

Recall from Section 3.1 that a recursive type rec (t) introduces a new type variable.
Since we use de Bruijn indices to represent type variables, given a recursive type
rec (t), each occurrence of the type variable 0 in t represents the recursive type
itself. Based on this observation, we could näıvely attempt to define the semantics
of recursive types as follows.

A näıve interpretation: [[rec (t)]](ρ)(k,Σ, S, v) , [[t]]
((

[[rec (t)]]ρ
)
• ρ
)

(k,Σ, S, v)

That is, to interpret rec (t) in ρ, we construct a new type environment [[rec (t)]]ρ •ρ,
where type variable 0 is mapped back to the meaning of rec (t), and the rest of the
type variables are resolved in ρ. Unfortunately, this näıve interpretation does not
work because the definition of [[rec (t)]] refers back to the very thing it is defining—
i.e., we have a circular definition.

In their indexed model of recursive types, Appel and McAllester [2001] eliminated
the above circularity via induction on the number of computation steps remaining,
or k. The intuition is that for a recursive type rec (t) to be useful, it should take at
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least one computation step before the recursive type is used in t, that is, before the
de Bruijn variable 0 is “reached.” As an example, consider the following recursive
type which describes a chain of pointers (i.e., integers ≥ 256) with a non-pointer
(i.e., an integer in [0, 256)) at the end of the chain.

rec (range(0, 256) ∪ (int≥(256) ∩ ref (0)))

Let v be a value of the above type. Note that to get to a component of v with
the type 0—which represents the recursive type itself—we have to go through a
dereferencing step, as dictated by the reference type ref (0).

Based on this intuition, we define a notion of contractive semantic types.

Definition 4.6 (Contractive Semantic Types).

contractive(τ, k) , ∀j ≤ k, ϕ, ρ. τ(bϕcj • ρ) ≈k τ(bϕc(j−1) • ρ)

The above definition formalizes the notion that when using a value of a semantic
type τ , it takes at least one step for a program to reach the part of the value repre-
sented by the type variable 0. Essentially, it says that if there are only j ≤ k steps
remaining, then it makes no difference whether we interpret 0 as the j-th approxima-
tion of ϕ, written bϕcj (see Definition 4.2), or as the (j−1)-th approximation—since
the first step will not reach the part of the value represented by 0, the (j − 1)-th
approximation of ϕ suffices.

With the above definition of contractive types in hand, we can define the inter-
pretation of recursive types as follows.

[[rec (t)]](ρ)(k,Σ, S, v) , contractive([[t]], k) ∧ [[t]]
((
b[[rec (t)]]ρc(k−1)

)
• ρ
)

(k,Σ, S, v)

This interpretation is well defined because to give the semantics of rec (t) to ap-
proximation k, we map 0 to b[[rec (t)]]ρc(k−1)—that is, we rely only on the (k−1)-th
approximation of the meaning of rec (t). In other words, the above interpretation
is defined by induction on k.

Given the notion of contractiveness and the interpretation of recursive types, we
can prove that a recursive type is semantically equivalent to its unfolded type.

Lemma 4.7. For all k, if contractive([[t]], k), then [[rec (t)]] ≈k [[subst(t, rec (t))]].

Proof. By the definition of ≈k, we need to show that [[rec (t)]](ρ)(j,Σ, S, v) if
and only if [[subst(t, rec (t))]](ρ)(j,Σ, S, v), for all ρ, j ≤ k, Σ, S, and v. The proof
is as follows.

[[rec (t)]](ρ)(j,Σ, S, v)
⇔ [[t]]

((
b[[rec (t)]]ρc(j−1)

)
• ρ
)

(j,Σ, S, v) by definition of [[rec (t)]]

⇔ [[t]]
((
b[[rec (t)]]ρcj

)
• ρ
)

(j,Σ, S, v) by contractive([[t]], k)

⇔ [[subst(t, rec (t))]](ρ)(j,Σ, S, v) by definition of [[subst(t, rec (t))]]
2

The term “contractive types” comes from the ideal model of recursive types by
MacQueen et al. [1986]. Appel and McAllester [2001] called these well-founded
types because they justify the use of induction on the approximation index.

Not all types are contractive. For example, the type 0 is not contractive. To make
it easier to prove that certain types are contractive, we introduce a related notion
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of nonexpansive semantic types. Informally, a nonexpansive type at approximation
index k should not inspect its environment ρ in greater detail than k.

Definition 4.8 (Nonexpansive Semantic Types).

nonexpansive(τ, k) , ∀ρ, ρ′, j ≤ k,Σ, S, v.(
ρ ≈j ρ

′ ∧ τ(ρ)(j,Σ, S, v)
)
⇒ τ(ρ′)(j,Σ, S, v)

All the type interpretations that we have defined are nonexpansive.9 There are
also lemmas that combine contractive types and nonexpansive types to get con-
tractive types [Appel and McAllester 2001]. For example, the composition of a
nonexpansive type constructor with a contractive type constructor (in either order)
is contractive.

4.8 Quantified Types

The difficulty of giving semantics to impredicatively quantified types arises from
the fact that the quantification ranges over the very types that are being defined.
For example, for the type forall(t), the type variable 0 in t may be instantiated with
the type forall(t) itself.

We handle the circularity in impredicatively quantified types using the same
technique used to deal with the circularity in the semantics of recursive types.
That is, we assume that the semantic type [[t]] in forall(t) is contractive, so that
it takes at least one computation step before the index 0 in t can be “reached.”
Based on this intuition, the semantics of polymorphic types and existential types
is defined as follows.

[[forall(t)]](ρ)(k,Σ, S, v) , contractive([[t]], k) ∧
∀t1. [[t]]

((
b[[t1]]ρc(k−1)

)
• ρ
)

(k,Σ, S, v)

[[exists(t)]](ρ)(k,Σ, S, v) , contractive([[t]], k) ∧
∃t1. [[t]]

((
b[[t1]]ρc(k−1)

)
• ρ
)

(k,Σ, S, v)

Since there is at least one step before t1 is used, mapping 0 to b[[t1]]ρc(k−1) is
sufficient. Assuming contractiveness, the following standard introduction and elim-
ination lemmas for quantified types are easy to verify.

Lemma 4.9. Assume contractive([[t]], k).

(1) If [[subst(t, t′)]](ρ)(k,Σ, S, v) holds for all type t′, then [[forall(t)]](ρ)(k,Σ, S, v).
(2) If [[forall(t)]](ρ)(k,Σ, S, v), then for all type t′, we have [[subst(t, t′)]](ρ)(k,Σ, S, v).
(3) If [[subst(t, t′)]](ρ)(k,Σ, S, v) holds for some type t′, then [[exists(t)]](ρ)(k,Σ, S, v).
(4) If [[exists(t)]](ρ)(k,Σ, S, v), then for some type t′, we have [[subst(t, t′)]](ρ)(k,Σ, S, v).

9The reader may have noticed that the definition of contractive(τ, k) requires τ to be contractive
only at variable 0, while the definition of nonexpansive(τ, k) requires τ to be nonexpansive at
every variable. We can easily give an alternate definition of contractive(τ, k) that requires τ to

be contractive at every variable. However, our existing definition of contractiveness suffices since
Lemma 4.7 requires only that [[t]] in rec (t) be contractive at variable 0.
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An Alternative Semantics. Having presented our actual semantics for quantified
types, we next discuss an alternative proposal. Our goal in discussing this alter-
native interpretation is to explain the impact of not building the contractiveness
requirement into the definition of quantified types as we have done above. We dis-
cuss this alternative semantics using universal types; the case for existential types
is similar.

An alternative (and näıve) interpretation:
[[forall(t)]](ρ)(k,Σ, S, v) , ∀t1. [[t]]

(
([[t1]]ρ) • ρ

)
(k − 1,Σ, S, v)

The above interpretation is well defined. The reader may wonder whether the use
of [[t1]]ρmakes sense, since t1 may be the universal type forall(t) itself. It is sensible—
i.e., it does not lead to a circular definition—since the type t at approximation k−1
(or, with k − 1 steps remaining) will need its environment only to approximation
k − 1. Therefore, in the definition above, it would have been equivalent to use the
(k− 1)-th approximation of [[t1]]ρ in place of [[t1]]ρ. (Technically, the reason that [[t]]
with k−1 steps remaining only needs its environment to approximation k−1 is due
to the nonexpansiveness property (Definition 4.8), which we defined in Section 4.7.)

Although our alternative interpretation is well defined, it fails to conform to the
computation model of real architectures. This is due to the fact that real machines
do not take a computation step when performing type application on a value of uni-
versal type (or when unpacking a value of existential type). That is, suppose that we
are in a state where we can safely execute k more steps, and [[forall(t)]](ρ)(k,Σ, S, v)
is true. Now suppose we perform a type application. According to the alternative
semantics above, we have [[t]]

(
([[t1]]ρ)•ρ

)
(k−1,Σ, S, v), which indicates we can now

safely execute only k − 1 more steps. But real architectures do not perform type
applications as computation steps. Hence, in terms of the real operational seman-
tics we haven’t actually consumed a step, so there are still k steps remaining in the
computation—a mismatch. If we were to use this alternative model and still base
our theory on the number of computation steps, we would have to execute a no-op
in conjunction with every type application or unpack.

Our chosen model of quantified types “solves” this problem by requiring [[t]] to
be contractive in the definition of [[forall(t)]], so that there is no need for the index
k to decrease in the interpretation (as it does in our first alternative semantics
above). It is reasonable to ask whether this restriction might affect us in practice.
The short answer is that for type-preserving compilation in our ML compiler, it is
inconvenient but not fatal [Ahmed 2004, chapter 4.1]. In particular, the existential
types we need are usually record types, which are contractive, and the universal
types are code-pointer types, which are also contractive.

4.9 Scalar and Numeric Types and Kinds

We treat any predicate on (ϕ, k) as a kind—as before, ϕ is a closed semantic type
and k a step index—and use the metavariable κ to denote a kind. The semantics
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haskind([[bottom]], numeric) haskind([[bottom]], scalar) haskind([[int]], scalar)

haskind([[const(n)]], numeric) haskind([[const(n)]], scalar)

haskind([[t1]], numeric)
haskind([[t2]], numeric)

haskind([[plus(t1, t2)]],numeric)

haskind([[t1]], scalar)

haskind([[plus(t1, const(n))]], scalar)

haskind([[t]], scalar)

haskind([[int=(t)]], scalar)

haskind([[t]], scalar)

haskind([[ref (t)]], scalar) haskind([[codeptr (t)]], scalar)

haskind([[t]], scalar)

haskind([[rec (t)]], scalar)

haskind([[t]], numeric)

haskind([[forall(t)]],numeric)

haskind([[t]], scalar)

haskind([[forall(t)]], scalar)

haskind([[t]], numeric)

haskind([[exists(t)]], numeric)

haskind([[t]], scalar)

haskind([[exists(t)]], scalar)

Fig. 4. Kinding lemmas (selected)

of scalar and numeric kinds are defined as follows.

scalar(ϕ, k) , ∀j ≤ k,Σ, S, v, v′.(
v(0) = v′(0) ∧ ϕ(j,Σ, S, v)

)
⇒ ϕ(j,Σ, S, v′)

numeric(ϕ, k) , ∀j ≤ k,Σ,Σ′, S, S′, v, v′.(
ϕ(j,Σ, S, v) ∧ ϕ(j,Σ′, S′, v′)

)
⇒ v(0) = v′(0)

The scalar kind accepts closed semantic types that care only about slot zero of a
root value. The numeric kind accepts a closed semantic type ϕ if and only if all
root values v in ϕ contain the same integer n in v(0).

We define a predicate haskind(τ, κ) to denote that a semantic type τ has kind κ:

haskind(τ, κ) , ∀k, ρ. κ(τ(ρ), k).

With the semantics of kinds in place, we can prove many kinding lemmas. We
present a few of these in Figure 4.

Next, we define the semantic interpretations of the kind-coercion types kd scalar(t)
and kd numeric(t).

[[kd scalar(t)]](ρ)(k,Σ, S, v) , [[t]](ρ)(k,Σ, S, v) ∧ scalar([[t]]ρ, k)

[[kd numeric(t)]](ρ)(k,Σ, S, v) , [[t]](ρ)(k,Σ, S, v) ∧ numeric([[t]]ρ, k)

The interpretation of kd scalar(t) is equivalent to the interpretation of t if t is
a scalar type; otherwise it is equivalent to bottom. The type kd numeric(t) is
similarly defined. Note that we can prove that haskind([[kd scalar(t)]], scalar) and
haskind([[kd numeric(t)]],numeric) for any t. Therefore, we can prove that
[[forall(plus(kd numeric(0), kd numeric(0)))]] is a numeric type (with lemmas in Fig-
ure 4). Finally, because the type bottom is a member of each kind, applying a kind
coercion to bottom always results in a member of the corresponding kind, and each
kind coercion is idempotent.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.



30 · A. Ahmed, A. W. Appel, C. D. Richards, K. N. Swadi, G. Tan, and D. C. Wang

4.10 Valid Semantic Types

We have given the semantic interpretations of TML types above. The interpretation
of a TML type t, written [[t]], is a predicate on (ρ)(k,Σ, S, v). Recall that any
such predicate is a semantic type (for which we use the metavariable τ), while any
predicate on (k,Σ, S, v) is a closed semantic type (for which we use the metavariable
ϕ). In this section, we define the notion of a valid semantic type which encompasses
various properties that our TML type interpretations must satisfy.

First, if a value v belongs to the interpretation of a type t for k steps—meaning
that v may not actually have type t, but in k steps of execution, the program cannot
tell the difference—then it should also belong to that type interpretation for j ≤ k
steps. That is, a type interpretation [[t]] should be downward closed with respect to
the step index.

Definition 4.10 (Downward Closure).

downward-closed(ϕ) , ∀k,Σ, S, v. ∀j ≤ k. ϕ(k,Σ, S, v) ⇒ ϕ(j,Σ, S, v)
downward-closed(ρ) , ∀i. downward-closed(ρ(i))
downward-closed(τ) , ∀ρ. downward-closed(ρ) ⇒ downward-closed(τ(ρ))

We define downward closure for a closed semantic type ϕ and extend the notion
pointwise to environments ρ. We say that a semantic type τ is downward closed if,
given a downward closed environment ρ, the closed semantic type τ(ρ) is downward
closed.

Second, the k approximation of a type interpretation [[t]] should not inspect its
environment ρ beyond approximation k. In other words, every TML type interpre-
tation should be nonexpansive (see Definition 4.8 on page 27).

Finally, if a value v belongs to type t in world (S,Σ), then v should continue
to belong to type t in any world (S′,Σ′) that is reachable from (S,Σ)—that is, if
(S,Σ) vj (S′,Σ′), where j is the number of steps left to execute. As explained
in Section 4.6, changes to the state—such as dynamic allocation or updates to
mutable references—should not invalidate assumptions about the types of values.
That is, type interpretations should be closed under the extend-state relation. This
property, called monotonicity, is typical in possible-worlds models. It is also known
as Kripke monotonicity.

Definition 4.11 (Monotonicity).

monotone(ϕ, k) , ∀j ≤ k. ∀S, S′,Σ,Σ′, v.(
ϕ(j,Σ, S, v) ∧ (S,Σ) vj (S′,Σ′)

)
⇒ ϕ(j,Σ′, S′, v)

monotone(ρ, k) , ∀i. monotone(ρ(i), k)
monotone(τ, k) , ∀ρ. monotone(ρ, k) ⇒ monotone(τ(ρ), k)

We say that τ is a valid semantic type if it satisfies each of the three properties
mentioned above.

Definition 4.12 (Valid Semantic Type).

valid-sem-type(τ) ,
∀k. downward-closed(τ) ∧ nonexpansive(τ, k) ∧ monotone(τ, k)
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t1 <: t′1 t2 <: t′2

t1 ∩ t2 <: t′1 ∩ t′2
t <: t1 t <: t2

t <: t1 ∩ t2 t1 ∩ t2 <: t1

t ∩ t .= t t1 ∩ t2
.
= t2 ∩ t1 (t1 ∩ t2) ∩ t3

.
= t1 ∩ (t2 ∩ t3)

t1 ∩ (t1 ∪ t2)
.
= t1 t1 ∪ (t1 ∩ t2)

.
= t1

t1 ∩ (t2 ∪ t3)
.
= (t1 ∩ t2) ∪ (t1 ∩ t3) t1 ∪ (t2 ∩ t3)

.
= (t1 ∪ t2) ∩ (t1 ∪ t3)

t ∩ top
.
= t t ∩ bottom

.
= bottom forall(t1) ∩ forall(t2)

.
= forall(t1 ∩ t2)

Fig. 5. Subtyping and type-equality lemmas for intersection types

Each of the TML type interpretations presented above (Sections 4.4 through 4.9)
is a valid semantic type.

Theorem 4.13. If t is a TML type, then valid-sem-type([[t]]).

To prove the theorem, we need to show that

∀t. ∀k. downward-closed([[t]]) ∧ nonexpansive([[t]], k) ∧ monotone([[t]], k).

The proof is by induction on the step index k and nested induction on the type t.

4.11 Subtyping and Type-Equality Lemmas

Subtyping relations are typically defined either syntactically by a formal system or
semantically as the subset relation on the semantic interpretations of types. We
take the latter approach in defining subtyping for TML. We say t1 is a subtype of
t2, written t1 <: t2, if the interpretation of t1 is a subset of the interpretation of
t2. We say types t1 and t2 are equal, written t1

.= t2, if t1 is a subtype of t2 and
vice versa. The following definition makes use of semantic subtyping (⊆k) which
we defined in Section 4.3 (see Definition 4.1).

Definition 4.14 (Subtyping and Type Equality).

t1 <: t2 , ∀k. [[t1]] ⊆k [[t2]]
t1

.= t2 , t1 <: t2 ∧ t2 <: t1

Subtyping rules typically found in syntactic type theories can be proved as lem-
mas in TML. In fact, any subtyping rule can be added to TML, as long as it can
be proved as a lemma given the semantic definition of subtyping and the model of
TML types. We call these rules subtyping lemmas.

We have proved a large number of useful subtyping and type-equality lemmas.
We do not list all of these lemmas here, but for illustrative purposes we present a
subset of the lemmas involving intersection types in Figure 5.

5. A COMPOSITIONAL LOGIC FOR CONTROL FLOW

We have introduced TML, whose expressive type constructors can specify rich prop-
erties of machine states. In this section, we introduce another key abstraction, Lc,
for specifying properties of machine instructions.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.



32 · A. Ahmed, A. W. Appel, C. D. Richards, K. N. Swadi, G. Tan, and D. C. Wang

At a first approximation, the logic Lc specifies properties of machines instructions
in terms of pre- and post-conditions, similar to Hoare Logic. But unlike Hoare
Logic, Lc can handle unstructured control flow in low-level programs. It introduces
a single, unifying notion of multiple-entry and multiple-exit program fragments.
The notion of program fragments unifies various structures of TALs, including
instructions, basic blocks, and programs. An instruction is treated as a program
fragment with one entry and one exit, or two exits if the instruction is a conditional
branch. A basic block is a program fragment with one entry and multiple exits. A
complete program, meanwhile, is a fragment with multiple entries and zero exits (if
there are no indirect exits in registers). This unifying notion of program fragments
permits Lc to have only one judgment for specifying properties of fragments, while
TALs usually have different judgments for specifying properties of instructions,
basic blocks, and programs. Furthermore, Lc has a set of simple composition rules
for composing fragments. A TAL’s rules for composing basic blocks or instructions
can be explained in terms of Lc’s composition rules.

Since our intermediate logic Lc is built to reason about program fragments, it
enables modular verification of properties of partial programs. Each program frag-
ment needs to be verified only once; program fragments are linked together by Lc’s
composition rules. In contrast, many TALs only support verification of complete
programs, due to the fact that the TAL’s judgments require a global map of pre-
conditions of all basic blocks in the program. If two basic blocks are verified under
different global maps, then they cannot be composed in such TALs. In this respect,
Lc is more general.

In the rest of this section we present the syntax of the composition rules of Lc

(Section 5.1), and then present its semantics in higher-order logic in a continuation-
based interpretation (Section 5.2). We will illustrate the power of Lc in Section 6
by showing how to model the control flow of a simple typed assembly language.

5.1 Logic Lc

We have implemented our control logic Lc on the sparc. To convey the essential
ideas of the logic, we present it here on the imaginary machine of Section 2. The
syntax of Lc is as follows.

(machine instructions) i ::= add rd, rs, n | ld rd, rs[n] | st rd[n], rs | . . .
(program fragments) F ::= {i1@l1, . . . , in@ln}

(register -file types) φ ::= { r1 : t1, . . . , rn : tn }
(continuation sets) Ψ ::= {l1 −. φ1, . . . , ln −. φn}

The machine instructions i are exactly those given in Section 2; we do not list all
of them here.

We write i@l to denote that the instruction i is at the machine address l. A
program fragment F is a set of instruction-at-location (i@l) specifications.

A register-file type φ specifies the types of the general-purpose registers. We use
register-file types as our assertion language to specify invariants of machine states
at particular program points. In the application of Lc to TML we choose register-
file types as our assertion language, but any reasonable predicate on states can be
used. Formally, a register-file type φ is simply a mapping from general-purpose
registers to TML types. A register-file type can be encoded as a TML type as
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follows. (This encoding just formalizes the shorthand we were using in Section 3.)

{ r1 : t1, . . . , rn : tn } , {const(r1) : t1} ∩ . . . ∩ {const(rn) : tn}

Since register-file types can be encoded as TML types, we reuse much of the notation
from TML types, for instance, lifting the notion of TML subtyping up to register-
file subtyping: φ1 <: φ2. We write φ[r 7→ t] = φ′ to denote that φ′ is identical to φ
except for the fact that φ′ maps register r to the type t.

In Lc, we use the notation l−. φ (pronounced “l with φ”) to associate a register-
file type with an address. Informally, if l −. φ holds in a program, then whenever
φ is satisfied, it is safe to “continue from l” (or, jump to l). In other words, l is
a continuation with formal parameters whose types are specified by φ. Hence, we
call φ a precondition of the address l, and call l −. φ a continuation. We use the
metavariable Ψ to range over sets of continuations.

Generalized Hoare Tuples. In Hoare Logic [Hoare 1969], a triple {p}s{q} describes
the relationship between exactly two states—the normal entry and exit states—
associated with a program execution. That is, if the state before the execution of s
satisfies the assertion p, then the state after the execution of s satisfies q. For a high-
level programming language with structured control flow, a program logic based on
Hoare triples works fine. In low-level languages, however, the presence of jump
instructions and conditional branch instructions means that low-level code may
contain multiple entry and exit points. Since a Hoare logic triple {p}s{q} is tailored
to describe the relationship between the normal entry and normal exit states, it
is not surprising that such Hoare logic triples are problematic when considering
program fragments with more than one entry or exit point [O’Donnell 1982].

To facilitate reasoning about control flow in low-level programs, the logic Lc

provides a judgment for specifying properties of multiple-entry and multiple-exit
program fragments:

F ; Ψ′ ` Ψ,

where F is a set of program fragments, and Ψ′ and Ψ are sets of continuations.
The meaning of the judgment may be explained as follows. Suppose

Ψ′ = {l′1 −. φ′1, . . . , l′m −. φ′m} and
Ψ = {l1 −. φ1, . . . , ln −. φn}.

Here, addresses l′1, . . . , l
′
m in Ψ′ are the exit points of F , while l1, . . . , ln in Ψ are

the entry points of F . The following figure depicts the relationship between F , Ψ
and Ψ′.

l1−.φ1 ln−.φn

l′1−.φ′1 l′m−.φ′m

. . .

. . .�� �
@
@R

�
��=

�
�	

Z
ZZ~

F

Ψ′

Ψ

Thus, informally, the judgment F ; Ψ′ ` Ψ says that for a set F of program frag-
ments, if it is safe to continue from any of the exits, provided that the precondition
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associated with that exit is true, then it is safe to continue from any of the entries,
provided that the precondition associated with that entry is true.10 Note that in
the judgment F ; Ψ′ ` Ψ we have put the exit points on the left of `, and the en-
tries on the right. An alternative notation for this judgment is ` {Ψ}F{Ψ′}, which
is perhaps easier to read as the entry points appear to the left of the exits. We
decided to write F ; Ψ′ ` Ψ instead because the judgment is meant to yield Ψ given
F and Ψ′; the notation F ; Ψ′ ` Ψ more closely reflects the logical interpretation
of the judgment.

Using this judgment, we can provide Lc rules for individual machine instructions.
As an example, consider the following rule for the add instruction.

{(add rd, rs, n)@l}; {(l + 1)−. { rd : int }} ` {l −. { rs : int }}

The fragment, (add rd, rs, n)@l, has one entry, namely l, and one exit, namely l+1.
The rule states that if it is safe to continue from the exit l+1 when { rd : int } is true,
then it is safe to continue from the entry l when { rs : int } is true. The informal
explanation for why it is safe to continue from l is as follows. Suppose we start
from l in an initial state where the next instruction to execute is “add rd, rs, n”, and
register rs is of type int. The new state after the execution of the add instruction
reaches the exit l + 1, and based on the semantics of add, the destination register
rd is of type int. Since we have assumed that it is safe to continue from l+ 1 when
{ rd : int } is true, we may conclude that it is safe to continue in the new state
from l + 1. Hence, it follows that the initial state can safely continue from l when
{ rs : int } is true.

Notice that the add rule may be expressed in a Hoare-logic style (with pre- and
postconditions) as follows.

{ rs : int }(l : add rd, rs, n){ rd : int }

Note that this Hoare-logic style rule for add expresses the same specification as the
add rule above.

The Hoare triple {φ}(l : i){φ′}, for a nonjump instruction i that has only one en-
try and one exit, has in Lc a corresponding judgment: {i@l} ; {(l + 1)−. φ′} ` {l −. φ}.
We interpret the direct style Hoare triple {φ}(l : i){φ′} as follows: if φ is true in
the state before i, and i terminates, then φ′ will be true in the state after the exe-
cution of i. The direct-style semantics positively asserts that the exit state satisfies
the postcondition. We interpret {i@l} ; {(l + 1)−. φ′} ` {l −. φ} in continuation
style: If l + 1 is safe provided that φ′ is satisfied, then l is safe provided that φ
is satisfied. The two styles of interpretations are closely related—in fact, under
certain assumptions they are equivalent [Tan 2005, Ch 2.4.2].

Hoare triples can accommodate only one entry and one exit, and thus cannot
specify conditional-branch instructions such as bnz, which has two possible exits.11

10In this informal explanation of F ; Ψ′ ` Ψ we have chosen to ignore, for the moment, an addi-

tional property of the judgment, which is the requirement that it must take at least one computa-
tion step to get from an entry to an exit point. We give the precise interpretation of F ; Ψ′ ` Ψ

in Section 5.2.
11Later variants of Hoare Logic can accommodate more than one exit; see the discussion of related
work (Section 8).
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Our judgment F ; Ψ′ ` Ψ is more general. A rule for bnz is as below; it assumes
two exit continuations.

{(bnz rs, ld)@l};
{ld −.

(
φ[rs 7→ φ(rs) ∩ int6=(const(0))]

)
, (l + 1)−.

(
φ[rs 7→ φ(rs) ∩ const(0)]

)
}

` {l −. φ}

When the branch is taken, the register rs is nonzero; therefore the rule adds the
information int6=(const(0)) to φ(rs). Similarly, when the branch is not taken, the
register rs should additionally have type const(0).

We have used example rules to explain our judgment for program fragments. One
important thing to note is that the logic Lc is really about how to compose program
fragments using its composition rules. In some sense, the logic is parameterized over
the set of rules for individual instructions. Rules for machine instructions can be
soundly added to the logic, as long as they can be proved from the semantics of
the judgment for program fragments (we will introduce the formal semantics later).
As an example, the rule for the add instruction that we saw above is not realistic
as it does not specify that the types of registers other than the destination register
must be preserved. The following is a more realistic rule; it can be proved sound
and can therefore be added to Lc.

φ <: { rs : int } φ[rd 7→ int] = φ′

{(add rd, rs, n)@l}; {(l + 1)−. φ′} ` {l −. φ}

Composition Rules. The core of Lc is its composition rules. These rules can be
used to compose judgments on individual instructions into properties of the whole
collection. By internalizing control flow, these composition rules permit modular
reasoning.

Figure 6 presents Lc’s composition rules. The figure does not include the rules for
φ1 <: φ2. The symbol <: is the TML subtyping relation, and the logic Lc admits
all TML subtyping lemmas.

We next illustrate the composition rules using a running example in Figure 7. For
this example, we use informal graphs, but translating the latter into the formal syn-
tax of Lc is straightforward. In this example, we use the shorthand r1 < 0, r1 ≤ 0,
and r1 = 0 for { r1 : int<(const(0)) }, { r1 : int≤(const(0)) }, and { r1 : int=(const(0)) },
respectively.

Assume we have two individual instructions, depicted in Figure 7. The first
instruction increments register r1 by one. If r1 < 0 when entering this instruction,
then r1 ≤ 0 after execution of the instruction. The second instruction is “bnz r1, l”,
which has one entry but two exits. For the fall-through exit, we have r1 = 0;
when the branch is taken, we have r1 < 0. Our goal is to combine these two
instructions together to get a property of the two-instruction block. Notice that
the two-instruction block is effectively a repeat-until loop: it keeps incrementing r1
until r1 is zero. For this repeat-until loop, we wish to prove that if r1 < 0 before
entering the block, then r1 = 0 after completion of the block.
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F ; Ψ1 ` Ψ2 F1 ; Ψ′1 ` Ψ1 F2 ; Ψ′2 ` Ψ2

F1 ∪ F2 ; Ψ′1 ∪Ψ′2 ` Ψ1 ∪Ψ2
combine

F ; Ψ′ ∪ {l −. φ} ` Ψ ∪ {l −. φ}
F ; Ψ′ ` Ψ ∪ {l −. φ}

discharge

` Ψ′1 ⇒ Ψ′2 F ; Ψ′2 ` Ψ2 ` Ψ2 ⇒ Ψ1

F ; Ψ′1 ` Ψ1
weaken

` Ψ1 ⇒ Ψ2 m ≥ n
` {l1 −. φ1, . . . , lm −. φm} ⇒ {l1 −. φ1, . . . , ln −. φn}

s-width

φ′ <: φ

` Ψ ∪ {l −. φ} ⇒ Ψ ∪ {l −. φ′}
s-depth

Fig. 6. Lc composition rules

l

ll

...
l+1

l+1

l+2

r1{ 0}≤

r1{ <0} r1{ <0}

r1{ 0}≤

r1{ =0}

r1 r1add , 1,

r1 l, bnz

r1{ =0}l+2
r1 <0}{

r1 l, bnz

r1 r1add , 1,

Assumptions Goal

Fig. 7. An example to illustrate Lc’s composition rules

The steps to derive the goal from the assumptions are presented in Figure 8.
In step 1, we use the combine rule in Figure 6. When combining two fragments,
F1 and F2, the combine rule joins the entries of F1 and F2; the same goes for the
exits. For the example, since both instructions have only one entry, we end up with
two entries after the combine rule. Since the first instruction has one exit, and the
second instruction has two exits, we end up with three exits after the combine rule.

After application of the combine rule, we may end up with some address that
is both an entry and an exit. For example, the address l after step 1 in Figure 8
is both an entry and an exit. Furthermore, the entry and the exit for l carry the
same precondition, namely r1 < 0. In this case, the discharge rule in Figure 6 can
be used to eliminate the address l as an exit. Formally, the discharge rule states
that if some l −. φ appears on both the left and the right of the `, then it can be
removed from the left. Recall that exits are on the left, so this rule removes an
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l

combine

Step 1

l+1
l+2

l+1

Step 3:
Remove entry

l

l+1

l+1 r1{ =0}
r1{ 0}≤

l+1

l+2

l+1

l+1

l+2

r1 r1add , 1,

r1 r1add , 1,

r1 r1add , 1,r1 r1add , 1,

r1 l, bnz

l+2

r1 l, bnz

r1 l, bnz r1 l, bnz

r1{ <0}

r1{ <0}
r1{ <0}

r1{ <0}

r1{ <0} r1{ <0}

r1{ 0}≤

r1{ 0}≤

r1{ 0}≤

r1{ 0}≤

r1{ =0}

r1{ =0} r1{ =0}

l
l

discharge

Step 2:

l

l

and lRemove exits

weaken

Fig. 8. The steps to derive the example in Figure 7

exit. At first sight, the discharge rule appears to be unsound. In the next section,
we will present an index-based interpretation that justifies its soundness.

The address l + 1 is also both an entry and an exit, and the entry and the exit
carry the same precondition. The discharge rule can remove l+ 1 as an exit as well.
Therefore, step 2 in Figure 8 is to apply the discharge rule twice to remove both l
and l + 1 as exits. After this step, there is only one exit left.

In the last step, we remove l + 1 as an entry using the weaken rule. The weaken
rule uses a relation between two sets of continuations:

` Ψ1 ⇒ Ψ2,

which says that Ψ1 is a stronger set of continuations than Ψ2.
The rule s-width in Figure 6 states that a set of continuations is a stronger set

than its subset. Therefore, ` {l + 1−. (r1 ≤ 0), l−. (r1 < 0)} ⇒ {l−. (r1 < 0)} is
derivable. Using this result and the weaken rule, step 3 in Figure 8 removes address
l + 1 as an entry.

After these steps, we have one entry and one exit left for the repeat-until loop,
and we have proved the desired property for the loop.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.



38 · A. Ahmed, A. W. Appel, C. D. Richards, K. N. Swadi, G. Tan, and D. C. Wang

One natural question to ask is which addresses the logic should keep as entries.
The example eliminates l+ 1 as an entry, while l remains. This is because it is the
desired goal that tells us what the entries ought to be. In some other scenario we
may want to keep l+ 1 as an entry as, for instance, in cases when other fragments
need to jump to l + 1. This is possible in unstructured control flow even though
l + 1 points to the middle of a loop. In general, the logic Lc itself does not dictate
which entries to keep; that is the decision of the user of Lc’s inference rules.

The example in Figure 8 has made use of all the composition rules with the
exception of the s-depth rule. The s-depth rule states that a continuation with a
weaker precondition is stronger than the continuation with a stronger precondition.
The rule is contravariant in the preconditions. As an example, note that we can
use this rule together with the weaken rule to derive F ; {l −. {r1 : int}} ` Ψ from
F ; {l −. {r1 : int, r2 : int}} ` Ψ.

Deriving Rules for Common Control-Flow Structures. We have shown a con-
crete example of using Lc’s composition rules. In general, these composition rules
can derive rules for common control-flow structures when these structures exist in
machine code. To illustrate, next we derive a general rule for repeat-until loops.
Suppose we have two program judgments. Fragment F1 has one entry and one exit.
Fragment F2 has one entry, but two exits and one of the exits loops back to the
entry of F1. Therefore, when combined, these two fragments form a repeat-until
loop. Below is the depiction of a repeat-until loop and the derivation of a general
rule for repeat-until loops:

1

F2

l1

l2

l3

φ1

φ2

φ3

F

F1 ; {l2 −. φ2} ` {l1 −. φ1}
F2 ; {l1 −. φ1, l3 −. φ3} ` {l2 −. φ2}

F1 ∪ F2 ; {l2 −. φ2, l1 −. φ1, l3 −. φ3} ` {l1 −. φ1, l2 −. φ2}
combine

F1 ∪ F2 ; {l2 −. φ2, l3 −. φ3} ` {l1 −. φ1, l2 −. φ2}
discharge l1

F1 ∪ F2 ; {l3 −. φ3} ` {l1 −. φ1, l2 −. φ2}
discharge l2

F1 ∪ F2 ; {l3 −. φ3} ` {l1 −. φ1}
weaken

In Lc, we can analogously derive rules for many other control-flow structures,
including sequential composition and while loops.

5.2 Semantics of Lc

The semantics of Lc is centered on an interpretation of the judgment F ; Ψ′ ` Ψ.
We have informally discussed its interpretation: for the set of fragments F , if Ψ′ is
true, then Ψ is true. If a continuation set Ψ is true, that means that it is safe to
continue from any address in Ψ, provided that the associated precondition is true.
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However, this näıve interpretation cannot justify the discharge rule. To see why,
let us examine a special case of the discharge rule, where both Ψ′ and Ψ are empty
sets. Then the rule becomes

F ; {l −. φ} ` {l −. φ}
F ; { } ` {l −. φ}

According to the näıve interpretation, the above rule is like stating that if “assuming
l−. φ is a true continuation, we can derive l−. φ to be a true continuation”, then
“l −. φ is a true continuation”. This is clearly unsound, because the premise is a
tautology.

The problem is not that Lc is intrinsically unsound, but rather that the näıve
interpretation has not captured the complete invariants implicit in Lc. The inter-
pretation that we must adopt is a stronger one. The idea is based on the notion of
continuations being approximately true. The judgment F ; Ψ′ ` Ψ is interpreted
as Ψ being true at a higher approximation, by assuming the truth of Ψ′ at a lower
approximation. In this inductive interpretation, Ψ′ and Ψ are treated differently,
and it allows the discharge rule to be justified via induction.

Continuations Being Approximately True. We interpret the truth of l −. φ as
that the address l is of type codeptr (φ). The interpretation of code-pointer types
in Section 4.6 is indexed by an approximation index k. By that definition, l −. φ
being a true continuation in a state S and a store type Σ to approximation k means
that the state is safe to execute for k steps. In other words, the state will not get
stuck within k steps.

In a straightforward way, the semantics of a single continuation is then extended
to a set of continuations. We define Σ;S |=k Ψ to mean that under a store type Σ
and a state S, a continuation set Ψ is true to approximation k.

Σ;S |=k Ψ , ∀(l −. φ) ∈ Ψ. [[codeptr (φ)]](ρ∅)(k,Σ, S, cv(l))

In the definition, every codeptr (φ) is applied to the empty environment ρ∅; we
assume the precondition φ to be a closed type in this presentation. Our imple-
mentation also deals with open register-file types. Briefly, if φ is open and its type
variables are collected in a type context ∆, then ∀∆.codeptr (φ) will be closed. The
type ∀∆.codeptr (φ) can then be encoded and interpreted using TML polymorphic
types. See Tan’s thesis [Tan 2005] for details.

Loading Program Fragments. The predicate frag loaded(F, S) describes the load-
ing of a fragment set F into a state S = 〈R, M〉:

frag loaded(F, 〈R, M〉) , ∀i, l. (i@l) ∈ F ⇒ decode(M(l), i)

Recall that decode(n, i) decodes a machine integer n into a machine instruction i.
The decode relation was introduced in Section 2.

Semantics of the Judgment F ; Ψ′ ` Ψ. We define a relation, F ; Ψ′ |= Ψ, which
is the semantic interpretation of F ; Ψ′ ` Ψ.

F ; Ψ′ |= Ψ , ∀S. frag loaded(F, S) ⇒ ∀k,Σ.
(
Σ;S |=k Ψ′ ⇒ Σ;S |=k+1 Ψ

)
.
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The definition quantifies over all states S such that F is loaded in the state. It de-
rives the truth of Ψ to approximation k+ 1, from the truth of Ψ′ to approximation
k. In other words, if it is safe to continue from any of the addresses in Ψ′, provided
that the associated precondition is true for some number k of computation steps,
then it is safe to continue from any of the addresses in Ψ, provided that the asso-
ciated precondition is true for k + 1 computation steps. This inductive definition
allows the discharge rule to be proved by induction over k.

In order to prove the discharge rule, we have given F ; Ψ′ |= Ψ a strong definition:
we interpret continuations in Ψ at (k + 1)-th approximation, not just k. But what
about rules other than the discharge rule? Do they support such a strong semantics?
The answer is yes, because of one implicit invariant—for any judgment F ; Ψ′ ` Ψ
that is derivable, it takes at least one computation step from addresses in Ψ before
it will make use of the guarantees in Ψ′. Because of this invariant, despite the fact
that it is safe to continue from exits for only k steps, we can still show that it is
safe to continue from entries for k + 1 steps.

Finally, since Lc also contains rules for deriving ` Ψ⇒ Ψ′, we present its seman-
tics below to complete the presentation.

|= Ψ⇒ Ψ′ , ∀Σ, S, k. (Σ;S |=k Ψ)⇒ (Σ;S |=k Ψ′)

The relation φ <: φ′ is the TML subtyping relation, and we introduced its semantics
in Section 4.11.

Soundness and Type Safety. Based on the semantics we have developed, we next
present soundness and type-safety theorems for Lc.

Theorem 5.1 (Soundness). If F ; Ψ′ ` Ψ, then F ; Ψ′ |= Ψ.

The proof is by induction on the derivation F ; Ψ′ ` Ψ. The most interesting case
is the proof of the discharge rule, which is shown below.

Lemma 5.2 (Soundness of discharge Rule).
If F ; Ψ′ ∪ {l −. φ} |= Ψ ∪ {l −. φ}, then F ; Ψ′ |= Ψ ∪ {l −. φ}.

Proof. For all S, assuming

frag loaded(F, S), (5.2.1)

we need to show ∀k,Σ.
(
Σ;S |=k Ψ′ ⇒ Σ;S |=k+1 Ψ ∪ {l −. φ}

)
. We prove this

by induction on the natural number k.
For the base case, assume Σ;S |=0 Ψ′ and show that Σ;S |=1 Ψ ∪ {l −. φ}, for

any Σ.
By the definition of [[codeptr (φ)]], it is trivial to show Σ;S |=0 {l −. φ}. Together

with the assumption Σ;S |=0 Ψ′, we have

Σ;S |=0 Ψ′ ∪ {l −. φ} (5.2.2)

Now from F ; Ψ′ ∪ {l −. φ} |= Ψ ∪ {l −. φ}, the result 5.2.1, and the result 5.2.2,
we get Σ;S |=1 Ψ ∪ {l −. φ}, which is what we needed to show for the base case.

For the inductive case, assume

∀Σ.
(
Σ;S |=k Ψ′ ⇒ Σ;S |=k+1 Ψ ∪ {l −. φ}

)
(5.2.3)
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We must show that

∀Σ.
(
Σ;S |=k+1 Ψ′ ⇒ Σ;S |=k+2 Ψ ∪ {l −. φ}

)
.

Thus, assume

Σ;S |=k+1 Ψ′. (5.2.4)

Since [[codeptr (φ)]] is downward closed in terms of the index k, it is easy to show

Σ;S |=k Ψ′. (5.2.5)

From the induction hypothesis 5.2.3 and the result 5.2.5, we have

Σ;S |=k+1 Ψ ∪ {l −. φ}, (5.2.6)

from which we have

Σ;S |=k+1 {l −. φ}. (5.2.7)

Together with 5.2.4, we have

Σ;S |=k+1 Ψ′ ∪ {l −. φ}. (5.2.8)

Now, use the assumption F ; Ψ′ ∪ {l −. φ} |= Ψ ∪ {l −. φ}, 5.2.1 and 5.2.8, to
derive Σ;S |=k+2 Ψ ∪ {l −. φ}, which is what we needed to show for the inductive
case. 2

For type safety, we need to show that if a program type checks in Lc then it
is safe—i.e., it will not get stuck. To present the formal theorem, we must first
introduce a definition.

Definition 5.3. Given machine code C = { l1 7→ n1, . . . , lk 7→ nk }, we use
frag(C) for the corresponding program fragment, that is,

frag(C) , {i1@l1, . . . , ik@lk},

where decode(nj , ij) holds for 1 ≤ j ≤ k.

Note that frag(−) is a partial function since for some numbers n, there is no in-
struction i such that decode(n, i).

Theorem 5.4 (Type Safety of Lc).
If frag(C) ; { } |= {startLoc −. top}, then safe code(C, startLoc).

Or, for the fragment frag(C), if our logic can derive that startLoc is a safe address
with precondition top, under no assumptions about the exits, then the machine
program C is a safe program.

Proof(Sketch). By the definition of safe code(C, startLoc) (Definition 2.1 on
page 7), we need to prove that safe state(〈R, M〉, k) for any k, R, and M , assuming

loaded(C, 〈R, M〉), R(pc) = startLoc, init cond(〈R, M〉).

We use Lemma 4.5 (page 25) to prove the goal.
For the initial state, the store type is the map containing only the loaded program

C, called ΣC .12 From loaded(C, 〈R, M〉), we can prove ∀k. ` 〈R, M〉 :k ΣC .

12When C = { l1 7→ n1, . . . , lk 7→ nk }, the initial store type ΣC is defined as follows:

ΣC = { l1 7→ box (int=(const(n1))), . . . , lk 7→ box (int=(const(nk))) }
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(programs) P ::= B;P | B
(instruction blocks) B ::= i;B | goto l | bz rs, l | jmp rd

(instructions) i ::= add rd, rs, n | ld rd, rs[n] | st rd[n], rs

(code specification) Ψ ::= { l1 : codeptr (φ1), . . . , ln : codeptr (φn) }
(register -file types) φ ::= { r1 : t1, . . . , rn : tn }

(types) t ::= int | codeptr (φ) | list(t) | listcons(t) | listnil

Fig. 9. TAL0: Syntax

We have not presented definitions of init cond(−) and valid state(−,−), but it
suffices to say that the definition of init cond(〈R, M〉) is strong enough to prove
valid state(〈R, M〉,ΣC).

By the definition of frag(C) ; { } |= {startLoc −. top}, we have that

∀k. [[codeptr (top)]](ρ∅)(k,ΣC , 〈R, M〉, cv(startLoc)).

Now using Lemma 4.5, we have ∀k. safe state(〈R, M〉, k). 2

6. MODELING TYPED ASSEMBLY LANGUAGES

We have introduced an intermediate layer with two key abstractions: TML and
Lc. This layer can serve as a semantic foundation for a variety of typed assembly
languages. To illustrate how TML and Lc can be leveraged to prove the type
soundness of a TAL, in Section 6.1 we introduce a tiny TAL, dubbed TAL0, and
explain how TML and Lc can be used to model the data structures and control flow
of this tiny TAL. In Section 6.2, we discuss some of the salient issues that arose
when modeling LTAL, the low-level typed assembly language used in our FPCC
system.

6.1 Modeling TAL0

TAL0 is a simple typed assembly language that manipulates lists. Specifically, TAL0

can perform list updates, but it cannot perform list allocation and initialization (a
point that we will return to when we discuss memory allocation in Section 6.2).

Figure 9 presents the syntax of TAL0. We assume that the underlying machine is
the same as the one in Section 2. A TAL0 program consists of an assembly program
P and a code specification Ψ. An assembly program P consists of a sequence of
instruction blocks, each of which is a sequence of instructions ending in a control-
transfer instruction. The code specification Ψ is a mapping from addresses to
code-pointer types, which take register-file types as preconditions. Note that the
notation { l : codeptr (φ) } is essentially the same as {l−. φ} in Lc. The domain of a
well-formed Ψ contains exactly those addresses that correspond to the beginnings of
instruction blocks. Therefore, it effectively specifies a precondition for the beginning
of every instruction block.

The types of TAL0 include an integer type int, and a code-pointer type codeptr (φ).
We use code-pointer types to handle indirect jumps. To manipulate lists, TAL0 has
a list type list(t). The type listcons(t) contains those lists that have at least one
cons cell, i.e., nonempty lists. The type listnil is the type ascribed to empty lists.

That is, the initial store type uses immutable-reference types to reflect the presence of C.
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We will use the notation |B| to denote the size of an instruction block B. Since
each instruction on the imaginary machine is of size one, |B| equals the number of
instructions in B.

Type System. The type system of TAL0 has judgments for programs, for instruc-
tion blocks, for instructions, and for subtyping:

—The judgment `p P : Ψ means that the program P is well formed with respect
to the code specification Ψ.

—The judgment Ψ; l `f P means that the program fragment P , starting at address
l, is well formed, assuming the global code specification Ψ. The code specification
Ψ provides the preconditions associated with addresses to which P might jump.

—The judgment Ψ; l;φ `b B means that the instruction block B, starting at address
l, is well formed, assuming the precondition ofB is φ and assuming the global code
specification Ψ. The code specification Ψ provides the preconditions associated
with addresses to which B might jump.

—The judgment `i {φ1}i{φ2} means that the instruction i is well formed with
respect to the precondition φ1 and the postcondition φ2.

—The judgments t1 <: t2 and φ1 <: φ2 are the subtyping judgments between types
and register-file types, respectively.

Figure 10 presents the type system of TAL0. To check that a program P is
well formed with respect to a code specification Ψ, the prog rule invokes Ψ; 0 `f P .
Then, the type system uses the frag1 and frag2 rules to check that each instruction
block in P is well formed. The rules frag1 and frag2 look up the precondition of
each block inside the global code specification Ψ. These two rules also make sure
that Ψ is well formed by checking that Ψ associates preconditions with only those
addresses that correspond to the beginning of instruction blocks. (Preconditions
for other addresses are computed by the type system.)

When checking an instruction block B, the type system uses the seq rule to walk
through the block to check that every instruction is well formed. The goto, jmp,
and bz rules check the last instruction in a block. The goto rule checks that the
current precondition, φ, is a subtype of the precondition of the destination address
(which must be in the domain of Ψ).

The rule for “jmp rd” needs some explanation. Before we can jump to the register
rd, the rule requires that rd be of a code-pointer type that takes the current register-
file type φ as the precondition. As an example, suppose the instruction is “jmp r1”,
and suppose the precondition is:

φ = { r1 : codeptr ({ r2 : int }), r2 : int }.

This precondition requires r1 to be a code pointer that the program can jump to
when r2 is of integer type. Intuitively, “jmp r1” is a safe jump because { r2 : int }
satisfies the precondition of the destination address r1. Using the subtyping rules
in Figure 10, we can derive φ <: { r1 : codeptr (φ) } as follows.
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`p P : Ψ

Ψ; 0 `f P
`p P : Ψ

prog

Ψ; l `f P

Ψ(l) = codeptr (φ) ∀l < x < l + |B|. x /∈ dom(Ψ)

Ψ; l;φ `b B Ψ; l + |B| `f P
Ψ; l `f (B;P )

frag1

Ψ(l) = codeptr (φ) ∀x > l. x /∈ dom(Ψ) Ψ; l;φ `b B
Ψ; l `f B

frag2

Ψ; l;φ `b B

`i {φ1}i{φ2} Ψ; l + 1;φ2 `b B
Ψ; l;φ1 `b (i;B)

seq

Ψ(ld) = codeptr (φd) φ <: φd

Ψ; l;φ `b (goto ld)
goto

φ <: { rd : codeptr (φ) }
Ψ; l;φ `b (jmp rd)

jmp

Ψ(ld) = codeptr (φd) Ψ(l + 1) = φ′

φ <: { rs : list(t) } φ[rs 7→ listnil] <: φd φ[rs 7→ listcons(t)] <: φ′

Ψ; l;φ `b (bz rs, ld)
bz

`i {φ1}i{φ2}

φ <: { rs : int } φ[rd 7→ int] = φ′

`i {φ}(add rd, rs, n){φ′} add
φ <: { rd : listcons(t), rs : t }
`i {φ}(st rd[0], rs){φ}

st-upd

φ <: { rs : listcons(t) }
φ[rd 7→ t] = φ′

`i {φ}(ld rd, rs[0]){φ′} ld0

φ <: { rs : listcons(t) }
φ[rd 7→ list(t)] = φ′

`i {φ}(ld rd, rs[1]){φ′} ld1

t1 <: t2, φ1 <: φ2

t <: t
s-refl

φ2 <: φ1

codeptr (φ1) <: codeptr (φ2)
s-cptr

listnil <: list(t)
s-nil

listcons(t) <: list(t)
s-cons

dom(φ2) ⊆ dom(φ1) ∀r ∈ dom(φ2). φ1(r) <: φ2(r)

φ1 <: φ2
s-rfile

Fig. 10. TAL0: Type system
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int <: int
s-refl

{ r1 : codeptr ({ r2 : int }), r2 : int } <: { r2 : int } s-rfile

codeptr ({ r2 : int }) <: codeptr ({ r1 : codeptr ({ r2 : int }), r2 : int })
s-cptr

{ r1 : codeptr ({ r2 : int }), r2 : int }
<: { r1 : codeptr ({ r1 : codeptr ({ r2 : int }), r2 : int }) }

s-rfile

Since TAL0 manipulates lists, the bz rule is specialized for the case when the
source register rs is of type list(t). TAL0 implicitly assumes an untagged represen-
tation for lists: use value 0 for the empty list, and a nonzero pointer to a record of
two fields for a cons cell; the first field is the data, and the second is the tail of the
list. Therefore, in the typing rule for bz, when the branch is taken, we know that
the list is an empty list, and we update rs to be of type listnil. For the fall-through
case, the list is nonempty, and rs has type listcons(t).

The rules for `i {φ1}i{φ2} take a precondition φ1 and an instruction i as inputs
and calculate a postcondition φ2 as an output. In the add rule, the postcondition
is the precondition with the destination register updated with the int type. The
st-upd rule deals with the case of updating the contents of the head of a list. The
list must be nonempty; hence, the rule st-upd requires a listcons(t) type. The ld0
(ld1) rule deals with the case of loading data (the tail) in a list.

To demonstrate TML’s expressive power in terms of encoding TAL0 types, we
have arbitrarily chosen to make the heads of lists mutable and the tails immutable.
This is why we have two ld rules, but only one st-upd rule. We could easily make
it the other way around, or make both mutable, or make both immutable.

As an example, consider the following TAL0 program which takes an integer list
as input and adds one to every integer in the list. For the reader’s convenience,
we put type specifications in front of every instruction, although TAL0 only needs
specifications at the beginnings of basic blocks.

begin : { r1 : list(int) }
bz r1, end
{ r1 : listcons(int) }

ld r2, r1[0]
{ r1 : listcons(int), r2 : int }

add r2, r2, 1
{ r1 : listcons(int), r2 : int }

st r1[0], r2
{ r1 : listcons(int), r2 : int }

ld r1, r1[1]
{ r1 : list(int) }

goto begin
end : { }

goto end

Modeling Data Types in TAL0. We model TAL0’s data types using TML type
constructors. Intuitively, a list(t) type in TAL0 has two cases, either an empty list,
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|=p P : Ψ , P@0; { } |=Lc Ψ

Ψ; l |=f P , P@l; Ψ |=Lc Ψ|≥l

Ψ; l;φ |=b B , B@l; Ψ |=Lc {l : codeptr (φ)}
|=i {φ1}i{φ2} , ∀l. i@l; {l + |i| : codeptr (φ2)} |=Lc {l : codeptr (φ1)}

Fig. 11. TAL0: Semantics of typing judgments

or a nonempty list with a head and a tail. Since TAL0 uses an untagged represen-
tation, an empty list should be represented as integer zero, while a nonempty list
is a nonzero pointer to a record that has the data as the first field and the tail as
the second field. Therefore, we encode the list types in TAL0 as follows:

list(t) ,

rec
(

const(0) ∪
(
int6=(const(0)) ∩ offset(const(0), ref (t)) ∩ offset(const(1), box (0))

))
listnil , const(0)
listcons(t) , int6=(const(0)) ∩ offset(const(0), ref (t)) ∩ offset(const(1), box (list(t)))

We defined the type offset(t1, t2) in Section 3.2. Intuitively, a value n1 has type
offset(const(n2), t) if and only if n1 + n2 has type t.

TAL0 also has type int, codeptr (φ), and subtyping. We model these directly
using their TML counterparts—that is why we have deliberately used the same
syntax for int, codeptr (φ), and subtyping.

With these semantics based on TML, the subtyping rules in TAL0 can be easily
proved based on the subtyping rules in TML. For example, the subtyping rule
listcons(t) <: list(t) can be proved by using the fold-unfold subtyping lemma of
recursive types in TML. As we can see, the TML layer provides a nice separation
between low-level machine details and high-level types. When we model a new
TAL, many proofs about types are easily reused.

Modeling Control Flow in TAL0. We next model TAL0’s control flow based on
Lc. We proceed in two steps. First, we develop models for TAL0 judgments based
on Lc’s instruction judgment; we will use F ; Ψ′ |=Lc

Ψ for Lc’s instruction judgment
to avoid confusion. Next, we demonstrate how the TAL0 rules and its type safety
theorem can be proved from the rules in Lc.

Let us first introduce some notation. In TAL0, an instruction block B denotes a
list of consecutive instructions. We will write B@l to mean that B is at address l.
When B = i0; . . . ; in, the notation B@l is an abbreviation for { i0@l, . . . , in@(l +
n) }. Similarly, we will write P@l to denote that the program P is at the address l.

Figure 11 presents semantics of judgments in TAL0’s type system, based on
F ; Ψ′ |=Lc

Ψ. The first judgment is `p P : Ψ, which we model as P@0; { } |=Lc
Ψ.

The program P has multiple entries: the beginnings of instruction blocks in P are
possible entries; these beginnings correspond to the domain of Ψ. Furthermore,
since P is the complete program, it does not depend on other exits and thus has no
exits (except for some possible indirect exits in registers). Therefore, the semantics
of `p P : Ψ in Figure 11 says that every address in the domain of Ψ is a code
pointer with respect to the corresponding precondition prescribed in Ψ.
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In the judgment Ψ; l `f P , the P part is not a complete program, but only a
partial program starting at the address l, and thus its entries include the beginnings
of only those instruction blocks in P ; these beginnings correspond to those addresses
that are not less than l in the domain of Ψ. We use the notation Ψ|≥l to denote the
restriction of Ψ to those addresses greater than or equal to l. Meanwhile, P may
jump outside of P to any instruction block in the complete program. Therefore,
the semantics of Ψ; l `f P in Figure 11 says that every address in the domain of
Ψ|≥l is a code pointer, assuming the global code specification Ψ.

In the judgment Ψ; l;φ `b B, the block B has only one entry, namely l. But
the last instruction in B may jump to any other block in the complete program.
Therefore, the semantics of Ψ; l;φ `b B in Figure 11 says that the address l is a
code pointer with the precondition φ, assuming the global code specification Ψ.

In the judgment `i {φ1}i{φ2}, the instruction i is not a control-transfer instruc-
tion and therefore has one entry and one exit. Its semantics in Figure 11 states
that the address l is a code pointer with the precondition φ1, assuming that the
address l + |i| is a code pointer with precondition φ2.

Next, we show how the soundness of TAL0’s composition rules (prog, frag1, frag2
and seq) follows from Lc’s rules. The two interesting cases are the prog and the seq
rules, whose proofs are presented below.

Lemma 6.1 Soundness of prog Rule. If Ψ; 0 |=f P , then |=p P : Ψ.

Proof. From the definitions in Figure 11, we need to prove P@0; { } |=Lc Ψ,
by assuming P@0; Ψ |=Lc

Ψ|≥0. Since the domain of Ψ is a subset of the natural
numbers, we have Ψ|≥0 = Ψ, and thus

P@0; Ψ |=Lc
Ψ.

Note that every { l : codeptr (φ) } in Ψ appears on both the left and the right
in the above judgment. Because dom(Ψ) is finite, we use the discharge rule of Lc

multiple times to remove all continuations from the left of the judgment, and then
get

P@0; { } |=Lc
Ψ.

2

Lemma 6.2 Soundness of seq Rule. If |=i {φ1}i{φ2}, and Ψ; l + 1;φ2 |=b B,
then Ψ; l;φ1 |=b i;B.

Proof. From the definitions in Figure 11, we need to prove

(i;B)@l; Ψ |=Lc { l : codeptr (φ1) },

by assuming

∀l. i@l; { l + |i| : codeptr (φ2) } |=Lc
{ l : codeptr (φ1) } (1)

B@(l + 1); Ψ |=Lc
{ l + 1 : codeptr (φ2) } (2)

Performing a universal elimination on (1) using the address l, and considering that
|i| = 1, we have

i@l; { l + 1 : codeptr (φ2) } |=Lc
{ l : codeptr (φ1) } (3)
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Using the combine rule in Lc on (3) and (2), and also taking into account that
i@l together with B@(l + 1) is the same as (i;B)@l, we get

(i;B)@l; Ψ ∪ { l + 1 : codeptr (φ2) } |=Lc { l : codeptr (φ1), l + 1 : codeptr (φ2) }.
(4)

Since { l+1 : codeptr (φ2) } appears both on the left and on the right of the above
judgment, we use the discharge rule to remove it from the left:

(i;B)@l; Ψ |=Lc
{ l : codeptr (φ1), l + 1 : codeptr (φ2) }. (5)

Finally, we use the weaken rule to remove { l + 1 : codeptr (φ2) } from the right
of the judgment to prove our goal:

(i;B)@l; Ψ |=Lc
{ l : codeptr (φ1) } (6)

2

TAL0 also contains rules for individual instructions, such as the add and ld0 rules.
These rules are proved based on the operational semantics of the instructions, the
definition of F ; Ψ′ |=Lc

Ψ, and the model of TAL0 types. We have proved many
generic typing lemmas for machine instructions; these lemmas are useful for proving
the specific typing rules for instructions in a TAL. We do not elaborate on these
here, but refer readers to a Ph.D. dissertation [Tan 2005, Chapter 4].

Finally, we present the type-safety theorem of TAL0, which is a direct result of
our semantic encoding of “well-formed programs”.

Theorem 6.3 (Type Safety of TAL0). If (1) the assembly-language program
P type-checks with type Ψ, (2) the machine-language program C corresponds to the
assembly-language program P , and (3) the initial entry precondition in Ψ for ad-
dress startLoc is true, then it is safe to execute program C from address startLoc.
That is, if (1) |=p P : Ψ, (2) P@0 = frag(C), and (3) {startLoc −. top} ∈ Ψ, then
safe code(C, startLoc).

Proof. From the semantics of |=p P : Ψ, we have P@0; { } |=Lc
Ψ. By assumption

(2) and (3), we have

frag(C); { } |=Lc {startLoc −. top}.

Now we apply Theorem 5.4 to get safe code(C, startLoc). 2

6.2 Modeling LTAL

We have shown above how to model a simple typed assembly language TAL0. The
real typed assembly language in our system, LTAL, is much more feature-laden and
complex. But still, the layer of TML and Lc is invaluable in modeling LTAL. In
this section, we briefly sketch some important issues. Interested readers can find
more details in Tan et al. [2004] and Tan [2005].

LTAL’s type system is much more expressive than that of TAL0. It contains
polymorphic types, existential types, recursive types, and many others. All these
types can be easily encoded using TML. The type refinement rules and substitution
rules in LTAL are simply lemmas (or combinations of lemmas) provided by TML
and are easy to prove.
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Virtual Instructions. While encoding LTAL data structures using TML is straight-
forward, encoding control flow using Lc is more problematic due to the presence
of virtual instructions. To accommodate recursive types (and also polymorphic
and existential types) while still maintaining syntax-directed type checking, LTAL
has virtual instructions that do not correspond to real machine instructions. For
example, LTAL has an instruction that unfolds a recursive type. These virtual in-
structions only manipulate types, and perform no real computation. Their purpose
is to guide the type-checking process.

These virtual instructions create problems for our control logic Lc. This is due
to the fact that the semantics of Lc relies on the one-step invariant: the program
in question must take at least one computation step before it can make use of
guarantees about the exits. A virtual instruction, however, takes no computation
steps. Our solution to this mismatch is based on the following intuition. As long
as the virtual instruction is followed by a real instruction, then it takes at least one
computation step to reach an exit for the whole block. Thus, intuitively, the virtual
instruction can borrow (or piggyback on) the execution of the next real instruction.
Based on this intuition, our semantics of the LTAL instruction judgment has two
cases. If the instruction is a real instruction, then there is a one-step requirement; if
it is a virtual instruction, we only require that the precondition of the instruction be
a subtype of the postcondition. Based on this semantics, when a virtual instruction
is followed by a real instruction, we can recover the one-step invariant. Another
way of saying this is that we type check virtual instructions by TML subtyping.
We refer the reader to Tan [2005, chapter 3.4] for details.

Memory Allocation. The TAL0 we considered above supports list updates but not
list allocation and initialization. LTAL, in contrast, supports both allocation and
initialization of data structures. In her thesis, Chen [2004, Chapter 4.4] explains
the LTAL typing rules for heap allocation and initialization in great detail. Here
we will explain the semantics of those rules.

For memory allocation and other purposes, we have extended states with a gen-
eral facility of virtual registers. That is, instead of (S,Σ), a state is actually a tuple
(S,Σ, V ), where V is a store for virtual registers. For memory allocation, we use
a pair of virtual registers (Vlo, Vhi). The address space contains allocated locations
(i.e., locations in the domain of Σ), available locations (i.e., locations l such that
Vlo ≤ l < Vhi), and other locations. We maintain in the convention invariant (which
is now a predicate on (S,Σ, V )) that the allocated locations are disjoint from the
available locations, and that the available locations are readable and writable.

Types are now predicates on (S,Σ, V ), and we add two new numeric types lo and
hi with values equal to the corresponding virtual registers:

[[lo]](ρ)(k,Σ, S, V, v) , v(0) = Vlo

The new registers are virtual—that is, they are not part of the hardware machine
model and, therefore, there are no hardware instructions to access or modify them
directly. We design our TAL so that two real registers are used to track the low
and high boundaries of the available area. For example, if we use registers 8 and 9
for this purpose, we can describe the heap convention in TML with the type

heap(n) , {r8 : int=(lo− n) ∩ int>(const(0)), r9 : int=(hi−B)}.
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Here we use the notation lo− n as shorthand for minus(lo, const(n)). When we are
not in the middle of an allocation, n = 0 and we have r8 = Vlo and r9 = Vhi − B,
where B is a constant larger than most of the blocks we will allocate. For LTAL
we use B = 4096. Furthermore, since r8 points to the next block to be allocated,
it should always contain a nonzero address, hence the constraint int>(const(0)).

Now suppose the program wants to allocate a cons cell. The new cell can go at
location r8 provided that Vlo + 2 < Vhi. Provided that B ≥ 2, the program can
simply execute a conditional branch to test whether r8 < r9, and at the branch
target the following vector-type is satisfied:

heap(0) ∩ can alloc(2)

where can alloc(b) , existsnum({ r8 : int=(0), r9 : int>=(0 + b−B) }). This guaran-
tees that at least b words remain between Vlo and Vhi. To allocate large blocks
(b > B) we can establish can alloc(b) with the more complicated branch test,
r8 + (b−B) > r9.

In addition to the “updating” LTAL store instruction used for modifying already-
allocated mutable references, we add an “initializing” LTAL store instruction for
creating new mutable references, as well as another “initializing” LTAL store in-
struction for creating new immutable references. These new assembly-language
store instructions use exactly the same underlying machine instruction (st) but
have different typing rules. They manipulate the virtual register Vlo to move the
lower boundary of the available area, and at the same time add the new location
to the domain of Σ.

We illustrate with a program that performs r3 ← cons(r1, r2), or branches to the
label out of memory if the heap is exhausted.

heap(0) ∩ {r1 : int, r2 : listcons(int)}
br (r8 > r9), out of memory

heap(0) ∩ can alloc(2) ∩ {r1 : int, r2 : listcons(int)}
st r8[0], r1 // ref-initializing store.

heap(1) ∩ can alloc(2) ∩ {r8 : ref (int)} ∩ {r1 : int, r2 : listcons(int)}
st r8[1], r2 // box-initializing store.

heap(2) ∩ can alloc(2) ∩ {r8 : ref (int)} ∩ {r8 : offset(const(1), box (int))}
∩ {r1 : int, r2 : listcons(int)}

add r3, r8, 0
heap(2) ∩ {r3 : listcons(int)}} ∩ {r1 : int, r2 : listcons(int)}

add r8, r8, 2
heap(0) ∩ {r1 : int, r2 : listcons(int), r3 : listcons(int)}

Every instruction precondition includes heap(n) to keep track of the offset n
between r8 and the actual Vlo value. The fall-through postcondition of the branch
instruction guarantees that r8 ≤ r9, which is exactly can alloc(B). In turn, since
B ≥ 2, we have can alloc(B) <: can alloc(2).

The rule (in Hoare-logic style notation) for an initializing store is as follows.
Provided that there is space available to allocate, and provided that the difference
between r8 and Vlo is exactly n, we can store at r8 + n and (implicitly) add 1 to
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Vlo.

φ <: { rd : τ } ∩ can alloc(n+ 1) φ[r8 7→ offset(n, ref (τ))] = φ′

{φ ∩ heap(n)} (st r8[n], rd) {φ′ ∩ heap(n+ 1)}

This rule (and a similar rule for immutable references) takes us past the two store
instructions. By straightforward subtyping, the postcondition of the second st
instruction is converted to

heap(2) ∩ {r8 : listcons(int)}} ∩ {r1 : int, r2 : listcons(int)}

This condition takes us past the first add instruction. Finally, the last add adjusts
the offset of r8.

The rule for initializing stores increments Vlo. Since the machine semantics of
st does not increment Vlo, readers may wonder how this is possible. The Vlo is
a virtual component, just like our store type. Therefore, the rule for initializing
stores requires that there exist virtual registers and a store type in the new state
after the initializing store, given the virtual registers and the store type in the old
state before the store. In the case of initializing store, the virtual components in
the new state can be easily constructed based on the components in the old state.

TML is expressive enough to model the state of a partially allocated record at
each stage of the allocation: testing whether there’s enough space, storing each
individual field, copying the result pointer (r3 ← r8), and adjusting the allocation
pointer. Compiler optimizations can be performed, and TML can still reason about
the optimized program. For example, the LTAL compiler consolidates several out-
of-memory checks into one when they occur in the same extended basic block. It
is also possible to schedule unrelated instructions among the memory stores.

One limitation of memory management in our system is that it supports neither
garbage collection nor explicit deallocation, though Ahmed [2004, Chapter 7] shows
how to encode a region calculus.

7. OVERVIEW OF THE FPCC PROJECT

We have shown how to produce machine-checked safety proofs for machine-language
programs compiled from a source language that uses pointer data structures and
higher-order polymorphic functions. This has been possible in the early years of the
21st century because of progress throughout the 1980s and 1990s in type theory, in
compilation of functional programs, and in mechanical theorem proving.

By 1997, Harper and Morrisett [1995] and Tarditi et al. [1996] had demonstrated
the principle of typed intermediate languages—that each intermediate language of
an optimizing compiler can be type-checkable in a provably sound type system.
Although TILs were not particularly useful for their original intended purpose (im-
proving the quality of compiler optimizations), Necula [1997] showed what TILs are
really good for: producing safety proofs for machine-language programs compiled
from type-safe source languages. Necula’s Proof-Carrying Code sidestepped the two
major difficulties with proving safety properties of optimized machine-language pro-
grams: (1) the source programs are not usually correct to begin with, and (2) the
compiler is too complex to prove correct. By having the compiler produce type-
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checkable machine code from type-checked source code, both these problems are
avoided.

But Necula’s PCC had several weaknesses. The trusted base contained many
ad-hoc components, particularly the verification-condition generators. The type
system had no machine-checked soundness proof, only a paper proof of an abstrac-
tion of a subset. The original system could not allocate new data structures.

The Cornell TAL by Morrisett et al. [1999] was an influential implementation of
a PCC-like system that demonstrated an important principle: communication of
proofs from compiler to checker can be done very effectively by means of a type
system for assembly language.

In 1999 at Princeton we began the Foundational Proof-Carrying Code project
to build a PCC system for a full-scale language (core ML) with a fully machine-
checked soundness proof with respect to the smallest possible trusted base. There
were many design decisions to be made. Necula had represented typing rules using
the LF notation of the Edinburgh Logic Framework, and we chose to do the same.
The advantage of LF for this purpose was that the natural logic-programming
interpretation of LF—implemented in the Twelf system [Pfenning and Schürmann
1999] can correspond directly to the operation of a type-checker, with typing rules
as Horn clauses. Furthermore, Twelf constructed proof witnesses in LF for all of
its derivations, and this looked promising as a means of checking with respect to a
small trusted base.

But how should the soundness proof be done? By 1999, denotational semantics
was completely out of fashion; the last vestiges of it had been washed away by
the enormously influential paper of Wright and Felleisen [1994], which provided
an elegant notation and formulation of syntactic progress-and-preservation proofs.
Furthermore, Twelf has a metatheory system that should be usable for this kind of
syntactic proof. But Appel [1985] had acquired the habit of thinking (denotational)
semantically about machine language. Denotational semantics can lead to elegant
and modular formulations, since the main idea is that each program construct is
explained by one self-contained semantic object—one constructs the semantics of
larger programs by composing smaller program fragments.

Appel and Felty [2000] carried out the experiment of defining types as predi-
cates on states, and defining type operators in Church’s Higher-Order Logic (HOL)
as functions on these predicates. This approach led fairly easily to a type sys-
tem for machine language, capable of expressing heap-allocated immutable record
types, first-order continuations (code-pointers), address arithmetic, covariant recur-
sive types, polymorphic (universally quantified) types, and existential types. But
it could not accommodate mutable references or contravariant recursive types, and
(although we did not realize it at the time) its treatment of loops and recursive
functions was too weak.

After this experiment, we decided to use HOL to do the semantic modeling of
type systems whose syntax was represented in LF. We represented HOL as an object
logic in Twelf. A theorem in HOL is stated as a type in LF, and its proof is just
a lambda-expression with that type. We did not use any sort of tactical prover;
instead we relied on Twelf’s type reconstruction to help us write these lambda-
expressions. An informal tutorial [Appel 2000] explains the method. Later we did
use the logic-programming facilities of Twelf to write some tactics for arithmetic
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identities and other special purposes.
The trusted base of our system was a design criterion from the beginning. We

are proving theorems of the form, “This machine-language program obeys its safety
policy.” To believe our proof, you must trust the axioms of the logic [Church 1940];
you must trust the proof checker for the logic [Pfenning and Schürmann 1999]; and
you must trust that the statement of the theorem correctly represents something
about running machine-language programs. Therefore in addition to writing down
the axioms of logic, we also constructed a representation of machine-language syntax
(instruction decoding) and semantics (instruction execution) in higher-order logic
[Michael and Appel 2000].

At the Pittsburgh CADE-2000 conference in which this last result was presented,
the conference excursion was whitewater rafting on the Youghiogheny river, a full
hour by bus from Pittsburgh. On the ride back, Appel happened to sit with David
McAllester and explained the problem of contravariant recursive types in a type sys-
tem for machine language. McAllester recalled a course he had taken years earlier
in graduate school and suggested adapting D∞ models [Scott 1976]; this conversa-
tion led to our indexed model of types [Appel and McAllester 2001]. Initially the
indices were useful for contravariant recursive types; the current paper shows that
they are useful for many other things as well.

By 2001 we had a reasonably clear idea of the specification of the theorem to
be proved [Appel 2001]: “this machine-language program doesn’t get stuck.” The
safety policy was embedded in the specification of the legal machine instructions.
The clear specification and the motto “Foundational Proof-Carrying Code” inspired
Hamid et al. [2002] and Crary [2003] to apply syntactic progress-and-preservation
proof techniques to proving soundness of typed assembly languages.

Also in 2001 it began to be clear how to transmit proofs from the compiler to
the verifier, which had previously been a mystery. The solution is to use the result
of Morrisett et al. [1998], that is, Typed Assembly Language. We would prove the
soundness of a TAL; the compiler would output TAL; a type-checker for TAL would
verify both the well-typedness of the TAL and its correspondence to the machine-
language program; and the trace of this type-checker would form the backbone of
the PCC proof.

We used Standard ML of New Jersey [Appel and MacQueen 1991] as the basis for
our type-preserving compiler. Shao [1997] had already rewritten the front end to be
type-preserving; in fact, this was much more sophisticated than what we needed (it
included the ML module system), so Hai Fang reimplemented type-preserving clo-
sure conversion for Core ML. Juan Chen designed the low-level typed intermediate
languages and our Low-level Typed Assembly Language (LTAL), and carried types
all the way down to the bottom. Meanwhile, Dinghao Wu was implementing the
soundness proof of the LTAL from the TML layer described in the current paper; in
negotiations between Chen and Wu the LTAL was revised until it was both usable
(by the compiler) and sound. The compiler work was completed in less than two
years [Chen et al. 2003].

By 2001 we had also identified the biggest challenge: semantic modeling of muta-
ble references. At that time there were already syntactic progress-and-preservation
soundness proofs for mutable references [Harper 1994], but the semantic models be-
fore 2001 [Pitts and Stark 1993; Stark 1994] supported only integer references. Con-

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.



54 · A. Ahmed, A. W. Appel, C. D. Richards, K. N. Swadi, G. Tan, and D. C. Wang

temporaneous work [Levy 2002] supported general references, but without quan-
tified types. We absolutely needed quantified types to implement typed closure
conversion (using existential types) and polymorphism (universal types). Our first
result [Ahmed et al. 2002] modeled general references with quantified types, relying
on syntactic complexity (nesting of ref type constructors) to stratify the types. We
thought the problem was solved, but it took us a while to realize that we had only
modeled mutable references that could store values of predicative quantified types,
while we needed mutable references to impredicative quantified types to handle
closure conversion. Another year’s work led to the full solution to the problem of
mutable references with impredicative quantified types [Ahmed et al. 2003; Ahmed
2004]. At this point it became increasingly clear that HOL is not sufficiently pow-
erful to represent our model in a fully elegant and general way. For a step-indexed
model of the polymorphic λ-calculus augmented with mutable references, Ahmed
et al. [2003] (and Ahmed [2004]) show a representation in set theory that does not
use syntax (it is fully semantic) and also a representation in the Calculus of In-
ductive Constructions without using syntax. But in the HOL representation of our
model we had to use an internal Gödelization of the syntax of types, which Xin-
ming Ou implemented. Thus, the current paper (which describes the system and
machine-checked proof we actually built) uses a syntax of TML and a denotation
relation, all represented in HOL. Aside from this one issue, HOL was expressive
enough for a very natural modeling of all the other aspects of TML, of Lc, and of
LTAL.

Between 2001 and 2003 the modular structure of the proof became clear, with
the TML serving as an abstraction layer to support the LTAL. The LTAL supports
100% syntax-directed type-checking, but is consequently quite specialized and rigid;
TML is not at all syntax-directed, which permits it to be general and flexible. The
TML and its semantic model (other than the mutable-reference issue) were designed
by Swadi, Richards, and Virga. The Lc control logic, which is more elegant and
general than was strictly necessary to support the LTAL, was designed by Tan
during this period.

Also between 2001 and 2003 we refined our notion of the trusted base. Since Twelf
can, in principle, produce independently checkable proof witnesses, we decided to
investigate the simplest possible external verifier of Twelf (object-logic) proofs. An
object-logic proof in Twelf, by the Curry-Howard isomorphism, is simply a series
of type-checked definitions. Appel et al. [2003] implemented an 800-line C program
that implements LF type-checking. This means that our trusted base is less than
3000 lines of source code: 1953 (nonblank, noncomment) lines of LF to specify
HOL, arithmetic, sparc, and the safety policy; and 800 lines of C to implement
the proof-checker. Furthermore, the C program is trustworthy13 because it is the
straightforward implementation of a peer-reviewed algorithm [Harper and Pfenning
2005].

Our Proof-Carrying-Code proof (that is, the proof of memory safety that accom-

13The C program needs to be compiled by a C compiler, so it would appear that this compiler
would need to be included in our TCB. Appel et al. [2003, Sec. 8.2] describes ways of avoiding

this, for example, by manually comparing the assembly output of the compiler (around 3900 lines
of sparc code) with the C checker.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.



Semantic Foundations for Typed Assembly Languages · 55

panies the machine code) is structured in two parts: first, the LTAL type system
and its soundness proof; second, a derivation in that type system. The LTAL-
soundness component is the same for any machine code being verified, and the
deriviation is (roughly) proportional in size to the machine code, with a large con-
stant of proportionality (about 1000). Therefore, Wu et al. [2003] added to the
800-line C program a 300-line nonbacktracking prolog interpreter, which can in-
terpret the syntax-directed clauses of LTAL. Now the proof witness sent from the
compiler to the checker is just the LTAL assembly-language program. The checker
first verifies the soundness proof of LTAL, then type checks the LTAL program
(which also has the effect of verifying that the LTAL is correctly assembled into
machine language).

By Spring 2005 the LTAL soundness proof had stabilized into 165,000 lines of
Twelf code, organized as follows.

Definitions
Tokens Lines +Lemmas Component

6 075 526 125 Core logic and arithmetic definitions
17 827 2 409 848 Specification of machine and safety policy

299 961 31 128 3 829 Lemmas about logic and arithmetic
114 406 13 641 640 Lemmas about compilation conventions,

registers, frame layouts, safety policy
142 052 16 076 2 263 Defs, lemmas about sparc instructions
472 961 58 740 4 392 TML
72 317 8 376 399 Lc

247 063 31 906 2 716 LTAL (up to statement rules)
17 776∗ 2 200∗ 52∗ LTAL statement rules∗

1 390 438 165 002 15 264 TOTAL

The asterisk indicates that the soundness proofs of some of the LTAL statement
rules were not completed by the time the project came to an end. In all, the FPCC
project was the work of 6 PhD students [Swadi 2003; Ahmed 2004; Chen 2004;
Tan 2005; Wu 2005; Richards 2009] with help from two other students (Neophytos
Michael and Xinming Ou), two consecutive postdocs (Roberto Virga and Daniel
Wang), and occasional outside collaborators (Amy Felty, David McAllester, and
Aaron Stump).

Subsequent work by Appel et al. [2007] has further developed the semantic frame-
work presented in this paper. The indexed model is viewed as a Kripke model
of a Gödel-Löb modal logic; the result is that the numeric indices are no longer
omnipresent, being hidden inside the Kripke model. The proof by induction Theo-
rem 5.1 of the current paper is viewed as an application of the Löb rule. Machine-
checked proofs are given in Coq, which permits a natural (dependently typed)
representation of Ahmed’s model of mutable references.

It is now clear that the use of Church’s Higher-Order Logic was a design mistake,
because it does not permit the dependent types necessary for a clean implemen-
tation of our semantic model. If we had used a more powerful logic, we could
have eliminated the many thousands of lines that we devoted to the specification
of a syntax for TML types and the Gödelization of this syntax. In addition, the
contractiveness requirement for quantified types would be eliminated, because it is
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an artifact of fitting our model into the HOL straightjacket. This would make the
TML type system simpler for its users.

8. RELATED WORK

We group related work into four categories: work on proof-carrying code, work on
semantic models of types, recent work involving step-indexed logical relations, and
work related to our control logic.

8.1 Proof-Carrying Code

Necula’s early proof-carrying-code systems [Necula 1997; Colby et al. 2000] had no
machine-checked soundness proof and were specialized to a particular architecture
and compiler. Appel and Felty [Appel and Felty 2000; Appel 2001] introduced the
foundational approach to PCC in which the soundness of the system is proved from
first principles. Our LTAL [Chen et al. 2003] is also specialized to an architecture
and compiler, but its machine-checked soundness proof factors the common parts
(TML plus Lc) from the specialization (LTAL).

The Syntactic Approach to FPCC. Both Hamid et al. [2002] and Crary [Crary
2003; Crary and Sarkar 2003] have demonstrated syntactic foundational PCC sys-
tems. Both systems prove a soundness theorem for an abstract machine first. They
then establish a simulation relation between the abstract and concrete machines
to prove that if the abstract machine is never stuck the concrete machine is never
stuck. Recent work by Shao et al. on Certified Assembly Programming (CAP,
XCAP) [Yu et al. 2003; Ni and Shao 2006] takes a Hoare-logic-based approach to
PCC. Like our system, XCAP is extensible, supports separate verification of code
modules, permits impredicative quantification and (with extensions to XCAP) mu-
table references, and is expressive enough to specify invariants for assembly code.

The syntactic approach to FPCC does not require development of denotational se-
mantics for complicated types such as recursive types and mutable-reference types.
It has been very successful in delivering foundational proof-carrying code. On the
other hand, the real system built by Crary and Sarkar uses the metatheory engine
of Twelf [Pfenning and Schürmann 1999] and has not so far produced a proof object
(an independently checkable proof expressed in a general logic) that represents the
soundness proof. (The system of Hamid et al. [2002] deals with a target machine
with only a dozen instructions.) Furthermore, there is a difficulty for the syntactic
approach when trying to relate results in different type systems. The syntactic
approach treats the syntax of each type system abstractly. Since each system has
its own syntax of terms and types, it is difficult for the syntactic approach to de-
rive general theorems that relate different type systems14. The semantic approach
embeds the meaning of terms and types into a common logic. A common semantic
framework makes it possible to relate theorems in different type systems.

8.2 Semantic Models and Logical Relations

Logical relations were originally developed for denotational semantics of typed λ-
calculi (e.g., [Plotkin 1973; Statman 1985]). Our step-indexed logical relations

14See the work of Feng et al. [2007] for progress on this. In some sense, they also use a “semantic”
approach: they embed specifications of different systems into their common logic OCAP.
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are based on the operational semantics of the language. Early examples of logical
relations based on operational semantics include Tait’s proof of strong normalization
of the simply typed λ-calculus [Tait 1967], and Girard’s method of reducibility
candidates used to prove normalization for System F [Girard 1972].

Operational logical relations have also been used for reasoning about equivalence
of terms. Wand and Sullivan [1997] describe a denotational semantics based on an
operational term model and use the approach for proving the correctness of program
transformations in a Scheme compiler. Pitts [2002] has made use of operational (or
syntactic) logical relations to reason about the equivalence of programs written in
a fragment of ML. Pitts has also shown how to handle existential types [Pitts 1998]
and parametric polymorphism [Pitts 2000], but always in the absence of general
references and recursive datatypes.

Birkedal and Harper [1997] and Crary and Harper [2007] developed operational
logical relations for recursive types—the latter also supported polymorphic types—
by adapting Pitts’ minimal invariance technique [Pitts 1996] for use in a purely
operational setting. A question that merits further investigation is the relation-
ship between the different notions of approximation, namely Crary and Harper’s
syntactic projections and our step counts.

Our model accommodates general mutable references that can contain values
of any type, including other references, recursive types, code pointers, and even
impredicative quantified types. Abramsky et al. [1998] describe a game semantics
of general references that is fully abstract but does not support quantified types.
They model reference cells as pairs of a “read method” and a “write method” in
the style of Reynolds [1981], while we have a location-based model. Levy [2002]
describes a model of general references that, like ours, is based on possible-worlds
semantics, and like our 2002 result [Ahmed et al. 2002] makes use of syntactic types
to deal with the circularity that comes with modeling ML-style mutable references.

There has also been work on reasoning about equivalence of imperative programs,
which we discuss briefly. Pitts and Stark [1993] [Stark 1994] introduced the ν-
calculus, a call-by-value λ-calculus with dynamically generated names that can
store values of ground type, and developed operational logical relations for this
calculus. Benton and Leperchey [2005] developed a logical relation based on a
monadic semantics in the category of FM-cpos for a higher-order language with
recursive functions and dynamically allocated mutable references. Their references
may store values of ground type as well as other references, but not functions (or
recursive types)—that is, they cannot support cycles in the memory graph. Their
logical relations are parameterized by store relations that “depend” on only part of
the stores—thus, related stores continue to be related if they are updated in parts
on which the store relation does not depend. Bohr and Birkedal [2006] have since
shown how to extend Benton and Leperchey’s model to support mutable references
that can store functions and recursive types.

8.3 Step-Indexed Logical Relations

Step-indexed logical relations have been employed in various contexts in the last
few years, both for proving type safety (via logical predicates) and for establishing
equivalence of programs (using binary logical relations), in both functional and
imperative settings, and for both typed as well as untyped languages.
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Type Safety. Ahmed, Fluet, and Morrisett [Ahmed et al. 2007; Morrisett et al.
2005] show how to prove type safety for a language with both type-invariant (shared,
aliasable) references as well as type-varying (unique, unaliased) references which
may be deallocated or updated with values of different types. Essentially, in this
setting, closed semantic types can be modeled as predicates on k, L, Σ, S, and v,
where Σ is a store type that maps only shared references to their (closed semantic)
types, while L keeps track of the set of unique reference locations that are reachable
only from, or owned by, the value v. Furthermore, in this model, two values v1 and
v2 belonging to types t1 and t2 can only be paired if the locations owned by v1 are
disjoint from the locations owned by v2. Hence, the modeling of unique references
is reminiscent of models of Separation Logic. Ahmed et al. also show how to model
CQual’s restrict feature [Aiken et al. 2003], which allows a computation to
temporarily treat a shared reference as a unique reference and perform non-type-
preserving updates, even though there may be unknown aliases to the cell.

Ahmed et al. [2005] present a model of a language with substructural state—that
is, a language in which references are qualified as linear (must be used exactly once),
affine (used at most once), relevant (used at least once), or unrestricted (used any
number of times). To correctly reason about the storage of unique (e.g., affine)
references in shared (e.g., unrestricted) references, Ahmed et al. [2005] essentially
model semantic types as predicates on k, σ, S, and v, where σ is a local store
type that keeps track of the ascribed types and qualifiers of only those locations
that are immediately reachable from v (or in a λ-calculus setting, locations that
appear as sub-expressions of v). The use of a local store type σ rather than global
store type Σ affects the structure of the logical relation—for instance, it eliminates
the v predicate as formulated in this paper—and makes it possible to distinguish
locations reachable from a computation from those that are garbage.

In recent work, Hriţcu and Schwinghammer [2008] show how to build a step-
indexed model of the imperative object calculus of Abadi and Cardelli [1996]. The
authors effectively reuse the model of general references in Ahmed’s thesis, ex-
tending it with subtyping and the semantics of object types. The latter is quite
subtle due to the combination of method update and invocation, object cloning,
and subtyping.

Relational Reasoning. Benton and Zarfaty [2007] describe a semantic approach
to verifying the type soundness of a compiler. They interpret types in the high-level
language as binary relations over configurations of the low-level machine, unlike the
FPCC prototype where we interpret high-level types using unary predicates over
low-level code and data. The use of binary relations is more powerful and elegant
since the relations can specify not just the set of values in the interpretation of
a high-level type, but also a type-specific notion of equality on that set of values.
Hence, type soundness of the compiler can be specified in terms of observational
equivalence instead of the usual notion of stuck states. This yields a strong (ex-
tensional) notion of memory safety—that is, compiled code may actually read or
write locations that it shouldn’t, as long as those reads and write do not affect
the observable behavior of the program. This is a richer property than the notion
of memory safety provided by syntactic approaches to type soundness or even by
the semantic-but-with-unary-predicates approach that we have taken. This work
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builds on earlier work by Benton [2006] where he presents a framework for modu-
lar specification and verification of low-level code that employs both step-indexing
and a notion of relations with disjoint supports (for reasoning about separation).
Benton shows how to specify and verify the implementation of a simple memory
manager and its clients in this framework, though the framework can also talk
about equivalence of two programs with respect to a specification.

Ahmed [2006] presents a step-indexed logical relation that provides a sound and
complete proof method for reasoning about contextual equivalence of programs in
a language with recursive types and polymorphism. Recently, Ahmed and Blume
[2008] used this logical relation to show that typed closure conversion (in a lan-
guage with recursive types and quantified types) preserves contextual equivalences.
Proving that a compiler preserves observational equivalence—intuitively, that all
abstractions guaranteed by the source type system are preserved at the target—is
a far stronger property than the one guaranteed by our FPCC system, namely that
the compiler preserves type and memory safety.

Logical relations in the literature have always been synonymous with typed lan-
guages due to the fact that logical relations are almost always defined by induction
on types. But since step-indexed logical relations can be defined by induction on
future step counts, the method can be used to reason about untyped languages. In
recent work, Acar et al. [2008] and Matthews and Ahmed [2008] have demonstrated
the use of step-indexed logical relations in untyped settings.

8.4 Logics for Reasoning About Control and Low-Level Code

Since the Hoare triple {p}s{q} describes only the relationship between the normal
entry and the normal exit states, “it is not surprising that trouble arises in consid-
ering program segments with more than one mode of entry and/or exit” [O’Donnell
1982]. To verify programs with goto statements, many researchers have proposed
variants [Clint and Hoare 1972; Kowaltowski 1977; Arbib and Alagic 1979; de Bruin
1981] of conventional Hoare Logic. All of this work is at the level of high-level lan-
guages; for example, they treat a while loop as a syntactic construct and have a
special rule for it. In comparison, Lc derives rules for control-flow constructs based
on a simple set of composition rules and thus is suitable for verifying low-level
programs.

The aforementioned work on variants of Hoare Logic also differs from Lc in terms
of the form of the specification. The work by de Bruin [1981] is a typical example.
In his system, the judgment for a statement s is

〈L1 : p1, . . . , Ln : pn|{p}s{q}〉, (7)

where L1, . . . , Ln are labels in a program P , the assertion pi is the invariant as-
sociated with the label Li, and the statement s is a part of the program P . The
judgment judges a triple {p}s{q}, but under all label invariants in a program.
By explicitly supplying invariants for labels in the judgment, de Bruin’s system
can handle goto statements, and its rule for goto statements is 〈L1 : p1, . . . , Ln :
pn|{pi}goto Li{false}〉.

The judgment (7) is sufficient for verifying properties of programs with goto
statements. TAL by Morrisett et al. uses a similar judgment to verify type safety
of assembly-language programs. However, the judgment assumes the availability of
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global information, because it judges a statement s under all label invariants of a
program. Consequently, it is impossible for de Bruin’s system or TAL to compose
fragments with different sets of global label invariants. In comparison, Lc can
judge s under only those label invariants associated with the exits of s. The form
of specification in Lc makes fewer assumptions (i.e., requires fewer label invariants)
about the rest of the program and makes separate verification possible.

Cardelli [1997] proposed a linking logic to formalize program linking. Glew and
Morrisett [1999] defined a modular assembly language to perform type-safe linking.
Our logic Lc is related to these systems because exit labels can be thought of as
imported labels in a module, and entry labels as exported labels. In essence, we
apply the idea of modular linking to verification of machine code.

We presented the control logic Lc in a previous conference paper [Tan and Appel
2006]. The logic Lc (its composition rules in particular) can be combined with any
specification language for machine states, and can verify programs with both direct
and indirect goto statements. In this paper, the specification language for machine
states is the TML type system. We show that the combination of TML and Lc

provides a simple yet powerful semantic foundation for TALs.
Benton [2005] presented a typed, compositional logic for an idealized stack-based

abstract machine. His logic is closely related to our control logic. It has a link
rule that can combine separately verified program fragments. It also uses the step-
indexed idea to resolve the circularity in control flow. But there are also differences.
In particular, in Benton’s logic each label has both an associated precondition and
postcondition (the postcondition is the invariant before the next return instruction).
Meanwhile, since we assume CPS-transformed code, our control logic has only
preconditions for labels and thus enjoys a simpler presentation.

Saabas and Uustalu [2005] recently proposed a Hoare-style logic to reason about
low-level programs with direct jumps, a goal similar to ours. Their logic is based
on a big-step operational semantics of a low-level language. We use a small-step
operational semantics instead. The small-step semantics accommodates nontermi-
nating programs. Another difference is that Saabas and Uustalu’s semantics of
Hoare triples are in direct style, while ours is in continuation style. It is unclear
whether the direct-style semantics can accommodate indirect jumps.

Finally, to reason about code pointers, XCAP by Ni and Shao [2006] used a
two-layer system. A purely syntactic layer is built on top of a meta-logic layer.
Reasoning about code pointers is done purely at the syntactic layer, while reason-
ing about all other assertions is done at the meta-logic layer. An interpretation
function is required to map code-pointer assertions at the syntactic layer to propo-
sitions at the meta-logic layer. The two-layer formulation is complicated and limits
the applicability of their system. Our model of code pointers can be embedded
directly into a meta logic such as higher-order logic or the Calculus of Inductive
Constructions.

9. CONCLUSION

We have designed and implemented an expressive and convenient intermediate
layer—TML plus Lc—for proving the soundness of Typed Assembly Languages.
The power of the intermediate layer has been witnessed by the soundness proof of
LTAL.
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Our semantic methodology—using a semantics indexed everywhere by approxi-
mations corresponding to the number of remaining steps that the types are “good”
for—has turned out to be robust and tractable. As our type system (and proof)
evolved from a weak model [Appel and Felty 2000] to one that could support re-
cursion, impredicativity, and mutable references, this indexing of the model has
repeatedly been the useful induction principle. With it we can engineer a large
machine-checked proof of a full-featured modern type system.
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