
 -1-

Grayson Barber (GB 0034)
Grayson Barber, L.L.C.
68 Locust Lane
Princeton, New Jersey 08540
(609) 921-0391

Frank L. Corrado (FLC 9895)
Rossi, Barry, Corrado & Grassi, P.C.
2700 Pacific Avenue
Wildwood, NJ 08260
(609) 729-1333

Attorneys for Plaintiffs

IN THE UNITED STATES DISTRICT COURT
FOR THE DISTRICT OF NEW JERSEY

EDWARD W. FELTEN; BEDE LIU;)
SCOTT A. CRAVER; MIN WU; DAN S.)
WALLACH; BEN SWARTZLANDER;) Hon. Garrett E. Brown
ADAM STUBBLEFIELD; RICHARD) Case No. CV-01-2669 (GEB)
DREWS DEAN; and USENIX) Civil Action
ASSOCIATION, a Delaware non-profit)
non-stock corporation,)
)
 Plaintiffs,)
vs.)
) DECLARATION OF
RECORDING INDUSTRY) ANDREW W. APPEL
ASSOCIATION OF AMERICA, INC.;)
SECURE DIGITAL MUSIC INITIATIVE)
FOUNDATION; VERANCE)
CORPORATION; JOHN ASHCROFT, in)
his official capacity as ATTORNEY)
GENERAL OF THE UNITED STATES;)
DOES 1 through 4, inclusive,)
)
 Defendants.)
____________________________________)

 -2-

 I, ANDREW W. APPEL, being of full age, hereby declare and state:

1. I am not a party to this action. Unless otherwise stated, I have personal knowledge of

the facts set forth in this Declaration. I make this Declaration in support of Plaintiffs' motion for a

preliminary injunction in this matter.

2. I am currently Professor of Computer Science at Princeton University. I earned my

PhD in Computer Science at Carnegie Mellon University. I have published two books and more

than 50 journal and conference papers on topics in programming languages, compilers, and

computer security, and I have taught undergraduate and graduate courses in these and other

topics for more than 15 years. My full vita is attached as Exhibit A.

3. Analysis and synthesis: Good engineering research is a combination of analysis and

synthesis. Analysis: a researcher examines an existing system, designs an experiment to measure

the system, gets quantitative results, analyzes the results to figure out what they can tell us about

its performance, and publishes the results. Synthesis: the researcher designs a new system with

better performance, and publishes an explanation of the design. In each case, publication is

essential to scientific progress. A researcher who does brilliant science but doesn't explain the

results might as well spend his time watching soap operas, for all the good he does society.

4. For example, the 1980's saw a revolution in the design of computers. Professors John

Hennessy of Stanford University and David Patterson of Berkeley invented a new analysis of

computer architectures. Instead of asking, “how beautiful and symmetric are the instructions” they

measured quantitatively “which instructions do computer programs execute most frequently?”

The results of this empirical measurement led them to design “Reduced Instruction Set

Computers,” sparking industry-wide improvements in computer performance that continue to this

 -3-

day. The papers they published -- both the analysis papers and the synthesis papers -- are now

classics of computer science.

5. Synthesis without analysis is not great science. Much of the work in computer

architecture just before Hennessy and Patterson suffered from this problem: computer engineers

did not understand how to best analyze the consequences of their design decisions.

6. Good research in computer security also requires analysis and synthesis. Analysis:

“How easy is it to break into this system?” Synthesis: “Let's design a more secure system.”

Designing computer-security systems without an understanding of how to measure their

effectiveness will inevitably lead to weak designs. And a researcher who does brilliant analyses

must publish the results, otherwise the work cannot be useful to other scientists.

7. Modes of publication: Academic computer scientists normally publish their work so

as to reach as wide an audience as possible. For example, like most computer scientists I typically

start by writing a “technical report” and putting it on my web page. Then I condense this down to

a 10-12 page paper and send it to a conference. Computer science is unlike most disciplines in

that conference publication is the most important venue for publication; a good conference will

receive 200 submissions and accept fewer than 30 for presentation and for publication in the

printed proceedings. Because of the strict length limits on conference papers, the proceedings

version often cites the longer technical report (available from my web page) where the interested

reader may find more details. Finally, after the conference, I prepare a longer, revised article for

publication in a scientific journal.

8. Often, the research leading to a scientific result requires writing a computer program.

In order to make my results most useful to their intended audience, I make the programs available

 -4-

along with the formal scientific paper. In rare cases the program is short enough to be included in

the paper itself:

? ? “Iterated Register Coalescing” by Lal George and Andrew Appel (ACM

Transactions on Programming Languages and Systems, May 1996), is a 20-page paper

containing five pages of pseudo-code giving the exact details of the algorithm.

? ? “Intensional Equality ;=) for Continuations” by Andrew W. Appel (ACM

SIGPLAN Notices, February 1996), a 3-page paper containing a complete 42-line C

program explaining how to cheat on benchmark measurements. Although I wrote this

paper mostly for my own amusement, I have been told that professors are assigning it as

reading in undergraduate classes because it concisely explains the scientific concept.

? ? “Optimal Spilling for CISC Machines with Few Registers” (Appel and George,

ACM Symposium on Programming Language Design and Implementation, June 2001) is

an 11-page paper with a one-page appendix giving an actual program (not pseudo-code).

? ? “Proof-Carrying Authentication” by Andrew W. Appel and Edward W. Felten

(ACM Conference on Computer and Communications Security, 1999), a 13-page paper

containing about 13 lines of Twelf code.

? ? “Hints on Proving Theorems in Twelf” by Andrew W. Appel, technical report,

February 2000, a 43-page tutorial that is more than 50% Twelf code.

9. But in most cases the computer program is thousands of lines long, and is best

examined by its readers not in printed form, but on a computer system. Therefore, in a more

typical case I put the software on the Internet separately from the paper. For example:

 -5-

? ? “Standard ML of New Jersey,” compiler software my colleagues and I put on

the Internet 1988-2001. This is a very substantial piece of software -- several hundred

thousand lines of source code -- written by many researchers; and more than twenty

scientific papers by these authors, individually and jointly, describe different parts of the

program. By putting this software on the Internet we enable other researchers to use it as

infrastructure for their projects, and to study and modify our own source code for their

research.

? ? “VM-PUP,” a computer program benchmark related to the paper “Virtual

memory primitives for user programs,” by Andrew W. Appel and Kai Li (International

Conference on Architectural Support for Programming Languages and Operating

Systems, 1991).

? ? “Zephyr ASDL,” translation software related to the paper, “The Zephyr

Abstract Syntax Description Language” by Daniel C. Wang, Andrew W. Appel, et al.

(USENIX Conference on Domain-Specific Languages, 1997).

10. Like most computer scientists, in my own research I rely heavily on computer

programs published by other scientists. The Twelf system by Frank Pfenning of Carnegie-Mellon

University, the SPIM system by James Larus of University of Wisconsin, the Lambda Prolog

system by Dale Miller of Penn State University, the VPO system by Jack Davidson of U. Virginia,

the SUIF system by Monica Lam of Stanford, and the Edinburgh ML compiler from the

University of Edinburgh, are just some examples of the academic research software that I have

relied on in my own work. In each of these cases, the computer programs were distributed on the

Internet to accompany scientific papers; I can study the inner workings of the programs to deepen

 -6-

my understanding of the research papers, and I can use the programs as the infrastructure for

building my own scientific software.

11. Case studies in computer security research: I have supervised several

undergraduate projects in security analysis and reverse engineering of existing systems. Peter

Ullman built tools for reverse engineering object-code programs, with the goal of automatically

protecting host computers from viruses; Mr. Ullman is now a patent attorney. Andrew Myers

defeated the authentication protocol of a networked computer game and implemented an

automated player client, in the process learning about the limits to “trusted systems”; Mr. Myers is

now a graduate student working on computer networking at Carnegie-Mellon University.

12. At Princeton in the autumn of 1995, one of my graduate students came to me and

explained that Sun Microsystems was advertising Java as a safe platform to run untrusted

programs (applets) in a Web browser, but he and another student had found six different ways to

break the security, allowing “rogue applets” that do nasty things to an unsuspecting user. They

were preparing a paper describing the weaknesses in Java security.

13. The students' main concern was, “Is this research?” They wanted to know if the

paper would be publishable, whether they could build the beginnings of a scientific career on this

kind of work.

14. My answer was, “Of course this is research.” If everyone in computer security does

synthesis work without any analysis of others' systems, no substantial progress can be made. As it

turned out, I was right: it was publishable and of great interest to the computer science

community and beyond. The two students were Drew Dean and Dan Wallach, both of whom are

Plaintiffs in this action. The paper they wrote (joined by Professor Ed Felten, who helped them

 -7-

develop the ideas further), “Java Security: From HotJava to Netscape and Beyond,” was accepted

for publication in the competitive IEEE Symposium on Security and Privacy, May 1996. This

analysis research was followed by good work in synthesis that drew on the results of the analysis:

Drew Dean's “The Security of Static Typing with Dynamic Linking” (ACM Conference on

Computer and Communications Security, 1997) explained a solution to one of the security

problems they found in that 1996 paper; Dan Wallach and Ed Felten's “Understanding Java Stack

Inspection” (IEEE Symposium on Security and Privacy, 1998) explains a solution to one of the

other problems.

15. The SDMI Challenge: I was not a part of the team of researchers who analyzed the

watermarking and other technologies of the “SDMI Challenge,” but I did observe behaviors by

the scientists/authors that were significantly more inhibited than the computer-science norm in

publishing their results:

? ? Most researchers post to the Web early versions of their research papers as soon

as the papers are finished, i.e. at the time of submission to a conference. (Today I found

that 12 of the 23 papers to be presented at the upcoming International Conference on

Functional Programming are available on their authors’ web pages; see the Appendix to

this declaration.) The paper “Reading Between the Lines: Lessons from the SDMI

Challenge” was not so posted, even though the authors took the trouble to post an

announcement that the paper existed.

? ? Most academic researchers freely give pre-publication copies of their papers to

colleagues at other universities who specifically request them. In the face of many such

requests, Felten et al. did not distribute any such copies. Although Ed Felten showed me

 -8-

a copy, he refused me permission to assign it as reading for my undergraduate class, a

most unusual action in computer science.

? ? Most computer scientists use fragments of program code or at least pseudo-

code when it is the most effective way to illustrate the ideas being presented; the version

of “Reading between the lines… ” submitted to the Information Hiding Workshop

contained no such fragments, even in places where it would have been helpful.

? ? And, of course, computer scientists whose papers have been accepted for

presentation at competitive conferences almost invariably show up and explain their

results. Until this year I would have said “invariably,” since in the dozens of conferences

I have attended I have never seen a paper withdrawn for reasons even remotely similar to

the situation here.

16. Since April 26, when the researchers withdrew their paper, many members of the

Princeton faculty from many departments -- Computer Science, Electrical Engineering,

Geosciences, Music, Philosophy, Physics, Sociology -- have expressed to me their outrage at the

censorship of scholarly publication and their support for these researchers.

17. At the Princeton University Faculty meeting of April 30, 2001, there was a discussion

of the SDMI incident. The meeting was unusually well attended, I believe because this item was

on the agenda (even though inserted at the last minute, on April 27). The Faculty voted

unanimously for a motion to study how Princeton University can best defend academic freedom

against censorship by threats of litigation.

18. Troublesome aspects of the DMCA: The Digital Millennium Copyright Act is

particularly troublesome for computer scientists because (a) it's not at all clear what is covered

 -9-

under the term “circumvention device,” and (b) technological usage controls (such as

cryptography and watermarking) prevent scientists from using automated tools for the scholarly

analysis of published works.

19. The DMCA raises a number of questions that affect the work of computer scientists.

Before the SDMI incident, I would never have imagined that a scientific research paper would run

afoul of the DMCA. Will it be true that any discussion of a weakness of a security scheme (that

could possibly be used for access or copy control for copyrighted works) will be actionable? Will

it be actionable only if the discussion mentions technical details? Or only if the discussion is in

writing? Is any explanation of the inner workings of an access or copy-control measure

actionable, or only if it uses computer source code to illustrate the point? If computer source

code is actionable, is pseudo-code permissible? What about a formal English-language

explanation that could be translated into computer source code?

20. Many researchers in computer science, information science, library science,

musicology, film studies, and other disciplines design and use sophisticated software tools for the

scholarly analysis of published works. In February 2000, Ed Felten and I wrote a paper,

“Technological Access Control Interferes with Noninfringing Scholarship,” explaining how this

kind of research requires fair-use access to (digital) works in unencrypted form. My colleague

Peter Ramadge, Professor of Electrical Engineering at Princeton, does research in “video content

analysis”; as he testified in Universal City Studios v. Reimerdes (111 F. Supp.2d 294), he has

designed software that will analyze camera angles in a digital video of a soccer game or a movie.

He has been stymied by DMCA-sanctioned content protection of DVD movies. Although in

principle he could negotiate a license from the copyright holder, in practice he has found it

 -10-

difficult to obtain such licenses: scientists at universities are not well equipped to identify the

copyright holder, find the actual person from whom to seek licensing rights, and negotiate a

license, all for what is really fair use of the material anyway. He explained in his deposition and

testimony (Universal City Studios v. Reimerdes) the cumbersome and restrictive arrangements

that he and others use with industrial partners.

21. My colleague Perry Cook, Associate Professor of Computer Science and Music, does

research in audio analysis: his software can “listen” to a radio broadcast and determine the genre

of the radio station (Top 40, Classic Rock, etc.; “Automatic Musical Genre Classification of

Audio Signals,” by George Tzanetakis, Georg Essl, Perry Cook, submitted to International

Symposium on Music Information Retrieval, 2001). If music is subject in the future to DMCA-

sanctioned technological usage controls, Professor Cook might have to avoid analyzing much of

the music on the Internet.

22. The future of computer security research: Although I started this declaration by

explaining that good research needs analysis followed by synthesis, in practice many computer

scientists find it all too easy to leave out the analysis. After all, analysis requires an

understanding of someone else's system, whereas synthesis means designing one's own system.

There is always a solipsistic temptation to ignore the world and construct self-contained, artificial,

ideal system of no relevance to the real world. In computer science, analytic research is rarer than

synthetic research.

23. Now imagine a world in which analytic computer security research -- which in

practice often means a concrete demonstration that someone else's security system has specific

weaknesses -- is subject to threats of litigation. Not only the speech of any potential researcher

 -11-

will be chilled, but the entire research direction of the field will shift away from analysis. This is

fundamentally the problem with the DMCA. The United States would be leaving it to overseas

researchers to conduct analytic research.

 I declare under penalty of perjury that the foregoing is true and correct and that this

Declaration is executed in Princeton, New Jersey on August 1, 2001.

 Andrew W. Appel

 -12-

Appendix: Pre-conference availability of papers from authors’ web sites.

On June 14, 2001 I visited the Web site of the International Conference on Functional

Programming (http://cristal.inria.fr/ICFP2001), whose papers will be formally presented in

September 2001. I found the list of accepted papers below. I then used the Google search engine

to find as many papers as I could from their authors’ web sites. In each case where I found a

copy of a paper I have listed the web address. Overall, 12 of the 23 papers have been posted by

their authors before the conference.

1. Optimizing Pattern Matching, by Fabrice Le Fessant and Luc Maranget

2. Generic Unification via Parameterized Modules, by Tim Sheard

http://www.cse.ogi.edu/PacSoft/publications/2001/sheard.pdf

3. Automatic Generation of Staged Geometric Predicates, by Aleksandar Nanevski, Guy

Blelloch, and Robert Harper

4. Type-Based Hot Swapping of Running Modules, by Dominic Duggan

5. Generic Validation of Structural Content with Parametric Modules, by Tyng-Ruey Chuang

http://www.iis.sinica.edu.tw/~trc/tr005.ps

6. A Simple Implementation Technique for Priority Search Queues, by Ralf Hinze

http://www.cs.ruu.nl/people/ralf/publications/ICFP01.ps.gz

7. Events in Haskell, and How to Implement Them, by George Russell

8. A Dependently Typed Assembly Language, by Hongwei Xi and Robert Harper

http://www.ececs.uc.edu/~hwxi/academic/papers/DTAL.pdf

 -13-

9. Recursive Structures for Standard ML, by Claudio Russo

10. Developing a Stage Lighting System from Scratch, by Michael Sperber

11. Extensible Algebraic Datatypes with Defaults, by Matthias Zenger and Martin Odersky

http://lampwww.epfl.ch/~zenger/docs/icfp01.ps.gz

12. On Regions and Linear Types, by David Walker and Kevin Watkins

http://www.cs.cmu.edu/~dpw/papers/lr-submitted.pdf

13. Functional Array Fusion, by Manuel M. T. Chakravarty and Gabriele Keller

http://www.cse.unsw.edu.au/~chak/papers/fastarrays.ps.gz

14. Compositional Explanation of Types and Algorithmic Debugging of Type Errors, by Olaf

Chitil

15. Macros as Multi-Stage Computations: Type-Safe, Generative, Binding Macros in MacroML,

by Steve Ganz, Amr Sabry, and Walid Taha

http://www.cs.indiana.edu/hyplan/sganz/publications/icfp01/paper.pdf

16. Real-time FRP, by Zhanyong Wan, Walid Taha and Paul Hudak

http://cs-www.cs.yale.edu/homes/taha/publications/preprints/icfp01-pre.ps

17. Cost Recurrences for DML Programs, by Bernd Grobauer

http://www.brics.dk/~grobauer/papers/cost_dml/index.html

18. Contification using Dominators, by Matthew Fluet, Stephen Weeks

http://www.soi.city.ac.uk/~ross/papers/notation.ps.gz

19. A New Notation for Arrows, by Ross Paterson

20. Down with Emacs Lisp: Dynamic Scope Analysis, by Matthias Neubauer, Michael Sperber

 -14-

21. Functioning without Closure: Type-Safe Customized Function Representations for Standard

ML, by Allyn Dimock, Ian Westmacott, Robert Muller,

22. Franklyn Turbak, J.B. Wells

23. Possibilities and Limitations of Call-by-Need Space Improvement, by Jörgen Gustavsson and

David Sands

http://www.cs.chalmers.se/~gustavss/drafts/spacedraft.ps

24. Charting Patterns on Price History, by Anand Saswat, Wei-Ngan Chin, Siau-Cheng Khoo

