
1

Efficient Verified Red-Black Trees

ANDREW W. APPEL
Princeton University, Princeton NJ 08540, USA

(e-mail: appel@princeton.edu)

Abstract

I present a new implementation of balanced binary search trees, compatible with the MSets interface
of the Coq Standard Library. Like the current Library implementation, mine is formally verified (in
Coq) to be correct with respect to the MSets specification, and to be balanced (which implies asymp-
totic efficiency guarantees). Benchmarks show that my implementation runs significantly faster than
the library implementation, because (1) Red-Black trees avoid the significant overhead of arithmetic
incurred by AVL trees for balancing computations; (2) a specialized delete-min operation makes
priority-queue operations much faster; and (3) dynamically choosing between three algorithms for
set union/intersection leads to better asymptotic efficiency.

1 Introduction

An important and growing body of formally verified software (with machine-checked
proofs) is written in pure functional languages that are embedded in logics and theorem
provers; this is because such languages have tractable proof theories that greatly eases the
verification task. Examples of such languages are ML (embedded in Isabelle/HOL) and
Gallina (embedded in Coq). These embedded pure functional languages extract to ML
that can be compiled with optimizing compilers, so it’s not crazy to think of building real
software this way that’s efficient enough to solve real problems.

Efficent programs need efficient algorithm-and-data-structure libraries, subject to this
restriction that the programs are purely functional. Although some authors are experiment-
ing with ways to evade the pure-functional restriction in Gallina (Nanevski et al., 2008;
Armand et al., 2010), I believe we can get quite far without evasions.

Balanced binary search trees are an important data structure in computer science, and
particularly so in pure functional programming. They are used to implement the abstract
type of sets over totally ordered keys, with O(logN) insertion, lookup, and deletion. In
a programming language with a sufficiently powerful module system (MacQueen, 1990)
such as that of Standard ML or OCaml, one can specify the interface of the set abstract
data type, parametrized over another abstract data type of totally ordered keys. Filliâtre
and Letouzey (Filliâtre & Letouzey, 2004) show that in the Coq proof assistant, one can
go even farther: in the keys module are not only the comparison operations on keys, but
the specification expressed in logic (the Calculus of Inductive Constructions) that the key-
comparison really is totally ordered; and in the sets module are the logical correctness
specifications of all of the operations, also expressed in logic. For example,

appel
Typewritten Text
September 2011

appel
Typewritten Text

Module Type Sets.
Declare Module K : OrderedType.
Parameter set : Type.
Parameter In : K.t → set → Prop.
Parameter insert : K.t → set → bool.
Parameter member : K.t → set → set.
Axiom insert spec : ∀s x y, In y (insert x s) ↔E.eq y x ∨ In y s.
Axiom member spec : ∀s x, member x s = true ↔In x s.
. . .
End Sets.

Here, K contains the operations and specifications of a total order, and Sets contains the
operations and specifications of the operations on sets of keys.

Filliâtre and Letouzey then implemented this specification with balanced binary search
trees: that is, they wrote programs for operations such as insert and member, and wrote
machine-checked proofs for specifications such as insert spec and member spec. In fact,
they compared the performance of AVL trees with Red-Black trees. The Red-Black trees
performed faster, but for other reasons they chose the AVL trees for the Coq Library; since
then, Filliâtre’s Red-Black implementation is available in the Coq “User Contributions1”
while the AVL trees are in the MSets module of the Coq Library.

My research group is building a verified implementation of the paramodulation algo-
rithm for resolution theorem proving, we use MSets to keep sets of clauses, priority queues
of clauses, and mappings from names to various types. I wanted our program to run faster,
so I investigated an alternate implementation of MSets. My implementation is probably
similar in many ways to Filliâtre’s Red-Black implementation, but in this paper I want to
focus on three specific design issues, which I discuss below.

In a binary search tree, each nonempty node has a key and two subtrees; every key
within the left subtree is less than the node’s key, and every key within the right subtree
is greater. In a balanced binary search tree, each node has some extra information to keep
track of balance conditions, that is, to make sure that the heights of the two subtrees are
approximately the same. When a tree goes (or is about to go) out of balance, a rotation
can adjust it. The height of an approximately balanced tree is O(logN), so the insert and
lookup costs are logarithmic.

AVL trees are the granddaddy of efficient balanced binary search trees, invented in 1962.
Each node keeps a height memoizing the height of that subtree, and by comparing heights
one can know when to rotate. Instead of storing the raw height, one can store a 2-bit balance
factor, the difference between the heights of the left and right subtrees. In a conventional
programming language, a word-aligned record with key+left+right+extra takes 4 words
whether the “extra” is a 2-bit balance factor or a short integer height, so it does not matter
which representation is used.

Red-black trees keep only 1 bit of balance information: the tree has black nodes and red
nodes. The Red-Black invariant, which I will describe later, guarantees O(logN) efficiency

1 http://coq.inria.fr/pylons/contribs/files/FSets/trunk/FSets.FSetRBT.html

2

for insert and lookup operations. Of course, 1 bit of balance information is as costly as a
whole word, in a typical word-aligned implementation.2

In this article I present my Red-Black Tree implementation of MSets. When extracted to
ML code, it’s significantly faster than the existing Coq Library implementation, for three
reasons:

1. Bookkeeping of heights in MSetAVL using the Z type of the Coq library, is expen-
sive; bookkeeping of reds and blacks is much cheaper. (The AVL balance factors
would probably be faster than Z but not as fast as Red-Black.) Filliâtre’s Red-Black
trees, if revived, would probably perform as fast as mine.

2. I combine min elt (find the minimum element) and delete into a single operation
delete min that does not have to do any comparisons at all. This was omitted from
the Coq Library MSets interface, with unfortunate consequences for clients that want
to use MSets as priority queues.

3. Union, intersection, and similar operations have three implementations. Sets s and t
can be unioned in time |s| log |t| (when |s| ≤ |t|) by insert each element of s into t; or
in |t| log |s| time (when |t| ≤ |s|); or in s+t time by flattening both trees, merging, and
rebuilding a new one. The intersection and diff operations are analagous. Depending
on the sizes of s and t, I choose between these three methods. Measuring the size
of a Red-Black tree would take linear time, so I measure the approximate log of the
size (the “black-node height”) in logN time.

Reasons 2 and 3 are not specific to Red-Black trees, and would apply to most balanced
binary search tree data structures.

2 Why are AVL trees slow?

Integer arithmetic in the Coq standard library is constructed from inductive structures as
follows.

Inductive positive := xI : positive → positive | xO : positive → positive | xH : positive.

Inductive Z := Z0 : Z | Zpos : positive → Z | Zneg : positive → Z.

A positive number is either 1, represented by xH, or 2n, represented by xO(n), or 1 + 2n,
represented by xI(n). Whenever we reason about integers (type Z) in Coq, we are in fact
reasoning about data structures such as (Zneg(xI(xO(xH)))) and (Zpos(xO(xI(xI(xH))))). Such
reasoning takes time (typically) linear in the size of the data structure, and logarithmic in
the size of the numbers represented.

This explains why the implementation of AVL trees in the Coq library performs slowly
for insert: balance numbers are represented as Z, and thus there is a logN penalty; effec-
tively insert k t takes time log2 |t|.

One might think, “when extracting to ML programs, why can’t we represent Z as a
single-word native integer, and do machine-native arithetic?” Indeed, Filliâtre and Letouzey

2 One can do Red-Black trees with 0 bits of balance information, at the cost of extra comparisons
Ex. 13.65, p. 560. But I want the data structure to be efficient even in regimes where comparisons
are expensive, so this technique is not attractive.

3

write, “We could parameterize the whole formalization of AVL trees with respect to the
arithmetic used for computing heights, using yet another functor. But we would lose the
benefits of the Omega tactic (the decision procedure for Presburger arithmetic) which is of
heavy used in this development.”

However, I believe they are underestimating a significant problem: machine arithmetic
arithmetic can overflow. If one axiomatizes this overflow then one has many proof obliga-
tions of the form x+y < 231. In practice, these proof obligations are overwhelmingly nasty.
Furthermore, the specifications themselves would get much more complicated. One of the
most important methods by which people have made progress in verified algorithms is by
the clever trick of using infinite-precision integers, not because they will ever overflow, but
so that the proofs are simpler.
Theorem: If we were to use machine integers to store the balance information for AVL
trees, those integers would never overflow.
Proof. The height stored in an AVL tree never exceeds the log of the number of pointers in
the tree, and thus on any machine where integers are at least as large as pointers, the height
of the tree is representable.

It is exceedingly difficult to convert this theorem to a machine-checkable result, and
I will not even try. Thus, one can see why Filliâtre and Letouzey did not attempt using
fixed-precision arithmetic for heights of AVL trees.

But there’s a simpler way. One should simply use a representation of balanced search
trees that does not require integers: Red-Black trees.

3 Looking up keys in search trees

In Coq the Red-Black tree data structure is simply,

Local Notation ”’key’” := K.t.
Inductive color := Red | Black.
Inductive tree : Type :=
| E : tree
| T: color → tree → key → tree → tree.

The implementation is a functor over any totally ordered type (module K: Orders.OrderedType).
The beautiful thing about Red-Black trees (or AVL trees) is that the lookup function can

ignore all the balance information and just use the searchtree property:

Fixpoint member (x: key) (t : tree) : bool :=
match t with
| E ⇒ false
| T tl k tr ⇒ match K.compare x k with

| Lt ⇒ member x tl
| Eq ⇒ true
| Gt ⇒ member x tr
end

end.

But what is the searchtree property? It is that all the elements to the left are less than the
node’s key, and so on. In practice we often need to say that t is a searchtree that can appear
to the right of some key klow, or to the left of some key khigh, or both. That is, we start with
an “optional less than”,

4

Definition ltopt (x y : option key) :=
match x, y with Some x’, Some y’ ⇒ K.lt x’ y’ | , ⇒ True end.

Thus, ltopt (Some x) (Some y) means x<y, but ltopt None (Some y) is vacuously true, as is
ltopt (Some x) None. Then the searchtree property is defined as,

Inductive searchtree: tree → option key → option key → Prop :=
| STE: ∀ lo hi, ltopt lo hi → searchtree E lo hi
| STT: ∀c tl k tr lo hi,

searchtree tl lo (Some k) → searchtree tr (Some k) hi → searchtree (T c tl k tr) lo hi.

To specify what it means for the member function to be correct, we write an inductive
definition for the interpretation of a tree as a predicate on keys; iff the key is present
anywhere in the tree (regardless of searchtree properties), then the predicate will be True.

Inductive interp: tree → (key → Prop) :=
| member here: ∀x y c tl tr, K.eq x y → interp (T c tl y tr) x
| member left: ∀x y c tl tr, interp tl x → interp (T c tl y tr) x
| member right: ∀x y c tl tr, interp tr x → interp (T c tl y tr) x.

If t is a bounded search tree, then any key in the interpretation of t is in bounds:

Lemma interp range:
∀x t lo hi, searchtree lo hi t → interp t x → ltopt lo (Some x) ∧ ltopt (Some x) hi.

And now the correctness of member: for any tree t that is a searchtree, member finds the
key k if and only if interp t k.

Lemma interp member:
∀x t, searchtree None None t → (member x t = true ↔interp t x).

Proof. The Coq proof script is 18 lines (138 tokens) long. In the forward direction, we
can ignore the searchtree property and do induction on t. In the backward direction, we do
induction on the inductive predicate searchtree.

The completion of this proof before we even define the balance property demonstrates
that, not only can lookup on Red-Black trees ignore the colors—so can the proofs about
lookup.

4 Insertion

Insertion into an unbalanced binary search tree is easy, and easy to prove correct:

Fixpoint unbal ins x s :=
match s with
| E ⇒ T Red E x E
| T a y b ⇒ match K.compare x y with

| Lt ⇒ T Red (unbal ins x a) y b
| Eq ⇒ T Red a x b
| Gt ⇒ T Red a y (unbal ins x b)
end

end.

I arbitrarily put Red for the color, but trees built this way will not satisfy the Red-Black
property; they will satisfy the searchtree property, and a lemma similar to the interp insert
property that I will define below.

5

So, if unbalanced insert is easy and correct, then why not do that? Because the trees
might not be balanced, and therefore we cannot give logN guarantees for the operations.

We will make formal, machine-checked proofs of the functional correctness of our
operations on search trees. But the proof theory of the Gallina language does not really
permit the formal verification of execution-time properties. Instead, we will want formal
(machine-checked) proofs that the search trees will have depth no more than 2logN.
This, combined with our understanding of the recursion depth of the insert and lookup
algorithms, will reassure us (in a rigorous but not machine-checked way) that the programs
will run fast.

The Red-Black invariant is that every path from the root to a leaf has the same number
of black nodes, and no such path has two red nodes in a row. Thus each leaf is at most
twice as deep as any other leaf, and this means that the height of an N-node tree is at most
2 logN. We formalize this invariant as follows.

Inductive is redblack : tree → color → nat → Prop :=
| IsRB leaf: ∀c, is redblack E c 0
| IsRB r: ∀ tl k tr n, is redblack tl Red n → is redblack tr Red n → is redblack (T Red tl k tr) Black n
| IsRB b: ∀c tl k tr n,

is redblack tl Black n → is redblack tr Black n → is redblack (T Black tl k tr) c (S n).

The proposition is redblack t c n means that t is a well-formed Red-Black tree, in color-
context c, with black-height n. Color-context c means that the tree can be part of a well-
formed Red-Black tree whose parent node has color c. Color-context Black accommodates
any well-formed tree, but a Red context requires a Black root. Black-height n means that
the number of Black nodes on any path from the root to a leaf is exactly n.

A well-formed Red-Black tree, in this definition, is not necessarily a search tree. We say
that a valid tree is both a search tree and a Red-Black tree.

Definition valid (x) := searchtree None None x ∧ ∃n, is redblack x Red n.

Most presentations of Red-Black trees are in an imperative setting: the insert function
adds a new node to replace some leaf (by overwriting a NULL pointer with the pointer to
a new node), then rearranges pointers in place until the Red-Black balance conditions are
achieved. In a functional programming language where pointers are not to be updated in
place, one wants something more like the unbal ins function, except with balancing.

I follow Okasaki’s presentation of Red-Black trees in a functional setting (Okasaki,
1999).

Definition balance color t1 k t2 :=
match color with
| Red ⇒ T Red t1 k t2
| Black ⇒ match t1, t2 with

| T Red (T Red a x b) y c, d ⇒ T Red (T Black a x b) y (T Black c k d)
| T Red a x (T Red b y c), d ⇒ T Red (T Black a x b) y (T Black c k d)
| a, T Red (T Red b y c) z d ⇒ T Red (T Black a k b) y (T Black c z d)
| a, T Red b y (T Red c z d) ⇒ T Red (T Black a k b) y (T Black c z d)
| , ⇒ T Black t1 k t2
end

end.

6

Fixpoint ins x s :=
match s with
| E ⇒ T Red E x E
| T c a y b ⇒ match K.compare x y with

| Lt ⇒ balance c (ins x a) y b
| Eq ⇒ T c a x b
| Gt ⇒ balance c a y (ins x b)
end

end.

Definition makeBlack t :=
match t with
| E ⇒ E
| T a x b ⇒ T Black a x b
end.

Definition insert x s := makeBlack (ins x s).

These four functions are the direct translation of Okasaki’s ML implementation into
Gallina. Okasaki’s proof is by appeal to diagrams, with the sentence, “It is routine to verify
that the Red-Black balance invariants both hold for the resulting tree.”

According to Webster’s dictionary, routine can mean “monotonous or tedious” or “a
sequence of instructions for performing a task that forms a program.” Okasaki was right in
both senses. It is tedious to prove the correctness of balance by hand by applying standard
tactics in Coq; instead, I write a program in the Ltac language to prove it. I illustrate
with just the proof of theorem searchtree balance, that if T c s k t is a search tree, then
balance c s k t is a search tree.

Ltac inv H := inversion H; clear H; subst.
Ltac do searchtree :=

assumption ||
constructor ||
match goal with
| ` searchtree (match ?C with Red ⇒ | Black ⇒ end) ⇒ destruct C
| ` searchtree (match ?C with E ⇒ | T ⇒ end) ⇒ destruct C
| H: searchtree E ` ⇒ inv H
| H: searchtree (T) ` ⇒ inv H
| ` ltopt ⇒ unfold ltopt in ∗; auto
| ` match ?A with Some ⇒ | None ⇒ end ⇒ destruct A
| H: K.lt ?A ?B ` K.lt ?A ?C ⇒ try solve [apply lt trans with B; assumption]; clear H
end.

Lemma searchtree balance:
∀c s1 t s2 lo hi,

ltopt lo (Some t) → ltopt (Some t) hi →
searchtree lo (Some t) s1→ searchtree (Some t) hi s2 →
searchtree lo hi (balance c s1 t s2).

Proof. intros. unfold balance. repeat do searchtree. Qed.

The “proof” of the theorem is this: Each subgoal may be solved by either

1. it’s trivially true (quod erat demonstrandum is a current hypothesis);
2. apply a constructor of the inductive searchtree predicate;

7

3. if there is a hypothesis of a certain form, do case analysis the color C (Red or Black);
4. if there is a hypothesis of a certain form, do case analysis on whether a variable C is

a leaf E or a nonleaf (T);
5. invert a hypothesis searchtree E into its one component assumption;
6. invert a hypothesis searchtree (T) into its three component assumptions;
7. unfold the definition of ltopt;
8. if the proof goal is case analysis on an option(key), do case-splitting;
9. try transitivity of less-than.

This program called do searchtree and, as shown, constructs a proof: exactly 1125 rep-
etitions of do searchtree builds the proof term. The proof term, not shown, is huge, of
course. So, Okasaki is right: the tactics used in do searchtree are quite routine, and that’s
all it takes to prove the theorem.

A tree is “nearly Red-Black” if it is nonempty and would be Red-Black if only the root
node were colored Black.

Inductive nearly redblack : tree → nat → Prop :=
| nrRB r: ∀ tl k tr n,

is redblack tl Black n → is redblack tr Black n → nearly redblack (T Red tl k tr) n
| nrRB b: ∀ tl k tr n,

is redblack tl Black n → is redblack tr Black n → nearly redblack (T Black tl k tr) (S n).

Lemma ins is redblack:
∀x s n,

(is redblack s Black n → nearly redblack (ins x s) n) ∧
(is redblack s Red n → is redblack (ins x s) Black n).

Proof. ... Qed.

Lemma is redblack Black to Red:
∀s n, is redblack s Black n → ∃n, is redblack (makeBlack s) Red n.

Proof. intros; inv H; repeat econstructor; eauto. Qed.

Lemma insert is redblack: ∀x s n, is redblack s Red n → ∃n’, is redblack (insert x s) Red n’.
Proof. intros. unfold insert. destruct (ins is redblack x s n).

apply is redblack Black to Red with n; auto.
Qed.

The theorem that insert preserves the Red-Black balance properties is also “routine;” the
ellipsis in the proof of ins is redblack conceals some Ltac hacking that’s quite similar to
do searchtree.

Finally, we prove that insert is actually correct. That is,

Lemma interp balance: ∀c tl k tr y, interp (balance c tl k tr) y ↔interp (T c tl k tr) y.
Proof. destruct c, tl, tr; unfold balance; intuition; repeat do interp balance. Qed.

Lemma interp insert:
∀x y s, searchtree None None s → ((K.eq x y ∨ interp s x) ↔interp (insert y s) x).

The proof is “routine:” an easy automated case-analysis, implemented by an Ltac much
like the do searchtree shown above, does most of the work.

8

Left-leaning Red-Black trees. Sedgewick (Sedgewick, 2008) proposed left-leaning Red-
Black trees, a data structure identical to ordinary Red-Black trees but with the extra con-
straint that no node has a red left child. This reduces the number of cases to be handled,
either in the (imperative, pointer-swizzling) implementation of the algorithm or the proofs
of correctness and balance.

In addition, Sedgewick shows how to factor the implementation of rebalancing Red-
Black trees into three operations, rotateLeft, rotateRight, and colorFlip; the proofs can be
refactored correspondingly.

My student Max Rosmarin (Rosmarin, 2011) studied the question of whether using the
left-leaning invariant would mix well with the Okasaki-style functional program, so as
to factor the implementations and proofs. Rosmarin demonstrated that Okasaki’s balance
function can be factored into Sedgewick’s three operations. Although it is not conceptually
more complex, the factored function has more lines of code. Recall that Okasaki’s function,
as I presented it here, has only 10 lines, which is hard to improve on.

The proofs can be factored as well. Recall that my proofs about Okasaki’s balance
function took 1125 steps. Undoubtedly, proofs factored in left-leaning style would take
fewer steps. But my 1125 steps were computed automatically from the 8 one-line proof
tactics outlined in Ltac do balance. In that sense, my proof is “routine.” Rosmarin found
that left-leaning factored proofs were not as “routine,” and therefore required more human
effort to build.

5 Deletion

It is well known that deletion from Red-Black trees is messier and more difficult both
to implement and to prove correct than insertion. Most authors leave it out of their pa-
pers. Kahrs (Kahrs, 2001) extends Okasaki’s functional Red-Black trees with deletion, and
shows an all-too-clever correctness proof miraculously embedded into the type-checking
of the Haskell program, as a GADT (Generalized Abstract Data Type). I say all-too-clever
because I cannot understand it. I prefer to specify and prove correctness properties in a
general-purpose logic meant for that purpose, such as the Calculus of Inductive Construc-
tions (i.e., Coq).

However, Kahrs does explain in English the invariants for deletion. So I was able to take
the Kahrs functional-redblack-deletion algorithm and use his invariants to prove it correct
in Coq. I use the same kind of Ltac proof automation.

But the delete algorithm is bigger than for insert, and so are the proofs. Here I will just
show the Kahrs’s invariant for his del function, translated into Coq:

Inductive infrared : tree → nat → Prop :=
| infrared e: infrared E 0
| infrared r: ∀ tl k tr n,

is redblack tl Black n → is redblack tr Black n → infrared (T Red tl k tr) n
| infrared b: ∀ tl k tr n,

is redblack tl Black n → is redblack tr Black n → infrared (T Black tl k tr) (S n).

Definition is red or empty t := match t with T Black ⇒ False | ⇒ True end.
Definition is black t := match t with T Black ⇒ True | ⇒ False end.

9

Lemma del shape:
∀x t, (∀ n, is redblack t Red (S n) → is black t → infrared (del x t) n) ∧

(∀ n, is redblack t Black n → is red or empty t → is redblack (del x t) Black n).

Rosmarin (Rosmarin, 2011) also studied delete, comparing my implementation and
proofs (following Kahrs) with the left-leaning case, and his preliminary results showed
that left-leaning delete may in fact be harder to reason about than Kahrs-style.

Delete-min. The MSets interface in the Coq Library has an operation min elt(s) that re-
turns the minimum element of a set s. This allows the use of MSets, such as Red-Black
trees, as priority queues in which each operation (insert and delete-min) can be done in
O(logN) time. But there is no delete min(s) in the interface, which means that delete min
must be constructed from min elt and delete. Although this is still O(logN), the constant
factor is quite high for two reasons: the tree must be traversed twice, and the delete traversal
does comparisons.

By contrast, a straightforward delete min operation keeps moving leftward in the tree
without doing any comparisons, and is therefore much faster. However, on the way back
up, it must rebalance the tree much as delete does, and in fact we can re-use much of
delete’s rebalancing implementation.

I do not prove directly that delete min preserves the search-tree property, preserves the
Red-Black property, and returns the correct result. Instead I prove that delete−min produces
the identical key-value and tree to a combination of min elt and delete—from which, these
properties follow as a corollary.

6 Union, intersection, difference

Binary search trees are often used to implement general “set” abstract-data types, where
the operations are not limited to insert, lookup, and delete: often the clients want set-
union, intersection, and set-difference as well. Search trees are not ideally suited to these
operations, but that does not stop the clients from wanting them. So we do the best we can.

Let s and t be binary search trees with cardinalities |s| and |t|. To compute s∪ t we can
either:

• Insert each element of s into t, in time O(|s| log |t|) if |s| ≤ |t|.
• Insert each element of t into s, in time O(|t| log |s|) if |t| ≤ |s|.
• Flatten s and t into sorted lists, merge the lists, then reconstruct the sorted list into a

tree, all in time O(|s|+ |t|).

If |s| is similar to |t|, then the linear-time method is faster; otherwise the |s| log |t| or
|t| log |s| algorithm is best.

The log-linear method just calls upon the insert function, and is easy to prove correct.
Flattening a tree into a sorted list is a simple recursive tree-walk and is easy to implement
and prove correct.

Building trees from sorted lists To implement linear-time set-union (or intersection, or
difference), we need linear-time construction of a Red-Black tree from a sorted list.

10

We don’t want to simply insert each element, as that would take N logN time. Instead
we construct the tree directly, using a pair of mutually recursive functions. But to do this,
we need to know in advance the size of the tree.

Algorithms to build balanced trees from sorted lists are certainly not new (Hinze, 1999),
but my algorithm takes particular advantage of Coq’s inductive construction of the positive
integers (the positive datatype) to guide its tree-construction. Recall:

Inductive positive := xI : positive → positive | xO : positive → positive | xH : positive.

where xH= 1, xO(n) = 2n, xI(n) = 2n+1. In the Coq library there is a function Psucc that
computes successor on positive by the usual ripple-carry method. Therefore, the function

Fixpoint poslength {A} (l: list A) := match l with nil ⇒ xH | ::tl ⇒ Psucc (poslength tl) end.

in linear time can compute the length of a list, plus one. It’s not completely obvious that
this takes linear time, since Psucc can take logN time in the worst case, but in fact the
average case for ripple carry is constant time.

To turn a list l of length N−1 into a Red-Black tree, we execute treeify g (poslength l) l,
which calls upon the following pair of recursive functions:

Definition bogus : tree ∗ list key := (E, nil).

Fixpoint treeify f (n: positive) (l: list key) : tree ∗ list key:=
match n with
| xH ⇒ match l with x::l1 ⇒ (T Red E x E, l1) | ⇒ bogus end
| xO n’ ⇒ match treeify f n’ l with

| (t1, x::l2) ⇒ let (t2,l3) := treeify g n’ l2 in (T Black t1 x t2, l3)
| ⇒ bogus

end
| xI n’ ⇒ match treeify f n’ l with

| (t1, x::l2) ⇒ let (t2,l3) := treeify f n’ l2 in (T Black t1 x t2, l3)
| ⇒ bogus

end
end
with treeify g (n: positive) (l: list key) : tree ∗ list key :=
match n with
| xH ⇒ (E,l)
| xO n’ ⇒ match treeify g n’ l with

| (t1, x::l2) ⇒ let (t2,l3) := treeify g n’ l2 in (T Black t1 x t2, l3)
| ⇒ bogus

end
| xI n’ ⇒ match treeify f n’ l with

| (t1, x::l2) ⇒ let (t2,l3) := treeify g n’ l2 in (T Black t1 x t2, l3)
| ⇒ bogus

end
end.

Definition treeify (l: list key) : tree := fst (treeify g (poslength l) l).

The basic idea is this: To treeify a sorted list of length 2n + 1, first treeify the first part,
of length n, yielding subtree t1; then grab the next element k of the list; then treeify the last
part of length n, yielding subtree t2; finally construct the node T ? t1 k t2. But what color
should go in place of the question-mark, and what if the length is not exactly 2n+1?

11

We will place all Red nodes at the bottom. That is, there will be an exactly balanced
binary tree of Black nodes; the leaves of this black tree will have children that are either
Red or E.

The function treeify f n l takes a sorted list l of at least n nodes. It consumes n nodes
from the list, and builds them into a Red-Black tree t of black-height n− 1. It returns the
pair (t, l′) where l′ is the rest of the list beyond the nth element.

The function treeify g n l takes a sorted list l of at least n− 1 nodes. It consumes n− 1
nodes from the list, and builds them into a Red-Black tree t of black-height blog2(n−1)c.

For each function, the case n = 1 is easy. treeify f xH l grabs the first element x of l and
constructs the tree T Red E x E, whose black-height is 0. treeify g xH l simply returns the
tree E, whose black-height is also 0.

For the case n = 2n′, treeify f (xO n’) l builds two subtrees by calling treeify f and treeify g;
that is, it consumes n′+1+(n′−1) = n nodes from the list.

For the case n = 2n′, treeify g (xO n’) l builds two subtrees by calling treeify g and treeify g;
that is, it consumes (n′−1)+1+(n′−1) = n−1 nodes from the list.

For the case n = 2n′ + 1, treeify f (xI n’) l builds two subtrees by calling treeify f and
treeify f; that is, it consumes n′+1+n′ = n nodes from the list.

For the case n = 2n′ + 1, treeify g (xI n’) l builds two subtrees by calling treeify f and
treeify g; that is, it consumes (n′−1)+1+n′ = n−1 nodes from the list.

The proofs are straightforward, except for one thing: Coq will generate an induction
scheme for these two mutually recursive functions with 11 cases in the induction. There
are the 6 “good” cases (described verbally above), and 5 “bogus” cases, in which the bogus
value is returned. Of course the bogus cases will never occur, provided that length(l)>n (for
treeify g n l), or length(l)≥n (for treeify f n l).

So, before proving the main theorems about treeify, we prove two preliminary lemmas
about lengths of lists (using the horrible 11-case induction scheme), and then we use these
to prove a specialized 6-case induction lemma (Figure 1).

Although treefy g induc looks scary, it’s straightforward to use in practice. Remember
that every premise in each of the 6 clauses makes it easier to use this induction scheme,
not harder. In proving a lemma such as,

Lemma treeify’ g is redblack:
∀n l, length l >= nat of P n → is redblack (fst (treeify g n l)) Red (plog2 n).

each of the 6 cases takes just a few lines of proof-script, and the entire proof is 48 lines of
Coq.

Using the treeify function (and its proofs), it is simple to implement linear union, a linear-
time set-union algorithm for Red-Black trees. Set intersection and set difference are similar,
and use the same treeify function.

Dynamically choosing between the implementations. To measure whether |s| � |t| or
|t| � |s| or neither, one does not want to compute |s|, which takes linear time. But we can
cheaply compute the approximate log of |s|, that is, the black-node height of the tree (since
the black-node depth of every leaf is the same). Even more cheaply, we can test whether
the black-height of s is at least twice the black-height of t, or vice-versa.

12

Figure 1. Induction scheme for treeify
Lemma treeify f length:
∀n l, length l > nat of P n → length(snd(treeify f n l))+nat of P n = length l.

Lemma treeify g length:
∀n l, length l ≥ nat of P n → length(snd(treeify g n l))+nat of P n = S (length l).

Lemma treeify g induc:
∀ fP gP : positive → list key → tree ∗ list key → Prop,

(∗1∗) (∀ l n’ t1 x l2 t2 l3,
length l >= nat of P n’ → length l2 >= nat of P n’ → fP n’ l (t1, x::l2) →
treeify f n’ l = (t1, x::l2) → fP n’ l2 (t2, l3) → treeify f n’ l2 = (t2, l3) →
fP (xI n’) l (T Black t1 x t2, l3)) →

(∗2∗) (∀ l n’ t1 x l2 t2 l3,
length l >= nat of P n’ → S(length l2) >= nat of P n’ → fP n’ l (t1, x :: l2) →
treeify f n’ l = (t1, x :: l2) → gP n’ l2 (t2, l3) → treeify g n’ l2 = (t2, l3) →
fP (xO n’) l (T Black t1 x t2, l3)) →

(∗3∗) (∀ x l1, fP xH (x :: l1) (T Red E x E, l1)) →
(∗4∗) (∀ l n’ t1 x l2 t2 l3,

length l >= nat of P n’ → S(length l2) >= nat of P n’ → fP n’ l (t1, x :: l2) →
treeify f n’ l = (t1, x :: l2) → gP n’ l2 (t2, l3) → treeify g n’ l2 = (t2, l3) →
gP (xI n’) l (T Black t1 x t2, l3)) →

(∗5∗) (∀ l n’ t1 x l2 t2 l3,
S(length l) >= nat of P n’ → S(length l2) >= nat of P n’ → gP n’ l (t1, x :: l2) →
treeify g n’ l = (t1, x :: l2) → gP n’ l2 (t2, l3) → treeify g n’ l2 = (t2, l3) →
gP (xO n’) l (T Black t1 x t2, l3)) →

(∗6∗) (∀ l, gP xH l (E, l)) →
(∗ conclusion ∗) ∀n l, length l >= nat of P n → gP n l (treeify g n l).

Definition skip red t := match t with T Red t’ ⇒ t’ | ⇒ t end.
Definition skip black t := match skip red t with T Black t’ ⇒ t’ | t’ ⇒ t’ end.

Fixpoint compare height (sx s t tx: tree) : comparison :=
match skip red sx, skip red s, skip red t, skip red tx with
| T sx’ , T s’ , T t’ , T tx’ ⇒ compare height (skip black tx’) s’ t’ (skip black tx’)
| , E, , T ⇒ Lt
| T , , E, ⇒ Gt
| T sx’ , T s’ , T t’ , E ⇒ compare height (skip black sx’) s’ t’ E
| E, T s’ , T t’ , T tx’ ⇒ compare height E s’ t’ (skip black tx’)
| , , , ⇒ Eq
end.

The calculation compare height s s t t starts the pointers sx,tx racing down the two trees at
double-speed, and the pointers s,t walking down at normal speed. Depending on which of
these four pointers bottoms out first, we can say informally that

c1 log |s|< 1
2

log |t|, c2 log |s|< log |t|∧ log |s|> c2 log |t|, or
1
2

log |s|> c3 log |t|

for various constants ci close to 1.
We do not have to prove this formally! The compare height function will be used only

to select between three different proved-correct implementations of set-union. If we get it

13

wrong, the algorithm will still be formally verified as functionally correct, but it may be
inefficient. For efficiency we are relying on a combination of formal proofs about balance
properties, plus informal proofs about efficiency. The informal proof is simple.
Theorem: compare height is correct.
Proof: Obviously it’s correct.

Then we combine the three versions of set-union, as follows:

Definition union (s t: tree) : tree :=
match compare height s s t t with

| Lt ⇒ fold insert s t
| Gt ⇒ fold insert t s
| Eq ⇒ linear union s t

end.

where fold is a function such that (for example),

fold insert s t = insert s1 (insert s2 (insert s3 . . . (insert sn t) . . .))

where si are all the keys in tree s.

7 Performance measurements

AVL AVL AVL AVL AVLR-B R-B R-B R-B R-B
0

20

40

60

E
xe

cu
ti

on
 t

im
e

(s
ec

.)

In
se

rt

L
oo

ku
p

D
el

et
e

m
in

B
al

an
ce

d
un

io
n

U
nb

al
an

ce
d

un
io

n

Fig. 1. Performance of AVL vs. Red-black trees. Black bars are actual running time with fast
comparisons. Black+grey bars are actual running time with slow comparisons.

Red-black trees run much faster than Letouzey’s AVL trees for insert, delete−min, and
unbalanced union, and run at the same speed for lookup, and balanced union. Figure 1
shows measurements of five performance benchmarks:

Insert: Insert 106 keys, randomly selected between 1 and 106 (with duplication), into an
initially empty tree, resulting in a tree t1 of 631,895 nodes.

Lookup: Look up 106 keys, randomly selected between 1 and 106, in the tree t1.
Delete min: Repeatedly delete the minimum element of t1 until it is empty.
Balanced union: Repeat 10 times, union t1 with itself, using the linear-time algorithm.
Unbalanced union: Repeat 105 times, union a random 10-key tree with t1.

Benchmarks were compiled by the OCaml compiler and run on an Intel Core 2 Duo E8500
at 3.16GHz with 4GB of RAM.

I show each implementation measured on fast comparisons, implemented by two native
integer comparisons (the second of which executes with probability 1

2), and with slow

14

comparisons, in which a tight loop iterates 100 times before doing the fast comparison. In
this way we can measure how much of the balanced-binary tree algorithm is comparisons
and how much is overhead. The comparisons show as a grey bar in the graph, and the
overhead as a black bar.

The improvement in Insert is explained by the cost of positive arithmetic in the AVL
algorithm. Lookup shows no improvement, as both of these balanced-binary-tree algorithm
ignore the balance conditions during lookup. The improvement in Delete min is explained
in Section 5. Balanced union shows no significant improvement. Unbalanced union is
faster in my implementation because the AVL implementation uses the linear-time algo-
rithm for this case.

8 Conclusion

Balanced binary search trees are an important data structure, especially for pure functional
programming and therefore for verified software. However, several design decisions in-
fluence the efficiency of search-tree algorithms. In particular, because in Coq the use of
arithmetic usually imposes a logN penalty, it is advantageous to use search-tree algorithms
that avoid arithmetic as they rebalance trees. In addition, for use as priority queues a
specialize delete-min operation is much more efficient than separate min-elt and delete;
and one can speed up set union or intersection by dynamic choice of algorithm depending
on the relative depths of the trees.

Acknowledgments. This research was supported in part by the Air Force Office of Scientific
Research (grant FA9550-09-1-0138) and the National Science Foundation (grant CNS-0910448).

References

Armand, Michaël, Grégoire, Benjamin, Spiwack, Arnaud, & Théry, Laurent. (2010). Extending
Coq with imperative features and its application to SAT verification. Pages 83–98 of: Itp’10:
International conference on interactive theorem proving, vol. LNCS 6172. Springer.

Filliâtre, J.-C., & Letouzey, P. (2004). Functors for Proofs and Programs. Pages 370–384 of:
Esop’04: European symposium on programming, vol. LNCS 2986. Springer.

Hinze, Ralf. 1999 (Sept.). Constructing red-black trees. Pages 89–99 of: Okasaki, Chris (ed),
Waaapl’99: Workshop on algorithmic aspects of advanced programming languages.

Kahrs, Stefan. (2001). Red-black trees with types. Journal of functional programming, 11(04),
425–432.

MacQueen, David B. (1990). A higher-order type system for functional programming. Pages 353–68
of: Research topics in functional programming. Reading, MA: Addison-Wesley.

Nanevski, Aleksandar, Morrisett, Greg, Shinnar, Avraham, Govereau, Paul, & Birkedal, Lars. 2008
(Sept.). Ynot: Dependent types for imperative programs. Icfp ’08: Proceedings of the 13th acm
sigplan international conference on functional programming.

Okasaki, Chris. (1999). Red-black trees in a functional setting. J. functional programming, 9(4),
471–477.

Rosmarin, Max. 2011 (Aug.). Red-black trees in a functional context: Left-leaning and otherwise.
Princeton University Department of Computer Science.

Sedgewick, Robert. (2008). Left-leaning red-black trees.

15

