Proof-Carrying Authentication

*

Andrew W. Appel and Edward W. Felten
Secure Internet Programming Laboratory
Department, of Computer Science

Princeton University
Princeton, NJ 08544 USA

August 9, 1999

Abstract

We have designed and implemented a general
and powerful distributed authentication frame-
work based on higher-order logic. Authenti-
cation frameworks — including Taos, SPKI,
SDSI, and X.509 — have been explained using
logic. We show that by starting with the logic,
we can implement these frameworks, all in the
same concise and efficient system. Because our
logic has no decision procedure — although
proof checking is simple — users of the frame-
work must submit proofs with their requests.

1 Introduction

Distributed authentication frameworks allow
sharing of access to resources across adminis-
trative boundaries in a distributed system. The
main abstractions they support are name-to-
key bindings, access control, and delegation.
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Statements in these frameworks are represented
as data structures that are often digitally signed
to ensure their integrity.

Several authentication frameworks exist; we
mention a few here as examples. The Taos
operating system provided support for secure
remote procedure call and data structures to
represent authority and identity [6]. X.509 [15]
is a widely-used standard for expressing and us-
ing digital certificates. SPKI [4] and SDST [14]
(since merged under the joint name SPKI)
were reactions to the perceived complexity of
X.509; in both cases the ‘S’ stands for ‘simple.’
PolicyMaker [3] is a language for expressing se-
curity policies; it can be applied to distributed
security policies. Kerberos [12], unlike the other
frameworks, uses symmetric-key encryption to
authenticate users. Each framework has a
differerent semantics and offers a different kind
of flexibility.

Formal logic has been used successfully to
explain authentication frameworks and proto-
cols, most notably in the design of the Taos
distributed operating system [1, 6]. The design-
ers of Taos started by constructing an elegant
and expressive logic of authentication as an ex-
tension of propositional calculus. They proved
this logic sound — any provable statement is
true in all models — which makes the logic
an attractive basis for constructing a system.
However, since they wanted a server presented
with a request to be able to decide whether
to grant the request, they chose to implement



only a decidable subset of their authentication
logic. In a decidable logic, there is an algorithm
for determining the truth (or falsehood) of any
statement.

Using a simple and decidable logic would
have had advantages: it’s easier to prove
metatheorems such as “there’s no way Alice
can access the file bar.” Why, then, do we
use an undecidable logic? Previous approaches
have taken a set of basic inference rules and
added application-specific inference rules to
make application-specific logics; but the new
rules must be trusted, i.e. proved sound.
By allowing quantification over predicates, we
can use a single set of inference rules, with
application-specific rules proved as lemmas;
therefore, the application-specific rules can be
used to prove access requests to servers that
know only the basic logic. However, logics
with quantification over predicates — higher-
order logics — tend to be undecidable: there is
no general algorithm for producing proofs of all
true statements.

Still, a server presented with a request must
be able to figure out what to do. We solve
this problem by analogy with proof-carrying
code [9]: the client desiring access must con-
struct a proof, and the server will simply check
that proof. Even in an undecidable logic, proof
checking can be simple and efficient. We put the
burden of proof on the requester. We will show
several different strategies by which requesters
can construct proofs, for example by picking
an application-specific decidable subset of our
general logic.

Each of the existing frameworks has chosen
a particular set of concepts and abstractions:
a particular form of delegation, a key-binding
mechanism, certain access control rules, and so
on. Although these choices are as reasonable as
any, no set of choices is right for everybody. By
using higher-order logic, our framework allows
the specification and use of new abstractions
and new variants on the existing abstractions.

Since all the application-specific logics are
expressed using the same general inference

rules, they can safely interoperate: We can take
one theorem proved using the SPKI definitions,
and another proved using Taos definitions, and
combine them to prove access even to a server
that has seen neither set of definitions before.

Although we have expressed SPKI in our
logic, we don’t really recommend the use of
SPKI 5-tuples for authorization; the operators
we outline in sections 4 and 5 seem more
natural.

2 An Example

Suppose three principals, a client Alice, a
file server Bob, and a certification authority
Charlie, are interacting across a network. (See
Figure 1.) Bob receives a request to “read
foo.” Bob’s access control list says that a
principal called Alice can read foo — but is
the request from Alice? Bob trusts Charlie
to guarantee key-to-name bindings, and Bob
knows that Charlie’s key is K.. Alice has
obtained a certificate signed by K. that “K,
is Alice’s key,” and uses K, to sign “read foo.”
Armed with all of this information, Bob can
safely grant the request to read foo.

Our framework can express this as follows.
We can treat “read foo” as an uninterpreted
atom, meaning that the logic doesn’t know
what it means although the participants do.
Digital signing is a primitive of our logic, so
(K, signed read foo) is a statement of the logic.

Each principal is modeled as the set of
formulas that she will admit as true. Thus,
Alice(Vx.x — x) means that Alice is willing to
claim that (Vz.xz — z). That’s not admitting
much, as the statement is a tautology! But
in fact any principal is required to admit any
statement provable from other statements she
admits.

We translate the statement “Alice wants to
read foo” as Alice(read foo). We translate
“read foo if Alice says to” as follows:

Alice(read foo) — read foo.

Charlie’s certification that K, is Alice’s key
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Figure 1: Distributed authentication.

we translate as

K. signed (YF. (K, signed F') — (Alice(F))).

Bob’s knowledge of Charlie’s key is stated as
VF. (K, signed F') — Charlie(F').

Finally, Bob’s trust in Charlie is expressed as a
memorandum to himself:

Vk.Vp.
Charlie((VS. (k signed S) — p(5))) —
VS. (k signed S) — p(S).

These statements are expressed in a higher-
order logic (i.e., one in which we can quantify
over formulas and predicates), with inference
rules given in Figure 3.

Since these statements are rather unwieldy,
it is only natural for the participants to have
agreed upon some definitions:

keybind(k,p) stands for
VS. (k signed S) — p(S). That is, k is p’s
key, so that if k signs some statement S
then p should be considered to believe it.

p controls S stands for p(S) — S. That is, p
“controls” the statement S, so if p says S
then S will be considered true.

trustedCA(c) stands for
Vk.Vp.c controls keybind(k,p), meaning

Al: trustedCACharlie)
A2: keybindK¢,Charlie)
A3: controls@lice, read foQ

that ¢ is a trusted certification authority:
if ¢ says some key binding, we can trust
that key binding.

These particular definitions may be well-
suited to our example transaction, but they are
hardly likely to be general enough for the real
world. The strength of our approach is that
it does not “build in” a fixed set of definitions
but allows the participants in each application
to define and use their own abbreviations.

Some useful lemmas follow immediately from
these definitions. For example, we can prove
the lemma controls_e, which states that if
p controls S and p says S, then S is true:

p(5)

p controls S
S

controls_e

Additional lemmas allow one to use state-
ments by a trusted certification authority, and
to make inferences from key bindings:

trustedCA(c)
¢ controls keybind(k, p)

trustedCA _e

keybind(k, p)
p(95)

2.1 Constructing a proof.

k signed S

keybind_e

Bob starts with the following assumptions in
his security database:

Ay = trustedCA(Charlie)
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Figure 2: Proof that Alice can read foo.

Ay =
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keybind (K., Charlie)

Alice controls read foo

Using these assumptions, and the lemmas
shown above, Alice can prove to Bob that he
should allow her to read foo. Before Alice can
do this, Bob must publish his assumptions —
his security policy — so that she can construct a
valid proof. Some parts of the policy — such as
“Alice controls read foo” — he may not wish to
broadcast to the whole world, but he should at
least tell each client the assumptions relevant
to her.

The proof is illustrated in Figure 2. It has
five premises: the security policy A1, Aa, A3 and
two digital signatures sent by Alice with the
proof. Alice can sign the statement read foo
with her own key K,; she must ask Charlie to
sign the statement keybind(K,, A) with his own
key K..

The proof is checked as follows.  First
we check the two digital signatures to
establish the facts K, signed read foo and
K. signed keybind(K,, A). From assumption
Ay we prove C controls keybind(K,,A)
by the lemma trustedCA e. From
Ao and a digital signature we prove
C'(keybind(K,, A)) by the keybind_e lemma.
Now from C controls keybind(K,, A) and
C'(keybind(K,, A)) we prove keybind(K,,A)
by the controls_.e lemma. From this and
a signature we prove A(read foo) by the
keybind_e lemma. Finally, from assumption
As and A(read foo) we prove read foo by
controls_e.

The definitions, and the proofs of the lem-
mas, can be included with the proof for the

benefit of any participant who was not already
familiar with the definitions and their conse-
quences.

3 The Logic

We are using a higher-order logic with the type
form of formulas and a base type, string, which
will be used to represent keys, signatures, local
names, and for many other purposes. The
inference rules of the logic are given in Figure 3;
except for the last four rules, it is standard
higher-order logic. The last four inference rules
allow reasoning about digital signatures and
statements by principals derived from signa-
tures and names (strings). For reasoning about
time, we also need the type integer and rules
for arithmetic, which we do not show here.

The type form — form — which is a predicate
on formulas — represents the worldview of an ac-
tor in the system: a principal (an individual or
machine), a group of principals, or some other
such combination. We will define a principal P
as a worldview that has the properties

VF.F — P(F) and
VFVG.P(F)ANP(F — G) — P(G)

that is, if F' is true then P admits it, and if G
is a consequence of other things P admits, then
P admits G.

A principal may be constructed from a string
by the built-in function N(). For any string
s the inference rules name_r and name_imp_e
guarantee that the worldview N (s) satisfies the
properties required of principals.

We represent a cryptographic key as a string
in the X.509 SubjectPublicKeyInfo format, that
is, an AlgorithmlIdentifer followed by a bit

keybind_e
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Figure 3: Inference rules of the logic.
Quantification and equality (e.g., Vax.Jy.x = y) are
polymorphic: the quantified variables may be of
base type (such as string) or formulas, functions,
or predicates. The logic also has operators and
inference rules for integer arithmetic, existential
quantification, and falsehood, which are not shown

here.

string that is the actual key [15]. The rule
signed says that if s is the digital signature
with key k of statement F, then N (k)(F):
the principal N (k) must admit any statement
signed by k. The informal k signed F' stands
for the formal NV (k)(F).

There is an infinite family of digital_signature
axioms, one for each triple s,k,F where s
is the digital signature with key k of the
representation of the formula F. The proof-
checking infrastructure must be able to check
digital signatures using one or more encryption
algorithms.

Because definitions such as “keybind” and
“controls” are not part of our trusted com-
puting base — such definitions are part of
application-specific customizable protocols —
each server must be able to mechanically check
all proofs of their properties. As we will explain
in Section 8, we have implemented a proof-
checker for our logic (as will be necessary for the
operation of a server in a distributed authenti-
cation system). Every lemma and theorem that
we state in this paper has been mechanically

verified.

4 Using the Logic

Since a worldview is just a predicate on for-
mulas, worldviews can exhibit a wide variety
of behaviors. This fact can be useful, as we
will see below, but it also has its drawbacks.
To simplify things, it is useful to define two
special classes of worldviews, and to prove some
lemmas about the behavior of these kinds of
worldviews.

Principals. The first special class of world-
views includes those made by the N () operator,
and other worldviews that behave like them:;
these satisfy

prin(P) =
(VF.(F — P(F)))
ANVFYG.(P(F) — P(F — G) — P(Q))).

Intuitively, prin(P) means that we can assume
that P admits all tautologies, and that P



admits any formula that can be deduced from
other formulas it admits. The following two
lemmas are provable:

prm(PP()F) prin_taut
() 1) ) PE=C) prinimp.e

From the name_r and name_imp_e inference
rules, we can prove the lemma

——————n_is_prin

prin(N(s))

We can use function composition on world-
views:

(Ao B)(F) = A(B(F)).

A o B can be thought of as “A quoting B”.
Composition of two principals is a principal:

prin(A) prin(B)
prin(A o B)

prin_comp

We can also define a A_w operator on world-
views, so that A A _wB admits a formula
whenever both A and B admit it.

(AN wB)(F) = A(F) N B(F).
We can then prove the lemma

prin(A) prin(B)
prin(A A -wB)

prin_A

along with lemmas saying that A_w is associa-
tive and commutative.
Similarly, we can define a V_w operator:

(AV wB)(F) = A(F) vV B(F).

The V_w operator can be used to construct
groups of worldviews in which any member can
speak on behalf of the group. V_w is associative
However, if prin(4) and
prin(B), this does mot imply prin(AV wB).
(For example, we could have A(F) and B(F —
G), but neither A(G) nor B(G).) Groups

and commutative.

evidently satisfy a weaker property than prin();
we write this property as

group(A) = VE.(F — A(F)).
We can then prove the following lemmas:

7prin(A) rin_is_gr
group(4) P
group(A)

r taut
A(F) grp-tat

group(A) group(DB)
group(A o B)

orp_comp

group(A) group(DB)
group(A A _wB)

grp_/A

group(4)  group(B)
group(A V -wB)

grp_V

In addition to these classes of worldviews, any
application is free to define its own classes.

4.1 Says and Quoting

The system as described so far is adequate, but
some may find the representation of principals
as functions confusing. In order to make the
system more palatable to these users, we can
define operators to abstract away the represen-
tation of worldviews.

We do this by defining a says operator:

A says F = A(F).
Some simple lemmas about says follow:

group(A)
A says I

says_taut

prin(A) Asays I Asays (F — G)

A says G

We can then define a quoting operator | as
AlB=AoB,

and it follows that

te_ident
(A|B) says F < A says (B says F) dquote-ident,

says_imp_e



The A_w and V_w operators will lead to the
identities

(AN wB) says F < (A says F') A _w(B says F)

(AV wB) says I < (A says F) V (B says F)

If we use a logical framework that support
abstract data types, we could choose to hide the
representation of principals, says, and quoting,
and simply expose the set of lemmas they
satisfy.

5 Application-Specific Operators

We expect that the designers of specific appli-
cations will often have in mind their own sets
of operators and rules for manipulating them.
Our system allows users to define new operators
with manipulation rules, so it can implement
application-specific operators. In this section,
we give as an example a set of operators we
have found useful.

Any application using our system is free to
define whatever operators it likes and prove
lemmas about them. This kind of extensibility
is the main advantage of our logic-based ap-
proach.

Controls. First we define the controls opera-

tor!
A controls F' = ((A says F) — F).

Informally, A controls F means that A can
make F' true just by saying it. We can prove
a simple lemma

A controls F
F

A says F

controls_r

We can then prove a lemma that says control
can be handed off from one principal to another:

prin(A) A controls F' A says (B controls F)

B controls F'

!This definition differs from the one given in Section 2
in order to account for the says abstraction.

Speaksfor. The operator

A speaksfor B = Vz.(A says ¢ — B says x)

says that everything said by A is also said by
B. Generally, if A speaks for B, then A can
exercise any rights that B has.

Names. The ability to translate any string
S into a principal N'(S) gives us the ability to
define name-spaces. For example, we can define
a localname operator as

LN(A,S) = AN(S).

Now A can give principal B the right to speak
for LN (4, S) by making the statement

A says (B speaksfor NV(5)).

Now (assuming prin(A)) it follows that
B speaksfor LN(A, S)2.

We can also use local names to implement
roles, with LN (A,role: admin) referring to
A’s administrative role; A could then make
a statement F' on behalf of the role, such as

(A says (N (role : admin) says F)).

5.1 Access Control

Suppose a file server machine M stores a file
f, and M wants to limit who can read f. (We
assume prin(M).) This can be implemented by
requiring each read request on f to carry a proof
of (M says read(f)). M can give another prin-
cipal A permission to read the file by making
the statement (M says (A controls read(f))).
Now if A makes the request (A says read(f)),
A can use the request, along with the statement
made by M, to prove M says read(f)3.

2Proof sketch: Suppose B says F. It follows by
says_taut that A says (B says F). Now we have
two statements that are said by A: B says F and
B speaksfor N'(S). These two statements together
imply N(S) says F, so when they are both said
by A, and since prin(A) holds, we can infer that

. A says (N(S) says F). By the definition of localname,

this equals LN (A, S) says F.
3To prove this result, we start with A says read(f),
and then (using prin(M)) apply the says_taut lemma to



5.2 Public-Key Infrastructure

Public-key certificates and their use can be im-
plemented in our system as well. A certification
authority C' can issue a certificate binding key
K, to principal A:

(cert C K, A) = C says (N(K,) speaksfor A).

This certificate is pointless unless we trust C' to
issue certificates; this trust can be encoded as

Statements can be given limited periods of
validity. For example, the statement

A says ((now(Bob) < T') — F),

implies A says F' until Bob’s clock reaches T
after that it is vacuous. Of course, a statement
that expires might be renewed with a later
expiration time, and statements might come
with hints about how to renew them. In order
for Alice to generate a proof that will be valid

trustedCA(C) = VkVp. C controls (N (k) speaksfor pgn Bob’s machine, she should first learn how

Now we can prove lemmas such as

trustedCA(C') (cert C K, A)

much clock skew there is between her machine
and Bob’s. Also, if Charlie trusts Bob to keep
the clock skew between Bob and Charlie under

K, signed F'5 geconds, at least until tomorrow, he can issue

A says F

indicating that our definitions are consistent
with one model of public-key infrastructure.

Of course, other definitions may make sense
to other people. The strength of our system
is that it allows anyone to make their own
definitions.

5.3 Expiration and Revocation

The primitive now() maps strings to integers;
now(m) gives the current time as measured on
the clock of the host whose name is m. We
make no assumptions about how different clocks
are related, though any principal can make
statements and form beliefs about how any two
clocks are related.

When Bob checks the proof of any statement,
he will have an assumption in his assumption
database of the form,

now (bob.com) = 83487

if 83487 is the current time.

deduce M says (A says read(f)). Then we start with
M says A controls read(f) and expand the definition
of controls to deduce M says ((A says read(f)) —
read(f)).  The proof is completed by combining
the results of the previous two sentences, using the
says-imp_e lemma (and the assumption prin(M)) to
deduce M says read(f).

the statement,

K. signed (now(charlie.com) < 100929 —
|now (charlie.com) — now(bob.com)| < 5)

Such certificates about clock skew can help
Alice formulate a proof that her key-certificate
(signed by Charlie) is still valid with respect to
Bob’s clock.

An alternative to expiration is revocation.
For example, the statement

A says (—revoked(F) — F)

says that A says F', unless I’ has been revoked.
A could periodically send out a revocation list;
for example

A says ((now(A) <T) —

Vax.(revoked(z) — (x = S1 Vo =Sy Vo =.53))).
From this we can infer that (until A’s clock
reaches T') statements other than S;, So, and
Ss have not been revoked. By making T only
a short time in the future, we can achieve
the effect of on-line revocation list checking.
As usual, the cost of frequent revocation list
updates has to be balanced against the time
required for revocations to propagate through
the system.



6 Alternative Versions of Says

The definition of says given above seems natu-
ral, but some applications may want a version
of says that behaves differently. These applica-
tions are free to define and use the primitives
they want. We now give two examples of
alternate definitions of says.

6.1 Says without prin()

Some users may find it more natural to reason
about a world where rules like says_taut and
says_imp_e hold for all principals. This can be
achieved by defining a new operator:

A saysp F'= F V (prin(A) A A(F)).

Two lemmas follow:

__
A saysp F

A saysp F A saysp (F' — G)

A saysp G

We can then proceed to define new versions
of the other operators such as controls, and to
prove the corresponding lemmas.

6.2 Says without Delegation

Our first definition of says allows any principal
to delegate any rights it may have. Some
applications may not like this, so we may want
to define a version of says that does not allow
arbitrary delegation. To do this, we define a
“says directly” operator:

Asaysdir F = 3K.((A = N(K))A(K signed F)).

Now if B says ((A saysdir F)) — F), B has
delegated to A all of B’s rights to F, but
A cannot delegate these rights further, since
the only way A can exercise these rights is to
directly sign a request to use them.

We can define a “says with optional delega-
tion” operator:

A ssaysoptp F' = (Asaysdir F))V(DA(Asays F)).

Now A can delegate its rights to B:
A says ((B saysoptp F) — F)

and B can delegate these rights to third parties
if and only if D is true.

There are many variants of says, and our
system allows each application to define and use
the variant that best suits its needs.

7 Encoding Other
Frameworks

Authentication

Our system is general enough to encode other
distributed authentication frameworks. We
encode a framework by expressing its primitives
in a set of definitions, and then proving the
framework’s processing rules as lemmas. By
providing a single language in which the se-
mantics of several frameworks can be expressed,
we provide a way for those frameworks to
interoperate with users of our system.

By describing different frameworks in a single
logic, we provide a way for those frameworks to
interoperate in a principled way. For example,
if the semantics of SPKI certificates and Taos
certificates are clearly specified in our logic,
then certificates from both frameworks can be
used together in the same proof, as long as
the requester can show they satisfy the server’s
requirements.

Interoperability has another advantage: it
facilitates the deployment of new frameworks.
If frameworks can interoperate, then a new
framework does not need near-universal de-
ployment in order to attract users.
framework can be used by a few people at
first, while those people exploit interoperation
to work with the rest of the world.

A new

7.1 SPKI

As an example, we now describe how to encode
the SPKI [4] framework. Certificates are the
main data structure in SPKI; a certificate can
encode a name-to-key binding or a name-to-
privileges binding.

The SPKI specification describes how every
certificate can be translated into a 5-tuple data



structure, and it gives rules for combining 5-
tuples to deduce new 5-tuples, and for deciding
whether a particular 5-tuple is sufficient evi-
dence to allow access to a resource. In the 5-
tuple (1,S,D,T,V)

I is the key that issued the certificate;

S is the subject of the certificate, which could
be a key, a name, or a group;

D is a delegation flag, saying whether the
rights associated with the certificate may
be delegated;

T is a tag, a data structure that describes a
request or set of requests; and

V says when the certificate is valid, giving a
not-valid-before and a not-valid-after time.

Space does not permit a full description of SPKI
semantics; see the SPKI documents [4] for full
details.

Encoding SPKI To encode SPKI, we encode
the 5-tuple data structure and the rules for
manipulating 5-tuples. Since converting certifi-
cates to b-tuples is a straightforward (though
tedious) translation process, we could also en-
code this conversion in our logic.

In practice, one would want to model the
SPKI data structures in great detail, for ex-
ample, by expressing the tag-matching rules in
logic. We simplify the model here for brevity.

We give the following definition:

tuple(Z,S,D, T, V)=V —
I says (Vz.((S saysoptp ok(z)) —
T(z) — ok(x))).

Here I is the issuing principal; S is the subject
principal, which might be a group; D is the
delegation flag; the tag T is represented as a
predicate on strings (a predicate which admits
any string iff that string will successfully match
the tag); and the validity interval is represented
as a simple predicate V. ok(x) represents the
assertion the the operation specified by x should

10

be permitted; we encode it as the placeholder
ok(x) = (N (ok)|N(x)) says false.

Now we can prove SPKI’s rules for manip-
ulating 5-tuples as lemmas. To give a simple
example, we can prove

prin(I) prin(J)
tuple(Z, J, true, A, V)  tuple(J,S,D, A, V)
tuple(1, S, D, A, V)

We could also go about proving the other rules
for reasoning about 5-tuples, including a rule
for extracting a useful result from a SPKI chain:

J signed ok(X) prin(I) V T(X)

tuple(Z,N'(J),D,T,V)
ok(X)

Having done this, we could conclude that
any client who could have gotten approval for
operation X on server I in SPKI will be able
to prove I says ok(X). SPKI provides a way to
define local access policies such as

ok(tag (pkpfs /foo read)) — read /foo

Although we have not yet done so, we believe
that other distributed authentication frame-
works could be encoded in a similar way.

8 Implementation

Proofs must be produced by the client request-
ing services and checked by the server, so there
must be a machine-readable and -checkable
notation for theorem and proof. We use a
higher-order logic implemented in Twelf [13],
an implementation of the Edinburgh Logical
Framework [5]. Research in proof-carrying code
[11] has shown that the Logical Framework
(LF) is an excellent notation for explicit proofs
that are to be transmitted and then checked
with a minimal trusted computing base. The
algorithm for checking LF proofs is as simple
as programming-language type checking, and in
fact the Touchstone system for proof-carrying
code [11] includes a simple proof-checker writ-
ten in the C programming language.

An earlier version of our system was im-
plemented in AProlog instead of Twelf, using



controls_e:
keybind_e:
trusted_ca_e:

pf (controls @ A @ F) -> pf (A @ F) -> pf F.
pf (keybind @ K @ W) -> pf (digital_signature S K F) -> pf (W @ F).
pf (trusted_ca @ Ca) -> pf (controls @ Ca @ (keybind @ K @ A)).

abc: pf (trusted_ca @ Charlie) ->
pf (keybind @ Kc @ Charlie) ->
pf (controls @ Alice @ ReadFoo) ->
pf (digital_signature B10010111 Ka ReadFoo) ->
pf (digital_signature B01001110 Kc (keybind @ Ka @ Alice)) ->
pf ReadFoo =

[A1] [A2] [A3] [S1][S2]

controls_e A3 (keybind_e (controls_e (trusted_ca_e Al) (keybind_e A2 S2)) S1).

Figure 4: Twelf representation of “read foo” theorem and its proof.

higher-order logic with lemmas and definitions
as described by Appel and Felty [2].

8.1 Proof representation

Figure 4 shows the Twelf code that implements
the theorem that Alice proves to Bob in the
example of Section 2.1. The first three clauses
are the statements of the supporting lemmas;
here we have omitted their proofs.

The name of the theorem, abc, is followed by
a statement of the theorem: given proofs of the
five premises, we get a proof of ReadFoo.

After the = sign comes the proof of the the-
orem. The variables [A1] [A2] [A3] [S1] [S2]
stand for the five premises; the square brackets
indicate that they are formal parameters of
the proof, and the body of the proof may
refer to them by name. We have chosen the
name A1,A2,A3 for the first three premises to
correspond to the names used in Section 2.1.
The variables S1,82 stand for the two digital-
signature premises.

The last line shows the proof tree, written out
in Twelf notation. It is the same tree shown in
Figure 2, but in a form more suited to machine
processing.

Another illustration is the controls_e lemma
(Figure 5). The first line declares the type
of the name controls, as a predicate, i.e.
a function taking a worldview and a formula
and returning a formula. Next, it defines the
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name controls to stand for the (higher-order)
formula AaAf.(af) — f. We have made
functions (A) explicit in our logic using the
lam operator, and function-application explicit
using the @ operator.

The controls_e lemma states that, given a
proof that A controls F', and a proof that A says
F', we can construct a proof of F. The proof
first uses another lemma, def2_e, to expand
the definition of controls in the premise P1;
then the implication-elimination rule imp_e to
complete the proof.

The Twelf notation will allow the recipient
of a proof (and associated lemmas) to check
the validity of each lemma, and then to use
the lemma in checking the proof of the main
theorem (and of other lemmas).

8.2 Measurements

The implementation of our logic in Twelf is
quite concise. Such a checker could be used as
the core of a distributed authentication system.
The logical inference rules are specified in 46
lines, excluding rules for arithmetic, which can
be specified in another dozen or so.

The Twelf proof-checker itself [13] is im-
plemented in Standard ML [8]: the parser is
2549 lines of commented code, and the proof-
checking algorithm is 1540 lines. The parser
need not be considered part of the trusted
computing base, since a broken parser cannot



controls: tm (worldview arrow form arrow form) =

lam[A] lam([F] (A @ F) imp F.

controls_e: pf (controls @ A @ F) -> pf (A @ F) -> pf F = [P1][P2] imp_e (def2_e P1) P2.

Figure 5: Representation of controls and controls._e.

cause an invalid proof to be accepted by the
checker. Necula [11] has also implemented an
LF proof-checker; its current size is about 2000
lines of commented C code [7].

Clients who want to generate proofs will
need application-specific definitions and lem-
mas, which might amount to several hundred
lines of Twelf, but this will be outside the
trusted computing base — the lemmas can be in-
dependently checked by the recipients of proofs.

Proofs are really just s-expressions extended
with a primitive notion of binding; that is, trees
whose operators are names of inference rules
and lemmas. FEach use of a lemma with n
arguments should add approximately n words
to the size of the proof, and each statement-
and-proof of a lemma should add a number of
words proportional to the size of the lemma and
its proof. A good approximation to the size,
in words, of the representation of a proof is
the number of non-punctuation tokens in the
fully explicit form of its Twelf syntax. We
can measure the size of the proof illustrated in
Figure 1:

Concept Definition Lemma Proof
controls 21 29 33
keybind 20 39 42
trustedCA 32 15 33
Main theorem 84 123

Since Bob’s security database contains state-
ments of the form trustedCA(Charlie), he
presumably also has copies of the relevent def-
initions, lemmas, and proofs. Thus, Alice can
simply send a 84-word theorem and 123-word
proof to justify read foo. But if other lemmas
turn out to be helpful in structuring the proof,
they can be represented in a very reasonable
size, as the table shows. These numbers are
gross overestimates of what can be achieved
in practice; Necula [10] has shown methods
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of reducing the redundancy in LF proofs and
cutting their size by large factors.

Some servers — such as programmable disk
controllers or active-network routers — are so
specialized that they will not even want to have
a full proof checker. In this case, they can
rely on certificates. Suppose Doris the disk
controller trusts Bob to check proofs for her;
she can rely on the single inference rule

K, signed (Doris says F')
F

trust_bob

Now if Alice wants service format disk
from Doris, she can submit a proof of
(Doris says format disk) to Bob, who will check
it and issue the certificate.

Bob should not sign time-dependent state-
ments such as now(bob.com) = 1998 which can
become false. He can avoid this by not putting
any such assumptions into his database while
checking proofs of statements that he is being
asked to sign.

9 Conclusion

Higher-order logic allows application-specific
modal logics to be defined and proved in a
simple and general framework. The apparent
disadvantage of such a logic — undecidability
— can be overcome by submitting a proof
with each authentication request, in the same
way that proof-carrying code submits proofs of
safety with programs.

We have demonstrated that proofs can be
small, that proof checking is simple to imple-
ment, and that existing authentication frame-
works can be expressed as application-specific
definitions and lemmas in our logic. Although
proof generation is undecidable in general, we
have shown by example that in cases of interest,



the requester will have a good idea why she
should be able to access a resource.
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