Semantics-Pirected Code Generation

Andrew W. Appel*

Computer Science Department
Carnegie-Mellon University
Pittsburgh, PA 15213

1. Introduction

The intermediate representations (IR) used by most compilers have an operational semantics.
The nodes in the graph (or tree, or quad-code sequence) have an interpretation as the operation
codes of some abstract machine, which may or may not be closely related to the target machine.

A denotational semantics for an IR graph, in which each node has a static meaning, can lead
to a clean interface between the front and back ends of the compiler. The correctness of the front
end can be checked against the semantics of the IR, and so can the correctness of the back end.

This paper describes semantics-directed compilers for Pascal and C that generate register-
transfer code from such an IR graph. Code generation is accomplished by a sequence of transfor-
mations on the graph. Each transformation replaces a subgraph matching a particular pattern by a
(usually) smaller subgraph, and may emit a machine-instruction; at each stage the graph continues
to have a static interpretation. As in a denotational semantics for a programming language, states
are represented explicitly (as internal nodes in the graph), and there are no side-effects implicit in
the graph.

To illustrate, we might wish to generate machine code to implement the statement

b:=c + (a :=5). This is represented semantically as shown (open circles represent function
application; dark circles are tuples):

This node represents the _—"
computer’s memory after execution (

This node represents the

This node represents (// “value in 50 at location ¢

the initial memory""\ x\s
=

Code generation proceeds by successive reductions. Each transformation corresponds to a
machine-operation; the reducer emits one line of assembly code as it performs each reduction:

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

* Part of this work was done at AT&T Bell Labora-
tories, Murray Hill, NJ; part was supported by an
©1984 ACM 0-89791-147-4/85/001/0315 $00.75 NSF Graduate Student Fellowship.

315

s2

\rO

;=S rl:= mem|[c] r2:=11+10 mem[a]:=»r0 mem[b]:=r2

Each transformation replaces a node in the graph by another node in the same semantic domain,
and may formally specified and semantically justified.

Note that 5, is a different machine memory from sy, even if it differs only at location a. The
semantic expression-graph calls for using the value of ¢ in state so, not in any other state. The
expression-graph may be evaluated without regard to hidden side effects; side-effects of expressions

in the source language been made explicit in the IR by representing them as functions from states
to states.

2. A semantics-directed compiler

Denotational semantics [10] is a technique for describing the meanings of programming-
language constructs. The mathematical structures produced by a denotational semantics have a
static interpretation as functions from inputs to outputs; they do not require a particular model of
computation for their interpretation. (The semantic expressions may be thought of as using the A-
calculus as their model of computation. The A-calculus has the advantage that it is free of side-
effects; individual sub-expressions therefore have a well-defined, static meaning independent of
their context.)

In contrast, the intermediate representations typically used by compiler-builders have usually
been in the form of machine-code for some abstract machine. Sometimes the abstract machine is a
"three-address” machine[6]; sometimes it is a stack-machine[12]. These compilers all have a "black
box" -- with only an informal semantics -- between the parser and the IR. Some compilers use the
parse-tree as an intermediate representation [14,2]; this begs the question of the semantic transla-
tion into the the IR by simply putting the black box between the IR and the emitted code.

The advantage of using an intermediate representation with a static interpretation is that the
semantics of the language being compiled may be specified and discussed independently of the
semantics of the target machine (concrete or abstract). Recent work in semantics-directed compila-
tion has shown the feasibility of automatically generating translators from the source language

(such as Pascal) to the A-calculus [8,9], so that no "black box" is necessary between the parser and
the IR. '

Sethi [11] showed that by writing the denotational semantics of the source language in terms
of a specified set of combinators, a code-generator could be made to translate the resulting A-
expressions into stack-machine code. However, his choice of combinators was very restrictive, and
his reducer was not sufficiently powerful to compile languages with the varied data types of
Pascal-like languages. Wand[13] gives a set of combinators similar for stack-machine interpreta-
tion, but again the semantic specification is severely restricted and the combinators are not suffi-
ciently close to von Neumann machine-instructions.

This paper describes a semantics-directed compiler-generator which is powerful enough to
implement compilers for Pascal and C. The front end of the compiler takes the program source as
input and produces, as output, a \-expression representing the denotation of the program. The
reducer takes this expression and produces register-transfer "assembly code.” This register-transfer
code is designed to be fed to fed to a register allocator and peephole optimizer phase, although this
phase has not been implemented. None of the phases in this compiler is a "black box." All have

316

their semantics described formally, and each is produced automatically from its formal description.

Denotational Reduction Target
y { I
Pro. | Parser A-calculus Reducer register | Pec'phf)le ! hine
g transfers ~—, Optimizer |
Lo e e e = = .

The front end is generated automatically from a denotational-semantic description. Such front
ends have been described in [8] , [9] , and [11]; no detailed description is given here.

The peephole optimizer may be generated automatically from the target-machine description,
as in [3] , [4], and [7]; it performs the task of assigning temporaries to registers and of choosing
appropriate target-machine instructions to effect the specified register transfers.

This paper describes the reducer. Section 3 briefly surnmarizes the semantic language used in
the front end; section 4 describes the notation for specifying reductions to the reducer-generator.
Sections S, 6, and 7 describe the reductions which are useful for compiling conventional program-
ming languages. Section 8 discusses the algorithm for applying these reductions. Section 9
discusses the compilation of languages with structured data types, and the last section gives an
overview of compiler performance and open problems.

3. Representation of expressions

The front end produces a \-calculus expression representing the meaning of the source pro-
gram. Expressions are represented as directed graphs, rather than trees, to permit sharing of com-
mon sub-expressions. The sharing of common sub-expressions is extremely important, because the
domains of expressions include machine-states, which must not be copied by the reducer; and con-
tinuations, which if needlessly copied will produce needless duplication of emitted code.

The syntax and semantics of A\-expressions is very similar to that of ML[5}, and is summarized as
follows:

identifier Variable identifiers and combinators.
Ax.expr Lambda-abstraction on the variable x
expr expr Application of first expr to second.
(expr, . . . ,expr) N-tuples

expr.i Selection of i clement from N-tuple*

Tagged variants as in Hope [1] are also used.

Standard reductions are associated with these operators. A selection node conne.ted to a
tuple node reduces by selecting one of the elements; a A-node applied to an argument reduces by
B-reduction.

4, User-specified reductions

In addition, the compiler-writer may introduce arbitrary combinator symbols, and provide
reductions associated with them. This differs from simple \-abstraction because several reductions
may be provided for the same combinator. These may correspond to different ways of implement-
ing the same thing; for example, a reduction for the combinator plus might emit an "add" instruc-
tion, while a different reduction (applicable only if both arguments have been evaluated to
integers) could evaluate the addition at compile-time.

* This notation for selection is not used in the semantic lJanguage; there, selection is accomplished by lambda-
binding a tuple, as in A (x,y,2) . plus(xplus(y,z)). In the graph representation, however, these are converted to
"select-i”-clement” nodes.

37

Reductions are specified as "pattern - substitution.” The language of patterns is similar to a
restricted form of the language of expressions:

identifier Variable name.

identifier : identifier Variable name with representation specification.
identifier Constant-symbol or combinator.

pattern pattern Application of first pattern to second.

attern, . . . ,pattern N-tuple
p

We will use the pattern plus (a:Num, b:Num) to illustrate the semantics of patterns. This
pattern specifies the combinator plus applied to a pair (2-tuple) of numbers.

In the denotational-semantic specification, plus is declared to be in the domain (Int X Int)~Int.
It would seem from the domain declaration that plus could not be applied to anything but two
numbers; however, plus may be applied to any pair of expressions that evaluate to something in the
domain Int. The pattern above will only be matched when these two expressions have been fully
cvaluated (i.c., when a is represented as a numeric constant -- as specified by ":Num" -- rather
than as a more general expression).

The right-hand-side of a reduction specification may be another pattern, or it may be speci-
fied in the C language. A register-transfer statement to be emitted may also be specified.
4.1. Substitions written in C

The C-language substitutions are useful chiefly for implementing the constant-folding of
operators about which the A-machine has no need of knowing. The compile-time evaluation of
additions is accomplished thus:

plus (a:Num, b:Num) - { return number(a+b); }

where number is a C function that returns an expression node representing a numeric constant.
Using this reduction, the expression plus(plus(3,4),8) could be reduced in two steps to (15).

4.2, Substitions written as patterns

Substitutions may also be specified as patterns. The same syntax applies; variables in the
substitution that also appear in the left-hand-side specify the re-use of the corresponding nodes.

A reduction to simplify an expression containing addition and negation is specified by
plus (a, negate b) - minus (a, b);

Note that a and b have no representation specification here, as this reduction is applicable regard-
less of their representation.

4.3. Code emission

When the substitution is a pattern, a line of register-transfer code may be emitted as the
reduction is done. This line may use any of the variables used in either side of the reduction.
(Variables in the substitution that do not appear in the right-hand-side must have a representation

specifier, and indicate the use of a "new" node of that type). Here is a reduction that emits an
"add" instruction:

plus (a:Reg, b:Reg) - c:Reg "c:= a+b"
Thus, plus(rg,r7) could be replaced by rg, while emitting the instruction "r9 := r6+r7."

The store combinator performs a role similar to that of the "store” machine-instruction of a
von Neumann machine. That is, store(s,l,v) produces a new state s' similar to the state s, except
that at the location® [it produces the value v. This is expressed straightforwardly as a reduction:

store (s:State, [:Ide, v:Reg) - s,:State "mem[l] := v"

318

5. A simple example

A denotational semantics for a simple expression-language is given, with a set of reductions
sufficient to generate assembly code.

5.1. Domain declarations

S = Ide~V States are functions from Identifters to Values.*

[expr]: S=+(VXS) An expression, given a state, produces = value and a new state (which Is simitar to the old
state but may have been side-effected). €Xpr Is a syntactic unit; [expr] is its denotation.

[goal]: S A sentence in the language denotes the state resulting from evaluating the expression.

[ID]: Ide The terminal symbal ID has an identifier as its denotation.

[NUM]J: Vv The symbol NUM has a value as its denotation.

so: S The initial state.

plus: (VXV)-V plus s a dyadic function on the domaln of values.

store: (SXIdeXV)-+S As described in section 4.3

5.2. Denotational semantics

goal - expr let s,v={expr] s, in s
expr - NUM ; Ae.(/NUMJ, s)
expr ~ ID)d.(.l' D], J‘)

expr - expr + expr As. let sy,vi=[expr;] ¢ in let &5 ,v,=[expry] &, in (plus(vy,vy),)
expr - ID := expr As. let v=[expr] s in (v, store(s,[ID],v))

€Xpr - €Xpr ; expr As. let sq,v=[expry] s in [expry] 5
expr ~+ (expr) [expr]

5.3. Reductions

plus (a:Reg, b:Reg) - c:Reg "¢ 1= g+b"
i‘Num - r:Reg "r= 4"
s:State a:Ide -+ r:Reg "r := mem[a]"
store (s:State,a:lde,v:Reg) - s,:State "mem[a] := v"

This reducer will work correctly only if there is at most one node in the graph with the State
representation at any given time, just as von Neumann machines may have only one state at a
given time. To ensure this condition, the last reduction may never be used while there is any
instance in the expression-graph of the pattern on the left-hand-side of the third reduction; this
intuitively means that any reading from a state must be done before that state is destroyed (this
will be discussed later in more detail).

5.4. A compilation
Using this language specification and reducer, we may translate the sentence
b:=c+ (a:=5)

After all B-reduction and tuple-sclection has been done, the expression-graph shown in section 1
remains, The reduction-sequence shown in section 1 yields the register-transfer code:

0:=35
rl := memic]
R2:=1r1+10

* For the purposes of this explication, addresses are represented as identifiers, so that S=Ide—~V; in an actual
compiler, addresses are themselves values,

319

mem(a] := r0
mem[b] := 12

The same reducer might choose to apply the reductions in a different order to generate slightly dif-
ferent code. For example, mem|[c] might be fetched before S is loaded.

Although the semantic definition seems to specify left-to-right evaluation, in evaluating the
arguments of the plus the same result will be obtained either way. This is because all side-effects
have been made explicit by the semantics; the semantic graph does not require any particular
evaluation order. Different reduction orders will often lead to different patterns of register usage,
and a sophisticated reducer might make its choices so as to reduce the number of registers needed.

6. Continuations

The domain C=S-+A of continuations — functions from states to answers — is useful in
describing the semantics of conventional programming languages. A continuation may be written
in the A-calculus in the obvious way — by a A-function whose bound variable is in the domain .
The application of a continuation to a state may be reduced by B-reduction. No special machinery
is required.

Unfortunately, B-reduction often requires copying the \-expression being applied; this is
necessary when the A-expression is also applied to some other argument in a different part of the
graph. (Recall that common subexpressions are shared in the graph representation. If they were

not, then copying of the argument would be required if the bound variable occurred more than
once in the body of the A-function.)

The copying of a subexpression implies that machine-code will be generated for each copy.
The application of a continuation ¢ to a state s is therefore to be avoided when there are instances
in the graph of ¢ s’ for s'#s. What will be done is to take advantage of the intuitive correspon-
dence between continuations and assembly-language statement-labels.

Given a continuation ¢ of the form As.answer, we may assume that code could be generated
to implement that continuation, starting at some label L. The continuation ¢ is replaced in the

graph by a "goto"; instead of B-reducing ¢ s5, we emit the instruction "goto L.” The reductions to
accomplish this are as follows:

c:Cont - keep(genbody(c,!:Label))(goto I)
goto l:Label s:State - undefined "goto I"
genbody(c:Cont, I:Label) - c s:State "
The keep combinator actually splits the graph into two graphs (which may, however, share com-
mon subexpressions). If we start with the expression
(- (keeperx)---)
then after keep is reduced, two expressions will remain:

(" (@) and e

Just as there was a restriction on the applicability of the store combinator in the previous sec-
tion (i.c, that it could not be used if the state s was still being used elsewhere in the graph), there
are restrictions on the applicability of these reductions:

The first of these reductions — which chops a subgraph out of the graph — should not be
used if the continuation ¢ contains free variables. It turns out that if ¢ is (somewhere in the
graph) applied to the current state (i.e., a node having the State representation), then ¢ will
have no free variables.

The second reduction should not be used if there are other references to the state ¢. (This
restriction is identical to the restriction on store.)

The last of these reductions — which begins a new "basic block” — should not be used if the
reducer is still in the middle of generating code for some other basic block. This condition

320

will be satisfied by simple avoiding this reduction as long as there is some node in the graph
with the Stare representation. (Note that the reduction that emits a "goto” also has the effect
of removing the last reference to a State node; this ends a basic block.)

This leaves the problem of determining which A-nodes are continuations (i.e., given a node s,
determining whether it is in the representation-class Cont). If the front-end (which processes the
semantic description) has a type-checker (which is recommended), then it can mark all A-nodes in
the domain C. The part of the reducer that does B-reduction must not B-reduce A-nodes with this
mark; instead, it should leave them to be handled by the reductions in this section.

7. Conditionals

With the reductions to handle continuations already in place, condition-operators are simple.
Again, to find the appropriate semantic domain, consider the intuitive semantics of a typical
conditional-goto machine instruction. Two values are compared; depending on whether they meet
the test (i.e. equality), cither a label is branched to, or the next statement is the continuation.

In the last section the correspondence between labels and the domain C was described. The
domain of the eq combinator is eq: (VXVXSXCXC)~A. The interpretation of eq(vy,vs,5,¢1,¢2)
is that if v, is equal to v;, then this is equivalent to ¢ s; if not equal, to ¢, s. In fact, the reduc-
tion to perform constant-folding of eq expresses this as follows:

eq(vi:Num,vo:Num,s,cy,c;) — {return apply(vl==v22cl:c2, s);}
To generate code for a conditional, we use the fact that ¢, can be represented as a label:
op:Comp (vy:Reg,v,:Reg ,s:State,(goto I:Label),c;) = ¢3¢ "if v, op v, goto I"

This is subject to the same restriction on other uses of s as are the store and gofo reductions.

8. Ordering the reductions

The set of reductions presented thus far are sufficient (with a few adjustments) to build a
compiler for a language such as Pascal or C. As the reductions were presented, however, restric-
tions on their use were mentioned. This section describes an algorithm to implement a reducer
consistent with these restrictions; it is not necessarily the only possible algorithm.

The idea is to divide the reductions into several classes. The reductions in lower-numbered
classes take precedence over those in higher-numbered classes. More formally, at any point in the
reduction sequence, no reduction of class j may be applied if there is a reduction in class i (for
i=j) that may also be applied. For example, the restriction that a state may not be updated until
there are no pending “fetches” from that state may be implemented by putting the "fetch” reduction
in a lower reduction class than the "store" reduction.

The division into classes of the reductions discussed in this paper is as follows:
The first set of reductions are the “classical” kind that emit no code.

B-reduction

tuple-selection

tag-selection

plus (a:Num, b:Num) - { return number(a+b); }

The second class consists of the reductions that emit code which does not change the state.

op:Binop (a:Reg, b:Reg) -~ c:Reg "c:= aopb"
i:Num - r:Reg "ro= "
s:State a:Ide - r:Reg "r := mem[a]"

The third class of reductions change the state in some way.

321

store (s:State a:lde,v:Reg) - s:State "mem[a] := r"
c:Cont - keep(genbody(c,l:Label))(goto 1)
goto I:Label s:State - undefined "goto I"

This reduction begins a new basic block.
genbody(c:Cont, l:Label) - c s:State"l:"

The patterns on the left-hand-sides of the reductions all have a bounded depth. This fact can
be exploited to quickly find matches to these patterns. A queue U of unexamined nodes is main-
tained. As nodes are removed from this queue, they are matched by a pattern-matcher and put in
a queue C; corresponding to the appropriate reduction-class. When U is empty, then a reduction
may be done on a node in the lowest-numbered non-empty C;.

Performing a substitution will create new patterns in the graph. However, these are local-
ized, so only a small number of nodes will be affected. These nodes will be put into the queue U.

Graph nodes need not be processed through U and the C; in a first-in, first-out order (or any
other particular order), since any order consistent with the class-priority restriction will produce
correct code. In fact, B-reductions require some care, as some reduction orders will never ter-
minate on some inputs, while other reduction orders will terminate on the same inputs. However,
selecting nodes at random from the queues is a mathematically-justified way of ensuring termina-

tion on inputs that have some terminating reduction-sequence. (This will be true as long as the
size of the graph does not diverge.)

9. Data types in Algol-like languages.

High-level languages (or rather, languages so considered in 1970) allow variables in such
domains as integers, reals, records (modelled in a denotational semantics as functions from identif-
iers to values), and arrays (modelled as functions from integers to values). Machines, on the other
hand, provide only one data type -- the "word" -- with a set of integer, real, and indexing opera-
tions upon words.

The reductions presented in this paper are suited to the implementation of functions upon
words, but not of the higher-order functions provided by Algol-like languages. It is the job of the
semantics to map these higher-order functions into the domain of words.

For example, the semantics for subscripting an array variable might look like this:
var - var . ID Ae\s. ckrec(fetch([var] e) s) [ID]

with the meaning, "evaluate the vin the environment e, fetch it from the state s, check that it is a
record variable, and then apply the resulting I/de—~Lv function to the identifier ID.

The problem is that the reducer doesn’t know about records and identifiers; all it knows
about are addition and states. Furthermore, if the reducer could be made to know how to generate
code to look up identifiers in record environments, the result wouldn’t be what we had in mind at
all! That kind of evaluation should be done at compile time.

What should be done, then, is to describe such functions as ckrec, and the Ide-Lv functions
representing records, in the \-calculus, so that ordinary B-reduction can do at compile time the
things that we believe compilers should do at compile-time.

In a denotational semantics, however, there is no distinction between run-time and compile-
time. Indeed, the semantics itself does not even specify that the program should be run. There-
fore, although we wish to make the compiler handle certain kinds of reductions at compile-time,
and generate code to handle others, it would be nice if this division did not unduly twist the struc-
ture of the semantic definition. In this section a set of semantic definitions is provided to map the
high-level data types onto the machine semantics.

Let L-values be functions from states to R-values (Lv=S-Rv), and let R-values be the union

322

of various domains:
Rv= int of Int | real of Real | array of Int-<Lv| - - -

Finally, let a "type” be a mapping from a location to an L-value (Ty=L-Lv). Then we can define
the integer and real types:

int_ty = NM.\s. Intof s !
real_ty = Al.\s. real of s [

Unfortunately, this doesn’t allow for the updating of the state! What must now be done is to make
things a little less abstract. Instead of L-values being functions from states to r-values, they will
also have locations and sizes attached: Lv=(S—+Rv)X (L XInt). This location and size will be avail-

able to the (typed) "update” function, which will be implemented in terms of the (untyped) “store”
function.

intty = A.(\s. int of s 1),(/,1)
The array constructor is parameterized by element-type and number of elements:
make_array ty n = Al let f,(I' ,size)=ty | in (\s.array of \i.ty(l+sizexi)),(,sizexn)

This "breaking of the abstraction”, in giving an l-value two somewhat redundant representations
(on one hand, as a function from states to r-values, and on the other, as a location and a size) can
be "hidden" from the high-level semantics by a proper modularization of the semantic definition.

Using this technique, the semantics behaves a lot like a "real” denotational semantics, even
though there is a less-than-abstract aspect to it. Most importantly, the code generator can deal
with a machine semantics rather than a high-level semantics.

10. Implementation details and further research

There is room for much improvement in this method of code generation. The compilers that
use this reducer can compile at the rate of less than one line per second, and use a lot of space;

and there arc some problems in the way mathematically abstract functions are mapped into
machine code.

10.1. Parameters of the implementation

The specification of a Pascal compiler requires approximately 700 lines of semantics, and 50
lines of reductions. The reducer as implemented is fairly slow; most of its time is spent copying
nodes for B-reduction. (This copying is what causes the growth from "Initial size of graph” to
"Maximum size of graph” in the table below.)

Program Lines of Initial Size Maximum Size Code Reductions CPU time

name Pascal of graph of graph emitted performed (VAX 750)
tiny 8 1427 nodes 1600 nodes 32 lines 436 13 sec.
queens 39 3486 9500 330 5410 60
trees 57 2756 7800 322 4119 58
accel 85 4148 17200 675 11663 464

It may be possible to (automagically) process the semantics to perform more reductions at
compiler-generation time (about 400 reductions are done on the present Pascal-compiler before
reading the input). Or it may be that the same number of reductions may be done more efficiently
by a better reducing algorithm.

323

10.2. Eager evaluation of fetches

The specification of the reducer calls for the application of the reductions in class 2 (which
emit “add” and “fetch” instructions) before the use of those in class 3 (which emit "goto" and
"store” instructions), whenever possible. This guarantees correctness, but has some unpleasant
consequences. What happens is that whenever a value becomes available, it is loaded into a regis-
ter. This has a very unfortunate effect on register usage. Values which are used at the end of a
procedure may be loaded into registers, sitting there untouched until many instructions later when
they are used.

Something even worse happens when an instruction which is modelled in the semantics as a
pure function -- such as plus, from integers to integers -- has the capability of halting the proces-
sor, such as by overflow. A very similar example is the bounds-checking of subranges, and the
testing of pointers for NIL before dereferencing. All of these can be modelied in the semantics by
functions that do not refer to the state, but can generate error:

plus = \(x,y). if x+y>maxint then error else x+y

The problem is that error is not simply an undefined value to be loaded into a register (as it would
be in the CDC-6600); most machines will generate an overflow exception which (in Pascal) halts
the execution of the program. This problem shows up in the following Pascal code:

ifi<O then i := i+ maxint
This might be translated into machine code that loads i+maxint into a register, then does a condi-

tional branch (one branch of which assigns the register into i). However, this will overflow if i>0,
so the addition should be performed only after the conditional branch.

The solution is to use lazy evaluation of the reductions in this class. By avoiding them until
necessary, values won’t be loaded into registers until they are truly needed. This will aid register
allocation and avoid extraneous overflows.

References
1. R. Burstall, D. MacQueen, and D. Sannella, “Hope: an Experimental Applicative Language,” Proceedings of the
1980 LISP Conference, pp. 136-143 (1980).

2. R. G. G. Cattell, “Formalization and automatic derivation of code generators,” Ph.D. Thesis, Carnegie-Meilon
University, Pitisburgh, PA (April 1978).

3.] W. Devidson, “Simplifying Code Generation Through Peephole Optimization,” TR 81-19, Department of Com-
puter Science, University of Arizona, Tucson, Arizona (1981).

4, J. W. Davidson and Christopher W. Fraser, ‘Automatic Generation of Peephole Optimizations,” Sigplan "84 Sympo-
sium on Compiler Construction, pp. 111-116 ACM, (1984).

5. M. 1. Gordon, A. J. Milner, and C. P. Wadsworth, Edinburgh LCF, Springer-Verlag, Berlin (1979).
6. IBM, “FORTRAN IV (H) compiler program logic manual,” Form Y28-6642.3, IBM, New York, NY (1968).

7. Robert R. Kessler, “Peep -- An Architectural Description Driven Peephole Optimizer,” Sigplan *84 Symposium on
Compiler Construction, pp. 106-110 ACM, (1984).

8. P. D. Mosses, “SIS -- Reference and user’s guide,” DAIMI MD-30, Computer Science Depeartment, University of
Aarhus, Denmark (1979).

9. L. Paulson, “A Semantics-Directed Compiler Generator,” Ninth ACM Symposium on Principles of Programming
Languages, pp. 224233 ACM, (1982).

10. D. S. Scott and C. Strachey, ‘“Towards a mathematical semantics for computer languages,” Proc. Symp. Computers
and Automata, pp. 19-46 Polytechnic Press, (1971).

11. R. Sethi, “Control Flow Aspects of Semantics Directed Compiling,” Trans. Prog. Lang. and Systems 5(4) pp. 554-595
ACM, (October 1983).

12. A S. Tanenbaum, H van Staveren, and J. W. Stevenson, “Using Peephole Optimization on Intermediate Code,”
Trans. Prog. Lang. and Systems 4(1) pp. 21-36 ACM, (1982).

13, M. Wand, “Deriving target code as a representation of continuation semantics,” ACM Trans. Programming Languages
and Systems 4(3) pp. 496-517 (July 1982).

14, W. Wulf, R. K. Johnsson, C. B. Weinstock, C. B. Hobbs, and C. M, Geschke, Design of an Optimizing Compiler,
Elsevier North-Holland, New York (1975).

324

