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Readers interested in the theory of separation logic (with some
example applications) should read Chapters 1–21. Readers interested in
the use of separation logic to verify C programs should read Chapters 1–6
and 8–30. Those interested in the theory of step-indexing and indirection
theory should read Chapters 35–39. Those interested in building models
of program logics proved sound for certified compilers should read
Chapters 40–47, though it would be helpful to read Chapters 1–39 as a
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Chapter 1

Introduction

An exciting development of the 21st century is that the 20th-century vision
of mechanized program verification is finally becoming practical, thanks
to 30 years of advances in logic, programming-language theory, proof-
assistant software, decision procedures for theorem proving, and even
Moore’s law which gives us everyday computers powerful enough to run all
this software.

We can write functional programs in ML-like languages and prove them
correct in expressive higher-order logics; and we can write imperative
programs in C-like languages and prove them correct in appropriately
chosen program logics. We can even prove the correctness of the verification
toolchain itself: the compiler, the program logic, automatic static analyzers,
concurrency primitives (and their interaction with the compiler). There
will be few places for bugs (or security vulnerabilities) to hide.

This book explains how to construct powerful and expressive program
logics based on separation logic and Indirection Theory. It is accompanied
by an open-source machine-checked formal model and soundness proof, the
Verified Software Toolchain1 (VST), formalized in the Coq proof assistant.
The VST components include the theory of separation logic for reasoning
about pointer-manipulating programs; indirection theory for reasoning
with “step-indexing” about first-class function pointers, recursive types,

1http://vst.cs.princeton.edu

http://vst.cs.princeton.edu
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recursive functions, dynamic mutual-exclusion locks, and other higher-
order programming; a Hoare logic (separation logic) with full reasoning
about control-flow and data-flow of the C programming language; theories
of concurrency for reasoning about programming models such as Pthreads;
theories of compiler correctness for connecting to the CompCert verified C
compiler; theories of symbolic execution for implementing foundationally
verified static analyses. VST is built in a modular way, so that major
components apply very generally to many kinds of separation logics, Hoare
logics, and step-indexing semantics.

One of the major demonstration applications comprises certified pro-
gram logics and certified static analyses for the C light programming
language. C light is compiled into assembly language by the CompCert2

certified optimizing compiler. [62] Thus, the VST is useful for verified for-
mal reasoning about programs that will be compiled by a verified compiler.
But Parts I, II, and V of this book show principles and Coq developments
that are quite independent of CompCert and have already been useful in
other applications of separation logics.

PROGRAM LOGICS FOR CERTIFIED COMPILERS. Software is complex and prone
to bugs. We would like to reason about the correctness of programs,
and even to prove that the behavior of a program adheres to a formal
specification. For this we use program logics: rules for reasoning about
the behavior of programs. But programs are large and the reasoning rules
are complex; what if there is a bug in our proof (in our application of the
rules of the program logic)? And how do we know that the program logic
itself is sound—that when we conclude something using these rules, the
program will really behave as we concluded? And once we have reasoned
about a program, we compile it to machine code; what if there is a bug in
the compiler?

We achieve soundness by formally verifying our program logics, static
analyzers, and compilers. We prove soundness theorems based on foun-
dational specifications of the underlying hardware. We check all proofs by
machine, and connect the proofs together end-to-end so there are no gaps.

2http://compcert.inria.fr

http://compcert.inria.fr


1. INTRODUCTION 3

DEFINITIONS. A program consists of instructions written in a programming
language that direct a computer to perform a task. The behavior of a
program, i.e. what happens when it executes, is specified by the operational
semantics of the programming language. Some programming languages
are machine languages that can directly execute on a computer; others
are source languages that require translation by a compiler before they can
execute.

A program logic is a set of formal rules for static reasoning about the
behavior of a program; the word static implies that we do not actually
execute the program in such reasoning. Hoare logic is an early and still very
important program logic. Separation logic is a 21st-century variant of Hoare
logic that better accounts for pointer and array data structures.

A compiler is correct with respect to the specification of the operational
semantics of its source and its target languages if, whenever a source
program has a particular defined behavior, and when the compiler translates
that program, then the target program has a corresponding behavior. [38]
The correspondence is part of the correctness specification of the compiler,
along with the two operational semantics. A compiler is proved correct if
there is a formal proof that it meets this specification. Since the compiler
is itself a program, this formal proof will typically be using the rules of a
program logic for the implementation language of the compiler.

Proofs in a logic (or program logic) can be written as derivation trees in
which each node is the application of a rule of the system. The validity of a
proof can be checked using a computer program. A machine-checked proof
is one that has been checked in this way. Proof-checking programs can be
quite small and simple, [12] so one can reasonably hope to implement a
proof-checker free of bugs.

It is inconvenient to construct derivation trees “by hand.” A proof
assistant is a tool that combines a proof checker with a user interface that
assists the human in building proofs. The proof assistant may also contain
algorithms for proof automation, such as tactics and decision procedures.

A certified compiler is one proved correct with a machine-checked proof.
A certified program logic is one proved sound with a machine-checked proof.
A certified program is one proved correct (using a program logic) with a
machine-checked proof.
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A static analysis algorithm calculates properties of the behavior of a
program without actually running it. A static analysis is sound if, whenever
it claims some property of a program, that property holds on all possible
behaviors (in the operational semantics). The proof of soundness can be
done using a (sound) program logic, or it can be done directly with respect
to the operational semantics of the programming language. A certified static
analysis is one that is proved sound with a machine-checked proof—either
the static analysis program is proved correct, or each run of the static
analysis generates a machine-checkable proof about a particular instance.

In Part I we will review Hoare logics, operational semantics, and
separation logics. For a more comprehensive introduction to Hoare
logic, the reader can consult Huth and Ryan [54] or many other books;
For operational semantics, see Harper [47, Parts I & II] or Pierce [75].
For an introduction to theorem-proving in Coq, see Pierce’s Software
Foundations[76] which also covers applications to operational semantics
and Hoare logic.

THE VST SEPARATION LOGIC FOR C LIGHT is a higher-order impredicative
concurrent separation logic certified with respect to CompCert. Separation
logic means that its assertions specify heap-domain footprints: the assertion
(p x) ∗ (q y) describes a memory with exactly two disjoint parts; one
part has only the cell at address p with contents x , and the other has
only address q with contents y , with p ̸= q. Concurrent separation logic
is an extension that can describe shared-memory concurrent programs
with Dijkstra-Hoare synchronization (e.g., Pthreads). Higher-order means
that assertions can use existential and universal quantifiers, the logic can
describe pointers to functions and mutex locks, and recursive assertions can
describe recursive data types such as lists and trees. Impredicative means
that the ∃ and ∀ quantifiers can even range over assertions containing
quantifiers. Certified means that there is a machine-checked proof of
soundness with respect to the operational semantics of a source language
of the CompCert C compiler.

A separation logic has assertions p x where p ranges over a particular
address type A, x ranges over a specific type V of values, and the assertion
as a whole can be thought of as a predicate over some specific type of
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“heaps” or “computer memories” M . Then the logic will have theorems
such as (p x) ∗ (q y) ⊢ (q y) ∗ (p x).

We will write down generic separation logic as a theory parameterizable
by types such as A, V, M , and containing generic axioms such as P∗Q ⊢Q∗P.
For a particular instantiation such as CompCert C light, we will instantiate
the generic logic with the types of C values and C expressions.

Chapter 3 will give an example of an informal program verification
in “pencil-and-paper” separation logic. Then Part V shows the VST tools
applied to build a foundationally sound toolchain for a toy language, with
a machine-verified separation-logic proof of a similar program. Part III
demonstrates the VST tools applied to the C language, connected to the
CompCert compiler, and shows machine-checked verification C programs.

Shares

 C light
syntax

 C light expression
 semantics

Generic axioms of
separation logic &
indirection theory

Specification of Hoare Client View axioms for C light

Local/global var.
environments

Assertion operators of
VST separation logic

Values

C light program logic,
Chapter 24

Assertions, Ch. 23

Shares, Ch. 11

Separation logic
with indirection,
Ch. 8,11,12,15–21

Figure 1.1: Client view of VST separation logic

FIGURE 1.1 SHOWS THE client view of the VST separation logic for C light—
that is, the specification of the axiomatic semantics. Users of the program
logic will reason directly about CompCert values (integers, floats, pointers)
and C-light expression evaluation. Users do not see the operational
semantics of C-light commands, or CompCert memories. Instead, they use
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the axiomatic semantics—the Hoare judgment and its reasoning rules—to
reason indirectly about memories via assertions such as p x .

The modular structure of the client view starts (at bottom left of Fig. 1.1)
with the specification of the C light language, a subset of C chosen for its
compatibility with program-verification methods. We have C values (such
as integers, floats, and pointers); the abstract syntax of C light, and
the mechanism of evaluating C light expressions. The client view treats
statements such as assignment and looping abstractly via an axiomatic
semantics (Hoare logic), so it does not expose an operational semantics.

At bottom right of Figure 1.1 we have the operators and axioms of
separation logic and of indirection theory. At center are the assertions of
our program logic for C light, which (as the diagram shows) make use of
C-light expressions and of our logical operators. At top, the Hoare axioms
for C light complete the specification of the program logic.

Readers primarily interested in using the VST tools may want to read
Parts I through III, which explain the components of the client view.

THE SOUNDNESS PROOF OF THE VST SEPARATION LOGIC is constructed by
reasoning in the model of separation logic. Figure 1.2 shows the structure
of the soundness proof. At bottom left is the specification of C-light
operational semantics. We have a generic theory of safety and simulation
for shared-memory programs, and we instantiate that into the “C light
safety” theory.

At bottom right (Fig. 1.2) is the theory of separation algebras, which form
models of separation logics. The assertions of our logic are predicates on the
resource maps that, in turn, model CompCert memories. The word predicate
is a technical feature of our Indirection Theory that implicitly accounts
for “resource approximation,” thus allowing higher-order reasoning about
circular structures of pointers and resource invariants.

We construct a semantic model of the Hoare judgment, and use this
to prove sound all the judgment rules of the separation logic. All this is
encapsulated in a Coq module called SeparationLogicSoundness.

Parts IV through VI explain the components of Figure 1.2, the semantic
model and soundness proof of higher-order impredicative separation logic
for CompCert C light.
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Soundness
proof:
Chapter 43

Model of Hoare
judgment:
Chapter 43

Safety:
Chapter 33

C light:
Chapter 34

CompCert:
Chapter 31

Generic theory of
separation algebras

Indirection
theory

Shares

 C light
syntax &

expression
semantics

 C light
command
semantics

Generic operators
of separation logic

ValuesMemories

Model of Hoare 
judgment  (semax)

Specification of Hoare 
axioms for C light

(  SeparationLogic )

Certified separation logic for C light
(  SeparationLogicSoundness )

Soundness proofs
of Hoare axioms

Environments
Generic theory
of safety and 

simulation (environ) 
Resource maps 
(rmap) sep. alg.

Model of assertions in
VST separation logic

Ageable sep. algs.

C light safety

Soundness
Proof

Figure 1.2: Structure of the separation-logic soundness proof

The Coq development of the Verified Software Toolchain is available at
vst.cs.princeton.edu and is structured in a root directory with several
subdirectories:

compcert: A few files copied from the CompCert verified C compiler, that
comprise the specification of the C light programming language.

vst.cs.princeton.edu
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sepcomp: Theory of how to specify shared-memory interactions of
CompCert-compiled programs.

msl: Mechanized Software Library, the theory of separation algebras, share
accounting, and generic separation logics.

veric: The program logic: a higher-order splittable-shares concurrent
separation logic for C light.

floyd: A proof-automation system of lemmas and tactics for semiautomated
application of the program logic to C programs (named after Robert
W. Floyd, a pioneer in program verification).

progs: Applications of the program logic to sample programs.

veristar: A heap theorem prover using resolution and paramodulation.

A proof development, like any software, is a living thing: it is continually
being evolved, edited, maintained, and extended. We will not tightly couple
this book to the development; we will just explain the key mathematical
and organizational principles, illustrated with snapshots from the Coq code.
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Part I

Generic separation logic

SYNOPSIS: Separation logic is a formal system for static reasoning about
pointer-manipulating programs. Like Hoare logic, it uses assertions that
serve as preconditions and postconditions of commands and functions. Unlike
Hoare logic, its assertions model anti-aliasing via the disjointness of memory
heaplets. Separation algebras serve as models of separation logic. We can
define a calculus of different kinds of separation algebras, and operators
on separation algebras. Permission shares allow reasoning about shared
ownership of memory and other resources. In a first-order separation logic
we can have predicates to describe the contents of memory, anti-aliasing of
pointers, and simple (covariant) forms of recursive predicates. A simple case
study of straight-line programs serves to illustrate the application of separation
logic.
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Chapter 2

Hoare logic

Hoare logic is an axiomatic system for reasoning about program behavior
in a programming language. Its judgments have the form {P} c {Q}, called
Hoare triples.1 The command c is a statement of the programming language.
The precondition P and postcondition Q are assertions characterizing the
state before and after executing c.

In a Hoare logic of total correctess, {P} c {Q} means, “starting from any
state on which the assertion P holds, execution of the command c will
safely terminate in a state on which the assertion Q holds.”

In a Hoare logic of partial correctness, {P} c {Q} means, “starting from
any state on which the assertion P holds, execution of the command c will
either infinite loop or safely terminate in a state on which the assertion Q
holds.” This book mainly addresses logics of partial correctness.2

1Hoare wrote his triples P{c}Q with the braces quoting the commands, which makes
sense when quoting program commands within a logical statement. Wirth used the braces as
comment brackets in the Pascal language to encourage assertions as comments, leading to
the style {P}c{Q}, which makes more sense when quoting assertions within a program. The
Wirth style is now commonly used everywhere, regardless of where it makes sense.

2 Some of our semantic techniques work best in a partial-correctness setting. We make
the excuse that total correctness—knowing that a program terminates—is little comfort
without also knowing that it terminates in less than the lifetime of the universe. It is better
to have a resource bound, which is actually a form of partial correctness. Our techniques do
extend to logics of resource-bounds [39].
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THE INFERENCE RULES OF HOARE LOGIC include,

seq
{P} c1 {P ′} {P ′} c2 {Q}

{P} c1; c2 {Q}
assign

{Q[e/x]} x := e {Q}

consequence
P ⇒ P ′ {P ′} c {Q′} Q′⇒Q

{P} c {Q}

The notation P[e/x] means “the logical formula P with every occurrence of
variable x replaced by expression e.” A natural-deduction rule A B

C
derives

conclusion C from premises A and B.
Using these rules, we can derive the validity of the triple

{a ≥ b} (c := a+ 1; b := b− 1) {c > b}, as follows:

a ≥ b⇒ a+ 1> b− 1
ass
{a+ 1> b− 1} c := a+ 1 {c > b− 1}

con
{a ≥ b} c := a+ 1 {c > b− 1}

...

ass
{c > b− 1} b := b− 1 {c > b}

seq
{a ≥ b} (c := a+ 1; b := b− 1) {c > b}

(Here we use a 1-sided version of the rule of consequence, omitting the
trivial c > b− 1 ⇒ c > b− 1.)

Writing derivation trees in the format above is unwieldy. Hoare-
logic proofs can also be presented by interleaving the assertions with the
commands; where two assertions appear in a row, the rule of consequence
has been used:

assert {a ≥ b}
assert {a+ 1≥ b− 1}
c:=a+1;
assert {c > b− 1}
b:=b-1;
assert {c > b}

MANY OF THE STEPS in deriving a Hoare logic proof can be completely
mechanical, with mathematical insight required at only some of the
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steps. One useful semiautomatic method is “backward proof”, that takes
advantage of the way the assign rule derives the precondition Q[e/x] from
the postcondition Q.

Read the following proof from bottom to top:

{(a ≥ b)} (by mathematics)
{(a+ 1> b− 1)} (by substitution)
{(c > b− 1)[a+ 1/c]} (by assign)
c:=a+1;
{(c > b− 1)} (by substitution)
{(c > b)[b− 1/b]} (by assign)
b:=b-1;
{c > b} (the given postcondition)

Working backwards, every step labeled “by assign” or “by substitution”
is completely mechanical; only the step “by mathematics” might require
nonmechanical proof—although in this case the proof is easily accomplished
by any of several automated semidecision procedures for arithmetic.

SOMETIMES FORWARD PROOF IS NECESSARY. Especially in separation logic
(which we will see later), one must establish the a memory-layout precon-
dition before even knowing that a command is safe to execute, so backward
proof does not work well. Forward proof can be accomplished with Hoare’s
assignment rule, but working out the right substition can feel clumsy.
Instead we might use Floyd’s assignment rule,

floyd
{P} x := e {∃x ′, x = e[x ′/x]∧ P[x ′/x]}

whose postcondition says, there exists a value x ′ which is the old value of
x before the assignment, such that the new value of x is the evaluation of
expression e but using the old value x ′ instead of x , and the precondition P
holds (but again, substituting x ′ for x).
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We can try a forward proof of the same program fragment:

{(a ≥ b)} (the given precondition)
c:=a+1;
{∃c′. c = ((a+ 1)[c′/c]) ∧ (a ≥ b)[c′/c]} (by floyd)
{c = ((a+ 1)[c′/c]) ∧ (a ≥ b)[c′/c]} (by ∃-elim)
{c = a+ 1 ∧ (a ≥ b)} (by substitution)
b:=b-1;
{∃b′. b = ((b− 1)[b′/b]) ∧ (c = a+ 1 ∧ a ≥ b)[b′/b]} (by floyd)
{b = b′− 1 ∧ c = a+ 1 ∧ a ≥ b′} (by ∃-elim and substitution)
{c > b} (by mathematics)

All the steps except the last are quite mechanical, and the last step is such
simple mathematics that many algorithms will also solve it mechanically.

TO REASON ABOUT PROGRAMS WITH CONTROL FLOW, we use the if and while
rules.

if
{P ∧ e} c1 {Q} {P ∧¬e} c2 {Q}
{P} if e then c1 else c2 {Q}

while
{I ∧ e} c {I}

{I}while e do c {I ∧¬e}

We can use these to prove correctness of an (inefficient) algorithm for
division by repeated subtraction. To compute q = ⌊a/b⌋, count the number
of times b can be subtracted from a:

q:=0; while (a>b) do (a:=a-b; q:=q+1)

To specify this algorithm, we write a precondition and a postcondition;
what should they be? We want to say that the quotient q equals a divided
by b, rounded down. But when the loop is finished, it will not be the case
that q = ⌊a/b⌋, because a has been modified by the loop body. So we make
up auxiliary variables a0, b0 to represent the original values of a and b.
Auxiliary variables are part of the specification or proof but not actually
used in the program.

So we might write a precondition a = a0 ∧ b = b0 and a postcondition
q = ⌊a0/b0⌋. This looks convincing, but during the proof we will run into
trouble if either a or b is negative. This algorithm requires a strengthened
precondition, a = a0 ∧ b = b0 ∧ a ≥ 0∧ b > 0.
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We will use the loop invariant I = (a0 = a+bq∧b = b0∧a0 ≥ 0∧b0 > 0).
Now the (forward) proof proceeds as follows.

{a = a0 ∧ b = b0 ∧ a ≥ 0∧ b > 0}
q := 0;
{q = 0∧ a = a0 ∧ b = b0 ∧ a ≥ 0∧ b > 0}
{I}
while (a≥b) do (

{a ≥ b ∧ I}
{a ≥ b ∧ a0 = a+ bq ∧ b = b0 ∧ a0 ≥ 0∧ b0 > 0}
a:=a-b;

{a = a′− b ∧ a′ ≥ b ∧ a0 = a′+ bq ∧ b = b0 ∧ a0 ≥ 0∧ b0 > 0}
q:=q+1

{q = q′+ 1∧ a = a′− b ∧ a′ ≥ b ∧ a0 = a′+ bq′ ∧ b = b0 ∧ a0 ≥ 0∧ b0 > 0}
{a0 = a+ bq ∧ b = b0 ∧ a0 ≥ 0∧ b0 > 0} (2)
{I}

)
{I ∧¬(a ≥ b)}
{a0 = a+ b0q ∧ a0 ≥ 0∧ b0 > 0∧ a < b0}
{q = ⌊a0/b0⌋} (3)

The only nonmechanical steps in this proof are (1) finding the right loop
invariant I , and the two rule-of-consequence steps labeled (2) and (3).

It turns out that this algorithm also computes the remainder in variable
a, so we could have easily proved a stronger postcondition, a0 = qb0 + a ∧
0≤ a < b0 characterizing the quotient q and remainder a.

That algorithm runs in time proportional to a/b, which is exponential
in the size of the binary representation of a.

A more efficient algorithm is long division, in which we first shift the
divisor b left enough bits until it is greater than a, and then repeatedly
subtract z from a, shifting right after each subtraction. This is a linear
time algorithm, assuming that each primitive addition or subtraction takes
constant time. It relies on the ability to shift z right by one bit, which we
write as z := z/2.
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{a ≥ 0∧ b > 0}
n:=0;
z:=b;
while (z≤a)

do (n:=n+1; z:=z+z);
q:=0; r:=a;
while (n>0) do (

n:=n-1;
z:=z/2;
q:=q+q;
if (z≤r)
then (q:=q+1; r:=r-z)
else skip

)
{a = qb+ r ∧ 0≤ r ≤ b}

This algorithm is complex enough that it really is useful to have a proof
of correctness. The precondition and postconditions are shown here. We
avoid the need to mention a0 and b0 because the algorithm never assigns
to a and b, so of course a = a0 ∧ b = b0. One could prove this formally by
adding a = a0 ∧ b = b0 to both the precondition and the postcondition.

There are two loops here, and their invariants are,

I0 = z = b2n ∧ n≥ 0∧ a ≥ 0∧ b > 0

I1 = a = qz+ r ∧ 0≤ r < z ∧ z = b2n ∧ n≥ 0

The reader is invited to work though the steps of the proof, or to consult
the detailed proof by Reynolds [81].
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Chapter 3

Separation logic

In Hoare logic it is difficult to reason about mutable data structures
such as arrays and pointers. One can model the statement a[i] := v
as an assignment to a of a new array value, update(a, i, v), such that
update(a, i, v)[i] = v and update(a, i, v)[ j] = a[ j] for j ̸= i. One cannot
simply treat a[i] as a local variable, because assertion P may contain
references such as a[ j] that may or may not refer to a[i]. Instead, one can
use a variant of the Hoare assignment rule to model array update:

Hoare-array-assign
{P[update(a, i, v)/a]} a[i] := v {P}

But this is clumsy: it looks like a global update to all of a, instead of a local
update to just one slot. For example, consider this judgment:

{a[i] = 5∧ a[ j] = 7} a[i] := 8 {a[i] = 8∧ a[ j] = 7}

To prove this we “simply” apply the Hoare array-assignment rule and the
rule of consequence:

let P = a[i] = 5∧ a[ j] = 7
Q = update(a, i, 8)[i] = 8∧ update(a, i, 8)[ j] = 7
R= a[i] = 8∧ a[ j] = 7

P ⇒Q
H-a-a {Q} a[i] := 8 {R}consequence
{P} a[i] := 8 {R}
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Proving P ⇒ Q requires keeping track of the fact that i ̸= j so that
we can calculate (update(a, i, 8))[ j] = a[ j]. But wait! We are not told
i ̸= j, so this step is invalid. The correct precondition should have been,
i ̸= j ∧ a[i] = 5∧ a[ j] = 7.

This illustrates the difficulty: a proliferation of antialiasing facts (i ̸= j)
and tedious rewritings (i ̸= j ⇒ update(a, i, v)[ j] = a[ j]). Modeling the
pointer update p. f := v, on similar principles, is even more clumsy: it looks
like a global update to the entire heap.

THE IDEA OF SEPARATION LOGIC is to better support the principle of local
action. An assertion (precondition or postcondition) holds on a particular
subheap, or heaplet. In Hoare logic we might say {P ∧ R} c {Q ∧ R} to mean
that P and R both hold on the initial state, Q and R both hold on the final
state. In separation logic we say {P ∗ R} c {Q ∗ R}, meaning that the initial
state comprises two disjoint heaplets satisfying P and R, and the final state
comprises two disjoint heaplets satisfying Q and R.

One can think of an assertion P as describing a certain set of addresses,
and characterizing the values stored there. The “maps-to” assertion p e
describes a single-word heaplet whose domain is just address p, and says
that the value e is stored there. The expression p must be an l-value, an
expression of the programming language that can appear to the left of an
assignment statement. For example, a[i] is an l-value in,

{a[i] 5 ∗ a[ j] 7} a[i] := 8 {a[i] 8 ∗ a[ j] 7}

The assertion a[i] 5 ∗ a[ j] 7 means that a[i] 5 and a[ j] 7 hold on
two disjoint parts of the heap, and therefore i ̸= j.

INFERENCE RULES OF SEPARATION LOGIC include the Hoare rules assignment,
sequence, if, consequence exactly as written on page 11. But we must now
understand that each assertion characterizes a particular subheap of the
global heap. Furthermore, expressions e can refer only to local variables;
they cannot refer to the heap at all. That is, the assignment rule can
describe x := y + z but it does not cover x := a[i]; and assertions can
describe x > y + z but cannot say a[i] = v.
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Instead of the assignment rule, we use a load rule to fetch a[i], and the
maps-to assertion a[i] v. The existential ∃x ′ in the load rule serves the
same purpose as in the Floyd assignment rule (page 12).

load-array
{a[e1] e2} x := a[e1] {∃x ′. x = a[e1[x ′/x]]∧ (a[e1] e2)[x ′/x]}

store-array
{a[e] e0} a[e] := e1 {a[e] e1}

frame
{P} c {Q} modv(c)∩ fv(R) = ;

{P ∗ R} c {Q ∗ R}

THE FRAME RULE IS THE VERY ESSENCE of separation logic. The triple {P} c {Q}
depends only on the part of the heap described by P, and modifies only
that part of the heap (into some state described by Q). Any other part of
the heap—such as the part described by R—is unchanged by the command
c. In contrast, in an ordinary Hoare logic with ordinary conjuction ∧, the
triple {P} c {Q} does not imply {P ∧ R} c {Q ∧ R} (where P and R describe
the same heap). It is for this reason that separation-logic proofs are more
modular than Hoare-logic proofs.

The condition modv(c) ∩ fv(R) = ; states that the modified variables
of the command c must be disjoint from the free variables of the assertion
R. The command a[i] := 8 modifies no variables—storing into one slot of
array a does not modify the value of a considered as an address.

The proof of our array store a[i] := 8 is then,

store-array
{a[i] 5} a[i] := 8 {a[i] 8} ; ∩ {a, i}= ;

frame {a[i] 5 ∗ a[ j] 7} a[i] := 8 {a[i] 8 ∗ a[ j] 7}

IT IS OBLIGATORY IN AN INTRODUCTION TO SEPARATION LOGIC to present a proof
of the in-place list reversal algorithm. Here’s some C code that reverses a
list (treating 0 as the NULL pointer):

/∗ v points to a linked list ∗/
w=0;
while (v != 0) { t = v.next; v.next = w; w = v; v = t; }
/∗ w points to the in-place reversal of the list. ∗/
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It can be understood using these pictures. At the beginning:
w v

Halfway done:
w v

Done:
w v

Now we prove it in separation logic. The first step is to define what we
mean by a list.

listshape(x) = (x = 0∧ emp) ∨
(x ̸= 0∧ ∃h∃t. x .head h ∗ x .next t ∗ listshape t)

That is, listshape(x) is a recursive predicate, that says either x is nil—the
pointer is 0 and the heaplet is empty—or x is the address of a cons cell
with head h, tail t, where t is a list. Furthermore, the head cell is disjoint
from all the other list cells. (The predicate emp describes the heap with an
empty footprint; it is a unit for the ∗ operator.)

What does that mean, a recursive predicate? There are different choices
for the semantics of the recursion operator, as Chapters 10 and 17 will
explain. Here we can just use our intuition.

Program analyses in separation logic often want to reason not about the
whole list from x to nil, but with list segments. The segment from x to y
is either empty (x = y) or has a first element at address x and has a last
element whose tail-pointer is y . Written as a recursive predicate, this is,

listsegshape(x , y) = (x = y ∧ emp) ∨
(x ̸= y ∧ ∃h∃t. x .head h ∗ x .next t

∗ listsegshape(t, y))

For example, the list 1 ap b c 02 3 4 contains the
segments p 0 (the whole list with contents [1,2,3,4]), p c (the segment
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with contents [1,2, 3]), a c (the segment with contents [2,3]), b b (an
empty segment with contents []), and so on. When we use 0 to represent
nil, then listsegshape(x , 0) is the same as listshape(x).

Some proofs of programs focus on shape and safety—proving that data
structures have the right shape (list? tree? dag? cyclic graph?) and that
programs do not dereference nil (or otherwise crash). But sometimes we
want proofs of stronger correctness properties. In the case of list-reverse,
we may want to prove not only that the result is a list, but that the elements
now appear in the reverse order. For such proofs we need to relate the
linked-list data structure to abstract mathematical sequences.

Instead of an operator listsegshape(x) saying that x points to a list
segment, we want to say listrep(σ)(x , y) meaning that x points to a list
segment ending at y , and the contents (head elements) of that segment are
the sequence σ. That is, the chain of list cells x   y is the representation in
memory of σ.

listrepσ (x , y) = (x = y ∧σ = ε∧ emp)
∨(x ̸= y ∧ ∃σ′ ∃h∃t.σ = h ·σ′

∧ x .head h ∗ x .next t ∗ listrepσ′ (t, y))

We will notate listrepσ (x , y) as x
σ
  y .

Now we are ready to prove the list-reversal program. The precondition
is that v is a linked list representing σ, and the postcondition is that w
represents rev(σ):

assert{v
σ
  0}

w=0; while (v != 0) {t = v.next; v.next = w; w = v; v = t; }
assert{w

revσ
  0}

As usual in Hoare logic, we need a loop invariant:

∃σ1,σ2. σ = rev(σ1) ·σ2 ∧ v
σ2  0 ∗w

σ1  0

This separation-logic formula describes
the picture in which the original
sequence σ can be viewed as the

w v

concatenation of some σ1 (reversed) and some σ2—we use · to denote se-
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quence concatenation—and where the list segment from v to nil represents
σ2, and the list segment from w to nil represents σ1.

To prove this program we need the inference rules of separation logic;
the ones shown earlier, plus rules for loading/storing of record fields and
for manipulating existential quantifiers. The rule for while is just like the
Hoare-logic while rule; as usual, all expressions e (including the while-loop
condition) must be pure, that is, must not load from the heap directly.

load-field
{e1.fld e2} x := (e1.fld) {∃x ′. x = e2[x ′/x]∧ (e1.fld e2)[x ′/x]}

store-field
{e.fld e0} (e.fld) := e1 {e.fld e1}

while
{e ∧ P} c {P}

{P}while e do c {¬e ∧ P}

generalize-exists
P ⊢ ∃x .P

extract-exists
{P} c {Q}

{∃x .P} c {∃x .Q}

Our rules for the existential are written in a semiformal (“traditional”)
mathematical style, assuming that x may be one of the free variables of a
formula P. In later chapters we will treat this more formally.

Figure 3.1 presents the program annotated with assertions, where each
assertion leads to the next. The proof is longer than the program! Checking
such a proof by hand might miss some errors. Automating the application
of separation logic in a proof assistant ensures that there are no gaps in the
proof. Better yet, perhaps parts of the construction, not just the checking,
can be automated.

Let us examine some of the key points in the proof. Just before the
while loop (line 3), we have {w = 0 ∧ v

σ
  0}, that is, the initialization

of w and the program precondition that the sequence σ is represented by
the list starting at pointer v. We must establish the loop invariant (line 5),
{∃σ1,σ2. σ = rev(σ1) ·σ2 ∧ v

σ2  0 ∗w
σ1  0}. To do this we let σ1 be the

empty sequence and σ2 = σ.
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1 assert{v

σ
  0}

2 w=0;
3 assert{w= 0∧ v

σ
  0}

4 assert{let σ1 = ε, σ2 = σ in σ = rev(σ1) ·σ2 ∧ v
σ2  0 ∗w

σ1  0}
5 assert{∃σ1,σ2. σ = rev(σ1) ·σ2 ∧ v

σ2  0 ∗w
σ1  0}

6 while (v != 0) with loop invariant{∃σ1,σ2. σ = rev(σ1) ·σ2 ∧ v
σ2  0 ∗w

σ1  0}
7 { assert{v ̸= 0∧ ∃σ1,σ2. σ = rev(σ1) ·σ2 ∧ v

σ2  0 ∗w
σ1  0}

8 assert{v ̸= 0∧σ = rev(σ1) ·σ2 ∧ v
σ2  0 ∗w

σ1  0}
9 assert{∃ρ, h, p. σ = rev(σ1) · (h ·ρ)∧ v.head h ∗ v.next p ∗ p

ρ
  0 ∗w

σ1  0}
10 assert{σ = rev(σ1) · (h ·ρ)∧ v.head h ∗ v.next p ∗ p

ρ
  0 ∗w

σ1  0}
11 t = v.next;
12 assert{σ = rev(σ1) · (h ·ρ)∧ v.head h ∗ v.next t ∗ t

ρ
  0 ∗w

σ1  0}
13 v.next = w;
14 assert{σ = rev(σ1) · (h ·ρ)∧ v.head h ∗ v.next w ∗ t

ρ
  0 ∗w

σ1  0}
15 assert{∃q. σ = rev(σ1) · (h ·ρ)∧ v.head h ∗ v.next q ∗ t

ρ
  0 ∗ q

σ1  0}

16 assert{σ = rev(h ·σ1) ·ρ ∧ t
ρ
  0 ∗ v

h·σ1  0}
17 assert{∃σ1,σ2. σ = rev(σ1) ·σ2 ∧ t

σ2  0 ∗ v
σ1  0}

18 assert{σ = rev(σ1) ·σ2 ∧ t
σ2  0 ∗ v

σ1  0}
19 w = v;
20 assert{σ = rev(σ1) ·σ2 ∧ t

σ2  0 ∗w
σ1  0}

21 v = t;
22 assert{σ = rev(σ1) ·σ2 ∧ v

σ2  0 ∗w
σ1  0}

23 }
24 assert{v= 0∧ ∃σ1,σ2.σ = rev(σ1) ·σ2 ∧ v

σ2  0 ∗w
σ1  0}

25 assert{∃σ1,σ2. σ = rev(σ1) ·σ2 ∧σ2 = ε∧ emp ∗w
σ1  0}

26 assert{w
revσ
  0}

Figure 3.1: List reverse. 4: rev(ε)·σ = ε·σ = σ 5: by generalize-exists 7: by while

8: by extract-exists 9: by unfolding v
σ2  0, then removing the disjunct inconsistent

with v ̸= 0. 10: by extract-exists 12: by load-field, then eliminating variable p 14: by
store-field 15: by generalize-exists 16: rev(σ1) · (h ·ρ) = rev(h ·σ1) ·ρ, then fold the

definition of v
σ2  0 17: by generalize-exists 18: by extract-exists 20: by assign 22:

by assign 24: by while 25: by folding the definition of v
σ2  0, given v = 0 26: by

extract-exists, emp∗P = P, rev(ε) ·σ2 = σ2, then discarding inconsistent conjuncts.
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First thing inside the loop body (line 7), we have the loop invariant and
the additional fact v ̸= 0, and we must rearrange the assertion to isolate a
conjunct of the form v.next p (at line 10), so that we can load from v.next.
(Both rearrange and isolate are technical terms in the symbolic execution
of programs in separation logic—see Chapter 46.) The loop invariant says
that σ1 and σ2 exist, so we instantiate them using the extract-exists rule.

Then (line 9) we can unfold the definition of list-segment v
σ2  0; but

the nil case is inconsistent with v ̸= 0 so we can eliminate it. The non-nil
case of v

σ2  0 is

(v ̸= 0∧∃σ′ ∃h∃t.σ = h ·σ′ ∧ v.head h∗ v.next t ∗ listrepσ (t, 0))

so we use that, extracting σ′, h, t by extract-exists. Now we can rearrange
this assertion into v.next p ∗ other stuff , which serves as the precondition
for the load rule.

At line 14 after the store command, we have rev(σ1) · (h · ρ). By
the algebra of sequence-reversal and concatenation, this is equivalent to
rev(h ·σ1) ·ρ. We will let the new σ1 be h ·σ1, and the new σ2 be ρ. We

can fold the definition of v
h·σ1  0 to make (in effect) the same change at the

representation level.
The extract-exists rule justifies the transition from line 17 to line 18,

that is, from assert(∃σ1.P) to assert(P). It’s not that ∃σ1.P entails P in
isolation, it’s that the Hoare triple {∃σ1.P} c {Q} is provable from {P} c {Q}.
In this case, the Hoare triple {∃σ1.∃σ2.P}w = v;v = t {Q} (lines 17–22) is
provable from {P}w = v;v = t {Q} (lines 18–22).

At line 24 after the loop, we have the loop invariant and the fact that
the loop condition is false, therefore v = 0. We can extract the existentially
quantified σ1 and σ2, then notice that v = 0 implies σ2 is empty. Thus
σ = rev(σ1), and we’re done.

For a longer tutorial on separation logic, the reader might try Reynolds
[80] or O’Hearn [72].

ARE THE AXIOMS OF SEPARATION LOGIC, as presented in this chapter, really
sound—especially when applied to a real programming language, not an
idealized one? Building their soundness proof within a proof assistant will



3. SEPARATION LOGIC 24

ensure that when we prove properties of programs using separation logic,
those properties really hold of their execution. Can this separation logic
be used to reason about function-pointers or concurrent threads? All such
questions are the subject of the rest of this book.
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Chapter 4

Soundness of Hoare logic

A program logic is sound when, if you can prove some specification (such as
a Hoare triple {P} c {Q}) about a program c, then when c actually executes
it will obey that specification.

What does it mean to “actually execute”? If c is written in a source
language L, then we can formally specify an operational semantics for
L. Then we can give a formal model for the program logic in terms of
the operational semantics, and formally prove the soundness of all the
inference rules of the logic.

Then one is left trying to believe that the operational semantics ac-
curately characterizes the execution of the language L. But many source
languages do not directly execute; they are compiled into lower-level lan-
guages or machine language that executes it its own operational semantics.
Fortunately, at this point in the 21st century we can rely on formal compiler
correctness proofs, that execution in the operational semantics of the source
language corresponds to execution in the operational semantics of the ma-
chine language. And the machine languages tend to be well specified;
machine language is already a formal language, and it is even possible to
formally prove that the logic gates of a computer chip correctly implement
the instruction set architecure (ISA), that is, the machine language.

So, we prove the program correct using the program logic, we prove
the program logic sound with respect to the source-language operational
semantics, and prove the compiler correct with respect to the source- and
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machine-language semantics. Then we don’t need to worry about whether
the program logic and source-level operational semantics are the right ones,
because—as long as each proof goes through and all the proofs connect—
the end-to-end composition of proofs guarantees program correctness.

HERE WE WILL GIVE A BRIEF INTRODUCTION to some standard techniques of
operational semantics, and show how a soundness proof of separation
logic!soundness separation logic is built.1 Consider a language L with local
variables x , y, z, expressions e built from variables and arithmetic operators,
and a memory-dereferencing operator written with square brackets [e].

Opers op ::= + | − | >
Exprs e ::= x | n | e1 op e2

Commands c ::= skip | x := e | x := [e] | [e1] := e2 | c1; c2

| if e then c1 else c2 | while e do c

The values of the variables are integers that (in this simple language)
can be interpreted as memory addresses. The expressions are variables x ,
constants n, or the addition, subtraction, or comparision of subexpressions.
The commands are assignment x := e, load x := [e], store [e1] := e2,
sequencing c1; c2, if statements, and while loops.

Each execution state of L has three components



ρ, m, c
�

where

ρ is a local variable environment, a partial function mapping variables
to values; in separation-logic parlance this is often called a stack;

m is a memory, mapping values to values;

c is a command, saying what to do next.

In operational semantics of expressions e or commands c one can use
a small-step style e 7−→ e′ saying that e does just one primitive operation
to get to e′; the Kleene closure e 7−→∗ en describes multiple steps. Or one
can use a big-step style e ⇓ v saying that the entire evaluation of e results

1Everything in this chapter is proved in Coq, in examples/hoare/hoare.v.
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in a value v. Both for this little example and for our full-scale C-language
system we will use big-step for expressions and small-step for commands.2

A big-step operational semantics for our expressions looks like this:

ρ(x) = v

ρ ⊢ x ⇓ v
ρ ⊢ n ⇓ n

ρ ⊢ e1 ⇓ v1 ρ ⊢ e2 ⇓ v2

ρ ⊢ (e1 op e2) ⇓ (op v1 v2)

Note that e1 op e2 refers to the syntax expression tree with two subexpres-
sions and an operator-function op : V → V → V , while op v1 v2 is the
application of that operator-function to two values.

We have carefully designed the programming language and its semantics
so that expressions do not directly access the memory m; instead, this is
done via special load and store commands. This arrangement is typical of
languages designed for use with separation logic.

Figure 4.1 gives the operational semantics for commands. A state



ρ, m, c
�

small-steps to another state by executing the first piece of
command c.

The meaning of an entire program c (in this toy language) is to execute
the Kleene closure of the small-step relation, starting from the empty stack
ρ0, the empty memory m0, and the initial command (c; skip). Then we
examine the contents of variable a (for "answer") in the final stack.



ρ0, m0, (c; skip)
�

7−→∗



ρ, m, skip
�

ρ(a) = v

program c results in answer v

Let us say that ρ0 maps every identifier to nothing (has an empty domain),
so an expression attempting to use an uninitialized variable is “stuck" (does
not big-step evaluate); and m0 has an empty domain, so a command trying
to load from an uninitialized location is stuck.

2The reason is that we are interested in reasoning about well-synchronized concurrent
programs using the Dijkstra-Hoare style of locking, for example in the Pthreads system
for Verifiable C. In such programs we don’t need to know what order subexpressions of
an expression are evaluated—because expressions cannot read from memory—but on the
other hand we cannot assume that a thread executes its commands to completion “all at
once.”
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ρ, m, ((c1; c2); c3)
�

7−→



ρ, m, (c1; (c2; c3))
�




ρ, m, (skip; c)
�

7−→



ρ, m, c
�

ρ ⊢ e ⇓ v



ρ, m, (x := e; c)
�

7−→



ρ[x := v], m, c
�

ρ ⊢ e ⇓ v m[v] = v′



ρ, m, (x := [e]; c)
�

7−→



ρ[x := v′], m, c
�

ρ ⊢ e1 ⇓ v1 ρ ⊢ e2 ⇓ v2



ρ, m, ([e1] := e2); c
�

7−→



ρ, m[v1 := v2], c
�

ρ ⊢ e ⇓ v v ̸= 0



ρ, m, (if e then c1 else c2); c
�

7−→



ρ, m, (c1; c)
�

ρ ⊢ e ⇓ 0



ρ, m, (if e then c1 else c2); c
�

7−→



ρ, m, (c2; c)
�

ρ ⊢ e ⇓ v v ̸= 0



ρ, m, ((while e do c1); c)
�

7−→



ρ, m, (c1; (while e do c1); c)
�

ρ ⊢ e ⇓ 0



ρ, m, ((while e do c1); c)
�

7−→



ρ, m, c
�

Figure 4.1: Small-step rules
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HOARE LOGIC. Before tackling the difficulties of memory, pointers, aliasing,
and so on, we will specify a Hoare logic for the local-variable subset of the
language without load and store. Then every state contains memory m0

which is in any case irrelevant to the evaluation of expressions.
The assertions P,Q of our Hoare triples {P} c {Q} can be just predicates

on stacks ρ; or in the notation of the Coq proof assistant, P : ρ→ Prop. In
previous chapters we mentioned program expressions e rather informally
within assertions, and used substitution e[v′/x] rather informally to mean,
the expression e with every use of x replaced by v′. Now we write e ⇓ v as
a predicate on ρ, meaning that e big-step evaluates to v: that is, ρ ⊢ e ⇓ v.
We will write substitution P[v′/x] to mean λρ.P(ρ[x := v′]), meaning
that P[v′/x] holds on state ρ whenever P holds on the state ρ[x := v′] in
which variable x has been assigned value v′— note here that x is a program
variable while v′ is a value, not a variable.

Our Hoare logic for this language has a Floyd-style assignment rule,

∀ρ. Pρ→∃v.ρ ⊢ e ⇓ v

{P} x := e {∃v, v′. x ⇓ v ∧ (e ⇓ v)[v′/x]∧ P[v′/x]}

This is uglier than our Floyd rule of section 2, because we don’t know that
the expression e will safely evaluate (without getting stuck). Thus, we
require an extra hypothesis above the line (that P is a guarantee that e will
evaluate to something) and an extra existential variable v (to stand for a
value that e evaluates to, since we can’t simply say “the value of e”). But
see Chapter 25 for another way to express “the value of e”.

TO PROVE SOUNDNESS OF OUR HOARE LOGIC, we first model the meaning of
{P} c {Q}. Intuitively, this means that on any state in which P holds,

1. c is safe to execute—it cannot get stuck, and

2. if c finishes (without infinite-looping), then Q will hold.

The definition of our model proceeds in stages. First, we say that a state



ρ, m, c
�

is immediately safe if it is safely halted (c = skip) or if it can
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small-step to another state. A state s is safe if, whenever s 7−→∗ s′ then s′ is
immediately safe. A predicate P guards command c, written {P}c, when:

{P}c = ∀ρ. Pρ→ safe



ρ, m0, c
�

.

P guards c means that, in any state ρ that satisfies P, it is safe to execute c.
Finally, the meaning of the Hoare triple is,

{P} c {Q} = ∀k. {Q}k→ {P}(c; k).

What does this mean? If Q is a good enough precondition for running the
command k, then P is a good enough precondition for running (c; k). This
is partial correctness twisted into continuation-passing style.

One might think that this definition talks only about safety, not cor-
rectness; but since it quantifies over all continuations k, we must think
about all possible observations of the state that the program k might make.
The postcondition Q must guarantee that no matter what can possibly be
observable in the state after executing c, the program k must not get stuck.
This means, in effect, that if the command c terminates in a post-state,
then that state actually satisfies Q. For example, if Q is ∃i, v ⇓ 2i, that
is, “v is even”, we can build a program that tests v for evenness, and
deliberately gets stuck if not. We claim that any reasonable whole-program
specification is computably testable. Therefore, although our soundness
proof seems to guarantee just safety, in fact it guarantees partial correctness
for any reasonable specification.

The point of having such a semantic model of the Hoare triple is that
we can use it to prove the soundness of each of the Hoare-logic inference
rules. We prove the soundness of the Floyd assignment rule as an ordinary
lemma in Coq (see examples/hoare/hoare.v).
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Lemma floyd-assign:
∀ (P: h-assert) (x: var) (e: expr),

(∀ ρ, P ρ →∃v, eval e v ρ) →
Hoare P (Cassign x e)
(fun ρ ⇒ ∃v, ∃v’,
eval (Evar x) v ρ ∧ subst x v’ (eval e v) ρ ∧ subst x v’ P ρ).

Compare this lemma to Floyd’s assignment rule shown on page 29. To
prove it, we unfold the definition of Hoare and guard to obtain the proof
goal,

P : h-assert
x : var
e : expr
H : ∀ρ : stack, P ρ →∃v : val, eval e v ρ
k : command
H0 : guard (fun ρ : stack ⇒

∃v : val, ∃v’ : option val,
eval (Evar x) v ρ ∧
subst x v’ (eval e v) ρ ∧ subst x v’ P ρ) k

ρ : stack
H1 : P ρ
--------------------------------------(1/1)
safe (State ρ m0 (Cseq (Cassign x e) k))

Now, we can use H ρ H1 to find v such that ρ ⊢ e ⇓ v. Therefore by
the small-step rule for assignment, the state




ρ, m0, (x := e; k)
�

can step
to state



ρ[x := v], m0, k
�

. A lemma about safety says that if s 7−→ s′ then
safe(s)↔ safe(s′), so all we have to prove is,

safe (State (upd rho x (Some v)) m0 k)

But this is the conclusion of {Q}k, that is, hypothesis H0; so we apply H0
yielding the proof goal,
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H : eval e v rho
H1 : P rho
--------------------------------------(1/1)
∃v0 : val, ∃v’ : option val,

eval (Evar x) v0 (upd rho x (Some v)) ∧
subst x v’ (eval e v0) (upd rho x (Some v)) ∧
subst x v’ P (upd rho x (Some v))

We instantiate the existentials with v and ρ(x), respectively. Now it
turns out that ρ[v/x][ρ(x)/x] = ρ, and that is enough to finish the proof.

Readers who want to see this one step at a time should step through the
proof in examples/hoare/hoare.v.

WHY DO WE NEED THE “CONTINUATION PASSING” MODEL of the Hoare triple? A
more intuitive model is to say something like,

{P} c {Q} ?
= ∀ρ, c,ρ′. Pρ∧

�


ρ, m0, (c; skip)
�

7−→∗



ρ′, m0, skip
��

→ Qρ′

but unfortunately this does not work: an unsafe program (in which



ρ, m0, (c; skip)
�

gets stuck) satisfies this definition of the Hoare triple. We
can attempt to correct for this by requiring safety, but by then it becomes
simpler to use the continuation-passing version. And finally, in languages
where the command c can escape by breaking out of loops, returning from
functions, or go-to, the continuation-passing definition of the Hoare triple
[9] works much better than “direct-style” models.

SEPARATION LOGIC is a variant of Hoare logic in which assertions P,Q are
not simply predicates on states: they characterize a footprint, a subset of
memory locations of a heaplet. Over the next five chapters, we will show
how to construct general models of separation logics and prove soundness
of their inference rules. The basic idea is the same—define assertions
as predicates on states, and the Hoare judgment as a relation between
predicates, commands, and states.
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Chapter 5

Mechanized Semantic Library
by Andrew W. Appel, Robert Dockins, and Aquinas Hobor

In constructing program logics for particular applications, for particular
languages, 20th-century scientists had particular difficulty with pointers—
aliasing and antialiasing, updates to state, commuting of operators; and
self-reference—recursive functions, recursive types, functions as first-class
values, types and predicates as parameters to functions. The combination
of these two was particularly difficult: pointers to mutable records that can
contain pointers to function-values that operate on mutable records.

Two strains of late-20th-century logic shed light on these matters.

• Girard’s 1987 linear logic [43] and other substructural logics treat
logical assertions as resources that can be created, consumed and
(when necessary) duplicated. This kind of thinking led to the
Ishtiaq/O’Hearn/Reynolds invention in 2001 of separation logic
[56, 79], which is a substructural Hoare logic for reasoning about
sharing and antialiasing in pointer-manipulating programs.

• Scott’s 1976 domain theory [84] treats data types as approximations,
thereby avoiding paradoxes about recursive types and other recursive
definitions/specifications: a type can be defined in terms of more
approximate versions of itself, which eventually bottoms out in a
type that contains no information at all. These ideas led to the
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Appel/McAllester/Ahmed invention in 2001 of step-indexing [10, 2]
which is a kind of practical domain theory for computations on von
Neumann machines.

Many 21st-century scientists have generalized these methods for application
to many different program logics (and other applications); and have
formalized these methods within mechanical proof assistants.

THE MECHANIZED SEMANTIC LIBRARY (MSL) is a formalization in Coq of
the general theory of separation logic (and its models) and indirection
theory (and its step-indexed models). The MSL can serve as a basis for a
wide variety of logical applications; there is no “baked in” programming
language, memory model, or assertion model.

The software distribution of the MSL is the msl subdirectory of the
VST. One application of the MSL is the Verifiable C program logic (the veric
subdirectory of vst). But the MSL is not specific to (or specialized to) the
VST, and has many other potential applications.

Chapters 6–14 and 21 of this book describe MSL components that
build models of separation logic. Chapters 15–17 and 35–39 describe MSL
components that build step-indexed models. Then the rest of the book
describes application of the MSL to the Verified Software Toolchain.
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Chapter 6

Separation algebras

Separation logics have assertions—for example P ∗ (x y) ∗ Q—that
describe objects in some underlying model—for example “heaplets”—that
separate in some way—such as “the heaplet satisfying P can join with (is
disjoint from) the heaplet satisfying x y .” In this chapter we investigate
the objects in the underlying models: what kinds of objects will we have,
and what does it mean for them to join?

This study of join relations is the study of separation algebras. Once we
know how the underlying objects join, this will explain the meaning of the
∗ operator (and other operators), and will justify the reasoning rules for
these operators.

In a typical separation logic, the state has a stack ρ for local variables
and a heap m for pointers and arrays. Typically, m is a partial function
from addresses to values. The key idea in separation logic is that that each
assertion characterizes the domain of this function as well as the value
of the function. The separating conjunction P ∗Q requires that P and Q
operate on subheaps with disjoint domains.

In contrast, for the stack we do not often worry about separation: we
may assume that both P and Q operate on the entirety of the stack ρ.

For now, let us ignore stacks ρ, and let us assume that assertions P are
just predicates on heaps, so m |= P is simply P(m). Then we can give a
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simple model of the separating conjunction ∗ as follows:

(P ∗Q)(m) = ∃m1, m2. m1⊕m2 = m ∧ P(m1) ∧ Q(m2)

where the join operator m1 ⊕ m2 = m for these heaplets means that the
domain of m is the disjoint union of the domains of m1 and m2, that
wherever m1(p) is defined, m1(p) = m(p), and wherever m2(p) is defined,
m2(p) = m(p). So, that is one kind of ⊕ operator: disjoint union.

BUT WE WILL SOON WANT to generalize the notion of ⊕. For example,
in concurrent separation logic we want concurrent-read, exclusive-write
access—that is, two threads should be able to have shared read-only
access to a location, or at other times a single thread should be able to
have exclusive read/write access to that location. We achieve this with
permission shares: a partial share gives enough access to read, and several
threads can each hold partial shares at the same location. If a single thread
can reclaim all the partial shares (by synchronization operations) to obtain
a full share, this is a guarantee that no other thread can hold a nonempty
partial share at that location. Thus, no other thread can be reading the
location right now, and (with a full permission) it is safe to do a write.

In this model, the domain of a heap is not just a set of addresses, but a
mapping from locations to shares, and the join operator ⊕ no longer means
disjoint but share-compatible.

We may have a variety of join relations, but we do not wish to rederive
separation logic many times. So we factor the model of separation logic
into two layers: First, we define a join relation ⊕ satisfying certain laws
(for example, commutativity); this is a separation algebra. Then, we define
separation logic whose ∗ operator is defined in terms of the separation
algebra’s ⊕. We prove inference rules for ∗ derived from the laws of
separation algebras (independently of any particular join relation).

What are the laws of separation algebra that ⊕ must satisfy? Calcagno
et al. [32] propose one set of axioms; Dockins et al. [40] propose an
inequivalent set; Pottier [78] proposes a different one; Jensen and Birkedal
[58] propose yet another.
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A FRAMEWORK FOR SEPARATION ALGEBRAS. We can fit all these variants into a
unifying framework that starts with the essential properties, then adds laws
as needed for specific applications (see the file msl/sepalg.v).1

A join relation ⊕ is a three-place relation over a type A.

join : A→ A→ A→ Prop

Informally we write x ⊕ y = z to mean join x y z, but do not be misled by
the notation: x⊕ y might not exist! This is really a three-place relation, not
a two-place function.

We can define a join_sub relation as,

x ≺ z := ∃y. x ⊕ y = z

A join relation over A forms a permission algebra (Perm_alg) when it is
an associative commutative partial function with the property of positivity:

join_eq : x ⊕ y = z → x ⊕ y = z′ → z = z′

join_assoc2 : a⊕ b = d → d ⊕ c = e→ Σ f . b⊕ c = f ∧ a⊕ f = e
join_comm : a⊕ b = c → b⊕ a = c
join_positivity : a ≺ b → b ≺ a → a = b

The join_assoc axiom expresses associativity of a relation. If d and e exist,

then so must f in this diagram: d
b c
e

a
f

b c
e

a
Positivity ensures that there are no “negative” elements. It would be a

very bad thing in separation logic if an empty resource could be split into a
positive resource and a (negative) anti-resource. For if that were possible,
then a thread with no access at all to a location l could split its empty
permission into a positive permission and a negative permission; then it

1I thank Jonas Jensen for an illuminating e-mail discussion and Robert Dockins for an
acoustic discussion that helped derive this framework.

2Σ f . b⊕ c = f ∧ a⊕ f = e is a dependent sum, a constructive version of the existential
∃ f . b ⊕ c = f ∧ a ⊕ f = e. When representing the axioms of separation algebras in a
constructive logic, it is often helpful for join_assoc to be constructive. In a classical logic
with the axiom of choice, the ordinary existential will suffice.
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could use the frame rule to hide the negative permission, and access the
resource!

Demonstration that positivity prevents negative elements. Suppose we
have three elements suggestively named a,−a, 0. Suppose indeed a joins
with −a to make 0, and 0 is a unit for a:

a⊕−a = 0 0⊕ a = a

So a ≺ 0 and 0≺ a; thus by positivity a = 0.

UNITS AND IDENTITIES. We say that an element e is a unit for a if e⊕ a = a,
and i is an identity if it is a unit for anything that it happens to join with:

unit_for e a := e⊕ a = a
identity e := ∀a, b. e⊕ a = b → a = b

A separation algebra (Sep_alg)3 is a permission algebra augmented with
a function4 core : A→ A, written as x̂ , with these properties:

core_unit : unit_for x̂ x
join_core : a⊕ b = c → â = ĉ

Thus, every element of a separation algebra has at least one unit. But units
can contain nontrivial information. An element of a separation algebra
may contain “separable” information (such as the contents of heap cells)
and “pure” information (such as facts about local variables). The core of
an element contains all the pure information, with an empty separable
part. Cores obey the following lemmas (proofs are all supplied in the Coq
development):

core_duplicable
â⊕ â = â

core_self_join
a = â

a⊕ a = a

core_idem
ˆ̂a = â

core_hom
a⊕ b = c

â⊕ b̂ = ĉ
split_core

a⊕ b = ĉ
unit_for a a

3We will often write SA for separation algebra.
4The notion of core is from Pottier [78].
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THE CONCEPT OF SEPARATION has many applications. In some models,
_⊕ b = c has at most one way of filling in the blank, in others more than
one way. In some models, a⊕ a = b forces a = b; in others not. In some
models â = b̂ necessarily; in others not. Our general theory of separation
algebras permits all of these models. To specialize for specific applications
with extra axioms, we use type-classes such as Canc-alg, Disj-alg, Sing-alg,
and so on, as we now describe.

CANCELLATION. A join relation is cancellative (Canc_alg) if,

join_canc : a1⊕ b = c → a2⊕ b = c → a1 = a2.

Both Calcagno et al. [32] and Dockins et al. [40] assume that separation
algebras must be cancellative, while Jensen et al. [58] and Pottier [78] do
not assume cancellation.

The following lemmas hold in cancellative separation algebras:

unit_identity
unit_for e b
identity e

core_identity
identity â

unit_core
unit_for a a

a = â
same_unit

unit_for e1 a unit_for e2 a
e1 = e2

split_identity
a⊕ b = c identity c

identity a

CLASSICAL VS. INTUITIONISTIC SEPARATION LOGIC. For reasoning about lan-
guages with explicit deallocation, one wants rules such as {p x}free(p){emp},
and one often thinks of an assertion Q as holding on a heaplet with a precise
domain; this is called classical separation logic. For reasoning about lan-
guages with automatic garbage collection, there is no rule for free, and one
often thinks of Q as holding on any heaplet with at least a certain domain;
this is called intuitionistic separation logic. In the intuitionistic style, one
has Q ∗ true=Q, which is not true in classical style; and emp is not a useful
concept in the intuitionistic style (because it is equivalent to true).

If a join relation is cancellative, then it naturally leads to a classical
separation logic. That is, in Chapter 8 we will define the operators emp
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and ∗ based on the notions of identity and join (respectively), and with a
cancellative (Canc_alg) separation algebra we can prove the characteristic
axiom of classical separation logic, P ∗ emp↔ P.

DISJOINTNESS. A join relation has the disjointness (Disj_alg) property if no
nonempty element can join with itself:

join_self : a⊕ b = b → a = b

Dockins et al. [40] require disjointness of their separation algebras (see
Chapter 11); other authors do not.

If a separation logic over program heaps lacks disjointness then unusual
things can happen when defining predicates about inductive data in a
program heap. For example, without disjointness, the “obvious” definition
of a formula to describe binary trees fails: it occasionally permits shared
subtrees [27].

Disjointness solves another problem that had been identified by Bornat
et al. [27] It appeared that no one share model was expressive enough to
model two useful patterns of exclusive-write-concurrent-read (the fork-join
and the token factory). Chapter 11 of this book explains that the problem
was that Boyland’s fractional shares [28] lack disjointness, and Dockins’s
tree shares solve the problem.

SINGLE-UNIT. In a single-unit (Sing_alg) separation algebra, every element
has the same core:

the_unit_core : ∀a. â = the_unit

Calcagno et al.[32] assume single-unit separation algebras. But many
useful SAs do not have a single unit. The disjoint-product SA has two
sets of elements, each with its own (different) unit (see Chapter 7). Step-
indexed SAs (in indirection theory) have a different unit for each index
class. 5 An extreme case is the discrete separation algebra on a base type
A, in which each element is its own unit, and each element joins only with

5Indirection theory: Chapter 35; combined with separation: Chapter 38
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itself. In all these cases, elements divide into equivalence classes, each
represented by its own unit.

The monotonic counter of Jensen and Birkedal [58] is a quite different
multi-unit SA. Here, the elements are natural numbers, and a⊕ b = c when
c =max(a, b). An element e is a unit for a whenever e ≤ a. Thus, there are
six different units for 5, and 0 is a unit for everything.

CROSS-SPLIT. Some join relations have the cross-split (Cross_alg) property:

cross_split : a⊕ b = z → c⊕ d = z →
Σac, ad, bc, bd. ac⊕ ad = a ∧ bc⊕ bd = b ∧ ac⊕ bc = c ∧ ad ⊕ bd = d

That is, suppose a single resource can be split in two different ways; then
one should be able to divide the original resource into four pieces that
respect the original splittings. This can be expressed graphically as,

a b ac
ad bd

bcc
d

This property does not follow from the other axioms. It is required to
reason about natural definitions of data structures with intrinsic sharing,
such as graphs [53].

HERE IS A SUMMARY of some of the separation algebras mentioned above.
The properties are Single-unit, Cancellative, Disjoint, Cross-split.

Type a⊕ b = c when, properties

Heaplets N+ N see page 36 Sing,Canc,Disj,Cross
Booleans bool (c = a ∨ b)∧¬(a ∧ b) Sing,Canc,Disj,Cross
Counter N c =max(a, b) Sing
Discrete any a = b = c Canc,Disj,Cross
Rational shares Q a+ b = c Sing,Canc,Cross
Parkinson shares P (N) c = a ∪ b ∧ a ∩ b = ; Sing,Canc,Disj,Cross
Tree shares • ◦ see Chapter 11 Sing,Canc,Disj,Cross
The (rational, Parkinson, tree) share models are described in Chapter 11.
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POSITIVE PERMISSION ALGEBRAS. Sometimes we want to say that an execution
thread owns a nonempty share of some resource. To reason about join
relations of nonempty resources, we take a separation algebra and remove
all the units. More straightforwardly, a positive permission algebra (Class
Pos_alg) is a permission algebra with the additional axiom that there are
no units:

no_units : ∀e, a. ¬unit_for e a

Positive permission algebras may be cancellative or disjoint, depending on
the underlying join relation.

Type classes for separation algebras

We summarize all layers (permission algebras, separation algebras, etc.)
and their axioms as a set of type classes in Coq, as shown in Figure 6.1.
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Class Join (t: Type) : Type := join: t → t → t →Prop.

Class Perm-alg (t: Type) {J: Join t} : Type := mkPerm {
join-eq: ∀{x y z z’}, join x y z → join x y z’ → z = z’;
join-assoc: ∀{a b c d e}, join a b d → join d c e →

{f : t & join b c f ∧ join a f e};
join-comm: ∀{a b c}, join a b c → join b a c;
join-positivity: ∀{a a’ b b’}, join a a’ b → join b b’ a →a=b

}.

Definition unit-for {t}{J: Join t} (e a: t) := join e a a.
Definition identity {t}{J: Join t} (e: t) := ∀a b, join e a b →a=b.

Class Sep-alg A {J: Join A} : Type := mkSep {
core: A →A;
core-unit: ∀ t, unit-for (core t) t;
join-core: ∀{a b c}, join a b c →core a = core c

}.
Class Sing-alg A {J: Join A}{SA: Sep-alg A} := mkSing {

the-unit: A;
the-unit-core: ∀a, core a = the-unit

}.
Class Canc-alg (t: Type) {J: Join t} :=

join-canc: ∀{a1 a2 b c}, join a1 b c → join a2 b c →a1 = a2.

Class Disj-alg (t: Type) {J: Join t} :=
join-self: ∀{a b}, join a a b →a = b.

Class Pos-alg {A} {J: Join A} := no-units: ∀e a, ∼unit-for e a.

Figure 6.1: Type classes for permission algebras and separation algebras,
found in the file msl/sepalg.v.
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Chapter 7

Operators on separation algebras

A new separation algebra can be built by applying operators to other SAs.
Recall that x ⊕ y = z is our shorthand for ⊕(x , y, z), and a permission
algebra (PA) 〈A,⊕〉 comprises an element type A and a join relation ⊕ of
type A→ A→ A→ Prop that satisfies the properties join_eq, join_assoc,
join_comm, and join_positivity.

A separation algebra (SA) has, in addition, a core operator satisfying
core_unit and join_core. But if a core operator exists, then it is unique. To
state this lemma formally it is best to use Coq notation that makes explicit
all the parameters that the mathematical notation ·̂ leaves implicit:

Lemma \idef{core-uniq} {A} {J: Join A}:
∀ (SA1 SA2: @Sep-alg A J), ∀x, @core A J SA1 x = @core A J SA2 x.

Proof. (∗ see msl/sepalg.v ∗) Qed.

The uniqueness of cores justifies (informally) writing 〈A, J〉 for a separation
algebra with element type A and join operator J , without needing to
explicitly mention the core operator.

SA PRODUCT OPERATOR. Let 〈A, JA〉 and 〈B, JB〉 be SAs. Then the product SA
is 〈A× B, J〉, where J is defined componentwise:

J((xa, xb), (ya, yb), (za, zb)) := JA(xa, ya, za)∧ JB(xb, yb, zb) (7.1)
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If JA and JB are permission algebras, then J is a permission algebra; if JA

and JB are separation algebras, then J is a separation algebra; if JA and JB

are cancellative then J is cancellative; if JA and JB satisfy disjointness, then
so does J . These statements are expressed as typeclass-instances in Coq (in
msl/sepalg_generators.v):

Instance Join-prod : Join (A∗B) :=
fun(x y z:A∗B)⇒ join(fst x)(fst y)(fst z) ∧ join(snd x)(snd y)(snd z).

Instance Perm-prod : Perm-alg (A∗B).
Instance Sep-prod (SAa: Sep-alg A)(SAb: Sep-alg B) : Sep-alg (A∗B).
Instance Canc-prod{CAa:Canc-alg A}{CAb:Canc-alg B}: Canc-alg (A∗B).
Instance Disj-prod{DAa: Disj-alg A}{DAb: Disj-alg B}: Disj-alg (A∗B).

A similar litany will apply to all the operators in this section; we will not
repeat it each time. Of course, each of these Instance declarations must be
followed by a Proof (omitted here) that Join-prod really has the specified
properties.

SA FUNCTION OPERATOR. Let A be a set and let 〈B, JB〉 be a SA. Then the
function SA is 〈A→ B, J〉, where J is defined pointwise:

J( f , g, h) := ∀a ∈ A. JB( f (a), g(a), h(a)) (7.2)

(Instances Join-fun, Perm-fun, Sep-fun, etc.)
Lovers of dependent types will enjoy the observation that the SA product

and the SA function operators are isomorphic to special cases of the general
indexed product (i.e., dependent function space) operator:

SA INDEXED PRODUCT OPERATOR. Let I be a set, called the index set, and let
P be a mapping from I to separation algebras. Then the indexed product
SA is 〈Πx : I . P(x), J〉 where J is defined pointwise:

J( f , g, h) := ∀i ∈ I . JP(i)( f (i), g(i), h(i)) (7.3)

(Instances Join-pi, Perm-pi, Sep-pi, etc.)

THE DISJOINT UNION OPERATOR illustrates the need for multi-unit separation
algebras; it cannot be constructed in Sing-alg. For suppose we have two
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single-unit SAs 〈A, JA〉, 〈B, JB〉. We would like to define 〈A+ B, J〉 such that
J is the smallest relation satisfying:

JA(x , y, z)→ J(inl x , inl y, inl z) for all x , y, z ∈ A (7.4)

JB(x , y, z)→ J(inr x , inr y, inr z) for all x , y, z ∈ B (7.5)

Here A+ B is the disjoint union of A and B with inl and inr as the left and
right injections. This structure cannot be a single-unit separation algebra,
for if uA and uB are the units of A and B, then core(inl uA) and core(inr uB)
must be equal, by the_unit_core. However, this is a contradiction as the
injection functions for disjoint union always produce unequal elements.
(Instances Join-sum, Perm-sum, Sep-sum, etc.)

INDEXED SUM OPERATOR. Disjoint union is is a special case of indexed
(dependent) sums. Let I be a set, called the index set. Let S be a mapping
from I to separation algebras. Then the indexed sum SA is 〈Σi : I . S(i), J〉
such that J is the least relation satisfying:

JS(i)(x , y, z)→ J(inji(x), inji(y), inji(z)) ∀i ∈ I ; x , y, z ∈ S(i) (7.6)

Here inji is the injection function associated with i. If |I | = 2, the
indexed sum is isomorphic to the disjoint union operator. (Instances
Join-sigma, Perm-sigma, Sep-sigma, etc.)

DISCRETE SA. Let A be a set. Then the discrete SA is 〈A, J〉 where J is defined
as the smallest relation satisfying:

J(x , x , x) for all x ∈ A (7.7)

(Instances Join-equiv, Perm-equiv, Sep-equiv, etc.)
The discrete SA has a join relation that holds only when all three

arguments are equal: every element of the discrete SA is a unit. The
discrete SA is useful for constructing SAs over tuples where only some of
the components have interesting joins; the other components can be turned
into discrete SAs. Note the compositionality of this construction using the
discrete and product operators together.



7. OPERATORS ON SEPARATION ALGEBRAS 47

The discrete-SA construction is incompatible with the Sing-alg axiom
(single-unit SAs). With single-unit SAs, one would instead have to “manu-
ally” construct an appropriate tupling operator. This is an important reason
not to assume the single-unit axiom for all separation algebras.

IN SOME APPLICATIONS we need to relate positive permission algebras (PAs
with no units) to separation algebras (PAs with units) that have the same
elements (aside from the unit) [50]. We define the lifting operator that
removes all the units from a SA, leaving a positive PA; and we define
the lowering operator that and adds a unit to a positive PA, yielding a
(single-unit) SA. (Instances Join-lift, Perm-lift, Sep-lift, etc.)

As an example of their use, consider heaplets in which each address
contains either DATA with a permission share π and integer i, or NONE with
no value at all. Permission shares will be described in Chapter 11, but for
now it suffices to know that they form a separation algebra with a full share
•, an empty share ◦, and various partial shares in between.

The values DATA • 3 and DATA • 4 are clearly unequal: one is “a full share
of 3” and the other is “a full share of 4”. But an empty share of a data value
is really the same as NONE; that is, DATA ◦ 3 = DATA ◦ 4 = NONE. If we want
to enforce the rules that

i ̸= j → DATAπ1 i ̸= DATAπ2 j DATAπ1 i ̸= NONE,

one way is to prohibit the use of empty shares in DATA constructors. We can
do this by apply Join-lift to the share SA.

To complete this example in full, we apply Join-equiv to the type Z of
integers, yielding the discrete separation algebra in which 3 does not join
with 4 (and every integer is its own core). Then we apply the product
operator Join-prod to these two constructed permission algebras, to make
the cartesian product algebra over (nonempty) shares and integers. Finally,
to accomplish the disjoint union of DATAπ i and NONE, we simply apply the
lowering operator, Join-lower.

Parameter Join-sh: Join share.
Definition pshare := lifted Join-sh. (∗ positive shares ∗)
Definition Join-pshare : Join pshare := @Join-lift - Join-sh.
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Definition heaplet := address →option (pshare ∗ Z).
Definition Join-heaplet: Join heaplet :=

Join-fun address (option (pshare ∗ Z))
(Join-lower (Join-prod pshare Join-pshare Z (Join-equiv Z))).

THE OPERATORS OF THIS CHAPTER can construct many kinds of separation
algebras. The associated Coq development includes a number of additional
operators (e.g., lists, subsets, bijections, etc.) that we have also found
useful.
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Chapter 8

First-order separation logic

A separation algebra (SA) is a set of elements x , y, ... on which there is a
join relation x ⊕ y = z. A separation logic is a system of assertions P,Q with
a separating conjunction operator such that z |= P ∗Q just when there exist
x , y such that x |= P, y |=Q, and x ⊕ y = z.

The axioms and inference rules of separation logics are sufficiently
generic that we can induce most of them just from the definition of the
join relation and the axioms of separation algebras. To these we add
application-specific axioms, depending on the element type.

IN THIS CHAPTER WE WILL FOCUS PARTICULARLY on the representation of
generic separation logics in Coq. We use the convenient parametrizability
of typeclasses. That is, we want to write P ∗Q, so we define Notation:

Notation "P ’∗’ Q" := (sepcon P Q) : pred.

This means that ∗ stands for the sepcon operator. But what is sepcon, and
to what separation algebra does it belong?

The answer depends on whether we are constructing first-order sepa-
ration logics (the “traditional” kind); or higher-order separation logics, in
which assertions can predicate over assertions. Higher-order separation
logics permit smoother reasoning about higher-order functions, or about
the resource invariants of first-class locks and threads. To achieve such
predication, we must use some form of step-indexing, indirection theory,
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ultrametric spaces, or domain theory (all of which are related techniques).
In our Verified Software Toolchain we use higher-order separation algebras,
whose construction will be described in later chapters.

For many applications, ordinary first-order SAs will suffice. In this
chapter1 we present the construction of generic first-order separation logics
from separation algebras. These “first-order” SAs do permit quantifica-
tion over predicates (a higher-order concept), but they do not support
fully higher-order features such as contravariant recursive predicates or
impredicative predication over predicates.

Definition pred (A:Type) := A →Prop.

Delimit Scope pred with pred.
Bind Scope pred with pred.

The Scope-related commands specify that (1) the mark (...)%pred hence-
forth indicates that text between the parentheses should be parsed using
the Notation operators we are about to introduce, and (2) expressions of
type pred should also be parsed that way.

We can begin a logic of predicates with the entailment operator ⊢,
pronounced derives:

Definition derives (A:Type) (P Q:pred A) := ∀a:A, P a →Q a.

Notation "P ’|--’ Q" := (derives P Q) (at level 80, no associativity).

Here are some very generic lemmas that follow from the definition of
derives:2

equiv_eq
P ⊢Q Q ⊢ P

P =Q
derives_trans

P ⊢Q Q ⊢ R

P ⊢ R
1The Coq definitions in this chapter are in the file msl/predicates_sa.v.

Warning! If you will be needing the step-indexed predicates of a higher-order separation
logic, the definition pred(A) := A→Prop will not suffice. In that case, we use a different
definition of pred(A) introduced in Chapter 38. However, most of the ideas and concepts
of this chapter still apply to higher-order separation logics.

2We can write P = Q for the equivalence of assertions because we use the axioms of
functional extensionality and proof irrelevance.



8. FIRST-ORDER SEPARATION LOGIC 51

Even before we populate the logic with “interesting” operators, we can
write down the basic connectives such as true, false, and, or, implication.

Definition TT {A}: pred A := prop True. (* see page 52 *)
Definition FF {A}: pred A := prop False.

Definition imp {A} (P Q:pred A) := fun a:A ⇒ P a →Q a.
Definition orp {A} (P Q:pred A) := fun a:A ⇒ P a ∨ Q a.
Definition andp{A} (P Q:pred A) := fun a:A ⇒ P a ∧ Q a.

Now we add notation for these operators:3

Infix "||" := orp (at level 50, left associativity) : pred.
Infix "&&" := andp (at level 40, left associativity) : pred.
Notation "P ’-->’ Q" := (imp P Q) (at level 55, right associativity) : pred.
Notation "P ’<-->’ Q" := (andp (imp P Q) (imp Q P))

(at level 57, no associativity) : pred.

One can prove the usual inference lemmas on the propositional connectives;
there is no need to show more than a couple of examples here:

modus_ponens
P && (P →Q) ⊢Q

andp_right
X ⊢ P X ⊢Q

X ⊢ P &&Q

OUR LOGIC HAS EXISTENTIAL AND UNIVERSAL QUANTIFIERS. Since the assertion
language is embedded in a logical framework (the Calculus of Inductive
Constructions) with quantifiers and variables of its own, we can we avoid
constructing an entire theory of variable binding and substitution by the
usual trick of “higher-order abstract syntax.” That is, we use the variable-
binding machinery of the enclosing logical framework to implement binding
in our embedded logic.

Definition allp{A B: Type} (f: B →pred A): pred A := fun a ⇒ ∀b, f b a.
Definition exp{A B: Type} (f: B →pred A): pred A := fun a ⇒ ∃b, f b a.

3We use the horrible || and && instead of \/ and /\ because we will want “and”
and “or” at a similar precedence level to “separating conjunction” ∗, but Coq’s predeclared
precedence for these operators is quite different. Here, level 40 precedence binds tighter
than level 50.
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Notation " ’ALL’ x ’:’ T ’,’ P " := (allp (fun x:T ⇒ P%pred))
(at level 65, x at level 99) : pred.

Notation " ’EX’ x ’:’ T ’,’ P " := (exp (fun x:T ⇒ P%pred))
(at level 65, x at level 99) : pred.

Now we can write such formulas as (ALL x:nat, P x && Q x) where P is
a function from nat →pred A. We can even write (ALL x: pred A, P || x),
that is, nothing stops us from instantiating the type T with the very pred
type itself. Another way of saying this is that our logic is impredicative.

We define a prop operator for embedding Coq propositions into our
assertion language:

Definition prop {A: Type} (P: Prop) : pred A := (fun - ⇒ P).
Notation "’!!’ e" := (prop e) (at level 25) : pred.

The utility of prop is in how it combines with the quantifiers. For example,
in our assertion language we may have an operator eval e i saying that (in
the current program state) a program expression e evaluates into an integer
i. We might write,

Parameter eval : expression →Z →pred state.

Definition eval-gt-zero (e: expression) : pred state :=
EX i:Z, eval e i && !!(i>0).

Notice how the embedded Coq proposition i>0 has a free variable i that is
bound by the existential quantifier.

WE ADD THE OPERATORS OF SEPARATION LOGIC (such as ∗) to our Hoare logic.
When we write the notation P ∧Q we mean that P and Q are predicates
over an element type A. For separation P ∗Q there must also be a join
relation {JA: Join A}; the Coq typeclass system will automagically search
for a JA of the right type.

Definition sepcon {A} {JA: Join A} (p q:pred A) := fun z:A ⇒
∃x:A, ∃y:A, join x y z ∧ p x ∧ q y.

Notation "P ’∗’ Q" := (sepcon P Q) : pred.
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Lemmas about the operators of separation logic will need the typeclass-
instance parameters JA to access the join relation, will need PA to access the
axioms of permission algebras, and sometimes SA for separation algebras.
For example, the associativity of ∗ relies on the associativity of join, which
is found in Perm_alg:

Lemma sepcon-assoc {A} {JA: Join A}{PA: Perm-alg A}:
∀p q r, (((p ∗ q) ∗ r) = (p ∗ (q ∗ r))).

Proof. ... Qed.

Although in this text we will present many of these lemmas in a more
“mathematical” style,

sepcon_assoc
(P ∗Q) ∗ R= P ∗ (Q ∗ R)

sepcon_comm
P ∗Q =Q ∗ P

one must remember that they are typeclass-parametrized, which will cause
Coq proof-scripts to fail if the required typeclass instances do not exist.

THE UNIT FOR SEPARATING CONJUNCTION is emp:

Notation "’emp’" := identity.

Here we define x |= emp whenever x is an identity, that is, whenever
∀y, x ⊕ y = z → y = z. Identities are not exactly the same as units, i.e.
something can be an identity without being a unit for anything (vacuously,
if it fails to join with anything), and a unit might not be an identity. We
do not directly define “unit for separating conjunction” in terms of “unit
in the underlying separation algebra” because (in our possibly multi-unit
separation algebras) we can’t simply say unit, we have to say what elements
it is a unit for.

But in a cancellative separation algebra, every identity is a unit (for at
least itself), and every unit is an identity. The separation-logic emp really
is only useful in cancellative systems, and most of the lemmas about emp
require cancellation. For example,

Lemma emp-sepcon {A}{JA: Join A}{PA: Perm_alg A}{SA: Sep_alg A}{CA: Canc_alg A}:
∀P, (emp∗P) = P.
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Provided that the reader remembers that Canc_alg is implicit whenever
emp appears, we can write,

emp_sepcon
emp ∗ P = P

sepcon_emp
P ∗ emp= P

.

WE HAVE BOTH UNIVERSAL AND EXISTENTIAL MAGIC WANDS. The (universal)
magic wand P −∗ Q is a kind of "separating implication;" if you add P to it,
you get Q. The existential wand P −◦ Q, also called septraction, says that
you can add P and get Q.

Definition wand {A} {JA: Join A} (p q:pred A) := fun y ⇒
∀x z, join x y z →p x →q z.

Definition ewand {A} {JA: Join A} (P Q: pred A) : pred A :=
fun w ⇒ ∃w1, ∃w2, join w1 w w2 ∧ P w1 ∧ Q w2.

They satisfy many of the expected axioms, needing only Perm_alg (per-
mission algebras)—they do not require Sep_alg (existence of units) or
cancellation.

wand_sepcon_adjoint
(P ∗Q ⊢ R) = (P ⊢Q −∗ R)

modus_wand
P ∗ (P −∗Q)

Q
sepcon_cut

P ⊢Q −∗ R S ⊢Q

P ∗ S ⊢ R

ewand_sepcon
(P ∗Q)−◦ R = P −◦ (Q −◦ R)

INTUITIONISTIC PREDICATES. In an intuitionistic separation logic, whenever
P holds on x , then it must also hold on x ⊕ y . But even in a classical
separation logic where this is not true in general, sometimes we find it
useful to say a predicate holds in every extension of the current state. This
is written %P, and we have x |=%P whenever ∀y, z, x ⊕ y = z→ (x |= P).
The % sign is notation for the modal operator box extendM, just as ◃ is
notation for the modal operator box laterM.
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Chapter 9

A little case study

To demonstrate the use of separation algebras and separation logic, consider
this tiny little programming language (see examples/sep/language.v).

Variables x , y, z, . . .
Commands c ::= skip

| x := y
| x := [y]
| [x] := y
| c1; c2

Definition var := nat.
Inductive command :=
| Skip: command
| Assign: var → var → command
| Load : var → var → command
| Store: var → var → command
| Seq: command→command→command.

Each state of the operational semantics comprises a stack (partial
function from variable name to pointer) and a heap (partial function from
pointer to pointer). We use natural numbers for variables and for pointers,
and we represent stacks and heaps as table, a list of ordered pairs with
duplicates. Here we define get and set operators on tables:

Definition table (A B : Type) := list (A∗B).

Fixpoint table-get {A B}{H: dec-eq A} (rho: table A B) (x: A) : option B :=
match rho with
| (y,v)::ys ⇒ if eq-dec x y then Some v else table-get ys x
| nil ⇒ None

end.
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Definition table-set {A B}{H: dec-eq A}
(x: A) (v: B) (rho: table A B) : table A B

:= (x,v)::rho.

Lemma table-gss {A B}{H: dec-eq A}:
∀ rho x (v: B), table-get (table-set x v rho) x = Some v.

Lemma table-gso {A B}{H: dec-eq A}:
∀ rho x y (v:B), x ̸=y → table-get (table-set x v rho) y = table-get rho y.

The lemma table-gss stands for “get-set-same,” and table-gso stands for
“get-set-other.” Now we define variables and addresses (both nat), and
stacks and heaps (both represented as table):

Definition var := nat.
Definition adr := nat.
Definition stack := table var adr.
Definition heap := table adr adr.
Definition state := (stack ∗ heap)%type.

WE PRESENT THE SEMANTICS of program execution as a small-step operational
semantics. The rules for Assign, Load, and Store are straightforward. There
are different ways to describing control sequencing. A direct method is this:

Assign
σ(y) = v

(Jx := yK,σ, h) 7−→ (JskipK,σ[x := v], h)

Load
σ(y) = v h(v) = v′

(Jx := [y]K,σ, h) 7−→ (JskipK,σ[x := v′], h)

Store
σ(y) = v σ(x) = p

(J[x] := yK,σ, h) 7−→ (JskipK,σ, h[p := v])

Seq0
(Jskip; cK,σ, h) 7−→ (JcK,σ, h)

Seq1
(Jc1K,σ, h) 7−→ (Jc′1K,σ

′, h′)

(Jc1; c2K,σ, h) 7−→ (Jc′1; c2K,σ′, h′)
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The inductive definition step (in examples/sep/language.v) encodes these
rules.

We can abstract and combine the Seq0/Seq1 rules by describing
syntactic execution contexts [47, §5.3], that is:

E ::= [] | E; c

where the context [ ] means “right here” and E; c means “within the left
side of a Seq command, as specified by the subcontext E.” Using execution
contexts, we can express the Seq0 and Seq1 rules as a single rule:

Seq
(JcK,σ, h) 7−→ (Jc′K,σ′, h′)

(JE[c]K,σ, h) 7−→ (JE[c′]K,σ′, h′)

The natural inductive definition for E has two constructors—it is isomorphic
to list(command), and we will represent it as such. If E is an execution
context represented as a list, we can represent E[c] by the list c :: E. In our
operational semantics for C light (Chapter 34) we have a the control stack
c :: κ, which amounts to the same thing; henceforth we will write κ instead
of E.

If we reformulate all the rules to small-step in an execution context, we
obtain this semantics—which is the inductive definition of the step’ relation
in examples/sep/language.v:

Skip’
(JskipK :: κ,σ, h) 7−→ (κ,σ, h)

Assign’
σ(y) = v

(Jx := yK :: κ,σ, h) 7−→ (κ,σ[x := v], h)

Load’
σ(y) = v h(v) = v′

(Jx := [y]K :: κ,σ, h) 7−→ (κ,σ[x := v′], h)

Store’
σ(y) = v σ(x) = p

(J[x] := yK :: κ,σ, h) 7−→ (κ,σ, h[p := v])

Seq’
(c1 :: c2 :: κ,σ, h) 7−→ (κ′,σ′, h′)

(Jc1; c2K :: κ,σ, h) 7−→ (κ′,σ′, h′)
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We want to define an axiomatic semantics and prove it sound with
respect to the operational semantics. Sound means, if a program satisfies an
appropriate Hoare triple, then it is safe in the operational semantics—the
7−→∗ relation will not get stuck. But which operational semantics, the direct
small-step (with Seq0/Seq1) or the one with execution contexts κ? It’s
easier to build a soundness proof with the execution contexts (small-step
relation step’). For readers who prefer the direct relation step, the theorem
step’-equiv (in examples/sep/language.v) shows that execution in step’
implies execution in step.

SINCE THIS IS A LANGUAGE OF POINTER-UPDATE, a separation logic seems
called for. However, we cannot make a separation algebra (Perm_alg and
Sep_alg) directly on states or tables, because tables do not have unique
representations. The positivity rule (join_positivity) requires, among other
things, that if two elements are equivalent, then they are equal. But the
representation of tables as unsorted lists of pairs means that unequal
elements can be equivalent. (a is equivalent to b if each is a join-sub of the
other, that is, a⊕ x = b and b⊕ y = a.)

One solution to this problem would have been to avoid equality and
use equivalence relations (or setoids). We have chosen not to do that in
our formulation of separation algebras, because we want the convenience
and efficiency of Leibniz equality. Another solution would be to insist that
the data structure for environments have unique representations, but this
solution is not very general.

We solve the problem as follows. Instead of building a separation
algebra directly on tables, we write a denotation function from tables to
their denotations, and we build the separation algebra on denotations. The
denotation of a table is a function nat →option nat, and any equivalent
environments must have equal denotations.1

1To reason about equal functions, we will need the axiom of extensionality. The pure
calculus of inductive constructions (CiC) does not have extensionality, but extensionality
is consistent with CiC. Almost any application of our type-classes for separation algebras
will need extensionality, so it is assumed right at the beginning of the MSL, in the file
msl/Axioms.v.
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We call the denotation of a state a world, and it is easy to write the
denotation function:

Definition world := ((var →option adr)∗(adr →option adr))%type.
Definition den (s: state) : world := (table-get (fst s), table-get (snd s)).

TO BUILD A SEPARATION ALGEBRA OVER WORLDS,2 we must specify a join
relation. We want P ∗Q to mean that predicates P and Q both see the same
stack (they can both refer to the same local variables), but see disjoint
subheaps (they cannot both refer to the same memory-cell contents). Thus
we do,

Instance Join-world: Join world :=
Join-prod

(var →option adr) (Join-equiv (var →option adr))
(adr →option adr) (Join-fun adr (option adr)

(Join-lower (Join-discrete adr))).

By using Join_equiv as the join relation for stacks, we say that any stack
joins with itself, so that P and Q can see it simultaneously.

Now consider the join relation for heaps. A heap is a function from
addresses to memory cells, and we may consider each cell separately. In a
given heap, each cell is either present (Some v) or absent (None), and we
want None⊕ c = c for any c.

The relation Join_discrete adr is the empty relation: J(a, b, c) = ⊥.
Thus it has no units: it is a positive permission algebra (Pos_alg).

If J is a join relation on type τ, the relation Join_lower(J) is a join
relation on option(τ), with None as the unit:

None⊕None= None None⊕ Some a = Some a

Some a⊕None= Some a
a⊕ b = c

Some a⊕ Some b = Some c
2The separation logic is presented in two versions:

examples/sep/fo_seplogic.v, using separation algebras without indirection theory, and
examples/sep/seplogic.v, using the higher-order separation algebras with indirection the-
ory. Because this simple example makes no essential use of indirection theory, the proofs
are almost identical.
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Considering a heap as a partial function from addresses to ad-
dresses, equivalently a total function from addresses to address-options,
then the join relation we want for the range of that function is just
Join-lower(Join-discrete adr). Two heap-cells join if at least one is empty,
yielding the other one. That is what disjointness really means.

We lift this from option(adr) to adr→option(adr) pointwise, by Join_fun.
Two heaps join if each of their cells joins.

Hence the definition of Join-world, above. Then we prove that worlds
form a permission algebra and a cancellative disjoint separation algebra:

Instance Perm-world : Perm-alg world := -.
Instance Sep-world : Sep-alg world := -.
Instance Canc-world : Canc-alg world := -.
Instance Disj-world : Disj-alg world := -.

These theorems are proved automagically by the type-class system,3 using
lemmas about the join operators from which we constructed Join_world.

Now that the separation algebra is constructed, we automatically have
the basic operators (∗, emp) of separation logic just by Import msl.msl-direct.4

But we also need application-specific operators,5 such as maps-to (x y),
subst (P[y/x]), and equal (x = y) which tests whether the variables x and
y have the same contents in this world.

Definition fun-set (f: nat →option nat) (x: nat) (y: option nat) :=
fun i ⇒ if eq-dec i x then y else f i.

Definition subst (x y: var) (P: pred world) : pred world :=
fun w ⇒ P (fun-set (fst w) x (fst w y), snd w).

Definition mapsto (x y: var) : pred world :=
fun w ⇒ ∃ax, fst w x = Some ax ∧ ∃ay, fst w y = Some ay ∧
∀a, if eq-dec a ax then snd w a = Some ay else snd w a = None.

3See the Instance lemmas in the msl/sepalg_generators library.
4For separation algebras with indirection theory, Import msl.msl-standard.
5Many applications will need maps-to, equal, and subst, but the details of each

will depend on the underlying representations of heaps and local-variable environments
(“stacks”), so we consider these operators application-specific.
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Definition equal (x y: var) : pred world :=
fun w ⇒ fst w x = fst w y.

We can define the Hoare triple {P}c{Q}, using the continuation-passing
idea introduced in Chapter 4. But be careful:

Wrong Definition semax (P: pred world) (c: command) (Q: pred world) :=
∀κ, guards Q κ → guards P (c::κ).

This Wrong model does not support the frame rule of separation logic. To
accommodate the frame rule, we need a more intricate model. First, we
give a syntactic characterization of “variables modified by the command c.”
Then we use a semantic characterization of “variables not free in (irrelevant
to) a predicate P”.

Inductive modvars : command →var →Prop :=
| mod-assign: ∀x y, modvars (Assign x y) x
| mod-load: ∀x y, modvars (Load x y) x
| mod-seq1: ∀x c1 c2, modvars c1 x →modvars (Seq c1 c2) x
| mod-seq2: ∀x c1 c2, modvars c2 x →modvars (Seq c1 c2) x.

Definition nonfreevars (P: pred world) (x: var) : Prop :=
∀ stk hp v, P (stk,hp) →P (fun-set stk x v, hp).

Definition subset (S1 S2: var →Prop) := ∀x, S1 x →S2 x.
Using these definitions, it is straightforward to define the separation-logic
Hoare triple, {P} c {Q}. It means: for any frame assertion F , as long as c
does not modify any variables free in F , then P ∗ F is a precondition for the
safe execution of c, and the after-state will satisfy Q ∗ F .

Definition semax (P: pred world) (c: command) (Q: pred world) : Prop :=
∀ F s, subset (modvars c) (nonfreevars F) →
∀κ, guards (Q ∗ F) κ →guards (P ∗ F) c::κ.

This is a denotational definition of the axiomatic semantics:6 instead
6Hoare logics are often called axiomatic semantics because one reasons about the pro-

gram using axioms, instead of interpreting it operationally or denotationally. semax stands
for axiomatic semantics, or sémantique axiomatique en français.
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of presenting an inductive set of axioms and justifying their soundness
using proof theory, we just give the model. We can prove the “axioms” of
the Hoare logic as derived lemmas, proved by unfolding the definition of
semax. See examples/sep/seplogic.v for the actual proof scripts.

Lemma semax-assign: ∀P x y,
semax (defined y && subst x y P) (Assign x y) P.

Lemma semax-load: ∀x y z, x ̸= y →x ̸= z →
semax (mapsto y z) (Load x y) (mapsto y z && equal x z).

Lemma semax-store: ∀x y z,
semax (defined y && mapsto x z) (Store x y) (mapsto x y).

Lemma semax-seq: ∀P c1 Q c2 R,
semax P c1 Q → semax Q c2 R → semax P (Seq c1 c2) R.

Lemma frame: ∀F P c Q, subset (modvars c) (nonfreevars F) →
semax P c Q → semax (P ∗ F) c (Q ∗ F).

Lemma semax-pre-post: ∀P P’ c Q’ Q,
P ⊢P’ →Q’ ⊢Q → semax P’ c Q’ → semax P c Q.

One could make a more general Floyd-style Load rule that permits
reasoning about the command Load x x, but here we just require that x
and y are different variables.

THE FUNDAMENTAL PROJECT OF THE VERIFIED SOFTWARE TOOLCHAIN is to
design a program logic, prove the program logic sound with respect to
the operational semantics of the programming language, and apply the
program logic to real programs. In this case study we have achieved the
first two of these three steps, for a toy example.
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Chapter 10

Covariant recursive predicates

Recursive data types are used in programs and programming languages,
so recursive predicates occur naturally in program logics for reasoning
about these programs. In almost any programming language one can
make recursive pointer-and-structure declarations to describe lists and
trees—with pointers and struct in C, with datatype in ML, or with classes
in object-oriented languages.

In logic, we generally define each predicate in terms of previously
defined predicates; a predicate that refers to itself is not necessarily
meaningful. A sound way to make such self-referential definitions is to
define some sort of fixed-point function µ such that given F of type A→ A,
µF is a fixed point of F . That is, F(µF) = µF . Then, to get the effect of
P(x) = . . . x . . . P . . . we define

F(p) = λx .(. . . x . . . p . . .) P = µF

Then indeed, P(x) = (µF)(x) = F(µF)(x) = (. . . x . . . (µF) . . .). But
depending on what µ we are clever enough to construct, there may be
restrictions on what kinds of F will satisfy F(µF) = µF . In particular,
consider these two datatype declarations in the programming language ML:

datatype list = nil | cons of int ∗ list
datatype funopt = none | some of funopt → int

We may write Flist = λx .1+(int× x), and list= µFlist, provided that we can
find µ that works. Similarly, Ffunopt = λx .1+ (x → int). (The type 1, called
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“unit,” contains just one value, that we could write as (). The type τ1 + τ2

contains the values of τ1 and τ2.)
But building a µ that can find fixed points of Flist is easier than for Ffunopt,

because Flist is covariant. A function is covariant when bigger arguments
lead to bigger results; that is, forall x , y , if x ⊂ y then F(x) ⊂ F(y). In the
world of types (or predicates), we can say that x ⊂ y whenever every value
belonging to the type x also belongs to y . (Considering types as just sets of
values is a bit naive, but it will suffice for this discussion.)

To see that Flist is covariant, suppose we have two sets x = {()}
and y = {(), 4, 7}. Then Flist(x) = {(), 〈i, ()〉 |i ∈ int} and Flist(y) =
{(), 〈i, ()〉 , 〈i, 4〉 , 〈i, 7〉 |i ∈ int} so indeed Flist(x)⊂ Flist(y).

On the other hand, Ffunopt is contravariant, that is, bigger arguments lead
to smaller results. Let us say that the type x → int is the set of all function
values that, when given an argument of type x , will successfuly return an
int without crashing. Now suppose x ⊂ y . We have (y → int) ⊂ (x → int),
because every function of type y → int can successfully accept an argument
of type x .

THEOREM. If x ⊂ y , then y → int ⊂ x → int.
Proof. Let f be a function of type y → int, that is, on any argument of
type y it successfully returns an integer. Then suppose we apply f to an
argument a of type x . Since x ⊂ y , then a : y , and thus f succeeds on a.

But the converse does not necessarily hold. Let x be the type of positive
integers, and y the type of all integers. The square-root function sqrt has
type x → int, but crashes on −1. Therefore x ⊂ y , and sqrt belongs to
x → int but not to y → int.

Finding fixed points of contravariant functors is a hard problem; the
first real solution was Scott’s domain theory [84]. The trick is to consider
a data type as a sequence of approximations. Subsequent formulations of
recursive types use metric spaces [65] or step indexing [10] or indirection
theory [52], but the trick is still the same: a sequence of approximations.

LET US MOVE FROM recursive types to recursive predicates in separation logic.
As an example, consider the separation-logic definition of a linked list of
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tail pointers (single-word cells): 0

L(x) = x = 0∧ emp ∨ x ̸= 0∧ ∃y. x y ∗ L(y)

We write L(x) to mean that x is a pointer to one of these lists; but this is a
pseudodefinition, as it refers to itself. To make a real definition, we define
the function F ,

F(g)(x) = x = 0∧ emp ∨ x ̸= 0∧ ∃y. x y ∗ g(y)

and then write µF to derive a fixed point of F .
The list predicate L is not simply a predicate on heaps; it relates

a pointer value x to a heap. That is, L has type address →pred heap.
Therefore in a generic separation logic, we will be looking for fixed points
of functions F of the form,

F : (B→ predA)→ (B→ predA).

To make the example really concrete, we will choose a heap type of
finite partial maps from nat to nat, with the usual kind of mapsto operator:

Definition heap : Type := fpm nat nat.
Instance Join-heap: Join heap := Join-fpm (@Join-discrete -).
Instance Perm-heap: Perm-alg heap := Perm-fpm - (Perm-discrete nat).

Definition mapsto (x y: nat) : pred heap :=
fun h ⇒ ∀ z, if eq-dec z x then lookup-fpm h z = Some y

else lookup-fpm h z = None.

For linked lists the function F can be written as,

Definition lisfun (Q: nat →pred heap) (p: nat) : pred heap:=
!!(p=0) && emp || !!(p<>0) && EX r:nat, mapsto p r ∗ Q r.

Now, how can we demonstrate that the fixed point of lisfun is the lis type?

MANY APPLICATIONS USE ONLY COVARIANT RECURSION, and do not require
contravariant recursive predicates. List and tree data structures are
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covariant; it is only when function parameters or predicate bindings are “in
the loop” that contravariance occurs.

One can do covariant recursion directly in Coq using inductive predi-
cates.1 Our list example could be written,

Inductive lis : nat →pred heap :=
| lis-nil : ∀p w, (!!(p=0) && emp)%pred w → lis p w
| lis-cons: ∀p w, (!!(p<>0) && EX r:nat, mapsto p r ∗ lis r)%pred w

→ lis p w.

For interactive program proofs, or for automatic proofs where the set of
data types is fixed in advance, this works very well. But to synthesize or
transmit new predicates about data structures, one often wants to express
predicates as Coq expressions—combinations of existing operators—so
one does not want to create new inductive definitions. In those cases,
a recursion operator µ is needed. We use the Knaster-Tarski fixed-point
theorem:

Definition covariant {B A: Type}(F: (B→pred A)→ (B→pred A)): Prop :=
∀ (P Q: B →pred A), (∀ x, P x ⊢Q x) → (∀ x, F P x ⊢F Q x).

Definition corec {B A} (F: (B→pred A)→ (B→pred A)): B →pred A :=
fun x w ⇒ ∀P: B →pred A, (∀ x, F P x ⊢P x) →P x w.

Lemma corec-fold-unfold {B A}: ∀{F: (B →pred A) → (B →pred A)},
covariant F → corec F = F (corec F).

Clearly the definition covariant is just as described at the beginning of the
chapter: bigger sets are transformed into bigger sets. The fixed point is the
intersection of all sets P such that F(P) ⊂ P. To see the proof that corec(F)
is a fixed point of F , step through the proof script for corec_fold_unfold in
msl/corec.v. For the proof that it is the least fixed point of the function F
(corec(F) is a subtype of any fixed point of F), see corec_least_fixedpoint.

To make use of corec, one must be able to prove the covariance of
functors such as lisfun. We start by proving covariance of the individual

1examples/sep/corec_example.v
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operators (and, or, separating conjunction, etc.) and then compose these
proofs together.

covariant_sepcon
covariant P covariant Q

covariant (fun (x : B→ predA) (b : B) ⇒ P x b ∗ Q x b)

covariant_andp
covariant P covariant Q

covariant (fun (x : B→ predA) (b : B) ⇒ P x b ∧ Q x b)

covariant_orp
covariant P covariant Q

covariant (fun (x : B→ predA) (b : B) ⇒ P x b ∨ Q x b)

covariant_const
covariant (fun _ ⇒ P)

covariant_const’
covariant (fun (P : B→ predA) (_ : B) ⇒ P c)

covariant_id
covariant (fun (P : B→ predA) ⇒ P)

covariant_exp
∀c : C . covariant(F c)

covariant (fun (P : B→ predA) (b : B) ⇒ ∃c : C . F c P b)

OUR SIMPLE LIST PREDICATE2 is easily defined using corec.

Definition lisfun (Q: nat →pred heap) (p: nat) : pred heap:=
!!(p=0) && emp || !!(p<>0) && EX r:nat, mapsto p r ∗ Q r.

Definition lis : nat →pred heap := corec lisfun.

Now to fold and unfold lists, all we need is the lemma,

Lemma lis-fold-unfold:
∀p, lis p = !!(p=0) && emp

|| !!(p<>0) && EX r:nat, mapsto p r ∗ lis r.

2examples/sep/corec_example.v
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The proof of this is easy, using corec_fold_unfold, but we will need this
supporting lemma:

Lemma covariant-lisfun: covariant lisfun.
Proof.

apply covariant-orp.
apply covariant-const. (∗ !!(p=0) && emp ∗)
apply covariant-andp.

apply covariant-const. (∗ !!(p<>0) ∗)
apply covariant-exp; intro.

apply covariant-sepcon.
apply covariant-const. (∗ mapsto p r ∗)
apply covariant-const’. (∗ Q r ∗)

Qed.

As you can see from the proof, we just traverse the expression
!!(p=0) && emp || !!(p<>0) && Ex r:nat, mapsto p r ∗ Q r, applying
the appropriate covariant-operator lemma at each point. One could easily
automate this using Hint Resolve.
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Chapter 11

Share accounting

Concurrent separation logic is used to reason about shared-memory
concurrent programs.1

Thread A

while (1) {
acquire mutex;
[p] := f();
release mutex;
for (i=0; i<N; i++) {

think();
acquire mutex;
x := [p];
release mutex;

}
}

Thread B

while (1) {
acquire mutex;
[p] := g();
release mutex;
for (i=0; i<N; i++) {

think();
acquire mutex;
x := [p];
release mutex;

}
}

These two programs use standard Dijkstra-Hoare synchronization to avoid
race conditions on access to shared-memory resource [p]. Chapter 30 will
show how the acquire and release operators transfer resources (expressed
in separation logic as p a) from one thread to another.

1Readers interested only in sequential programs can skip this chapter, and just use full
shares (Share.top or Tsh) where shares are called for.
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If the threads read [p] much more often than they write it, they could
avoid some synchronization overhead by a concurrent-read, exclusive-write
protocol. The basic idea is that all the threads have simultaneous read-only
access to the resource. When one thread wants to write, it (somehow)
acquires exclusive access (the other threads must stop reading), and then it
can safely write the resource without danger of racing with other reads and
writes. Then the writer can release the resource back to the mode where all
threads have read-only access.

One way to model this is to say that the mapsto operator is labeled
with a permission share. The full share, written •, grants write permission,
and any nonempty share π grants read permission.

When a thread wants to acquire write permission, it must do synchro-
nization operations that acquire all the fractional shares (at that location)
from all the other threads. When the thread has obtained the full share,
it knows that no other thread can have a nonempty share: Whenever there
are k threads of execution, at all times their resources must be disjoint (and
joinable together), in the sense of separation algebras.

In this chapter we will not show the synchronization operators (see
Chapter 30); here we will focus on the calculus of share permissions. The
appropriate inference rules include:

π1⊕π2 = π

p π1 x ∗ p π2 x ↔ p π x

{p π x} y := [p] {p π x && y = x}

{p • x} [p] := y {p • y}

The rule at left means that if shares π1 and π2 join to make π, then the
separating assertion p π1 x ∗ p π2 x is equivalent to p π x . The rules
at right mean that any nonempty share is sufficient to apply the separation
logic Hoare triple for load, but a full share is required for store.

When one thread has some nonempty share π1 of a resource p _, no
other share can have a full share, but other threads may have complemen-
tary shares π2, . . .πk such that π1 ⊕ π2 ⊕ . . .⊕ πk = •. This means that
during this time, no thread has enough permission to write to address p,
but any of these k threads may be simultaneously reading address p.

The threads may then use the synchronization operations of concurrent
separation logic to transfer all of their resources (for address p) into a
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single thread. Then this thread (e.g., thread j) will have the resource

p π1 x ∗ p π2 x ∗ . . . ∗ p πk x

which is equal to p • x by the inference rule shown above. At that time,
thread j can write to address p, but no other thread can possibly have a
nonempty share of address p—no other thread can read simultaneously
with the write—there is no race condition.

THERE ARE TWO BASIC MODES OF USE where permission shares are helpful.
The first is in divide-and-conquer algorithms where many threads share
read access to some input data. This sort of read-sharing frequently occurs
in algorithms that exhibit strong data parallelism; for example, a parallel
matrix multiply is naturally organized in this way.

The other primary mode of use is the reader-writer lock. In this mode a
lock is used to protect access to some resource — typically a datastructure
— where read-only access to the resource is common but writing is rare.
These sorts of locks are frequently used in operating systems to protect
system-wide datastructures like the process list. A read-write lock can be in
one of three states: unlocked, locked for writing, or locked for reading with
n concurrent readers. A writer wishing to take the lock must wait until all
readers unlock before the lock may be taken in the exclusive writing state.

These two use modes require different properties of a share model. As
discussed by Bornat et. al [27], the divide-and-conquor mode requires
a model of splittable shares, whereas the read-write lock mode requires
the ability to do token counting. For splittable shares, the most important
operation we need is the ability to split shares in half. When a thread forks
a new child, it can split its share of all read-only resoures and pass half of
the share on to its child and keep half for itself. When the threads later
join, the parent thread regains the other half. For token counting, the idea
is that there is a token factory representing the read-write lock. The token
factory produces read tokens when a reader takes the lock and absorbs the
read tokens again when a reader unlocks. To do the share accounting, we
therefore need a share model that can represent both the token factory and
the read tokens.
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Bornat et al. presented two different, incompatible share models to
deal this these two modes. The model for splittable shares is based on the
rational numbers between 0 and 1. Two shares join by addition, and shares
are disjoint if their sum is no greater than 1. A share may be split into
two shares by the simple operation of division by 2. The model for token
counting is quite different; it takes the integers as shares. Two token shares
combine by addition, and they are disjoint if their signs are different. The
integer 0 is the top share, and one must add a new distinguished element
to get the empty share. Token factories are represented by nonnegative
integers and tokens by negative integers. The main idea is that the positive
integer n represents a read-write lock with n readers and the share −1
represents a read token used by a reader to access the resource.

Neither of Bornat et al.’s share models was sufficiently general for many
kinds of real programs. The reason lies in this observation: when we divide
a permission π into two halves, it’s useful to be able to distinguish between
the left half and the right half. This disjointness property, expressed in
separation algebras by Disj_alg, allows one to distinguish trees from DAGs,
and to reason about other patterns of use. Rationals do not give us
disjointness, for in that model when we split the full share 1 into left-hand
1
2

and right-hand 1
2
, obviously we have 1

2
= 1

2
. The token-counting integer

model suffers a similar problem.

Therefore we build a more sophisticated permission-share system.
Chapter 41 develops the model for tree shares; here we show their axioms
and patterns of use. The relevant Coq files are msl/boolean_alg.v, with
the module type SHARE-MODEL that axiomatizes permission shares;
and msl/shares.v, that instantiates this axiomatization with a model and
provides additional lemmas and definitions.

The type share has at least a full share and an empty share:

Definition share : Type := Share.t.
Definition emptyshare : share := Share.bot. notated as ◦
Definition fullshare : share := Share.top. notated as •

Shares form a boolean algebra with greatest-lower-bound, least-upper-
bound and complement operators.
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lub_upper1
x À x ⊔ y

lub_upper2
y À x ⊔ y

lub_least
x À z y À z

x ⊔ y À z
glb_lower1

x ⊓ y À x

glb_lower2
x ⊓ y À y

glb_greatest
z À x z À y

z À x ⊓ y

top_correct x À • bot_correct ◦À x

distrib1
x ⊓ (y ⊔ z) = (x ⊓ y)⊔ (x ⊓ z)

comp1
x ⊔ (¬x) = •

comp2
x ⊓ (¬x) = ◦

nontrivial
• ≠ ◦

Figure 11.1: Axioms for boolean algebras

Share.Ord: share → share →Prop notated in this chapter as À
Share.glb: share → share → share notated in this chapter as ⊓
Share.lub: share → share → share notated in this chapter as ⊔
Share.comp: share → share notated in this chapter as ¬

Axioms for these operators are shown in Figure 11.1.

SHARES ALSO FORM a cancellative separation algebra:

Instance Share.Join-ba: Join share :=
fun x y z : t ⇒ x ⊓ y = ◦ ∧ x ⊔ y = z.

Instance Share.pa: Perm-alg share.
Instance Share.sa: Sep-alg share.
Instance Share.ca: Canc-alg share.
Instance Share.da: Disj-alg share.
Instance Share.singa: Sing-alg share.
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The single unit in this separation algebra is ◦, as expected:

bot_identity
identity(◦)

bot_unit ◦⊕π= π

ANY SHARE MAY BE SPLIT into left and right halves:

Share.split : share → (share ∗ share)
with the following axioms:

split_join
split x = (x1, x2)

x1⊕ x2 = x
split_injective

split x = split y
x = y

split_nontrivial
split x = (x1, x2) x1 = ◦ ∨ x2 = ◦

x = ◦

split_disjoint
split x = (x1, x2)

x1 ⊓ x2 = ◦
split_together

split x = (x1, x2)
x1 ⊔ x2 = x

nonemp_split_neq1
x ̸= ◦ split x = (x1, x2)

x1 ̸= x

nonemp_split_neq2
x ̸= ◦ split x = (x1, x2)

x2 ̸= x

WITH THESE OPERATORS one can split permissions into pieces and rejoin
them, in reasoning about concurrent programs. For most applications one
does not need the full power of boolean algebras—just the split and join ⊕
operators, the full share •, and their simple axioms are enough.

A program verification that splits permissions for concurrent-read
exclusive-write data structures may benefit from automated reasoning
about shares, using the decision procedure by Bach et al. [13].

SHARE RELATIVIZATION AND PROJECTION. Chapter 41 describes “advanced”
sharing protocols that make use of the greatest-lower-bound ⊓ and least-
upper-bound ⊔ operators, as well as the relativization operator \. That
chapter also describes constructions for synthesizing token factories from
tree-shares.
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Part II

Higher order separation logic

SYNOPSIS: Instead of reasoning directly on the model (that is, separation
algebras), we can treat separation logic as a syntactic formal system, that is,
a logic. We can implement proof automation to assist in deriving separation-
logic proofs.

Reasoning about recursive functions, recursive types, and recursive
predicates can lead to paradox if not done carefully. Step-indexing avoids
paradoxes by inducting over the number of remaining program-steps that we
care about. Indirection theory is a kind of step-indexing that can serve as
models of higher-order Hoare logics. Using indirection theory we can define
general (not just covariant) recursive predicates.

Recursive data structures such as lists and trees are easily modeled in
indirection theory, but the model is not the same one conventionally used, as it
inducts over “age”—the approximation level, the amount of information left in
the model—rather than list-length or tree-depth. A tiny pointer/continuation
language serves as a case study for separation logic with first-class function-
pointers, modeled in indirection theory. The proof of a little program in
the case-study language illustrates the application of separation logic with
function pointers.
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Chapter 12

Separation logic as a logic

A FORMAL SYSTEM (or, a logic) is a syntax of formulas together with a
deductive apparatus by which some formulas can be derived from others.
We can use the apparatus even if we don’t know what the formulas mean.

Of course, a formal system is more satisfying if we can give meanings to
the formulas—a semantic model— and use this model to prove soundness
of the deductive apparatus. So far in this book we have taken a semantic
approach: we introduce separation logic via its models. Separation algebras
give simple and general models of separation logics.

Models for higher-order separation logics in actual applications (see
Chapter 39) can be rather intricate. Therefore we want to seal the model
under an abstraction layer, so that reasoning about actual programs can
proceed using a given set of rules without descending into the details of the
model. Such a rule-set is a formal system, a separation logic.

We formulate separation logics axiomatically as a set of layered type-
classes in Coq, in the files msl/seplog.v and msl/alg_seplog.v:

Class NatDed (A: Type) . . . natural deduction
Class SepLog (A: Type) {NA: NatDed A} . . . separation logic
Class ClassicalSep (A: Type) {NA: NatDed A}{SA: SepLog A}
Class IntuitionisticSep (A: Type) {NA: NatDed A}{SA: SepLog A}
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THE TYPE-CLASS NatDed AXIOMATIZES NATURAL DEDUCTION as a formal system
in Coq (see Figure 12.1). We use the same names that we did in Chapter 8,
but these are different definitions, with different types. In the “semantic”
chapters, when we wrote andp P Q, the types of P and Q were A→ Prop
or pred(A) for some type A; that is, P and Q were semantic predicates. Now,
when we write andp P Q the types of P and Q are some abstract type T
with no commitment about the structure of T .

Name : andp orp imp exp allp prop derives
Coq notation : && || −− > EX ALL !! | −−

Figure 12.1 presents the inference rules in Coq; Figure 12.2 shows the
same rules in a more conventional mathematical notation. Figure 12.3
shows a proof of a theorem in natural deduction; it relies on the axioms,
plus a lemma modus-ponens: ∀P Q, P && (P −→Q) ⊢Q.

We introduce a notation scope %logic for the operators of natural
deduction (and soon, separation logic), with definitions such as,

Delimit Scope logic with logic.
Infix "&&" := andp (at level 40, left associativity) : logic.
Notation "P ’-->’ Q" := (imp P Q) (at level 55, right associativity) : logic.

This Notation looks practically identical to the notation scope %pred
introduced in Chapters 8 and 38, but it is not the same: it refers to these
abstract operators derives, orp, andp, et cetera, instead of the semantic
operators derives, orp, andp, defined in those chapters.

Henceforth, when we write
%logic we mean implicitly,

Import msl.seplog msl.alg-seplog.
Open Scope logic.

and thus, the syntactic (axiomatic)
view of separation logic.

Henceforth when write
%pred we mean implicitly,

Import msl.msl-standard.
Open Scope pred.

and the semantic (separation-
algebra) view of separation logic.

SEPARATION LOGIC is an extension of natural deduction, as shown in
Figures 12.4 and 12.5.
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Class NatDed (A: Type) := mkNatDed {
andp: A →A →A;
orp: A →A →A;
exp: ∀{T:Type}, (T →A) →A;
allp: ∀{T:Type}, (T →A) →A;
imp: A →A →A;
prop: Prop →A;
derives: A →A →Prop;
pred-ext: ∀P Q, derives P Q →derives Q P →P=Q;
derives-refl: ∀P, derives P P;
derives-trans: ∀{P Q R}, derives P Q →derives Q R →derives P R;
TT := prop True;
FF := prop False;
andp-right: ∀X P Q:A, derives X P →derives X Q →derives X (andp P Q);
andp-left1: ∀P Q R:A, derives P R →derives (andp P Q) R;
andp-left2: ∀P Q R:A, derives Q R →derives (andp P Q) R;
orp-left: ∀P Q R, derives P R →derives Q R →derives (orp P Q) R;
orp-right1: ∀P Q R, derives P Q →derives P (orp Q R);
orp-right2: ∀P Q R, derives P R →derives P (orp Q R);
exp-right: ∀{B: Type} (x:B) (P: A) (Q: B →A),

derives P (Q x) →derives P (exp Q);
exp-left: ∀{B: Type} (P: B →A) (Q: A),

(∀ x, derives (P x) Q) →derives (exp P) Q;
allp-left: ∀{B}(P: B →A) x Q, derives (P x) Q →derives (allp P) Q;
allp-right: ∀{B}(P: A) (Q: B →A),

(∀ v, derives P (Q v)) →derives P (allp Q);
imp-andp-adjoint: ∀P Q R, derives (andp P Q) R↔derives P (imp Q R);
prop-left: ∀ (P: Prop) Q, (P →derives TT Q) →derives (prop P) Q;
prop-right: ∀ (P: Prop) Q, P →derives Q (prop P);
not-prop-right: ∀ (P:A)(Q:Prop), (Q →derives P FF)→ derives P (prop(∼Q))

}.
Figure 12.1: Natural deduction as a formal system
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derives_refl
P ⊢ P

derives_trans
P ⊢Q Q ⊢ R

P ⊢ R

andp_left1
P ⊢ R

P &&Q ⊢ R
andp_left2

Q ⊢ R

P &&Q ⊢ R

andp_right
X ⊢ P X ⊢Q

X ⊢ P &&Q
orp_left

P ⊢ R Q ⊢ R

P ∥Q ⊢ R

orp_right1
P ⊢Q

P ⊢Q ∥R
orp_right2

P ⊢ R
P ⊢Q ∥R

exp_right
P ⊢Q(x)

P ⊢ ∃x . Q(x)
exp_left

for all x , (P(x) ⊢Q)

∃x . P(x) ⊢Q

allp_left
P(x) ⊢Q

∀x .P(x) ⊢Q
allp_right

for all x , (P ⊢Q(x))

P ⊢ ∀x .Q(x)

imp_andp_adjoint
P &&Q ⊢ R = P ⊢Q −→ R

pred_ext
P ⊢Q Q ⊢ P

P =Q
prop_left

P &&⊤ ⊢Q

!!P ⊢Q

prop_right
P

Q ⊢!!P
not_prop_right

Q→ (P ⊢ ⊥)
P ⊢!!(¬Q)

Figure 12.2: Natural deduction in mathematical notation. This chart can
serve as a reference guide to the names of commonly used axioms.
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Lemma example {A}{NA: NatDed A}:
∀P Q R : A, (TT −→P) && (Q −→R) ⊢Q −→P && R.

Proof.
intros. apply → imp-andp-adjoint.
(∗ (TT −→P) && (Q −→R) && Q ⊢P && R ∗)
apply andp-right.

(∗ (TT −→P) && (Q −→R) && Q ⊢P ∗)
apply andp-left1.
(∗ (TT −→P) && (Q −→R) && Q ⊢R ∗)
apply andp-left1. (∗ TT −→P ⊢P ∗)
apply derives-trans with (TT && (TT −→P)).

(∗ TT −→P ⊢TT && (TT −→P) ∗)
apply andp-right.

(∗ TT −→P ⊢TT ∗)
apply prop-right; auto.
(∗ TT −→P ⊢TT −→P ∗)
apply derives-refl.

(∗ TT && (TT −→P) ⊢P ∗)
apply modus-ponens.

(∗ (TT −→P) && (Q −→R) && Q ⊢R ∗)
apply derives-trans with (Q && (Q −→R)).

(∗ (TT −→P) && (Q −→R) && Q ⊢Q && (Q −→R) ∗)
apply andp-right.

(∗ (TT −→P) && (Q −→R) && Q ⊢Q∗)
apply andp-left2. apply derives-refl.
(∗ (TT −→P) && (Q −→R) && Q ⊢Q −→R ∗)
apply andp-left1. apply andp-left2. apply derives-refl.

(∗ Q && (Q −→R) ⊢R ∗)
apply modus-ponens.

Qed.
Figure 12.3: A proof in natural deduction
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Class SepLog (A: Type) {ND: NatDed A} := mkSepLog {
emp: A;
sepcon: A →A →A;
wand: A →A →A;
ewand: A →A →A;
sepcon-assoc: ∀P Q R, sepcon (sepcon P Q) R = sepcon P (sepcon Q R);
sepcon-comm: ∀P Q, sepcon P Q = sepcon Q P;
wand-sepcon-adjoint: ∀ (P Q R: A), (sepcon P Q ⊢R)↔(P ⊢wand Q R);
sepcon-andp-prop: ∀P Q R, sepcon P (!!Q && R) = !!Q && (sepcon P R);
sepcon-derives: ∀P P’ Q Q’ : A,

P ⊢P’ →Q ⊢Q’ → sepcon P Q ⊢ sepcon P’ Q’;
ewand-sepcon: ∀ (P Q R : A), ewand (sepcon P Q) R = ewand P (ewand Q R);
ewand-TT-sepcon: ∀ (P Q R: A),

andp (sepcon P Q) (ewand R TT) ⊢
sepcon (andp P (ewand R TT)) (andp Q (ewand R TT));

exclude-elsewhere: ∀P Q: A, sepcon P Q ⊢ sepcon (andp P (ewand Q TT)) Q;
ewand-conflict: ∀P Q R, sepcon P Q ⊢FF →andp P (ewand Q R) ⊢FF

}.

Notation "P ’∗’ Q" := (sepcon P Q) : logic.
Notation "P ’-∗’ Q" := (wand P Q) (at level 60, right associativity) : logic.

Figure 12.4: Axiomatic presentation of separation logic

The maps-to operator p v is not present in this axiomatization,
because each type A will need its own syntax and style of maps-to operator.
Some maps-tos have permission-shares, or types, or sizes; in any case we
would need to specify a domain type and range type. So we leave it out,
and instantiate later in each different instantiation of SepLog.
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sepcon_assoc
(P ∗Q) ∗ R= P ∗ (Q ∗ R)

sepcon_comm
P ∗Q =Q ∗ P

wand_sepcon_adjoint
(P ∗Q ⊢ R)↔ (P ⊢Q −∗ R)

sepcon_andp_prop
P ∗ (!!Q && R) =!!Q && (P ∗ R)

sepcon_derives
P ⊢ P ′ Q ⊢Q′

P ∗Q ⊢ P ′ ∗Q′

Figure 12.5: Axiomatic presentation of Separation Logic, in math notation

A classical SEPARATION LOGIC is one in which we can reason about dealloca-
tion of memory. We may have Hoare-triple rules such as,

{p x} free(p) {emp}

With such rules, one can prove (for example) that a certain function
deallocates an entire binary tree, by giving the postcondition emp. In
classical separation logic, we would not like the input heap (that satisfies
p x) to also satisfy emp; otherwise our dealloc-binary-tree specification is
vacuous.

For classical separation logic, add the axiom P ∗ emp= P.

Class ClassicalSep (A: Type) {ND: NatDed A}{SL: SepLog A} := mkCS {
sepcon-emp: ∀P, P ∗ emp = P

}.

ON THE OTHER HAND, AN intuitionistic SEPARATION LOGIC is one in which every
predicate P that holds on a heap h also holds on any extension of h. Such
a logic is useful for reasoning about programming languages with garbage
collection (no explicit deallocation). The characteristic axiom is P ∗⊤ ⊢ P.
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Class IntuitionisticSep (A: Type) {ND: NatDed A}{SL: SepLog A} :=
mkIS { all-extensible: ∀P, sepcon P TT ⊢P }.

THIS AXIOMATIZATION IS INCOMPLETE! That is, there are some theorems
provable in the model (that is, the %pred theory of separation algebras)
that are not provable from the %logic axioms we present.

In fact, complete axiomatizations of separation logic are rather un-
wieldy; they do not use simple sequent judgments such as the ones
presented here. [29, 73] At the end of the next chapter, we explain a simple
solution for tolerating incompleteness.
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Chapter 13

From separation algebras to
separation logic

Predicates (of type A → Prop) in type theory give a model for Natural
Deduction. A separation algebra gives a model for separation logic. We
formalize these statements in Coq.

For a more expressive logic that permits general recursive types and
quasi-self-reference, we use step-indexed models built with indirection
theory. We will explain this in Part V; for now it suffices to say that
indirection theory requires that the type T be ageable—elements of T must
contain an approximation index. A given element of the model contains
only a finite approximation to some ideal predicate; these approximations
become weaker as we “age” them—which we do as the some operational
semantics takes its steps.

To enforce that T is ageable we have a typeclass, ageable(T ). Fur-
thermore, when Separation is involved, the ageable mechanism must
be compatible with the separating conjunction; this requirement is also
expressed by a typeclass, Age_alg(T ).

THEOREM: SEPARATION ALGEBRAS SERVE AS A MODEL OF SEPARATION LOGIC.
Proof. We express this theorem in Coq by saying that given type T , the
function algNatDed models an instance of NatDed(pred T). Given a SepAlg
over T , the function algSepLog models an instance of SepLog(pred T). The
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definability of algNatDed and algSepLog serve as a proof of the theorem.
What we show in this chapter is the indirection theory version (in the

Coq file msl/alg_seplog.v), so ageable and Age-alg are mentioned from time
to time. Readers interested in a similar development without indirection
theory should consult the Coq file msl/alg_seplog_direct.v.

The proof obligations of the constructor mkSepLog are spelled out in
Figure 12.4. The first obligation is labeled sepcon-assoc. To prove this, we
turn to a theorem about the underlying model in separation algebras. That
is, in the file msl/predicates_sl.v we have the lemma,

Lemma sepcon-assoc {A}{JA: Join A}{PA: Perm-alg A}
{AG: ageable A}{XA: Age-alg A}:

∀ (P Q R:pred A), ((P ∗ Q) ∗ R = P ∗ (Q ∗ R))%pred.
Proof.

intros; apply pred-ext; hnf; intros.
(∗ Forward Direction ∗)
destruct H as [x [y [H [[z [w [H0 [? ?]]]] ?]]]].
destruct (join-assoc H0 H) as [q [? ?]].
∃ z; ∃q; intuition. ∃w; ∃y; intuition.
(∗ Backward Direction ∗)
... similar ...

Qed.

That is a proof about P,Q, R of type predA, assuming that A is an ageable
permission algebra. The notation-scope marker %pred is a hint that P ∗Q is
using the sepcon operator defined in predicates_sl.v as,

Program Definition sepcon {A}{JA: Join A}{PA: Perm-alg A}
{AG: ageable A}{XA: Age-alg A}
(p q:pred A) : pred A :=

fun x:A ⇒ ∃y:A, ∃ z:A, join y z x ∧ p y ∧ q z.

For every axiom required for NatDed and SepLog, we have already
proved the corresponding lemma about separation algebras. We use these
in the proofs of our theorems:
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Instance algNatDed (T: Type){agT: ageable T} : NatDed (pred T).
apply (mkNatDed -

predicates-hered.andp predicates-hered.orp
(@predicates-hered.exp - -) (@predicates-hered.allp - -)
predicates-hered.imp predicates-hered.prop
(@predicates-hered.derives - -)).

apply predicates-hered.pred-ext.
apply predicates-hered.derives-refl.
apply predicates-hered.derives-trans.
apply predicates-hered.andp-right.
apply predicates-hered.andp-left1.
... (∗ and so on ∗)

Defined.

Instance algSepLog (T: Type) {agT: ageable T}{JoinT: Join T}
{PermT: Perm-alg T}{SepT: Sep-alg T}{AgeT: Age-alg T} :

@SepLog (pred T) (algNatDed T).
apply (mkSepLog - (algNatDed T)

predicates-sl.emp predicates-sl.sepcon predicates-sl.wand).
apply predicates-sl.seplog-assoc.
... (∗ and so on ∗)

Defined.

One can see the place (just before (∗and so on ∗) where the previously
proved lemma seplog-assoc (at the semantic level) is slotted into the
axiomatization (at the formal-system level). Thus, these definitions of
algNatDed and algSepLog are a proof of soundness.

A CANCELLATIVE SEPARATION ALGEBRA induces a classical separation logic:

Instance algClassicalSep (T: Type) {agT: ageable T}{JoinT: Join T}
{PermT: Perm-alg T}{SepT: Sep-alg T}{CancT: Canc-alg T}
{AgeT: Age-alg T}:
@ClassicalSep (pred T) (algNatDed T)(algSepLog T).

constructor; intros. simpl. apply predicates-sl.sepcon-emp.
Qed.
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BY NOW WE HAVE PRESENTED two different proof theories for natural
deduction / separation logic. The separation-algebra-based proof theory
has lemmas such as

Lemma sepcon-assoc {A}{JA: Join A}{PA: Perm-alg A}
{AG: ageable A}{XA: Age-alg A}:

∀ (P Q R:pred A), ((P ∗ Q) ∗ R = P ∗ (Q ∗ R))%pred.

The formal-system-based proof theory has axioms such as

Axiom sepcon-assoc {A}{NA: NatDed A}{SA: SepLog A}:
∀ (P Q R:pred A), ((P ∗ Q) ∗ R = P ∗ (Q ∗ R))%logic.

Now consider these two proofs:

Import seplog.
Lemma andp-com1

{T}{NT: NatDed T}:
∀P Q: T,
( P && Q ⊢Q && P )%logic.

Proof.
intros.
apply andp-right.
apply andp-left2.
apply derives-refl.
apply andp-left1.
apply derives-refl.

Qed.

Import msl-standard.
Lemma andp-com2

{A}{agA: ageable A}:
∀P Q: pred A,
( P && Q ⊢Q && P )%pred.

Proof.
intros.
apply andp-right.
apply andp-left2.
apply derives-refl.
apply andp-left1.
apply derives-refl.

Qed.

The left-hand proof is is done in %logic (separation logic) and the
right-hand proof is done in %pred (separation algebras, the underlying
semantic theory). Because we have taken care to state the corresponding
axioms and lemmas just right, it is not surprising that they look the same.
But it would be surprising if the underlying Coq proof objects were the same.
So this next proof is perhaps surprising:
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Lemma andp-com3 {A}{agA: ageable A}:
∀P Q: pred A, ( P && Q ⊢Q && P )%logic.

Proof.
simpl.
(∗ ∀P Q: pred A, ( P && Q ⊢Q && P )%pred. ∗)
apply andp-com2.

Qed.

This shows that andp-com2 serves as a proof of the same statement as
andp-com1! The reason is that the Instance algNatDed ended with the
word Defined instead of Qed: it is transparent. The underlying proof
objects are not the same, but they are equal (using proof irrelevance).
Simplifying of the statement in logic gives exactly the corresponding
statement in the model: the comment after simpl shows the proof goal at
that point.

What this means is that one can build a complete proof theory for
a complex separation logic, and prove its soundness with full access to
the underlying model; then the same exact lemmas serve as proofs of an
opaque, logical view of the same theory.

Because our proof theory of separation logic is incomplete, occasionally
we will want to prove a theorem by recourse to the model—our separation
algebras and join relation. This is easy to do: Our implementation of
Instance algSepLog concludes with Defined, not with Qed. We mark this
instance as Opaque, which is a suggestion that the user should treat it ab-
stractly. The Opaque marking can be unsealed when needed by using Coq’s
Transparent command. This allows the client of Instance algSepLog to
evade the abstraction when absolutely necessary.
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Chapter 14

Simplification by rewriting

Proofs in separation logic often require many applications of simple lemmas
to rearrange formulas. These would be tedious to write out by hand, so we
employ proof automation—either programmed in Coq’s tactic language, or
by computational reflection.

In separation systems built semantically (Chapter 8), where P ∗Q is
equal to λh.∃h1, h2.h1⊕h2 = h∧ P(h1)∧ P(h2), proof algorithms should not
unfold x |= p ∗ q into its semantic meaning. Although it would be sound
and correct to unfold sepcon into ⊕, this would expose y and z and a
multiplicity of ⊕ facts. The point of separation logic is to hide these behind
the ∗ abstraction. And of course, in separation systems built abstractly as a
logic (Chapter 12), one cannot descend into ⊕.

Several authors have built tactic libraries for separation logic, including
Appel [6], McCreight [66], Tuerk [88], Chlipala [33], and Bengtson
[16]. Here we present one component of a proof automation system:
normalization. This is a system of tactics for simplification by rewriting in
separation logic. It demonstrates some principles and is useful in many
proofs, such as the case study of Chapters 18–20. In Chapter 26 we describe
other parts of our Floyd proof automation system for Verifiable C.

THE NORMALIZER IS A COLLECTION OF LEMMAS AND REWRITE RULES in
msl/log_normalize.v. We start with a collection of equations used as
rewrite rules to simplify formulas:
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P ∗ emp= P emp ∗ P = P ⊤∧ P = P P ∧⊤= P ⊥∧ P =⊥

P ∧⊥=⊥ P−> ((!!P) =⊤) ¬P−> ((!!P) =⊥) P ∧ P = P

Recall that !!Q means that the pure logic proposition Q (of type Prop)
holds, regardless of whatever world or subheap is our current context.
Here we write −> for Coq’s native (meta-level) implication, distinct
from the predicate-implication operator of our separation logic. Thus,
P−> ((!!P) =⊤) means, “if the proposition P is true, rewrite !!P to ⊤.”

These tactical systems are meant to help in proving entailments of the
form P ⊢Q (pronounced “P | - - Q” or “derives P Q” in Coq). Consider how
we prove an entailment in ordinary logic:

Goal ∀ (P Q R: nat →Prop),
(∀ z, P z →Q (S z)) → (∃ z, P z) ∧ R 0 → (∃ y, Q y).

Proof. intros P Q R H.

At this point our proof goal is,

P : nat →Prop
Q : nat →Prop
R : nat →Prop
H : ∀ z : nat, P z →Q (S z)

(1/1)
(∃ z, P z) ∧ R 0 → ∃y, Q y

and it is natural to intro H0 to move (∃z.Pz)∧ R 0 above the line, followed
by destruct H0 and so on.

In separation logic, one should not prove entailments this way, by simply
“moving the left part above the line” using intro. Consider this proof with
separating conjunction instead of ordinary conjunction:

Section Example.
Context {A}{NA: NatDed A}{SA: SepLog A}{CA: ClassicalSep A}.

Goal ∀P Q R: nat →A, (∀ z, P z ⊢Q (S z)) →
(EX z:nat, P z) ∗ R 0 ⊢ (EX y:nat, Q y) ∗ TT.

Proof. intros.
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This gives us proof goal “G”:

P : nat →A
Q : nat →A Proof goal G
R : nat →A
H : ∀ z : nat, P z ⊢Q (S z)

(1/1)
(EX z : nat, P z) ∗ R 0 ⊢ (EX y : nat, Q y) ∗ TT

If we were in %pred—the semantic, separation-algebra view, where ⊢ and
* are just abbreviations—we could intro and destruct to expose subheaps:

P,Q,R: nat →A
H : ∀ z : nat, P z ⊢Q (S z)
a,a1,a2 : A
H0 : join a1 a2 a
z : nat
H1 : (P z) a1
H2 : (R 0) a2

(1/1)
((EX y : nat, Q y) ∗ TT) a

But it would be wrong. These subheaps and joins are best kept hidden
under the abstraction of separation logic. And if we are in %logic—the
formal-system view where ⊢ and * are abstract—then we cannot do intro
and destruct to expose subheaps. So our tactical system will be designed
operate abstractly on entailments, as in proof goal G.

We use these rewrite rules to pull existentials to the outside of formulas
(assuming x not free in Q):

(∃x .P x) ∗Q = ∃x .(P x ∗Q) Q ∗ (∃x .P x) = ∃x .(Q ∗ P x)

(∃x .P x)∧Q = ∃x .(P x ∧Q) Q ∧ (∃x .P x) = ∃x .(Q ∧ P x)

If we apply these rewrites to goal G, we obtain G2:

EX x : nat, (P x ∗ R 0) ⊢ EX y : nat, Q y ∗ TT

The next two lemmas are operate on existentials underneath entailments:

exp_left
∀x . (P x ⊢Q)

(∃x .P) ⊢Q
exp_right

P ⊢Qx

P ⊢ ∃x .Qx
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From goal G2, we can write (apply exp-left; intro x) to move x “above the
line,” obtaining G3:

P,Q,R: nat →A
H : ∀ z : nat, P z ⊢Q (S z)
x : nat

(1/1)
P x ∗ R 0 ⊢EX x0 : nat, Q x0 ∗ TT

The reason we want to move hypotheses and variables above the line is that
Coq has a powerful system for naming, substituting, and applying variables
and hypotheses. We want to take advantage of this where possible. Since
the variable x is a natural number, an inhabitant of “pure logic” that is not
affected by separation, we move it above the line. On the other hand, P x
is a separation-logic predicate, “impure,” and we avoid moving it above the
line so as not to expose “raw” join relations.

From G3 we can finish the proof by

apply (exp-right (S x)); apply sepcon-derives; auto.

We make a Hint Rewrite database called norm containing all these
rewrite rules (and more besides). We make a tactic called normalize that
applies (autorewrite with norm) and applies lemmas such as exp-left where
appropriate. Then the proof goal G can be solved with,

normalize. intro x. apply (exp-right (S x)). apply sepcon-derives; auto.
Qed.

SEPARATION LOGIC FORMULAS often contain pure propositions, and these can
also be moved “above the line” in Coq. An example lemma is this one:

prop_andp_left
P → (Q ⊢ R)
!!P ∧Q ⊢ R

This converts the proof goal,

(1/1)
!!P && Q ⊢ R

into the goal



14. SIMPLIFICATION BY REWRITING 93

H: P
(1/1)

Q ⊢ R

where we can use the full power of Coq to manipulate P.
But to use this lemma, it’s helpful to bring the proposition P all the way

to the outside of any separating conjunctions in which it may be nested. For
this we have rewrite rules:

(!!Q ∧ R) ∗ P = !!Q ∧ (R ∗ P) (!!Q ∧ P) ∗ R = !!Q ∧ (R ∗ P)

Now consider this proof goal G5:

Q : nat →Prop
P : nat →A
R : nat →A
H : ∀ z : nat, Q z →Q (S z)
H0 : ∀ z : nat, !!Q (S z) && P z ⊢R z
z : nat

(1/1)
P z && !!Q z ⊢ !!Q (S z) && R z

Our normalize tactic does not only do rewriting, it applies lemmas such
as prop-andp-left (shown above) to move propositions above the line. One
application of normalize brings Qz above the line:

H : ∀ z : nat, Q z →Q (S z)
H0 : ∀ z : nat, !!Q (S z) && P z ⊢R z
z : nat
H1 : Q z

(1/1)
P z ⊢R z

Then we use the transitivity of entailment with hypothesis H0, that is,
eapply derives-trans; [ | apply H0]; to obtain the goal,

P z ⊢ !!Q (S z) && P z

which solves easily by apply andp-right; [apply prop-right; auto | auto].
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Chapter 15

Introduction to step-indexing

Many kinds of recursive definitions and recursive predicates appear in the
descriptions of programs and programming languages. Some recursive
definitions, such as list and tree data structures, are naturally covariant;
these are straightforward to handle using a simple least-fixed-point method
as described in Chapter 10. But some useful kinds of self-referencing
definitions are not covariant. When the recursion goes through function
arguments, it may be contravariant (see Ffunopt on page 64) or some mixture
that is neither covariant nor contravariant. This kind of recursion requires
more difficult mathematics, yet it is essential in reasoning about certain
kinds of programs:

• Object-oriented programs in which class C has methods with a “this”
or “self” parameter of type C;

• Functional programming languages with mutable references at higher
types—such as ML;

• Concurrent languages with dynamically creatable locks whose re-
source invariants can describe other locks—a typical idiom in Pthreads
concurrency;

• Functional languages (such as ML) where datatype recursion can go
through function-parameters.
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DOES THE C PROGRAMMING LANGUAGE HAVE THESE FEATURES? Well, yes. C’s
type system is rather loose (with casts to void∗ and back). C programs that
use void∗ in design patterns similar to objects or function closures can be
perfectly correct, but proving their correctness in a program logic may need
noncovariant recursion.

This chapter, and the next two chapters (predicate implication and
subtyping; general recursive predicates) present the logical machinery to
reason about such recursions in the VST program logics.

For simplicitly, we will illustrate using the linked-list data type—even
though it is entirely covariant and does not require such heavy machinery.
Here again are two (roughly) equivalent definitions:

Flist = λQ.1+ (int×Q)

Definition lisfun (Q: nat →pred heap) (p: nat) : pred heap:=
!!(p=0) && emp || !!(p<>0) && EX r:nat, mapsto p r ∗ Q r.

Consider what kinds of values properly belong to the list type, and what
values almost belong or approximately belong. Here’s a linked list x of
length 4, terminated by the null-pointer 0:

0x
On the other hand, the data structure y has a wild pointer in the third cell,
that would be unsafe to dereference:

y

We say that x is a list, and y is approximately a list. To make this more
precise, we consider the safety of functions that operate on linked lists,
such as this function f:

int f (list p) { while (p ̸=0) p=p→next; }

If we run the program f (x), it will be safe; if we run f (y), it will eventually
dereference the wild pointer, and crash. This is because y is not a list: it is
malformed.
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But suppose we run f (y) for only two or three steps—then it will not
have a chance to crash. We say that f (y) is safe for 3 steps. Any function on
lists will be safe for 3 steps on argument y . Even if the function wastes no
time on any operation other than p→next, three executions of p=p→next
leaves p containing the wild pointer, not yet dereferenced.

To approximation 3, y is a linked list: any program that expects a linked
list will be safe for at least 3 steps. The pointer z is a list to
approximation 1, and any value is a list to approximation 0.

We want to prove that a program is safe (or correct). Usually we define
that to mean that no matter how many steps it executes, the next step will
not crash (or violate its partial-correctness specification). But suppose we
have a limited attention span: we have time to run the program for only k
steps before our coffee break, and we don’t care if it crashes after that. We
just want to prove it is safe for k steps. (We will prove this for an arbitrary
k, and when the proof is done we will quantify over all k.)

Now, suppose we have a pointer p that is a list to approximation 3. That
is, perhaps p = x or p = y . Later, after we take one step q=p→next, we
will know that q is a list to approximation 2.

It is critical that whenever we have a value p that belongs to type τ at
approximation k+ 1, and we do an operation on p to get another value q
of approximate type τ′, it must be that q belongs to τ′ to approximation at
least k. (In our example of p→next, τ= τ′ = list.)

We can express this in the specification of the data structure by using the
◃ operator, pronounced “later.” The predicate ◃P means that P holds later,
or P holds approximately. If our goal is to ensure that some computation is
safe for k steps, then v |= ◃P means that value v is a member of P to at least
approximation k − 1. It would be unsafe to run k steps on v, but by the
time we fetch v out of the data structure, we will have used up one step, so
we have only k− 1 steps remaining.

We use the ◃ later operator in the definition of recursive types and
recursive predicates:

F ′list = λQ.1+ (int× ◃Q)

Definition lisfun’ (Q: nat →pred heap) (p: nat) : pred heap:=
!!(p=0) && emp || !!(p<>0) && EX r:nat, mapsto p r ∗ ◃ Q r.
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Suppose F ′list(Q) is testing whether some value x or y is a list to approxima-
tion k; that is, F ′list(Q) is considering only whether executions of ≤ k steps
can go wrong. In such a test, the natural definition of a list will fetch the
tail-pointer out of the first list-cell—this pointer is called r in the definition
of listfun’—and test whether r is satisfies Q. But the ◃later operator in front
of Q ensures that F ′list(Q) or listfun’ can only test this to approximation
k− 1, that is, considering executions of strictly < k execution steps.

Given two predicates P and Q, we say that P = Q to approximation k
if, considering only executions of ≤ k steps, there is no value x such that
P(x) ̸= Q(x). We will make all of this more formal in Part V of the book.
Now we define a step-indexing recursion operator such that µF = F(µF).
This µ operator is more powerful than the least-fixed-point µ used for
covariant recursion, but it requires F to be contractive—that is, whenever
P = Q at approximation k then F(P) = F(Q) at k+ 1. Informally, if every
use of x within F(x) is prefixed by ◃, then F will be contractive, provided
that all the other operators used in the definition of F are nonexpansive.

We say F is nonexpansive to mean, whenever P = Q at approximation k
then F(P) = F(Q) at k. The operators that we normally use in type systems
and separation logics are all naturally nonexpansive.

THEOREM. lisfun’ is contractive. Proof. ◃ is contractive, thus λQ.λr.(◃Q)r
is contractive (by η-equivalence). Constant functions are contractive, thus
λQr.p r (which doesn’t mention Q) is contractive. Separating conjunction
is nonexpansive, and the composition of a nonexpansive with a contractive
function is contractive, so λQr. p r ∗ ◃Qr is contractive. The constant
function λQr. !!(p = 0)∧ emp is contractive. The operators EX, &&, || are
nonexpansive. Qed.

COROLLARY. µ(lisfun’) is a fixed point of lisfun’, and thus describes linked-list
data structures.

THE IDEA OF TAKING SUCCESSIVELY ACCURATE APPROXIMATIONS goes back to
Dana Scott [84]. The formulation as step-indexing is due to Appel and
McAllester [10], influenced by MacQueen, Plotkin, and Sethi [65]. Ahmed
[4] developed a more expressive step-indexed model to handle ML-style
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mutable references; Appel et al. [11] reformulated this using the ◃ later
operator, influenced by Nakano [68]. Hobor, Dockins, and Appel [52]
generalized Ahmed’s model to handle “predicates in the heap” and many
other patterns of recursive predicates and recursive types—the resulting
general formulation is called indirection theory.

Just as we represent natural deduction and separation logic as type-
classes (NatDed and SepLog) in Coq, we can define indirection theory as a
type-class. Class Indir adds the later ◃ operator to natural deduction, with
axioms that show how ◃ commutes over disjunction, conjunction, and so
on. SepIndir adds axioms for ◃ commuting with separating-conjuction ∗
and the magic wands −∗,−◦. (See Figure 15.1.)

Class Indir (A: Type) {ND: NatDed A} := mkIndir {
later: A →A;
now-later: ∀P: A, P ⊢◃P;
later-K: ∀P Q, ◃(P−→Q) ⊢◃P −→◃Q;
later-allp: ∀T (F: T→A), ◃(ALL x:T, F x) = ALL x:T, ◃(F x);
later-exp: ∀T (F: T→A), EX x:T, ◃(F x) ⊢◃(EX x: F x);
later-exp’: ∀T (any:T) F, ◃(EX x: F x) = EX x:T, ◃(F x);
later-imp: ∀P Q, ◃(P−→Q) = ◃P −→◃Q;
loeb: ∀P, ◃P ⊢P →TT ⊢P

}.

Class SepIndir (A: Type) {NA: NatDed A}{SA: SepLog A}{IA: Indir A} :=
mkSepIndir {
later-sepcon: ∀P Q, ◃(P ∗ Q) = ◃P ∗ ◃Q;
later-wand: ∀P Q, ◃(P −∗ Q) = ◃P −∗ ◃Q;
later-ewand: ∀P Q, ◃(P −◦ Q) = (◃P) −◦ (◃Q)

}.

Figure 15.1: Indirection theory as a formal system (part 1).
Part 2, the rules for subtyping and recursion, are in Figure 16.1
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Chapter 16

Predicate implication and subtyping

Let us continue the construction of the logical mechanism for describing
recursive types.1 Readers who merely want to use theories of recursive
types, who do not need to construct these theories as this chapter and the
next will explain how to do, might reasonably skip to Chapter 18.

When we describe a particular object in separation logic, we will use
mapsto and separating conjunction ∗. But when we describe entire
classes of objects, for example, datatypes such as lists and trees, we need a
notion of implication.

Let P and Q be predicates on worlds of type A, that is, P : predA.
Then P → Q is a predA; world w satisfies w |= P → Q iff, provided that
w |= P then w |= Q. Actually, it means more than that: because predicates
(including P → Q) must be preserved under the later ◃ operator: for any
world w′ in the future of w, if w′ |= P then w′ |=Q.

So, w |= P → Q is a claim about w and its approximations. In contrast,
the statement P ⊢Q is a statement about all worlds: for all w, if w |= P then
w |=Q. This is a proposition (Prop), not a predicate about a specific world.

But sometimes we want a formula that in world w makes a claim about
all worlds, not just about w—that is, we want to reflect the ⊢ operator
into the logic. The naive reflection does not work, because of a technical
restriction of indirection theory. Any predicate R must be preserved under

1The operators described in this chapter are defined in msl/subtypes.v.
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the ◃ later operator, that is, R ⊢ ◃R. But if P [⊢]Q were a predicate in the
logic meaning "for all w, w |= P implies w |=Q", then it would quantify over
w in the past; unfortunately we cannot prove (P [⊢]Q) ⊢ ◃(P [⊢]Q).

That is, within an operator of our logic we cannot quantify over all
worlds; in particular, we cannot quantify over worlds that occur in the past.
But we can quantify over all present and future worlds, using the operator #
(pronounced fashionably). The predicate #P means that P is “fashionable,”
it holds in all worlds of the current age and in all later worlds.

When we write #P, it hardly matters what world we say it in, except for
the age-level of the world. Even if P is a predicate on operational-semantic
heaps, #P is a predicate that does not care anything about the internal
structure of its particular world except the age. We emphasize this by
saying that #P is not a predicate on heaps, it belongs to a special Natural
Deduction system called Triv.

Definition Triv := predicates-hered.pred nat.
Instance TrivNatDed: NatDed Triv := algNatDed nat.
Instance TrivSeplog: SepLog Triv := algSepLog nat.

Triv really is trivial: At any particular age, it contains the predicates true
⊤ and false ⊥. In contrast, a nontrivial natural deduction system can have
predicates such as 3 5 which are true in some worlds (heaps) but not
others.

We say n |= #(P −→ Q) to mean, “for any heap w at age n or later,
w |= P −→ Q.” Even though P and Q are (nontrivial) predicates on heaps,
the predicate #(P −→ Q) belongs to Triv: in deciding whether it is true or
false, there’s no extra information to be gained from the trivial semantic
world in which #(P −→Q) is interpreted.

Now we can formally introduce (Figure 16.1) the RecIndir class, that
axiomatizes the parts of indirection theory that handle fashionability,
subtyping, and recursive types.
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Class RecIndir (A: Type) {NA: NatDed A}{IA: Indir A} := mkRecIndir {
fash : A →Triv;
unfash : Triv →A;
HORec : ∀{X} (f: (X →A) → (X →A)), X →A;
unfash-fash: ∀P: A, unfash (fash P) ⊢P;
fash-K: ∀P Q, fash (P −→Q) ⊢ fash P −→ fash Q;
fash-derives: ∀P Q, P ⊢Q → fash P ⊢ fash Q;
unfash-derives: ∀P Q, P ⊢Q →unfash P ⊢unfash Q;
later-fash: ∀P, later (fash P) = fash (later P);
later-unfash: ∀P, later (unfash P) = unfash (later P);
fash-andp: ∀P Q, fash (P && Q) = fash P && fash Q;
unfash-allp: ∀{B} (P: B →Triv),

unfash (allp P) = ALL x:B, unfash (P x);
subp-allp: ∀G B (X Y:B →A),

(∀ x:B, G ⊢ fash (imp (X x) (Y x))) →
G ⊢ fash (imp (allp X) (allp Y));

subp-exp: ∀G B (X Y:B →A),
(∀ x:B, G ⊢ fash (imp (X x) (Y x))) →
G ⊢ fash (imp (exp X) (exp Y));

subp-e: ∀ (P Q : A), TT ⊢ fash (P −→Q) →P ⊢Q;
subp-i1: ∀P (Q R: A), unfash P && Q ⊢R →P ⊢ fash (Q −→R);
fash-TT: ∀G, G ⊢ fash TT;
HOcontractive: . . . (Chapter 17)
HORec-fold-unfold : ∀X (f: (X →A) → (X →A)),

HOcontractive f → HORec f = f (HORec f)
}.

Figure 16.1: Logical operators for subtyping and recursion
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fash_K
#(P →Q) ⊢ #P → #Q

fash_fash
##P = #P

fash_derives
P ⊢Q

#P ⊢ #Q
fash_and

#(P ∧Q) = #P ∧#Q

later_fash
◃#P = # ◃ P

fash_allp
#(∀x . P) = ∀x .#P

We use # to define a predicate inclusion operator, #(P → Q), written
as P Q and pronounced “P is a subtype of Q.” That is, n |= P Q means
that for all worlds w whose level is ≤ n, if w |= P then w |=Q.

Notation "P ’>=>’ Q" := (#(P --> Q))
(at level 55, right associativity):pred.

Notation "P ’<=>’ Q" := (#(P <--> Q))
(at level 57, no associativity):pred.

Subtyping is reflexive and transitive. Equityping (P⇔ Q) is reflexive,
symmetric, and transitive, and is equivalent (but not equal) to P Q ∧
Q P.

subp_top
Γ ⊢ P ⊤

subp_andp
Γ ⊢ P P ′ Γ ⊢Q Q′

Γ ⊢ (P ∧Q) (P ′ ∧Q′)

subp_bot
Γ ⊢ ⊥ P

subp_impl
Γ ⊢ P ′ P Γ ⊢Q Q′

Γ ⊢ (P →Q) (P ′→Q′)

subp_later
◃(P Q) = (◃P) (◃Q)

ANY SUBTYPING OR EQUITYPING FORMULA P Q or P ⇔ Q is a formula in
Triv, but sometimes we want to inject it into a NatDed system on some
other type. We do this with the operator !, for example !(P Q).

unfash {A}{NA: NatDed A}{IA: Indir A}{RA: RecIndir A} : Triv→A.

Notation "’!’ e" := (unfash e) (at level 30, right associativity): pred.
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Finally, we have one more typeclass SepRec to explain how unfash
distributes over separation:

Class SepRec (A: Type) {NA: NatDed A}{SA: SepLog A}
{IA: Indir A}{RA: RecIndir A} := mkSepRec {

unfash-sepcon-distrib: ∀ (P: Triv) (Q R: A),
!P && (Q∗R) = (!P && Q) ∗ (!P && R)

}.

EXAMPLE. Consider this use of subtyping. We’d like to say “P implies Q,
and P ∗ R, therefore Q ∗ R.” But it won’t suffice to say (P −→ Q)&& (P ∗ R),
because P −→Q is talking about the same world as P ∗R is, and P probably
doesn’t hold in that world unless R= emp. We say instead,

!#(P −→Q)&& (P∗R) ⊢Q∗R or equivalently !(P Q)&& (P∗R) ⊢Q∗R

We can prove this lemma as follows:

Lemma subtype-example {A}{NA: NatDed A}{SL: SepLog A}{IA: Indir A}
{RA: RecIndir A}{SRA: SepRec A}:

∀P Q R : A, !(P Q) && (P ∗ R) ⊢Q ∗ R.

Proof. First, rewrite by unfash-sepcon-distrib to get (!(P Q)&& P) ∗
(!(P Q)&& R). Use sepcon-derives to get two subgoals, !(P Q)&& P ⊢ Q
and !(P Q)&& R ⊢ R; the latter is trivial by andp-left2. Then !(P Q) is
identical to !(#(P −→ Q)) which by unfash-fash implies P −→ Q, and we
finish by modus-ponens.

THE MOST IMPORTANT APPLICATION OF SUBTYPING is in the specification of
the recursion operator µ and the related notion of contractiveness; these are
explained in the next chapter.
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Chapter 17

General recursive predicates

Let mpred be our type of predicates on heaps, such as x y . Another kind
of mpred is the function-pointer specification p : {Q}→{R}, which means
that p is the address of a function with precondition Q and postcondition R.

To specify data types such as lists and trees we use recursive predicates:

lis(p: nat) : mpred :=
!!(p=0) && emp || !!(p̸=0) && EX r:nat, p r ∗ lis(r).

tree (p:nat) : mpred :=
!!(p=0) && emp
|| !!(p ̸=0) && EX r1:nat, EX r2:nat, p r1 ∗ (p+1) r2 ∗ tree(r).

Because these definitions are self-referential, they are only informal. To
avoid self-reference we take fixed points of the following functions:

Flis (Q: nat →mpred) (p: nat) : mpred :=
!!(p=0) && emp || !!(p̸=0) && EX r:nat, p r ∗ Q(r).

Ftree (Q: nat →mpred) (p:nat) : mpred :=
!!(p=0) && emp
|| !!(p ̸=0) && EX r1:nat, EX r2:nat, p r1 ∗ (p+1) r2 ∗ Q(r).

Ffunny (Q: nat →mpred) (p:nat) : mpred :=
!!(p=0) && emp || !!(p̸=0) && p:{Q}→{Q}
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An element of type funny is either a nullpointer or a nonzero pointer to a
function from funny to funny.

These three functions on predicates—Flis, Ftree, and Ffunny—(can be
adjusted to) have useful fixed points. The basic reason is they cannot get
to their argument Q without traversing some sort of predicate that implies
at least one step of computation, and that is the basis on which we can do
an induction. For lis and tree the “step-related” predicate is , hinting
that given p x one cannot do anything with x without executing a load
instruction. For funny it is the function arrow; given p : {Q} → {Q} one
cannot notice whether an actual parameter fails to obey Q without doing a
call instruction to address p.

But each of the next four functions does not have a useful fixed point,
and the basic reason is that the use of Q is not tied to an execution step:

Fstrange (Q: nat →mpred) (p:nat) := Q(p+1).

Ω (Q: nat →mpred) (p:nat) := Q(p).

G (Q: nat →mpred) (p:nat) := Q(p) || !!(p=0).

H (Q: B →mpred) (p:B) : mpred := fun w ⇒ ∀w’, Q p w’.

In the case of Ω, given p one already has the value to which Q is applied—
without any steps of computation. In the case of G, a disjunctive type does
not use an actual machine-instruction to choose between Q or (p = 0). The
case of strange is a bit less obvious, but consider that n unfoldings of Fstrange
can be accounted for by just one instruction that computes p + n. The H
function “cheats” by applying Q at a world w′ that may be at a higher level
of accuracy than its argument w; this defeats our strategy of counting the
remaining steps of computation.

Let us ◃ mark the place within the well-behaved functions where a
computation step must be used before testing Q:

F ′lis (Q: nat →mpred) (p: nat) : mpred :=
!!(p=0) && emp || !!(p̸=0) && EX r:nat, p r ∗ ◃ Q(r).
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F ′tree (Q: nat →mpred) (p:nat) : mpred :=
!!(p=0) && emp
|| !!(p ̸=0) && EX r1:nat, EX r2:nat, p r1 ∗ (p+1) r2 ∗ ◃ Q(r).

F ′funny (Q: nat →mpred) (p:nat) : mpred :=
!!(p=0) && emp
|| !!(p ̸=0) && p:{◃Q}→{◃Q}

This ◃ marking is not just a syntactic notation; it is our later operator.
We say that instead of Q we have a slightly weaker approximation to it, ◃Q.

What is the connection between “executing at least one instruction
before unfolding F” and “a weaker approximation to Q?” Suppose we had
planned to run the program for just k+ 1 steps “before our coffee break,”
before we no longer care whether it crashes. Then Q in a Hoare assertion
means that predicate Q holds to accuracy k+1, and ◃Q means Q holds only
to accuracy k. But we know that one instruction-step will be executed in
executing the load or call instruction, so after that step, only k steps will
remain “before the coffee break,” so ◃Q is a strong enough predicate.

Contractive predicate-functions F(Q) apply their argument Q only at
weaker approximations. To find a fixed point of a function F : predA →
predA in indirection theory, we need F to be contractive.

Definition contractive {A}{NA: NatDed A}{IA: Indir A}
{RA: RecIndir A} (F: A→A) :=

∀P Q, ◃(P⇔Q) ⊢F P⇔F Q.

Definition nonexpansive {A}{NA: NatDed A}{IA: Indir A}
{RA: RecIndir A} (F: A→A) :=

∀P Q, (P⇔Q) ⊢F P⇔F Q.

But in fact the F ′ are not just predicates in A, they are functions from
nat to A. So we need a higher-order notion of contractiveness:

Definition HOcontractive {A}{NA: NatDed A}{IA: Indir A}
{RA: RecIndir A} (X: Type) (F: (X→A)→ (X→A)) : Prop :=

∀P Q, (All x:X, ◃(P x⇔Q x)) ⊢ (ALL x:X, F P x⇔F Q x).
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Definition HOnonexpansive {A}{NA: NatDed A}{IA: Indir A}
{RA: RecIndir A} (X: Type) (F: (X→A)→ (X→A)) : Prop :=

∀P Q, (ALL x:X, P x⇔Q x) ⊢ (ALL x:X, F P x⇔F Q x).

The ◃ later operator is itself contractive: ◃(P⇔Q) ⊢ ◃P⇔ ◃Q.
Proof: by derives-trans, later-fash1, fash-derives, later-and, later-impl.

A nonexpansive operator composed with a contractive operator is con-
tractive. Any useful contractive operator is likely to be the composition of ◃
with nonexpansive operators. The operators andp (&&), imp (−→ ), allp (ALL), exp (EX), sepcon (∗)
are nonexpansive.

Figure 17.1 shows the rules for proving contractiveness. Each of these
rules is proved as a lemma from the definition of contractiveness and
the axioms about the various operators. To use the rules, first apply
prove-HOcontractive, then the others follow in a goal-directed way.

THEOREM. F ′lis is contractive.
Proof. First apply prove-HOcontractive, yielding this proof goal:

P,Q : adr →mpred
x : adr
--------------------------------------(1/1)
ALL x0 : adr , ◃P x0⇔◃Q x0
⊢ !!(x = nil) && emp || !!(x <> nil) && (EX r : adr, next x r ∗ ◃P r)

!!(x = nil) && emp || !!(x <> nil) && (EX r : adr, next x r ∗ ◃Q r)

Then the rest of the proof is deduced structurally from the form of the term:

Proof. unfold Flis’; apply prove-HOcontractive; intros.
apply subp-orp.

apply subp-refl.
apply subp-andp.
apply subp-refl.

apply subp-exp; intro.
apply subp-sepcon.

apply subp-refl.
apply allp-imp2-later-e1.

Qed.
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prove_HOcontractive
∀P,Q.(∀x . ◃ P x⇔ ◃Qx) ⊢ F P y FQ y

HOcontractive F

subp_refl
Γ ⊢ P P

subp_imp
Γ ⊢ P P ′ Γ ⊢Q Q′

Γ ⊢ (P −→Q) (P ′ −→Q′)

subp_top
Γ ⊢ P ⊤

subp_andp
Γ ⊢ P P ′ Γ ⊢Q Q′

Γ ⊢ (P &&Q) (P ′&&Q′)

subp_bot
Γ ⊢ P ⊥

subp_orp
Γ ⊢ P P ′ Γ ⊢Q Q′

Γ ⊢ (P ∥Q) (P ′ ∥Q′)

subp_subp
Γ ⊢ P P ′ Γ ⊢Q Q′

Γ ⊢ (P Q) (P ′ Q′)

subp_sepcon
Γ ⊢ P P ′ Γ ⊢Q Q′

Γ ⊢ (P ∗Q) (P ′ ∗Q′)

subp_allp
∀x : B. Γ ⊢ P x Qx

Γ ⊢ (∀x .P x) (∀x .Qx)
subp_allp

∀x : B. Γ ⊢ P x Qx

Γ ⊢ (∃x .P x) (∃x .Qx)

allp_imp2_later_e1
(∀x : B. ◃ P x⇔ ◃Qx) ⊢ ◃ P y ◃ Q y

allp_imp2_later_e2
(∀x : B. ◃ P x⇔ ◃Qx) ⊢ ◃ Q y ◃ P y

Figure 17.1: Rules for proving contractiveness
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In fact, it’s so automatic that we put all the rules of Figure 17.1
into a Hint Resolve database “contractive,” and solve such goals by
auto 50 with contractive.

THE RECURSION OPERATOR HORec is our µ operator on higher-order predi-
cates. In ?? we will describe its semantic definition, leading to the proof of
the HORec-fold-unfold theorem.

Definition HORec {A}{NA: NatDed A}{IA: Indir A}{RA: RecIndir A}
{X: Type} (F: (X→A)→ (X→A)) (x: X) : A := . . .

Lemma HORec-fold-unfold{A}{NA: NatDed A}{IA: Indir A}{RA: RecIndir A} :
∀X F, HOcontractive (X:=X) F → HORec F = F (HORec F).

THEOREM.

HORec (F ′lis) = F ′lis (HORec (F ′lis))
HORec (F ′tree) = F ′tree (HORec (F ′tree))
HORec (F ′funny) = F ′funny (HORec (F ′funny))

Proof. By HORec-fold-unfold, solving contractiveness by auto.

TO MAKE USE OF these equations, one must be able to accommodate the
loss of accuracy implied by the ◃ operator. Define lis = HORec(F ′lis), and
consider a typical situation such as this:

assert{p̸=0 && lis(p)}
q := p→next;
assert{p - ∗ lis(q)}

To prove this Hoare triple, we can unfold lis, then eliminate the disjunct
that is inconsistent with p ̸= 0:

assert{p̸=0 && lis(p)}
assert{EX r:nat, p r ∗ ◃ lis(r)}
assert{p r ∗ ◃ lis(r)}
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Next, using the frame rule and the load rule, we can fetch from p→next. If
the rule for load were simply

{((p.next) v ∗ P)[v/q]} q := p.next {(p.next) v ∗ P}

then we could prove

assert{p r ∗ ◃ lis(r)}
q := p→next;
assert{p r ∗ ◃ lis(q)}
But this is not good enough: we have ◃ lis(q) (that is, lis(q) holds to a
weaker approximation) but we need the stronger fact lis(q) demanded by
the postcondition.

In fact, in a step-indexed separation logic, the Hoare triple for load is
stronger:

{((p.next) v ∗ ◃P)[v/q]} q := p.next {(p.next) v ∗ P}

The difference is the ◃ operator: the precondition does not require that P
hold now, it will suffice that it holds soon. If before executing the instruction
we planned to execute no more than k+ 1 instructions, then P[v/q] in the
precondition means that P[v/q] holds to accuracy k + 1, while P in the
postcondition means that P must hold to accuracy k. But accuracy k+ 1 is
more than we need; after the instruction completes its step, only k steps
remain for which we care about safety. Therefore it suffices that P[v/q]
holds with accuracy k, which we obtain by writing ◃P[v/q]. This Hoare
triple is stronger because its precondition is slighly weaker, and it is typical
of the style used in indirection theory.

For those many steps in a separation-logic proof that do not involve
the unfolding of recursive types,v one can use the usual rule for load, with
precondition ((p.f) v ∗ P)[v/q]. This can be derived as a corollary, since
P ⊢ ◃P.

HERE WE HAVE PRESENTED magical rules involving the ◃ later operator, and
justified them with just-so stories about coffee breaks. Somehow the Hoare
triple {P} c {Q} must apply P to a world at approximation-level k+ 1 but
apply Q to a world at level k. Later, Part V will illustrate how this can be
done.
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Chapter 18

Case study: Separation logic with
first-class functions

In a conventional separation logic we have a “maps-to” operator a b
saying that the heap contains (exactly) one cell at address a containing
value b. This operator in the separation logic corresponds to the load and
store operators of the operational semantics.

Now consider two more operators of an operational semantics: function
call and function definition. When function names are static and global, we
can simply have a global table relating functions to their specifications—
where a specification gives the function’s precondition and postcondition.
But when the address of a function can be kept in a variable, we want
local specifications of function-pointer variables, and ideally these local
specifications should be as modular as the rest of our separation logic.
For example, they should satisfy the frame rule. That is, we might like
to write assertions such as (a b) ∗ ( f : {P}{Q}) meaning that a is a
memory location containing value b, and a different address f is a function
with precondition P and postcondition Q. Furthermore, the separation ∗
guarantees that storing to a will not overwrite the body of f .

To illustrate these ideas in practice, we will consider a tiny programming
language called Cont.1 The functions in this language take parameters

1This chapter describes the Coq development in examples/cont. The file
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f (x , y, z) but they do not return; thus, they are continuations.

adr v ::= 0, 1,2, . . .
offset δ ::= 0, 1,2, . . .
var x , y, z, . . .

expr e ::= v
| x
| e+δ
| [e]

control c ::= e1 := e2; c
| If e Then c1 Else c2

| Go e (e0, . . . , en−1)

Definition adr := nat.
Definition var := nat.

Inductive expr :=
| Const: adr →expr
| Var: var →expr
| Offset: expr →nat →expr
| Mem: expr →expr.

Inductive control :=
| Assign:expr→expr→control

→control
| If: expr →control →control

→control
| Go: expr → list expr →control.

OPERATIONAL SEMANTICS. The small-step semantics operates on states
comprised of (locals× heap× control), where:

locals is the local-variable environment mapping variables to addresses; we
use tables exactly as in Chapter 9.

heap is a function from adr to option adr. We do not use tables because we
do not want any restriction to a finite domain.

control is the “program counter,” the command type shown above.

We will use big-step evaluation for expressions and small-step eval-
uation for commands. Expression evaluation is written s, h ⊢E e ⇓ v in
mathematical notation, expr-get s h e = Some v in Coq. It evaluates
expression e with locals s and heap h according to these rules:

examples/cont/language.v gives the syntax and operational semantics shown here.
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s, h ⊢E n ⇓ n

s(x) = Some v

s, h ⊢E x ⇓ s(v)

s, h ⊢E e ⇓ v

s, h ⊢E e+δ ⇓ v+δ

s, h ⊢E e ⇓ v h(v) = Some v′

s, h ⊢E [e] ⇓ v′

The function step pσ = Someσ′ implements the small-step relation
σ

p
7−→ σ′ for a program p, according to these rules:

s, h ⊢E e ⇓ v

〈s, h, (x := e; c)〉
p
7−→ 〈s[x := v], h, c〉

s, h ⊢E e ⇓ v s, h ⊢E e′ ⇓ v′

〈s, h, ([e] := e′; c)〉
p
7−→ 〈s, h[v := v′], c〉

s, h ⊢E e ⇓ v v ̸= 0



s, h, If eThen c1 Else c2

� p
7−→



s, h, c1

�

s, h ⊢E e ⇓ v v = 0



s, h, If eThen c1 Else c2

� p
7−→



s, h, c2

�

s, h ⊢E e ⇓ v p(v) = Some ( x⃗ , c) s, h ⊢E ei ⇓ vi



s, h, Go e (e0, . . . , en−1)
� p
7−→



[(x0, v0), . . . , (xn−1, vn−1)], h, c
�

We will define multi-step execution as a Fixpoint rather than by
Inductive so that Coq can evaluate programs by Compute. The function
stepN runs program p for n steps: σ

p
7−→nσ′.

Fixpoint stepN (p: program) (σ: state) (n: nat) : option state :=
match n with O ⇒ Some σ
| S n’ ⇒ match step p σ with Some σ′ ⇒ stepN p σ′ n’
| -⇒ None end
end.
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OUR GOAL IS TO USE SEPARATION LOGIC TO PROVE SAFETY.2 The small-step
relation

p
7−→ gets stuck if it dereferences an unallocated memory location,

if it assigns to an expression (e.g., Const 2) that is not an l-value, or if it
jumps to an address that is not a function. A program is safe if it never gets
stuck. To keep this case study simple, we say the only safe programs are
those that infinite-loop.

A PROGRAM p IS A TABLE MAPPING ADDRESSES TO COMMANDS, for example,

Let a : var := 0. Let s : var := 1. Let p : var := 2. Let r : var := 3.
Let START : adr := 0. Let LOOP : adr := 1. Let DONE : adr := 2.

Definition myprog : program :=
(START, ([a],

Do Mem a := a .+ 1;
Do Mem (a .+ 1) := a .+ 2;
Do Mem (a .+ 2) := Const 0;
Go LOOP ((a.+3)::(Var a)::(Var a)::(Const DONE)::nil)))

:: (LOOP, ([a,s,p,r],
If p
Then (Do p := Mem p;

Go LOOP (Var a::Var s::Var p::Var r::nil))
Else Go r (Var a::Var s::nil)))

:: (DONE, ([a,s],
Go DONE (Var a::Var s::nil)))

:: nil.

This program can be written informally as,

START(a): [a]:= a+1; [a+1]:=a+2; [a+2]:=0; LOOP(a+3,a,a,DONE)
LOOP(a,s,p,r): if p̸=0 then (p:=[p]; LOOP(a,s,p,r)) else r(a,s)
DONE(a,s): DONE(a,s)

Programs are executed from START (address 0) with an (infinite) initial
heap starting at address a, and a variable environment (locals) containing

2And thereby correctness; see the discussion on page 30.
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just the variable a. That is, a points to the beginning of a pool of heap
cells from which the program can allocate memory; we write the assertion
allocpool(a). Therefore, at entry to the START function, the assertion at left
describes the initial heap at right:

allocpool(a) 0 0 0 0 0 0

a0

The hatched region covers the range of addresses where the
program resides; that is, the addresses START, LOOP, DONE are between 0 and
a. After the first three store instructions of the START function, we have,

a 0 ∗ allocpool(a+ 3) 0 0 0 0
a+30

where a 0 means a list segment starting at address a and terminated by a
null-pointer 0. At the first entry to LOOP we have

s p ∗ p 0 ∗ allocpool(a) ∧
r : {[a, s]. s 0 ∗ allocpool(a)} 0 0 0 0

ap

s
where there is an (empty) list segment s p, a length-3 list p 0, and an
allocpool. The predicate r : {. . .} means that r is a function-pointer with
the given specification.

On the second entry to LOOP we have

(same invariant) 0 0 0 0
ap

s
but here s p is a nonempty list segment, the list p 0 has length 2.

THIS IS A LANGUAGE OF continuations, not functions: the Go command is a
kind of jump-with-arguments that passes actual parameters to the function’s
formal parameters. Therefore, Go LOOP [a.+3, Var a, Var a, Const DONE]
enters the function LOOP with a = a′ + 3, s = a′, p = a′, r = DONE, where
a′ means the value of a in the caller.

We use continuations in this case study to simplify the presentation,
but of course many real languages (such as C) are direct-style languages,
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meaning that their functions actually return to the caller. The techniques
we describe here do scale up to full-featured languages with not only
function-call but function-return.3

Notice that the LOOP function “returns” by calling its parameter r,
which is a function-pointer passed to it by START. We want to reason about
function-pointers in our higher-order separation logic.

SEPARATION LOGIC FOR THE CONTINUATION LANGUAGE. We write x y as usual
for a storage cell. We write allocpool(x) to mean that x is the beginning
of an infinite region of cells all containing 0. When a program wants to
allocate a cell of memory, it can use the equation

Lemma alloc: allocpool(a) = a 0 ∗ allocpool(a+ 1)

We write lseg x y (or notation x y) to mean the list segment starting
at address x and whose last tail-pointer is y (with y ̸= x); if x = y then the
segment is empty.

We will write f : {S} to mean that f is a (pointer to a) function with
function-specification (funspec) S. In general, a funspec takes the form x⃗ .P
where x⃗ are formal-parameter names and P is a precondition that may refer
to the x i. For example, f : {[a, s, p]. allocpool(a) ∗ s p ∗ p 0} means that
we can call f safely, provided that we pass parameters (a, s, p) that satisfy
the given memory layout. In Coq notation we write contS f for f : {S}.

The assertion callS (e⃗) means that if the arguments e⃗ were substituted
for the formal parameters of S, then the predicate of S would be satisfied.

In this language there are no postconditions (because functions do not
return), so instead of a Hoare triple we have a Hoare double: {P}c means
that P is an appropriate precondition for the safety of command c.

Our little START/LOOP/DONE program can be specified as follows
3Chlipala [33] argues that the Hoare logic of continuations can be better than direct-

style functions not only for simplicity of presentation in a toy example, but for real software
engineering.



18. CASE STUDY: SEPARATION LOGIC WITH FIRST-CLASS FUNCTIONS 117

(examples/cont/seplogic.v):

START : [a]. allocpool(a)
LOOP : [a, s, p, r]. s p ∗ p 0 ∗ allocpool(a) ∧

r : {[a, s]. s 0 ∗ allocpool(a)}
DONE : [a, s]. s 0 ∗ allocpool(a)}

That is, a program specification (funspecs) is a table mapping addresses
to funspec, so we can write the specification of this program in Coq as,

Definition assert := env →mpred.
Definition funspec := list var × assert.
Definition funspecs := table adr funspec.

Definition STARTspec : funspec := (a::nil,
fun ρ ⇒ allocpool (eval (Var a) ρ)).

Definition DONEspec: funspec := (a::s::nil,
fun ρ ⇒ lseg (eval (Var s) ρ) (eval (Const 0) ρ)

∗ allocpool (eval (Var a) ρ)).
Definition LOOPspec: funspec := (a::s::p::r::nil,

fun ρ ⇒ lseg (eval (Var s) ρ) (eval (Var p) ρ)
∗ lseg (eval (Var p) ρ) (eval (Const 0) ρ)
∗ allocpool (eval (Var a) ρ)

&& cont DONEspec (eval (Var r) ρ)).
Definition myspec :=

(START,STARTspec)::((LOOP,LOOPspec)::(DONE,DONEspec)::nil).

Here we see that assertions are really functions from variable-environments
(env) to predicates on abstract heaps (mpred). Thus, in recent pages where
we write assertions such as s 0 ∗ allocpool(a) we are cheating: we should
write λρ. ρs 0 ∗ allocpool(ρa). In general, when an assertion contains an
open expression e (that is, e has free program variables), we should write
[[e]]ρ (or in Coq, eval e ρ).

TYPE SYSTEM. Separation logic is most convenient when applied to well-
typed programs, otherwise there are many trivial but annoying proof
obligations to make sure that each variable has a defined value. In
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an informal Hoare logic we write rules such as the assignment rule:
{P[e/x]} x := e {P} but this implicitly assumes that e actually has a value,
actually evaluates without getting stuck. How do we know that?

In real programming languages e might fail to evaluate for a variety of
reasons: expression ill-typed, uninitialized variable, divide by zero, and so
on. In some languages a type system can rule out many of these failures, for
well-typed programs.

In the Cont language, the only expression failures come from the use
of uninitialized variables, that is, variables that are not in the formal-
parameter list. We will use something resembling a type system for the
simple task of keeping track of initialized variables. A type environment ∆ is
just a set of variable-names. The judgment ∆ ⊢exp e, written expcheck ∆ e
in Coq, means that every variable in expression e is in ∆.

The judgment ∆ ⊢type c, written typecheck ∆ c, means that every
expression in c is well-typed, given that assignments within c can add more
variables to ∆.

∆ ⊢exp Const v
x ∈∆
∆ ⊢exp x

∆ ⊢exp e

∆ ⊢exp e+δ

∆ ⊢exp e x ,∆ ⊢type c

∆ ⊢type x := e; c

∆ ⊢exp e x ,∆ ⊢type c

∆ ⊢type x := [e]; c

∆ ⊢exp e1 ∆ ⊢exp e2 ∆ ⊢type c

∆ ⊢type [e1] := e2; c

∆ ⊢exp e ∆ ⊢type c1 ∆ ⊢type c2

∆ ⊢type If e Then c1 Else c2

∆ ⊢exp e ∀i. ∆ ⊢exp ei

∆ ⊢type Go e (e0, . . . , en−1)

There is no ⊢exp rule for memory-load expressions [e] because these
should not occur in general contexts; only as the entire right-hand side of
an assignment, which is really a special case (in separation logic) for a load
instruction, not an ordinary assign.

These rules are implemented as Fixpoints in Coq, so that typechecking
can be done efficiently by Compute.
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AXIOMATIC SEMANTICS. Figure 18.1 shows the separation logic proof rules
for the commands of our language. With these rules, along with auxiliary
lemmas about separation logic, one can prove things about the bodies of
functions. But we also need rules for function definitions, i.e. to prove that
a function’s body matches its specification.

semax_go
∆ ⊢type Go e (e0, . . . , en−1)

∆;Γ ⊢ {e : {S} ∧ call S (e0, . . . , en−1)} Go e (e0, . . . , en−1)

semax_assign
∆ ⊢type y x ,∆;Γ ⊢ {P}c

∆;Γ ⊢ {◃P[y/x]} x := y; c

semax_if
∆ ⊢type e ∆;Γ ⊢ {e ̸= 0∧ P}c1 ∆;Γ ⊢ {e = 0∧ P}c2

∆;Γ ⊢ {P} If e Then c1 Else c2

semax_load
∆ ⊢type e1 x ,∆;Γ ⊢ {P}c

∆;Γ ⊢ {(e1 e2 ∗⊤)∧ ◃P[e2/x]} x := [e1]; c

semax_store
∆ ⊢type e1 ∆ ⊢type e2 ∆;Γ ⊢ {e1 e2 ∗ P}c

∆;Γ ⊢ {e1 e3 ∗ P}[e1] := e2; c

semax_pre
∀ρ. Pρ ⊢ P ′ρ ∆;Γ ⊢ {P ′}c

∆;Γ ⊢ {P}c

semax_G
∆;Γ ⊢ {P ∧ funassert(Γ)}c

∆;Γ ⊢ {P}c

Figure 18.1: Separation logic rules for the continuation language.

Recall that a function specification is an ordered pair



f , S
�

where f
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is an address and S = x⃗ .P is a precondition for executing the code at
address f . A program specification, funspecs, is a list of these pairs. Since
a program is also a list of ordered pairs (address, function-body), then we
can match a program to its specification using the judgment,

semax-func: funspecs →program → funspecs →Prop

The meaning of semax_func Γ p Γ′, written Γ ⊢func p : Γ′, is that each
function-body in the list p satisfies the corresponding specification in the
list Γ′. In proving each such function-body, we may find calls to other
functions. To prove things about such calls, we may assume Γ.

Suppose the program p contains recursive or mutually recursive func-
tions f and g. During the proof of Γ′ = f : {S f }, g : {Sg} (that is,
while proving the function body of f or g), we will need to assume
Γ = f : {S f }, g : {Sg} (so that we can reason about calls to f or g). It seems
that we are assuming Γ in order to prove Γ, which appears circular. But in
fact it is sound; as Chapter 39 explains, there is a ◃ later operator applied to
Γ in the semantic definition of semax_func Γ p Γ′. Therefore, in proving Γ′

at approximation level k+ 1, we assume Γ only at level k. In the semantic
soundness proof of the higher-order separation logic, we use the Löb rule to
tie the knot:

loeb
◃Γ ⊢ Γ
⊢ Γ

If this is only approximately clear now, it will become more clear ◃ later.

BORROWING FROM Γ. The rule semax_G allows any function-specification in
Γ to be copied into the precondition of c. The operator funassert converts
Γ = ( f1, S1) :: ( f2, S2) :: . . . ( fn, Sn) :: nil to the assertion f1 : {S1} ∧ f2 :
{S2} ∧ . . .∧ fn : {Sn}. That is,

funassert_e
Γ( f ) = S

funassertΓ ⊢ f : {S}
semax_G

∆;Γ ⊢ {P ∧ funassertΓ}c
∆;Γ ⊢ {P}c

These rules can be used in two ways: for a direct call to a global function f ,
with Γ( f ) = S, we use semax_G immediately before semax_go to establish
the precondition conjunct e : {S}. Or, if we wish to move a function-address
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into a function-pointer variable, we can write the assignment x := Const f
and use semax_G with semax_assign.

PREDICATES IN THE HEAP. What does it mean for a heap to “contain” a
function-assertion? Clearly, if we can write h |= x0 : {P0} ∗ y z that means
h = h1 ⊕ h2 where h1 |= x0 : {P0} and h2 |= y z. Therefore h2 “contains”
functions. But suppose the integer z encodes a machine-instruction that
(safely) infinite-loops. Then y is a function too; it would be safe to jump
to address y . In a sense, perhaps h2 contains functions. But it does not
contain function-assertions, of the form x : {P}.

The picture 0 0 0 0 0 0

a0

has a hatched region

in which there are no storable cells. In fact, we will employ the fiction that
in the hatched region, at certain addresses, there are function-assertions:

0 0 0 0 0 0P0 P1 P2

In effect, the fiction P0 stands for the memory occupied by the machine-
code for some function whose precondition is P0. But our fictional heap
does not actually contain the function-body, just the function-assertion
about the specification of the function-body. We call this “predicates in
the heap,” and it is useful not only for function-pointers but also for the
resource invariants of lock-pointers in concurrent separation logic.

PURE ASSERTIONS. In separation logic, some assertions such as x = y are
pure, in that they don’t claim a heap footprint. Pure assertions separate
from themselves: (x = y) ∗ (x = y) ↔ (x = y). Heap assertions such as
x y do claim a heap footprint, and do not self-separate: x y∗x y ⊢ ⊥.

In this separation logic case study, we will treat function-assertions
f : {S} as pure. It is as if the function-specifications P0 are immutable, and
cannot (must not) be modified by store commands to those addresses.

The opposite design choice—in which f : {S} has the footprint f —
can also be modeled easily in our framework, and may have application
with systems that do run-time code generation of new functions. But the
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resulting separation logic is more cumbersome in reasoning about function
pointers.

THE RULES FOR THE ⊢func JUDGMENT ARE,

semax_func_nil
Γ ⊢func nil : nil

semax_func_cons

x ̸∈map fst F⃗ no_dups( y⃗) | y⃗|= |formals(S)|
y⃗;Γ ⊢ {call S y⃗}c Γ ⊢func F⃗ : Γ′

Γ ⊢func




x , y⃗ .c
�

::F⃗ : 〈x , S〉 ::Γ′

The point of semax_func_cons is that if the first function-body meets its
specification ( y⃗;Γ ⊢ {call S y⃗}c), and all the rest of the function bodies
satisfy their specifications (Γ ⊢func F⃗ : Γ′), then ⊢func is satisfied; in addition
there are three little items of syntactic bookkeeping (e.g., the list y⃗ of
formal parameters should have no duplicates, the list of function-names
should have no duplicates).

WE CONSIDER A WHOLE PROGRAM p is proved when

∃Γ. Γ ⊢func p : Γ ∧ Γ(0) = ([a]. allocpool(a))

That is, there is some Γ such that all of the functions in p meet their
specifications in Γ, and the specification of the function at address 0
matches the actual initial conditions for running programs in this language.

WE HAVE PRESENTED the Cont language, a program START/LOOP/DONE in
the language, and a separation logic for the language. Chapters 19–20
show how to specify the list-segment data structures used in this program,
then how to apply the separation-logic rules to prove the program correct.
Later, in Chapter 39 we show soundness—that if program p is proved in the
separation logic, then it is safe in the operational semantics.



123

Chapter 19

Data structures in indirection theory

Separation logic’s raison d’être is to allow Hoare-logic proofs of programs
with pointer and array data structures. Lists, list segments, trees, and arrays
are the bread and butter of separation logic. In Chapter 3 we showed the
proof of a program using lists and list-segments.

The list-segment operator x y is intended to satisfy an equation like,

x y ∼ x = y ∧ emp ∨ x ̸= y ∧ ∃t. next x t ∗ t y

That is, a list segment is either empty, or it is a list cell next x t separated
from another list segment t y .

In Chapter 10 we showed how to use the covariant fixpoint operator to
define such recursive data-type predicates; then in Chapter 17 we showed
a more powerful recursion operator that can "tie the knot" of mutually
recursive function definitions and (as we will see in Chapters 36 and 18)
specify function-pointers.

When working in an indirection-theory separation logic, for ordinary
first-order data structures such as lists and trees we can use either of these
recursion operators, the covariant corec or the higher-order HOrec. Which
one should we use?

The answer is, it depends. For purely first-order structures, corec is
entirely adequate and has simple induction principles. When contravariance
appears (recursion through function parameters or mutex-lock resource
invariants), one must use HOrec. If there will be a mix of first-order and
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contravariant data structures, it may be convenient to use the same HOrec
recursion operator everywhere.

In this chapter we illustrate the use of HOrec to define simple list-
segment shape predicates.1 The same techniques generalize to list-segment
representation predicates (such as listrep, page 20), trees, tree segments,
and so on.

ALTHOUGH THE definition OF   IS RECURSIVE, Berdine and Calcagno
designed a complete and terminating proof theory for list segments that
avoids recursion or induction in proofs about programs [72, §4.4][17]. This
theory was later reformulated in the as a resolution system by Navarro Perez
and Rybalchenko [69], as we will discuss in Chapters 46 and especially 47.
To model one of these proof theories, one needs the following identities
(names given by Navarro Perez):

N2 : x x ⊢ emp
N4 : emp ⊢ x x

W1: next0 y ⊢ ⊥
W2: 0 y ⊢ y = 0
W3: next x y ∗ next x z ⊢ ⊥
W4: next x y ∗ x z ⊢ x = z
W5: x y ∗ x z ⊢ x = y ∨ x = z

U1 : next x z ↔ x = z ∨ x z
U2 : ∃y.next x y ∗ y z ↔ x = z ∨ x z
U3 : ∃y.x y ∗ y 0 ↔ x 0
U4 : ∃y.x y ∗ y z ∗ next z w ↔ x z ∗ next z w
U5 : ∃y.x y ∗ y z ∗ z w ↔ z = w ∨ x z ∗ z w

The significance of this is that the only proofs that require unfolding
the recursive definition—whether it is covariant recursion as explained in
Chapter 17 or indirection theory as we will explain here—are the proofs of
these identities.

1 See the file examples/cont/lseg.v for everything discussed in this chapter.
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RECURSIVE DEFINITIONS IN INDIRECTION THEORY. Unlike corec(F) which
requires that F be covariant, the step-indexed HOrec(F) requires that F
be contractive. That is, F(R) must be a predicate that applies only ◃R, a
weaker predicate than R. We can define   with a contractive functional
as follows:

lseg = HOrec(λR.λ(x , y). x = y ∧ emp ∨ x ̸= y ∧ ∃t. x t ∗ ◃R(t, y))

From this definition we can prove the appropriate unfolding lemma:

Lemma lseg-unfold: ∀x y,
x y = x = y ∧ emp ∨ x ̸= y ∧ ∃t. x ∗ ◃t y.

Proof.
intros. unfold lseg at 1. rewrite HORec-fold-unfold. reflexivity.
auto 50 with contractive.

Qed.

The proof just uses HORec_fold_unfold, which requires proving con-
tractiveness of (λR.λ(x , y) . . .). But the MSL library provides lemmas for
proving contractiveness that work using Hint Resolve to do this automati-
cally, by auto 50 with contractive.

IN A REAL PROGRAM WITH TWO-WORD cons CELLS, we might expect that
next x t = x _ ∗ x + 1 t. But in this chapter we will use one-word list
cells comprising only a tail-pointer, i.e., p s is a list segment
p s. Thus, next x t = x t.

From lseg_unfold we can prove standard facts about list segments, in-
cluding all the Berdine/Calcagno rules, and a rewriting rule that generalizes
N2/N4:

lseg_eq : x x = emp

Let us examine the U4 identity. Why is it so complex, and in particular
why does it require next z w on both sides? Surely it would be nicer to
have simpler rules such as, x  y ∗ y z ⊢ x z. But unfortunately
this simpler rule is unsound. Precise list segments (such as ours here)
must be acyclic. The unsound rule would allow a proof of p s in this
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case where p = s: p s . We cannot fix the problem by writing
x ̸= z ∧ x  y ∗ y z ⊢ x z, as this is unsound as well; consider this

example: x zy .
We must ensure that z points nowhere within the segment x y . One

way to do that is to ensure that z conflicts with every cell within the
segment. By writing z v we ensure this; but note that z v is part of the
frame, not part of the segment x z that we are constructing. To make a
sound cons-at-end rule we write x y ∗ y z ∗ z v ⊢ x z ∗ z v.

IN A CONVENTIONAL COVARIANT-RECURSION SYSTEM our cons-at-end rule is
proved by induction on the structure of the list segment x  y . But in an
indirection-theory system we cannot assume that the entire list structure
is traversable at a given age. That is, if a world at level n can represent
the first n cells of a list segment, and beyond that the successive ◃ later
operators mean that the lseg predicate makes no claim about the contents
of the world.

Thus, the induction must be over the age of the world. The induction
principle is the Löb rule:

loeb
◃P ⊢ P
⊢ P

In this case, the magic induction hypothesis P is,

∀x . (x y ∗ y z)∧ ((z v)−◦ ⊤) x z

where is the subtype operator defined in Chapter 16. Recall that Q R
means, "in all worlds of the current age (and later), if Q holds on that world
then so does R."

As we do the induction, we will be considering shorter segments each
time, with every segment terminating in y z. Thus, x varies but y and z
do not, so we quantify over ∀x but we may leave y and z fixed.

One might think that the hypothesis

∀x . (x y ∗ y z ∗ z v) x z ∗ z v
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could be used, but this runs into technical difficulties with the ◃ later
operator on z v. The induction works best when the footprint is confined
to x z. The purpose of the conjunct (z v) −◦ ⊤ is to guarantee that z is
not anywhere in the footprint of x y ∗ y z. The existential magic wand
−◦ is defined by,

w |= P −◦Q = ∃w1, w2. w1⊕w = w2 ∧ w1 |= P ∧ w2 |=Q

so therefore (z v) −◦ ⊤ means “the current heap w separates from some
heap w1 in which (z v).

Applying the Löb rule, we have two proof obligations,

(1)
◃∀x . (x y ∗ y z)∧ ((z v)−◦ ⊤) x z
⊢ ∀x . (x y ∗ y z)∧ ((z v)−◦ ⊤) x z

which is the premise of loeb, and

(2)
∀x . (x y ∗ y z)∧ ((z v)−◦ ⊤) x z

x y ∗ y z ∗ z v ⊢ x z ∗ z v

which takes the conclusion of loeb and proves the main result. Lemma (2) is
straightforward—it is just an instantiation of the existential and the subtype
(with a little bit of magic-wand hacking). Lemma (1) is not very difficult,
but the current proof is rather ugly and it would be helpful to have a better
set of separation-logic lemmas for manipulating and instantiating subtypes
and (existential) magic wands. See Lemma lseg-cons-in-next-context in
examples/cont/lseg.v.

IN INDIRECTION THEORY, THE IDENTITIES U1–U5 must be written with ◃later
operators in appropriate places:

U1◃: next x z ↔ x = z ∨ x z
U2◃: ∃y.next x y ∗ ◃y z ↔ x = z ∨ x z
U3◃: ∃y.x y ∗ ◃y 0 ↔ x 0
U4◃: ∃y.x y ∗ ◃y z ∗ next z w ↔ x z ∗ next z w
U5◃: ∃y.x y ∗ ◃y z ∗ z w ↔ z = w ∨ x z ∗ z w
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It should still be possible to use these identities as the basis of a decidable
proof theory, but the experiment has not been tried. But we have these
identities quite successfully in correctness proofs of C programs that
manipulate lists.

WHEN REASONING ABOUT FUNCTIONAL CORRECTNESS, NOT JUST SHAPE, we
want a list-segment relation of the form x

σ
  y , meaning that the list

segment from x to y represents the sequence of values σ. That is, we
want a representation relation, not just a shape predicate. It is easy to define
representation relations for recursive data types such as list segments and
trees, either using covariant fixpoints or in indirection theory, using the
same basic methods that we use for shape predicates. One can then prove
identities analagous to N2, N4, W1–W5, U1–U5 for the representation
relation.

However, these will not lead to a decidable proof theory (as they do
for shape predicates). What makes the proof theory of list-segment shape
predicates decidable is that, in a rule such as U2, the truth of a formula
is quite indifferent to the length of the segment y z. [17] But when we
write a representation relation y

σ
  z, of course the length of y z must

match the length of σ. Thus, when proving the functional correctness of
programs, we cannot entirely rely on decidable proof systems. This should
come as no surprise to anyone since Turing.

TREE SHAPES AND TREE REPRESENTATIONS are easily definable, either using
covariant fixpoints or in indirection theory. A tree shape predicate would
satisfy the identity

tree(p) = (p = 0∧emp)∨∃l, r. p _∗ p+1 l ∗ p+2 r ∗tree(l)∗tree(r)

and a tree representation relation would take an extra argument τ saying
what mathematical tree is represented. The tree shape shown here
represents an entire tree, not a “tree segment.”

WE USE LIST SEGMENTS to reason about programs that cut and splice
fragments of linked lists. For programs that cut and splice trees, obviously
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we should use tree segments. We can view a list segment as a “list with a
hole,” where the hole is the place (at the end of the segment) where the
pointer to the next list is to be plugged in. A list segment has exactly one
hole; a full list is just a list segment with the hole filled by nil; so the theory
is quite simple. But a tree segment can have many holes where subtrees
can be plugged in—so the theory of tree segments is not so simple. Gardner
and Wheelhouse [41] give a theory of list segments with applications to
manipulating XML documents.

THE EXISTENTIAL MAGIC WAND −◦, SUBTYPE , AND LÖB RULE take nontrivial
expertise to use. Some of the proofs of lemmas N2, N4, W1–W5, and
U1–U5 in indirection theory use magic wand and Löb, and these proofs are
lengthy, contrived, and difficult to automate.

Fortunately, once these identities have been proved, they are a complete
proof theory for reasoning about lists. The statements of all these identities
do not mention any of the “magic” parts of separation logic: −◦, , or Löb.
Reasoning using these identities is fairly straightforward; we can say these
magic-free identities form a Muggle theory of data structures. Wizardry is
used only internally, in the proof of the Muggle identities.

For more advanced theories of data structures, when we move from
shape predicates to representation relations, when we move from lists to
trees and other structures, it will usually be possible to contain the wizardry
within the soundness proof of a magic-free interface.
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Chapter 20

Applying higher-order separation
logic

Now1 let us apply the separation logic rules (page 119) to the loop-traversal
program (pages 114–117). The program is a list of pairs (address,body),
where body is a pair of formal-parameter list and command. The specifi-
cation (funspecs) of the program is a list of pairs (address,funspec). The
definitions myprog, myspec were given in Chapter 18.

Definition myprog : program :=
(START,STARTbody)::(LOOP,LOOPbody)::(DONE,DONEbody)::nil.

Definition myspec :=
(START,STARTspec )::(LOOP,LOOPspec )::(DONE,DONEspec )::nil.

We want to prove that a function-body satisfies its specification:

Definition semax-body (Γ: funspecs) (spec: funspec)
(f: list var ∗ control) :=

semax (fst spec) Γ (fun s ⇒ call spec (map s (fst f))) (snd f).

The predicate call ( x⃗ , P) v⃗ says that the actual parameters v⃗ satisfy the
precondition for calling a function with specification [ x⃗].P:

Definition call (xP: list var ∗ assert) (vl: list adr) : mpred :=
(!! (length vl = length (fst xP)) && snd xP (arguments (fst xP) vl)).

1 This chapter describes proofs contained in examples/cont/sample_prog.v
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So, if spec is [ x⃗].P, and function-body f is [ y⃗].c, then semax-body Γ spec f
is equivalent to

| x⃗ |= | y⃗| ∧ x⃗;Γ ⊢ {P[ y⃗/ x⃗]}c

or in other words, “if you enter the function having satisfied the precondi-
tion, then the function body is safe to execute."

We do a semax-body proof for each function, then we use semax-func-cons
(page 122) to tie the knot:

Lemma prove-START: semax-body myspec STARTspec STARTbody.
Lemma prove-LOOP: semax-body myspec LOOPspec LOOPbody.
Lemma prove-DONE: semax-body myspec DONEspec DONEbody.

Ltac func-tac :=
apply semax-func-cons;
[ compute; reflexivity | compute; reflexivity | compute; reflexivity | | ].

Lemma prove-myspec: semax-func myspec myprog myspec.
Proof.
func-tac; [apply prove-START | ].
func-tac; [apply prove-LOOP | ].
func-tac; [apply prove-DONE | ].
apply semax-func-nil.

Qed.

The first three hypotheses of semax-func-cons are syntactic typechecking
that are solved by (compute; reflexivity). The fourth is the proof of the
function body, proved by the appropriate semax-body lemma. The fifth
hypothesis is left for the next func-tac.

Inside the proofs of prove_START, prove_LOOP, etc. we illustrate
forward proof, starting with the precondition and moving forward through
the commands of the function body. This is in contrast to the backwards
proof that is often used in Hoare logic (especially with verification-condition
generators). VC-generators do not work especially well with separation
logic, as they introduce magic-wand −∗ operators which are difficult to
eliminate.
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1 Lemma prove-START: semax-body myspec STARTspec STARTbody.
2 Proof.
3 eapply semax-pre; [intro ; call-tac; apply derives-refl | simpl ].
4 rewrite’ alloc. apply semax-prop; auto; intros -.
5 forward. (∗ [a] := a+ 1 ∗)
6 rewrite’ alloc. rewrite’ @sepcon-comm. rewrite’ @sepcon-assoc.
7 forward. (∗ [a+ 1] := a+ 2 ∗)
8 rewrite’ alloc. rewrite’ @sepcon-comm. do 2 rewrite’ @sepcon-assoc.
9 forward. (∗ [a+ 2] := 0 ∗)

10 forward. (∗ Go loop(a+ 3, a, a,done) ∗)
11 rewrite lseg-eq. normalize.
12 apply andp-derives; [ | apply funassert-e; reflexivity].
13 rewrite (sepcon-comm (allocpool -)). repeat rewrite <- sepcon-assoc.
14 rewrite (sepcon-comm (next (S (S (s0 a))) -)).
15 apply sepcon-derives; auto.
16 repeat rewrite sepcon-assoc. rewrite (next-gt-0 (s0 a)).
17 normalize.
18 eapply derives-trans; [ | eapply lseg-cons; try omega].
19 eapply sepcon-derives; [ apply derives-refl |].
20 rewrite sepcon-comm.
21 eapply derives-trans; [ | eapply lseg-cons; try omega].
22 eapply sepcon-derives; [ apply derives-refl |].
23 apply next-lseg; omega.
24 Qed.

Figure 20.1: A slightly automated function-body proof.

Figure 20.1 shows the program verification of the START function,
recapitulating the pictorial explanation on page 115. Line 3 is the standard
boilerplate for entering a function. At line 4, the proof obligation is,

semax (a :: nil) myspec (fun ρ : env ⇒ !!(1 = 1) && allocpool (ρ a))
(Do (Mem a) := a .+ 1;
Do (Mem (a .+ 1)) := a .+ 2;
Do (Mem (a .+ 2)) := 0; Go LOOP ((a .+ 3) :: a :: a :: DONE :: nil))
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The forward tactic solves a proof obligation of the form {P}(c; c′) when
P happens to take the form convenient for subcommand c, and leaves a
proof goal of the form {Q}c′. Most of the lines of proof-script are for the
purpose of rearranging preconditions to fit the form needed by forward.

Line 4 uses the alloc rule to rewrite

allocpool(ρa) to ρa 0 ∗ allocpool(S(ρa)),

then minor rearrangements to achieve the precondition,

fun ρ : env ⇒ !!(ρ a > 0) && mapsto (ρ a) 0 ∗ allocpool (S (ρ a)).

Line 5 uses the forward tactic to move past the first command. This same
pattern repeats in lines 6–7 and again in 8–9. Line 10 uses forward through
the Go command.

This leaves the proof goal,

next (S (S (ρ a))) 0 ∗
(allocpool (S (S (S (ρ a)))) ∗
(next (ρ a) (S (ρ a)) ∗ next (S (ρ a)) (S (S (ρ a))))) &&

funassert myspec
⊢ !!(4 = 4) &&

(lseg (ρ a) (ρ a) ∗ lseg (ρ a) 0 ∗ allocpool (S (S (S (ρ a)))) &&
cont DONEspec DONE)

which is proved by lines 11–23.

Tactics for separation logic

At present in sample_prog.v the the use of proof automation is modest,
and therefore the proofs are rather long. The boilerplate at line 3, the
rearrangements done at lines 4,6,8, and the entire entailment proof at
lines 11–23 can be fully automated. Chapter 14 and Chapter 26 describe
proof-automation systems for separation logic.
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Chapter 21

Lifted Separation Logics
based on ideas by Jesper Bengtson, Jonas Jensen, and Lars Birkedal [16]

The separation logic presented in Chapters 18–20 has assertions that are
predicates on local variable environments (sometimes called stacks) and
memories (called heaps). This is very typical of separation logics. In “stack
and heap” languages where one cannot take the address of (or make a
pointer to) a local variable, there is no aliasing of local variables. Therefore,
there is no need to apply a separation logic to the local variables; we need
separation only to reason about aliasing in the heap.

The assertions are presented as env → mpred, that is, functions from
environment to memory-predicate, using our natural deduction system
NatDed(mpred) and separation logic SepLog(mpred). We can see this
in the formulation of the Hoare axioms of separation logic, for example
the rule for the Go statement. Figure 18.1 presents it in semi-formal
mathematical notation,

semax_go
∆ ⊢type Go e (e0, . . . , en−1)

∆;Γ ⊢ {e : {S} ∧ call S (e0, . . . , en−1)} Go e (e0, . . . , en−1)

To see how this looks presented in Coq, we examine the same rule in
examples/cont/seplogic.v:
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Axiom semax-go: ∀vars G (P: funspec) x ys,
typecheck vars (Go x ys) = true →
semax vars G

(fun ρ ⇒ cont P (eval x ρ) && call P (eval-list ys ρ))
(Go x ys).

This says that the precondition for the command Go x y⃗ is that x is a
function-pointer with specification P, and that P ’s entry precondition
holds on the environment created by binding y⃗ to the parameters of P.
More precisely, given an environment ρ, evaluate variable x in ρ and
verify that P is indeed the function-specification at the resulting address
(cont P (eval x ρ)); and evaluate the variables y⃗ in ρ and check the entry
precondition on that argument list (call P (eval-list ys ρ)). This works all
right; but Coq’s inability to rewrite under a fun and its lack of higher-order
matching (to open terms such as (eval x ρ) with its free variable ρ) can
make it difficult to automate proofs.

ONE SOLUTION IS TO LIFT the assertion operators over the environment
parameter. We use the operators lift0, lift1, lift2 to lift nullary, unary, and
binary functions, respectively:

Definition lift0 {B} (P: B) : env→B := fun ρ ⇒ P.
Definition lift1 {A1 B} (P: A1→B)(f1: env→A1) : env→B

:= fun ρ ⇒ P (f1 ρ).
Definition lift2 {A1 A2 B}(P: A1→A2→B)

(f1: env→A1)(f2: env→A2): env→B
:= fun ρ ⇒ P (f1 ρ) (f2 ρ).

Now the following two expressions are equal (βη-convertible):

(fun ρ ⇒ andp (cont P (eval x ρ)) (call P (eval-list ys ρ)))
(lift2 andp (lift1 (cont P) (eval x)) (lift1 (call P) (eval-list ys)))

The second line is clumsier in certain ways (certainly to those who believe
that Church’s 1930 invention of the λ operator improved on Schönfinkel’s
1924 combinators). But it better suits certain kinds of proof automation in
Coq. And we do not even need to write lift2 andp, as the next development
will show.
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GIVEN A SEPARATION LOGIC over a type B of formulas, and an arbitrary type A,
we can define a lifted separation logic over functions A→ B. The operations
are simply lifted pointwise over the elements of A. Let P,Q : A→ B, let
R : T → A→ B then define,

(P &&Q) : A→ B := fun a ⇒ Pa &&Qa
(P ∥Q) : A→ B := fun a ⇒ Pa ∥Qa

(∃x .R(x)) : A→ B := fun a ⇒ ∃x . Rxa
(∀x .R(x)) : A→ B := fun a ⇒ ∀x . Rxa
(P −→Q) : A→ B := fun a ⇒ Pa −→Qa
(P ⊢Q) : A→ B := ∀a. Pa ⊢Qa
(P ∗Q) : A→ B := fun a ⇒ Pa ∗Qa
(P −∗Q) : A→ B := fun a ⇒ Pa −∗Qa

In Coq we formalize the typeclass instances LiftNatDed, LiftSepLog,
LiftClassicalSep, etc., as shown in Figure 21.1. For a type B, whenever
NatDed B and SepLog B (and so on) have been defined, the lifted instances
NatDed (A→B) and SepLog (A→B) (and so on) are automagically
provided by the typeclass system.

Now we have yet another βη-equivalent way to write the precondition
for the Go rule:

Axiom semax-go: ∀vars G (P: funspec) x ys,
typecheck vars (Go x ys) = true →
semax vars G

(lift1 (cont P) (eval x) && lift1 (call P) (eval-list ys))
(Go x ys).

where the && operator is implicitly and automatically lifted, by the
LiftNatDed instance. See the presentation of the continuation-language
using Lifted logics is shown in examples/cont/lifted_seplogic.v; compare it
to the presentation using (fun ρ ⇒ ...) in examples/cont/seplogic.v.

THE LIFTING OPERATORS lift2, lift1, lift0 can seem verbose, threading the
environment ρ through an assertion. We might ask Coq itself to calculate
the right lifting operator based on the type of the lifted expression.



21. LIFTED SEPARATION LOGICS 137

Instance LiftNatDed(A B: Type){ND: NatDed B}: NatDed (A→B):=
mkNatDed (A →B)

(∗andp∗) (fun P Q x ⇒ andp (P x) (Q x))
(∗orp∗) (fun P Q x ⇒ orp (P x) (Q x))
(∗exp∗) (fun {T} (F: T →A →B) (a: A) ⇒ exp (fun x ⇒ F x a))
(∗allp∗) (fun {T} (F: T →A →B) (a: A) ⇒ allp (fun x ⇒ F x a))
(∗imp∗) (fun P Q x ⇒ imp (P x) (Q x))
(∗prop∗) (fun P x ⇒ prop P)
(∗derives∗) (fun P Q ⇒ ∀x, derives (P x) (Q x))
- - - - - - - - - - - - - - - - - -.

(∗ fill in proofs here ∗)
Defined.

Instance LiftSepLog (A B: Type) {NB: NatDed B}{SB: SepLog B}
: SepLog (A →B).

apply (mkSepLog (A →B) -(fun ρ ⇒ emp)
(fun P Q ρ ⇒ P ρ ∗ Q ρ) (fun P Q ρ ⇒ P ρ -∗ Q ρ)).

(∗ fill in proofs here ∗)
Defined.

Instance LiftClassicalSep (A B: Type) {NB: NatDed B}{SB: SepLog B}
{CB: ClassicalSep B} :
ClassicalSep (A →B).

apply mkCS.
(∗ fill in proofs here ∗)

Qed.

Figure 21.1: Lifted instances of natural deduction and separation logic
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For example, to lift a term of type adr→adr→ - (such as the mapsto
function), we use lift2. For a term of type adr→ - (such as (cont P)) we use
lift1. For a term of type - (such as 0) we use lift0.

We define a generic type-directed lifting operator, and give it the
notation ` (backquote), so that we can write

`mapsto to mean lift2 mapsto
`(cont P) to mean lift1 (cont P)
`0 to mean lift0 0

Using this notation, all three of

these assertions mean the same thing:

1. (fun ρ ⇒ mapsto (eval x ρ) 0 && cont P (eval f ρ))
2. lift2 mapsto (eval x) (lift0 0) && lift1 (cont P) (eval f)
3. `mapsto (eval x) ( 0̀) && (̀cont P) (eval f)

The backquote is implemented in Coq using a calculus of Canonical
Structures, in the file veric/lift.v.

Our separation logic for the C language (and its tactical proof-
automation system) uses the backquote form. However, users of the
system can write assertions using either the backquote notation, the ex-
plicitly lifted notation (with lift2,lift1,lift0) or the lambda-notation (with
fun ρ ⇒ ...), and the rules and tactics will work equally well. All three
forms are βη equivalent, so one can change one to the other.

UNLIFTING THE RULE OF CONSEQUENCE. Separation logic has a rule of
consequence which in our little continuation language is written:

P ′→ P ∆;Γ ⊢ {P}c
∆;Γ ⊢ {P ′}c

Although we use a lifted separation logic for the Hoare judgments
∆;Γ ⊢ {P}c, when actually proving the subgoal P ′ → P we can work
in an ordinary unlifted separation logic.

Suppose we are proving the premise P ′ → P. As P is a lifted predicate
in SepLog(env→mpred), this is equivalent to ∀ρ, P ′ρ → Pρ. In a typical
case, the predicates P ′ and P might look like this:
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e1,e2: expr
i : ident
Frame: stack →mpred

(1/1)
(fun ρ ⇒ !!(eval e1 ρ = ρ(i)))

&& (fun ρ ⇒ eval e1 ρ eval e2 ρ) ∗ Frame
⊢ (fun ρ ⇒ ρ(i) eval e2 ρ) ∗ Frame

After intro and simpl, the proof goal is now

e1,e2: expr
i : ident
Frame: stack →mpred
ρ: stack

(1/1)
!!(eval e1 ρ = ρ(i))) && (eval e1 ρ eval e2 ρ) ∗ Frame ρ
⊢ (ρ(i) eval e2 ρ) ∗ Frame ρ

This goal is purely in the unlifted separation logic of heaps. All notational
distinctions between the backquote, the lift operators, and the (fun ρ ⇒ -)
notation have been unfolded.

There’s a good reason to unlift. The environment (stack) ρ is the same
on both sides of the entailment ⊢. Now we can replace ρ(i) and eval e1 ρ
with abstract values, using Coq’s set tactic—set (a:=eval e1 ρ)—to obtain,

e1,e2: expr
i : ident
Frame: stack →mpred
ρ: stack
a := eval e1 ρ
b := ρ(i)
c := eval e2 ρ
F := Frame ρ

(1/1)
!!(a = b) && (a c) ∗ F ⊢ (b c) ∗ F

Then we can clearbody a b c F; clear ρ Frame e1 e2 i to obtain,
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a,b,c : adr
F : mpred

(1/1)
!!(a = b) && (a c) ∗ F ⊢ (b c) ∗ F

Indeed, our proof-automation tactics for applying our separation logic
to the C language do this task automatically. Without the environment
(stack) to worry about, without needing to worry about lifted formulas, we
can perform entailment proofs in ordinary separation logic.

HISTORICAL NOTE. The lifting operators were invented in 1924—before even
the λ-calculus—by Moses Schönfinkel [83], who used the notation:

C = lift0 S = lift2.

Schönfinkel showed that any formula of logic could be represented by
combinations of these “argument-threading” functions. Schönfinkel’s C is
now conventionally called K in combinatory logic.
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Part III

Separation logic for CompCert

SYNOPSIS: Verifiable C is a style of C programming suited to separation-logic
verifications; it is similar to the C light intermediate language of the CompCert
compiler. We show the assertion language of separation-logic predicates for
specifying states of a C execution. The judgment form semax of the axiomatic
semantics relates a C command to its precondition postconditions, and for each
kind of command there is an inference rule for proving its semax judgments.
We illustrate with the proof of a C program that manipulates linked lists,
and we give examples of other programs and how they can be specified in
the Verifiable C program logic. Shared-memory concurrent programs with
Dijkstra-Hoare synchronization can be verified using the rules of concurrent
separation logic.
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Chapter 22

Verifiable C

Hoare logics (and separation logics) work well on languages in which:
variables do not alias, expressions have no side effects, subexpressions do
not access memory, well-typed expressions can’t go wrong, and concurrency
synchronization operations are explicit commands (instead of implicit as
memory access).

To see why, consider some common Hoare rules. The assignment
rule {P[e/x]} x := e {P} substitutes e for all the occurrences of x in
postcondition P, yielding the precondition. This makes little sense,
logically, if e can modify the state or if e does not even evaluate. The LOAD

rule, {e1 e2} x := [e1] {x = e1 ∧ e1 e2} (when x not free in e1, e2)
assumes that the only memory access in this command is at the explicit
square brackets, and e1 and e2 must not have internal memory accesses.
These restrictions are useful not only for Hoare logics, but for other kinds
of static analysis such as abstract interpretation.

We wish to build a program logic for the C programming language,
and yet C does not have any of these restrictions! Variables can be aliased
if (anywhere in the function) their address is taken via the & operator;
the assignment operator = can appear at any subexpression; and memory
dereferences can occur at any subexpression. There are many conditions
that cause legal, well-typed expressions to fail at runtime: divide by zero,
operating on an uninitialized value, and so on.

To apply Hoare logics (or separation logic) to C, we will program C in
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a style that suits static reasoning. In short, we will obey all the restrictions
described at the beginning of the chapter. Any such Verifiable C program
will be compilable by any C compiler.

THE COMPCERT VERIFIED C COMPILER compiles the C language through
several intermediate languages. The front-end language is called CompCert
C, and is almost the entire C standard. It is compiled to an intermediate
language called Csyntax, which is compiled to C light, then to C#minor,
then C minor, and then through five or six more intermediate languages
to the target assembly language. All the compiler phases from Csyntax
to assembly language are proved correct, with respect to small-step
operational-semantic specifications of the languages.

Verifiable C is a subset of C light, which is a subset of CompCert C,
which is a subset of C. Verifiable C is just as expressive as CompCert C, in
that every CompCert C program can be expressed in Verifiable C with only
a few simple local transformations.

To illustrate, consider this C program:

struct list {int head; struct list ∗tail;};

int f(struct list ∗p, int y) {
int a; struct list b; int d;
b.tail = (a = p→ tail→head, p→ tail);
g(&d);
b.head = d;
g(&y);
return y;

}

This is a CompCert C program; it fails to be a C light program because
(1) the assignment to b.tail has an internal side effect and (2) the formal
parameter y has its address taken. The translation to C light yields:

int f(struct list ∗p, int y) {
int a; struct list b; int d;
int y0=y;
a = p→ tail→head;
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b.tail = p→ tail;
g(&d);
b.head = d;
g(&y0);
return y0;

}

In this program we have addressable local variables (y0,d,b) whose address
is taken by the & operator; nonaddressable local variables (a) to which
& is not applied; and nonaddressable parameters (p,y). The variable b is
considered addressable, even though the ampersand & is never applied to
it, because it is a structure or array variable.

This C light program is not a Verifiable C program because (1) the
assignment to a contains a load that is not top-level in the expression,
and (2) the assignment to b.tail contains both a store and a load. The
translation to Verifiable C yields:

int f(struct list ∗p, int y) {
int a; struct list b; int d;
int y0=y; struct list ∗q, ∗u;
u = p→ tail;
a = u→head;
q = p→ tail;
b.tail = q;
g(&d);
b.head = d;
g(&y0);
return y0;

}

Introducing the auxiliary variables u and q is necessary to allow separation-
logic reasoning, in particular application of judgment rules that can handle
only one load or store at a time. Not every expression must be broken
up into atomic parts: the rules are (1) no side effects or function calls in
subexpressions, (2) no loads in subexpressions (only at top level, and only
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in an assignment whose target is a nonaddressable local variable).

POINTER COMPARISONS are a tricky corner of the C semantics. Under what
conditions are the tests p==q or p<q permitted?

p==q If the values p and q are both integers (not pointers); or if one is
a pointer and the other is zero; or if both are pointers into allocated
(not yet deallocated) objects.

p<q If p and q are both integers; or if one is a pointer and the other is
zero; or if both are pointers into the same allocated object.

Comparisons between a pointer p and a nonzero integer q are illegal
(“stuck” in the operational semantics), because otherwise one could write
program whose observable behavior changes under perfectly legal compiler
optimizations and link-loading decisions.

The reason that p==q is legal only when both p and q are (still)
allocated is subtle. Consider this program:

int ∗f(void) {int x; return &x;}

int g(void); {return f()==f();}

The function f returns a dangling pointer, which in itself is not illegal.
One might think that, because of the way that stack frames work, the
location of f ’s stack frames will be the same in the two different calls,
and thus g will always return 1 (true). But we do not wish to impose a
requirement that a stack frame is always at a fixed offset from the caller;
this prevents certain kinds of “trampoline” implementations and breaks
abstraction in other ways. Thus, this function f must be “stuck.” In the
program logic we will enforce that in order to execute p==q (where both
are pointer values) one must have at least existence permission for both p
and q. In Verifiable C one must factor this kind of pointer comparison into
a separate statement. That is, when e1 and e2 can both denote pointer
values, the statement if (e1==e2) {. . .} else {. . .} must be written
as, t=(e1==e2); if (t) {. . .} else {. . .}.
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C light Abstract Syntax

A user of the VST separation logic for CompCert will reason on the syntax
of C light programs, and reason about C light values and types. Therefore
the following files must be imported from the CompCert Coq development:

Axioms: Various extensionality axioms used by CompCert and VST.

Integers: 32-bit unsigned and signed integers.

Floats: Floating point numbers.

Values: Compcert values, specified as the union of integer values, floating-
point values, abstract pointer values, and undefined values.

Maps: Efficient lookup tables.

AST: Generic constructors for Abstract Syntax Trees.

Globalenvs: Global environments (of functions and global variables).

Ctypes: C-language types, unary and binary operators, evaluation and
casting of unary and binary operators applied to values.

Cop: Expression operators and overloading resolution.

Clight: The syntax of C light: expressions, commands, and function
declarations.

The interface (or specification) of our program logic is based on these
files, but the soundness proof of the logic is with respect to the operational
semantics of C light. Therefore the soundness proof (but not the end user)
also imports the following files from CompCert:

Coqlib: General-purpose lemmas and tactics.

Memdata: Representations of values as sequences of abstract bytes.

Memtype: Interface (type signature) of the memory model.
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Memory: Representation of the memory model.

Clight: Operational semantics of C light.

This is the interface of CompCert; CompCert has dozens more files that
implement the C compiler and prove its correctness with respect to different
target assembly languages. However, the VST does not need to import any
of these, since the source-language operational semantics (Memory and
Clight) specifies everything that we need to know.
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Chapter 23

Expressions, values, and assertions

The C language has expressions whose grammar includes:

e ::= 1 | 1.0 | x | ∗ e | − e | e+ e | (τ)e | e.fld

where 1 stands for any integer literal, 1.0 for any floating-point literal, and
so on. This grammar is encoded by CompCert’s abstract-syntax-tree (AST)
data type representing expressions:

Inductive expr : Type :=
| Econst-int: int → type →expr
| Econst-float: float → type →expr
| Evar: ident → type →expr
| Etempvar: ident → type →expr
| Ederef: expr → type →expr
| Eaddrof: expr → type →expr
| Eunop: unary-operation →expr → type →expr
| Ebinop: binary-operation →expr →expr → type →expr
| Ecast: expr → type →expr
| Efield: expr → ident → type →expr.

Every expression is annotated with its type; this disambiguates overloaded
operators and field-selection without needing a type environment to look
up names. Furthermore, addressable variables Evar are distinguished from
nonaddressable locals Etempvar (see page 144).
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The user of Verifiable C does not build these AST data structures directly:
CompCert’s front end produces them from the C source code. To prove a
program correct, one applies the program logic to the ASTs in Coq.

EXPRESSIONS AND VARIABLES IN C PROGRAMS evaluate to values at runtime.
That is, expressions and variables are part of the static program, while
values are in the dynamic execution.

C has integer values, pointer values, and floating-point values. An integer
variable can contain an integer value or (by casting) a pointer value. A
pointer variable can contain a pointer value or the NULL value, which is
the integer 0. A floating-point variable can contain a floating-point value.
Finally, we use the undefined value to reason about uninitialized variables
and about error conditions such as divide-by-zero.1

The inductive type of values is defined by,

Inductive val: Type :=
| Vundef: val (* undefined values *)
| Vint: int →val (* 32-bit signed or unsigned integers *)
| Vfloat: float →val (* 64-bit floating point *)
| Vptr: block → int →val. (* pointer *)

The type int carried by the Vint constructor is not the native integer
type of Coq (called Z). It is Int.int, CompCert’s theory of 32-bit modular
arithmetic. Similarly, float is not the real numbers, it is the Flocq [25]
theory of IEEE floating point.

The pointer value Vptr b i denotes offset i within the symbolic block-
number b. C permits address arithmetic within an allocated object (such as
a malloc’ed block or a struct or array variable). C does not permit address
arithmetic or inequality comparisons between pointers to distinct objects.
All the addresses within an object will be at different offsets i from the
same base pointer b; different objects will have different base pointers.

1CompCert C’s operational semantics distinguishes between undefined values, which
can exist (for example in uninitialized variables) without crashing the program, and illegal
operations, which crash the program (by making the operational semantics “get stuck”). For
Verifiable C we use Vundef for both undefined values and the results of illegal operations;
but then we prove that any proved-correct program cannot perform any illegal operations.
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WE EVALUATE EXPRESSIONS in an environment that provides values for
the variables; call this ρ. That is, if a is the name of a local variable,
then (eval-id a ρ) looks up the identifier a in environment ρ. If e is a
C-language expression, (eval_expr e ρ) evaluates e in environment ρ.

We can mention values and expressions in the assertions of our . For
example, !!(Vint(Int.repr 0) = eval-id -a ρ) means that program variable
a has value 0 in the environment ρ. To parse this apart: !! is notation for
the prop constructor defined in Chapter 12, that injects logical propositions
(Prop) into a separation logic. Int.repr injects from Coq’s Z type into the int
type of 32-bit modular arithmetic. Vint injects from int to val. The identifer
a from a C source program will be typically be denoted -a in the program
logic. The Coq type of -a is just ident, a definition that unfolds to positive;
this is what CompCert uses for identifiers.

The function eval-expr is a computable Fixpoint (defined in veric/expr.v).
The function eval-id, for looking up the value of a variable in an environ-
ment, is also a computable definition. That is, operational aspects of
expression evaluation are transparent in the program logic.

SPATIAL PREDICATES in a separation logic are constructed from application-
specific primitives, combined using standard operators such as the separat-
ing conjuction ∗. For the Verifiable C application, there are two primitives,
func-ptr and address-mapsto.

func-ptr (fs: funspec) (v: val): mpred.
means that value v is a pointer to a function with specification φ.

address-mapsto (ch) (v: val) (πr: share) (π: share) (l:address): mpred
expresses what is typically written l v in separation logic, that is, a
singleton heap containing just value v at address l. The “memory_chunk”
ch specifies the size and sign-extension of v, and π gives the ownership
share.

WE RARELY USE address-mapsto DIRECTLY; instead we use these derived
forms:

mapsto (π:share) (t:type) (v w: val) : mpred
describes a singleton heap with just one value w of (C-language) type t at
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address v, with permission-share π.

mapsto- (π:share) (t:type) (v:val) : mpred
describes an uninitialized singleton heap with space to hold a value of type
t at address v, with permission-share π.

field-mapsto (π: share) (t: type) (fld: ident) (v w: val) : mpred
describes a heap that holds just field fld of struct-value v, belonging to
struct-type t, containing value w.

field-mapsto- (π: share) (t: type) (fld: ident) (v: val) : mpred
is the corresponding uninitialized structure-field.

typed-mapsto (π: share) (t: type) (v: val) (w : reptype t) : mpred
says that at address v there is an l-value of type t. If t is a structured
type, all the fields of t have contents corresponding to components of
w. In mathematical notations for separation logic, this is often written
as v (w1, w2, . . . , wn) or v ,→ (w1, w2, . . . , wn). The function reptype
calculates a Coq type corresponding to the C type t, for example if t is
struct {int x,y;} then reptype(t) is (int∗int).

ADDRESSABLE LOCAL VARIABLES are described by these derived spatial
assertions:

memory-block (π: share) (n: int) (v: val): mpred.
There is a (perhaps uninitialized) block of memory, n bytes long at address
v with permission-share π.

var-block (π: share) (x: ident, t: type) (ρ: environ): mpred.
The addressable local variable x of type t is accessible (but perhaps
uninitialized) with share π, at address (eval-var x ρ). This is equivalent to
typed-mapsto- π t (eval-var x ρ).

stackframe-of ( f : function) (ρ: environ): mpred.
The entire stack frame of f (comprised of one var-block for each addressable
local variable) is accessible with total ownership share Tsh.

GLOBAL VARIABLES AND THEIR INITIALIZATION are described by the following
predicates:
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init-data-list2pred (d: list init-data) (π: share) (v: val) (ρ: environ) : mpred.
Memory at v contains global external initialized data, with d as constructed
by CompCert from the syntax of a global initializer; with ownership share
π. Initializers can contain constant literals and the addresses of global
variables; the environment ρ is used for looking up any such addresses.

main-pre (prog: program) (-: unit) (ρ: environ): mpred.
The standard precondition for the main function, which is that all the
global variables have their initial values. This is calculated from CompCert’s
description of the initialized global variables, using init-data-list2pred.
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Chapter 24

The VST separation logic for C light

The Verified Software Toolchain’s separation logic for C light has Hoare-
logic inference rules for C that are more complex than the simple Hoare
rules of an idealized programming language. The form of the Hoare
judgment is ∆ ⊢ {P} c {R},

semax (∆: tycontext) (P: environ→mpred) (c: statement) (R: ret-assert)

∆ : tycontext is a type context, giving

• the (C-language) types of function parameters,

• the types of addressable local variables,

• the types and initialization status of nonaddressable local variables
(temporaries),

• the types of global variables, and

• the type-signatures and specifications (pre/postconditions) of global
functions.

P : environ→mpred is a precondition, a function from variable environment
to memory predicate. Variable environments map identifiers to addresses
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of addressable local variables (including functions), addresses of global
variables, and values of temporaries (nonaddressable local variables).
In our program logic, the type mpred is the abstract type of predicates
on memories, and environ → mpred means that an assertion P takes an
environ ρ and returns an mpred.

c : statement is a statement in the C language.

R : ret_assert is a return assertion, giving postconditions for each of the
ways that c can exit: by fall-through, by continue, by break, and by return.1

THE VERY FIRST ARGUMENT of semax—before the ∆ argument—is an implicit
parameter {Espec: OracleKind} that is typically supplied by Coq’s type-class
system. It specifies properties of the external world, the oracle with which
the C program interacts. Proofs of ordinary function bodies are quantified
over all oracle-kinds, so usually this parameter can be ignored (or hidden).

semax_ifthenelse
∆ ⊢ {P ∧ e} c {R} ∆ ⊢ {P ∧¬e} d {R}

∆ ⊢ {P} if (e) c else d {R}

Axiom semax-ifthenelse : forall (∆:tycontext)
(P:environ→mpred) (e: expr) (c d: statement) (R: ret-assert),

bool-type (typeof e) = true →
semax ∆ (P && local ( (̀typed-true (typeof e)) (eval-expr e))) c R →
semax ∆ (P && local ( (̀typed-false (typeof e)) (eval-expr e))) d R →
semax ∆ (local (tc-expr ∆ e) && P) (Sifthenelse e c d) R.

THE IF-THEN-ELSE RULE ILLUSTRATES SEVERAL ISSUES. The first line—Axiom—
emphasizes that Hoare logic is an axiomatic semantics (sémantique axioma-
tique in French, hence semax). Really, though, Axiom is just Coq-ese for

1The program logic does not permit goto statements. These would not be particularly
difficult to add to the logic. A table of goto-conditions (one precondition for each label in
the function) could be made a part of ∆ or R.
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“lemma mentioned in a Module Type, whose proof is in another module."
Indeed, this rule is in the module type CLIGHT_SEPARATION_LOGIC.

The second line, forall (∆:tycontext) ... mentions the parameters
∆, c, P, R as explained above. Here e is a C-language expression.

The third line, bool-type (typeof e) = true, requires that the expression
e have a Boolean-compatible type in the C language. C does not have a
special-purpose Boolean type; instead, any nonzero value is considered
true, and zero is false. The NULL pointer is really just 0 in C. A boolean-
compatible type is one that contains a zero value:

Definition bool-type (t: type) : bool :=
match t with
| Tint - - - | Tpointer - - | Tarray - - - | Tfunction - - | Tfloat - - ⇒ true
| - ⇒ false
end.

This term bool-type (typeof e) is computable, in the sense that when
applied to any ground term (a concrete C expression from a real program)
it will efficiently compute in Coq to true or false; and for any C expression
found in a program that passes CompCert’s (or gcc’s) front-end typechecker,
it will compute to true. When the rule is applied to actual programs, this
premise is cheaply disposed of automatically.

The fourth line,

semax ∆ (P && local ( (̀typed-true (typeof e)) (eval-expr e))) c R →

expresses the hypothesis ∆ ⊢ {P∧ e} c {R}, meaning that if we are executing
the then-clause c, not only can we assume the precondition P but also that
the expression e must be true.

“Expression e is true” is not such a simple claim. As an assertion, it must
take environment ρ and return an mpred. But since expression-evaluation
cannot depend on memory, in fact the mpred it returns must be of the
form prop( f ρ) for some function f : environ→ Prop, where our operator
prop : Prop→mpred injects Coq propositions into the separation logic.

We say that an assertion that depends only on the environment and not
on the memory is local, in the sense that (for example in a shared-memory
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concurrent-threads execution) it depends only on thread-local information.
The local operator makes an assertion out of an environ→Prop function:

local (f: environ→Prop) : mpred := lift1 prop or, equivalently,
local (f: environ→Prop) : mpred := fun ρ ⇒ prop (f ρ)

Thus the precondition P∧e in the idealized presentation of semax-ifthenelse
is really P && local f in our logic. But what is f (ρ)?

We evaluate expression e in ρ, yielding a value v : val; that is,
v := eval-expr e ρ. Whether v is true depends on e’s type, using the
predicate typed-true:

Definition strict-bool-val (v: val) (t: type) : option bool :=
match v, t with
| Vint n, Tint ---⇒ Some (negb (Int.eq n Int.zero))
| Vint n, (Tpointer --| Tarray ---| Tfunction --) ⇒

if Int.eq n Int.zero then Some false else None
| Vptr b ofs, (Tpointer --| Tarray ---| Tfunction --) ⇒ Some true
| Vfloat f, Tfloat sz -⇒ Some (negb(Float.cmp Ceq f Float.zero))
| -, -⇒ None
end.

Definition typed-true (t: type) (v: val) : Prop :=
strict-bool-val v t = Some true.

Definition typed-false (t: type)(v: val) : Prop :=
strict-bool-val v t = Some false.

We use |typed_true| in the logic of lifted propositions (environ→ Prop).
That is, (̀typed-true τ) has type (environ → Prop) → (environ → Prop).
(For a review of the b̀ackquote notation for lifted propositions, see Chap-
ter 21.) We apply (̀typed-true τ) to eval-expr e of type environ→ Prop,
and apply local to the whole thing. We apply our lifted conjunction && and
get the precondition, P && local ( (̀typed-true (typeof e)) (eval-expr e)).

Line 5, the hypothesis corresponding to ∆ ⊢ {P ∧¬e} d {R}, proceeds on
similar principles.
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Line 6 is the conclusion ∆ ⊢ {P} if (e) c else d {R}. The complication
here is that perhaps e will not evaluate successfully to a boolean value.
For example, x/y does not evaluate if y = 0. The typechecking clause
tc_expr ∆ e generates the appropriate precondition (of type environ →
Prop) to ensure the evaluation of e does not get stuck. For example, if e is
x/y then tc-expr ∆ e will be (fun ρ ⇒ (0 ̸= eval-id y ρ)).

semax_seq
∆ ⊢ {P} c {Q} ∆ ⊢ {Q} d {R}

∆ ⊢ {P} (c; d) {R}

Axiom semax-seq:
∀∆ (R:ret-assert) (P Q:environ→mpred) (c d: statement),
semax ∆ P c (overridePost Q R) →
semax (update-tycon ∆ c) Q d R →
semax ∆ P (Ssequence c d) R.

THE SEQUENCING RULE for a command (c; d) is easy in idealized Hoare logic:
execute c with precondition P to get postcondition Q, then execute d to get
postcondition R.

In Verifiable C there are two more things to consider: initialization
status of variables in ∆, and multi-exit postconditions.

First, the type-context ∆ keeps track of which (nonaddressable) local
variables are initialized. This allows the typechecker to avoid generating
too many extra preconditions about initialized variables. The type-context
update-tycon ∆ c is like ∆ but augments the set of initialized variables
with all the ones that are unambiguously initialized in command c.

The statement if (1) {y=3; z=y;} else {z=2;} unambiguously initial-
izes z but not y. The reader might notice that 1 is true, thus y really is
initialized, but if the user of the separation logic wants to make use of
that fact in the next command, she will have to write that explicitly in the
postcondition of this statement, where it will not be difficult to prove.

Second, the postcondition of a semax is a |ret_assert|, not an ordinary
environ→mpred. That is, it has assertions describing what postconditions c
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must satisfy for ordinary fall-through, for a continue statement to the end
of the current loop body, for a break statement out of the current loop, or
for a return statement. The postcondition for command c must use Q as
its fall-through assertion, but any other kind of exit from c should use the
corresponding assertion from R. This is exactly what overridePost Q R does.

∆ ⊢ {P} (c1; (c2; c3)) {Q} ↔ ∆ ⊢ {P} ((c1; c2); c3) {Q}

Axiom seq-assoc: ∀∆ P (s1 s2 s3: statement) R,
semax ∆ P (Ssequence s1 (Ssequence s2 s3)) R↔
semax ∆ P (Ssequence (Ssequence s1 s2) s3) R.

COMMAND SEQUENCING IS ASSOCIATIVE, and the Hoare triple respects asso-
ciativity. This axiom is inessential, in that any program provable with this
axiom is provable without it; but it’s convenient and easy to understand.

semax_while
∆ ⊢ {P ∧ e} c {R} P ∧¬e ⊢ R

∆ ⊢ {P} while e do c {R}

Axiom semax-while: ∀∆ P (e: expr) (c: statement) R,
bool-type (typeof e) = true →
local (tc-environ ∆) && P ⊢ local (tc-expr ∆ e) →
local (tc-environ ∆) &&

local ( (̀typed-false (typeof e)) (eval-expr e)) && P
⊢R EK-normal None) →

semax ∆ (local ( (̀typed-true (typeof e)) (eval-expr e)) && P)
c (loop1-ret-assert P R) →

semax ∆ P (Swhile e c) R.

THE WHILE RULE is similar in several aspects to the if rule:

• The test expression e must be boolean-compatible (bool-type).
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• The precondition must ensure that e evaluates successfully
(P --local (tc_expr ∆ e)).

• The tests e and ¬e are local, lifted (via lift1), and type-specific
(typed-true (typeof e)).

Also, a the body of a while-loop may continue (skip to the loop test and
next iteration) or break (skip to after the loop). Thus any postcondition
is really four different assertions in one. The function loop1-ret-assert
converts the while-loop postcondition R into a postcondition for the loop
body:

Definition loop1-ret-assert (P: environ→mpred) (R:ret-assert): ret-assert :=
fun ek vl ⇒ match ek with

| EK-normal ⇒ P
| EK-break ⇒ R EK-normal None
| EK-continue ⇒ P
| EK-return ⇒ R EK-return vl
end.

That is, if the loop-body does a normal exit or a continue exit, it must
satisfy the loop invariant P. If the body does a break exit, it must satisfy
the postcondition of the loop. If the body returns from the function, it must
satisfy the same function-return postcondition as R.

Axiom semax-loop :
∀∆ (P Q: ASSERT) (e: expr) (c: statement) (R: ret-assert),

semax ∆ P c (loop1-ret-assert Q R) →
semax ∆ Q e (loop2-ret-assert P R) →
semax ∆ P (Sloop c e) R.

THE WHILE RULE IS NOT a primitive rule of our separation logic; it is a
lemma derived from the more primitive loop, if, and break statements. The
command Sloop c e can be written in C as {for (;;e) c}, where c is the loop
body, and e is the increment performed between iterations.
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In the semax-loop proof rule, as in the rule for while, the assertion P
is the loop invariant, the one that must hold right before the loop body c.
But here there also also a continue condition, Q, which must be satisfied
whenever the body falls through or executes a continue. The command
e must not break or continue (in the C language it must be a simple
expression with no control flow), so loop2-ret-assert enforces break and
continue postconditions of false.

The general form {for(einit;etest;eincr)c} of the C-language for statement
can be written in C light (and Verifiable C) as,

einit; for (;;eincr) {if etest then ; else break; c}

and one can derive a proof rule for the general three-expression for-loop
with an initialization einit and test etest in addition to the increment eincr and
body c.

semax_set
∆ ⊢ {◃P[e/x]} { x := e }P

Axiom semax-set: ∀ (∆:tycontext)(P:environ→mpred) (x: ident) (e: expr),
semax ∆ (◃ (local (tc-expr ∆ e) &&

local (tc-temp-id x (typeof e) ∆ e) &&
subst x (eval-expr e) P))

(Sset x e) (normal-ret-assert P).

THE ASSIGNMENT RULE is like the idealized Hoare rule for assignment,
except: The type of the variable must match the type of the expression:
tc-temp-id x (typeof e) ∆ e. The assertion tc_expr ∆ e ensures that e
evaluates. Since the assignment takes a step, the precondition can be
weakened by the ◃ later operator. Since the assignment does not continue,
break, or return, those three assertions of the postcondition are false:

Definition normal-ret-assert (Q: environ→mpred) : ret-assert :=
fun ek vl ⇒ !!(ek = EK-normal) && (!! (vl = None) && Q).
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semax_set_forward
∆ ⊢ {◃P} x := e {∃v. x = (e[v/x])∧ P[v/x]}

Axiom semax-set-forward:
∀ (∆: tycontext) (P: environ→mpred) (x: ident) (e: expr),

semax ∆ (◃ (local (tc-expr ∆ e) &&
local (tc-temp-id id (typeof e) ∆ e) && P))

(Sset x e)
(normal-ret-assert

(EX old:val,
local ( èq (eval-id x) (subst x ( òld) (eval-expr e))) &&
subst x ( òld) P)).

THE FLOYD ASIGNMENT RULE is provided as a forward-proof alternative to the
Hoare assignment rule.

semax_load
∆ ⊢ {◃(e π v ∗ P)} x := [e] {∃vold. x = v ∧ (e π v ∗ P)[vold/x]}

Axiom semax-load: ∀ (∆: tycontext) π (x: ident) P (e: expr) (v: val),
tc-temp ∆ x (typeof e) →
semax ∆
(◃(local (tc-lvalue ∆ e) &&

local (tc-temp-id-load x (typeof e) ∆ v) &&
( (̀mapsto π (typeof e)) (eval-lvalue e) v ∗ P)))

(Sset x e)
(normal-ret-assert
(EX old:val, local ( èq (eval-id x) (subst x ( òld) v)) &&
(subst x ( òld) ( (̀mapsto π (typeof e)) (eval-lvalue e) v ∗ P)))).

THE PRIMITIVE LOAD RULE handles memory-loads from any kind of l-value.
Specialized rules for array slots, structure fields, and *-dereference are
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synthesized from this primitive rule, which (therefore) will rarely be
directly applied by users of the logic.

The syntactic form of the rule appears similar to that of the assignment
rule—they both match Sset x e—but in this case the expression e must
type-check as an lvalue, not as an expr. The distinction between l-values
(values that can appear on the left or right of an assignment) and r-values
(values that can only appear on the right of an assignment) can be explained
by the evaluation function:

Fixpoint eval_expr (e: expr) : environ →val :=
match e with
| Econst-int i ty ⇒ (̀Vint i)
| Econst-float f ty ⇒ (̀Vfloat f)
| Etempvar id ty ⇒ eval-id id
| Eaddrof a ty ⇒ eval-lvalue a
| Eunop op a ty ⇒ (̀eval-unop op (typeof a)) (eval-expr a)
| Ebinop op a1 a2 ty ⇒ (̀eval-binop op (typeof a1) (typeof a2))

(eval-expr a1) (eval-expr a2)

with eval-lvalue (e: expr) : environ →val :=
match e with
| Evar id ty ⇒ eval-var id ty
| Ederef a ty ⇒ f̀orce-ptr (eval-expr a)
| Efield a i ty ⇒ (̀eval-field (typeof a) i) (eval-lvalue a)
| -⇒ `Vundef
end.

That is, r-values include numeric constants, nonaddressable local variables
(temps), taking the address of an l-value using the & operator, and unary
and binary operator expressions. The l-values include addressable (local
and global) variables, dereferencing an r-value using the ∗ operator, and
fields of structures and unions. By default, ill-formed expressions are
l-values that evaluate to Vundef, but these will never occur in well-typed
expressions.

So, the expression e must type-check as an l-value (tc-lvalue ∆ e), and
the variable x must have the same type as e. Loading takes a step, so the
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precondition is relaxed by the ◃ later operator. The old value of the variable
is saved in logical-variable old.

We can read the load rule as follows. In the precondition, a heap cell at
address e has contents v and some set of other locations (disjoint from e)
satisfy P. After the load, variable x has value v, and the assertion e π v ∗ P
still holds but occurrences of x must be interpreted with the x ’s old value.

The mapsto operator ensures that the type of v (sitting in memory at
the address given by l-value e) matches the type specified for e:

Definition mapsto π t v1 v2 := !! (tc-val t v2) && umapsto π t v1 v2.
where umapsto is an “untyped maps-to” that permits v2 to be anything,
including Vundef. Th tc-temp-id-load condition ensures that the type of v
is castable to the type of the variable x .

There is an extra semiframe P. One might think, surely P is not
necessary, as it could be omitted from the specification of semax-load and
be added later by the frame rule! But P may mention the variable x , and
the forward load rule substitutes in P to refer instead the old value of x;
this could not be accomplished using the frame rule.

semax_store
∆ ⊢ {◃(e1

π v ∗ P)} [e1] := e2 {}(e1
π e2 ∗ P)

Axiom semax-store: ∀∆ (e1 e2: expr) π (P: environ→mpred),
writable-share π →
semax ∆

(◃(local (tc-lvalue ∆ e1) && local (tc-expr ∆ (Ecast e2 (typeof e1)))
&& ( (̀mapsto- π (typeof e1)) (eval-lvalue e1) ∗ P)))

(Sassign e1 e2)
(normal-ret-assert

( (̀mapsto π (typeof e1)) (eval-lvalue e1)
( (̀eval-cast (typeof e2) (typeof e1)) (eval-expr e2)) ∗ P)).

STORING INTO AN l-VALUE in C differs from the idealized separation-logic
rule in these ways: The share π or sh must contain enough permission for
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writing (writable-share sh). There is an implicit cast of e2 to the type of e1.
The typechecker ensures (in the precondition) that e1 and (the casted) e2

both evaluate.
The mapsto- operator in the precondition means “maps-to anything”,

just as we write p _ to mean ∃v. p v.

Definition mapsto- π t v1 := EX v2:val, umapsto π t v1 v2.

Axiom semax-ptr-compare : ∀ (∆: tycontext) P id cmp e1 e2 ty π1 π2,
is-comparison cmp = true →
typecheck-tid-ptr-compare ∆ id = true →
semax ∆

( ◃(local (tc-expr ∆ e1) &&
local (tc-expr ∆ e2) &&
local ( (̀blocks-match cmp) (eval-expr e1) (eval-expr e2)) &&
( (̀mapsto- π1 (typeof e1)) (eval-expr e1) ∗ TT) &&
( (̀mapsto- π2 (typeof e2)) (eval-expr e2) ∗ TT) &&
P))

(Sset id (Ebinop cmp e1 e2 ty))
(normal-ret-assert

(EX old:val,
local ( èq (eval-id id)

(subst id òld ( (̀cmp-ptr-no-mem (op-to-cmp cmp))
(eval-expr e1) (eval-expr e2)))) &&

subst id òld P)).

COMPARING POINTERS FOR EQUALITY OR INEQUALITY has a complex semantics
in C. Testing p==q or p < q is unpredictable (illegal) if p or q has been
deallocated (see page 145). The requirement e1 _ ∗ ⊤ assures that e1

is still allocated, and similarly for e2. Testing p < q is illegal if p and q
point into different allocated blocks; blocks-match checks for this. Users
of the program logic must therefore (unfortunately) factor commands such
as if (p<q) c; else d; into x=(p<q); if (x) c; else d; when p is a pointer
expression.
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THE C LANGUAGE HAS FUNCTION POINTERS. For example, this little program
assigns a global function constant &f to a function-pointer variable p, then
calls it:

int f(int z)
{return z+1;}

int main()
{int (∗p)(int); p = &f; return p(3);}

Even calling a global function directly is done in two stages: evaluate an
expression &f that yields a function-pointer, then call that pointer. In C the
ampersands can be elided, so instead of (&f)(5) one usually writes f(5).

We can handle these two stages by separate rules in the program logic:
obtain a function pointer from a global definition, then call it.

semax_fun_id
∆(x) = func{P ′}{Q′} ∆ ⊢ {P && x : {P ′}{Q′}} c {Q}

∆ ⊢ {P} c {Q}

Axiom semax-fun-id: ∀x (φ: funspec) ∆ P Q c,
(var-types ∆) ! x = None →
(glob-types ∆) ! x = Some(Global-func φ) →
semax ∆

(P && (̀func-ptr φ) (eval-lvalue (Evar x (type-of-funsig fsig))))
c
Q →

semax ∆ P c Q.

TO ACCESS A FUNCTION POINTER FROM A GLOBAL DEFINITION, one uses the
semax-fun-id rule. This looks up the identifier x in the local context
(var-types) to make sure the global name is not shadowed, then looks up
x in the global context to find the function specification. The type-context
∆ contains not only the types but their entire function-specifications with
pre- and postconditions. Then a function assertion applied to address &x is
conjoined with the precondition P.
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The function-assertion (func-ptr φ v) states that at address v there
is a function whose specification is φ (see also page 171). When
φ=mk-funspec fsig A P ′ Q′ it means that fsig gives the names and types of
function parameters, P ′ is a precondition of type A→environ→mpred, Q′ is
a postcondition of type A→environ→mpred, and the type A is the type of a
value that is to be shared between P ′ and Q′. For example,

func-ptr (mk-funspec ((z,Tint)::nil, Tint)
int

(fun i:int ⇒ (̀eq (Vint i)) (eval-id z))
(fun i:int ⇒ (̀eq (Vint (Int.add i (Int.repr 1)))) (eval-id retval))

gives a function-assertion for the f function shown above. For this function,
the type A is chosen to be int. There is some integer i such that (in the pre-
condition) function-parameter contains Vint i, and (in the postcondition)
the return value equals Vint i+ 1.

Therefore, to prove correctness of the assignment p=&f, when the
initial proof goal is ∆ ⊢ {P} c {Q}, we can apply semax-fun-id to yield a
proof goal with a precondition of P && (̀fun-assert...) (eval-lvalue...),
where eval-lvalue(Evar f ...) is the l-value &f. From this we can prove a
postcondition saying that the contents of variable x is also a (func-ptr ...).

TO CALL A FUNCTION, the function-expression must typecheck (tc_expr ∆ a),
the argument expressions must typecheck (tc-exprlist ∆ bl), and the
function-expression a must evaluate to an actual function with specification
[A]{P}{Q}: (func-ptr (mk-funspec fsig A P Q) (eval-expr a). There is
some function-signature typechecking as well: the type of a must match
the function parameter-signature argsig and return-type retsig (this is what
classify-fun checks), and the return-variable assignment must be missing if
and only if the return-type is void.

The call-statement’s precondition must divide into one subheap that
satisfies the function-precondition P, and the rest of the heap that satisfies
the frame condition F . For example, when calling a function that reverses
a linked list, the linked list satisfies P and everything that’s not part of the
linked list satisfies F .
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semax_call
∆ ⊢ {a : { y⃗ P}{Q} ∧ F ∗ (P x)[b⃗/ y⃗]} r := a(⃗b) {∃vo. F[vo/r] ∗Qx r}

Axiom semax-call: ∀∆ A (P Q: A →environ→mpred) (x:A)
(F: environ→mpred) (ret: option ident) (argsig: list (ident∗type))

(retsig: type) (a: expr) (bl: list expr),
Cop.classify-fun (typeof a) =

Cop.fun-case-f (type-of-params argsig) retsig →
(retsig = Tvoid↔ret = None) →
semax ∆
(local(tc-expr ∆ a) &&
local(tc-exprlist ∆ (snd(split argsig)) bl) &&
&& ( (̀func-ptr (mk-funspec (argsig,retsig) A P Q)) (eval-expr a) &&

(F ∗ (̀P x) (make-args’ (argsig,retsig)
(eval-exprlist (snd(split argsig)) bl)))))

(Scall r a bl)
(normal-ret-assert

(EX old:val, substopt r ( òld) F ∗ (̀Q x) (get-result r))).

But it’s not exactly P that must be satisfied. First, the precondition
and postcondition can share a value x in common (see the example that
used the variable i on page 166, so P is applied to x . Second, the variable
environment for P is not the current one (the caller’s local variables).
Instead, it’s a fresh environment made by binding the actual parameters
b⃗ to the formal parameters y⃗—which is what make-args’ does. The
parameter-names y⃗ come from the argsig.

After the function call, the frame F is unchanged. However, if the
assertion F mentioned the return-variable r, then F must be interpreted
with the old value of r substituted in. Since C call-statements may or may
not assign to a variable, i.e. r=f(x) or just f(x), r is actually an option, and
the substitution of vo/r is actually an optional substitution, substopt.

Finally, the function postcondition Q is applied to the non-frame part of
the heap. First it’s applied to x , so that P and Q can talk about their value
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in common. Then the return-result is bound to the variable named retval,
which is the name by which function-postconditions can refer to the return
value; this is what get-result does.

OF COURSE, THE TYPICAL FUNCTION-CALL is not to a function-pointer variable,
but to a global (extern) function. For those it’s simpler to use a synthetic
rule semax-call-id, which is derived from semax-fun-id and semax-call. We
won’t show it here; it follows the same principles as the two rules from
which it’s constructed.

semax_return
∆ ⊢ {Rreturn(e)} return e {R}

Axiom semax-return : ∀∆ (R: ret-assert) (e: expr),
semax ∆ (local (tc-expropt ∆ e (ret-type ∆)) &&

(̀R EK-return) (cast-expropt e (ret-type ∆)) id)
(Sreturn e) R.

TO RETURN FROM A FUNCTION, one must simply satisfy the return-assertion
component of the postcondition. A C-language return may or may not
return a value, so e is an option(expr). The ret-asset R is applied to
EK-return (which selects the return-assertion). A return-assertion is a
function from (option val)→environ→mpred; it is applied to the result
of evaluating the expression-option e. There is an implicit cast from the
type of e to the return-type of the enclosing function; this latter type is
remembered inside the type-context ∆.

The EK-return component of R will have been established upon entry to
the enclosing function body; see the semax-func rule (page 171).
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semax_skip
∆ ⊢ {P} ; {P}

Axiom semax-skip:
∀∆ P, semax ∆ P Sskip (normal-ret-assert P).

THE EMPTY STATEMENT has the empty explanation.

semax_frame
∆ ⊢ {P} s {R} modv(c)∩ fv(F) = ;

∆ ⊢ {P ∗ F} c {R ∗ F}

Axiom semax-frame: ∀∆ (P: environ→mpred) (c: statement)
(R: ret-assert) (F: environ→mpred),

closed-wrt-modvars c F →
semax ∆ P c R →

semax ∆ (P ∗ F) c (frame-ret-assert R F).

THE FRAME RULE. The postcondition frame-ret-assert R F is the separating
conjuction of a return-assertion R with an ordinary mpred F . The premise
closed-wrt-modvars c F says that the variables modified by command c are
disjoint from the free variables of predicate F .

semax_extract_prop
Q→ (∆ ⊢ {P} c {R})
∆ ⊢ {!!Q ∧ P} c {R}

Axiom semax-extract-prop: ∀∆ (Q: Prop) P c R,
(Q → semax ∆ P c R) →
semax Delta (!!Q && P) c R.

PROPOSITIONS IN THE PRECONDITION can be extracted “above the line” as
hypotheses in Coq.
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semax_pre_post
P ⊢ P ′ ∆ ⊢ {P ′} c {R′} R′ ⊢ R

∆ ⊢ {P} c {R}

Axiom semax-pre-post: ∀P’ (R’: ret-assert) ∆ P c (R: ret-assert) ,
(local (tc-environ ∆) && P ⊢P’) →
(∀ ek vl, local(tc-environ (exit-tycon c ∆ ek)) && R’ ek vl ⊢

R ek vl) →
semax ∆ P’ c R’ → semax ∆ P c R.

THE RULE OF CONSEQUENCE in its simplest form would be,

∀P’ (R’: ret-assert) ∆ P c (R: ret-assert) ,
P ⊢P’ → R’ ⊢R → semax ∆ P’ c R’ → semax ∆ P c R.

However, the stronger version of the rule gives more information when
proving P ′ and when proving R: the environment ρ is well-typed.

THE CLAIM THAT A FUNCTION DEFINITION f meets its specification spec is
called semax-body. We are in a global context (V,Γ) of global-variable
declarations V and global-function specifications Γ. What the claim
means is that the body of the function (fn-body f) satisfies a Hoare triple
∆ ⊢ {P ′} (fn_body f ) {Q′} where:

• The type-context ∆ is constructed from the function parameters and
local variables, as well as the globals V,Γ.

• The precondition P ′ is constructed from the function-specification
precondition P x and a stack frame comprising all the addressable
local variables.

• The postcondition Q′ is constructed from the function-specification
postcondition Qx as well as the addressable-local-variable frame.

The stack frame is just the separating conjunction of all the fn-vars of f .
A function-body-ret-assert is one that permits a return exit, but no other
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Record function : Type := mkfunction {
fn-return: type;
fn-params: list (ident ∗ type);
fn-vars: list (ident ∗ type);
fn-temps: list (ident ∗ type);
fn-body: statement

}.

Inductive funspec :=
mk-funspec: funsig →∀A: Type, (A→environ→mpred) →

(A→environ→mpred) → funspec.

Definition varspecs := list (ident ∗ type).
Definition funspecs := list (ident ∗ funspec).

Definition stackframe-of (f: function) : environ→mpred :=
fold-right sepcon emp (map (var-block Share.top) (fn-vars f)).

Definition semax-body (V: varspecs)(Γ: funspecs)(f: function)
(spec: ident ∗ funspec) :=

match spec with (-, mk-funspec -A P Q) ⇒
∀x, semax (func-tycontext f V Γ)

(P x ∗ stackframe-of f)
(fn-body f)
(frame-ret-assert (function-body-ret-assert (fn-return f) (Q x))

(stackframe-of f))
end.

kind (not fall-through, continue, or break). Upon exit, the function-body
must “give the addressable variables back,” satisfying Qx ∗ stackframe, and
thus ensuring that none of the footprint of the local variables is used in
satisfying Qx . The frame-ret-assert is just separating conjunction lifted to
the ret-assert type.
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Parameter semax-func:
∀ (V:varspecs)(Γ:funspecs)(fdecs:list(ident∗fundef))(Γ1:funspecs), Prop.

Axiom semax-func-cons: ∀ fs id f (A: Type) P Q (V: varspecs)
(Γ Γ′: funspecs),

(id-in-list id (map fst Γ) &&
(negb (id-in-list id (map fst fs)) &&
semax-body-params-ok f)) = true →

semax-body V Γ f (id, mk-funspec (fn-funsig f) A P Q ) →
semax-func V Γ fs Γ′ →
semax-func V Γ ((id, Internal f)::fs)

((id, mk-funspec (fn-funsig f) A P Q ) :: Γ′).

Axiom semax-func-nil: ∀V Γ, semax-func V Γ nil nil.

THE PROOF OF A PROGRAM is the demonstration that all the functions in the
program satisfy their specifications. That is, semax-body must be proved
for every function.

The abstract predicate semax_funcV Γ f⃗ Γ′ means that the list f⃗ of
function-definitions meets the specifications in the corresponding list Γ′

of the list of funspecs. By “meet the specifications" we mean semax-body,
with some additional bookkeeping about the uniqueness of function-names
within f⃗ , the uniqueness of local-variable names within each individual
function, and so on.

The base case, for f⃗ the empty list (and thus Γ′ empty) is handled by
the semax-func-nil rule. The inductive case, for f1 · f⃗ and spec1 · Γ′, is to
handled by semax-func-cons.
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Chapter 25

Typechecking for Verifiable C
with Josiah Dodds

MOST PRESENTATIONS OF HOARE LOGICS assume that expressions (in a
current environment) are interchangeable with their values. Implicit
in this presentation is that every expression evaluates to a value in
the evaluation relation. This is convenient for users of these logics
in accomplishing program verification: connecting a program with a
mathematical specification.

Unfortunately, C expressions do not always evaluate to values (and
occasionally evaluate to unusable values). Although this occurs only in
limited and predictable cases, we do not want to lose the power to reason
about expressions and values interchangeably in the many cases where
expressions can be statically guaranteed to evaluate. We will avoid the
cases where expressions may not evaluate, because we will show that
they do not arise in verified programs. We integrate a typechecker with
our Hoare-logic rules to detect these cases, and (mostly) restore the link
between expressions and values.1

CompCert’s inductive definition of eval-expr does not assume that ex-
pressions always evaluate. CompCert denotes failure to evaluate by omitting

1This chapter describes Coq developments in veric/expr.v, veric/binop_lemmas.v,
veric/environ_lemmas.v, and veric/expr_lemmas.v.
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tuples from the inductive definition of the compcert.Clight.eval-expr rela-
tion, following standard principles of contemporary structural operational
semantics. In program verification, however, the cost to using an inductive
definition is that in order to relate an expression to a value you must say
something like: ∃v. e ⇓ v ∧ P(v), “there exists some value such that e
evaluates to v and P holds on v.”

WE WOULD RATHER SAY, “P holds on the value of e.” We can do this with a
total function (a Fixpoint in Coq).

Fixpoint eval-expr (e: expr) : environ →val := ...

Whenever compcert.Clight.eval-expr would fail to relate, our eval-expr
produces an arbitrary value such as Vundef. Expressions that typecheck (as
we will explain this chapter) cannot evaluate to this undefined value. As the
curried form of the definition hints, our eval-expr does case-discrimination
on the syntax of expressions without waiting to see the environment
argument. This means that eval-expr(e) can simplify statically (in program
verifications, for example) using only Coq’s simpl, not rewrite.

That is, we define the expression-evaluation relation for tractable and
convenient reasoning in the program logic. We take advantage of the fact
that we are only interested in evaluating programs that will (provably)
never get stuck (though it will be up to the user to complete this proof).

We then prove the relationship between the two definitions of evaluation
on expressions that typecheck:

THEOREM. For dynamic environments ρ that are well typed with respect
to a type context ∆, if expression e typechecks with respect to ∆, then
CompCert’s relational eval-expr evaluates e in ρ to the same value as our
computational eval-expr.

Theorem eval-expr-relate :
∀ (∆: tycontext) (ρ: environ) (e: expr) (m: mem),
ρ = construct-rho (filter-genv ge) ve te → typecheck-environ ∆ ρ →
(denote-tc-assert (typecheck-expr ∆ e) ρ →
Clight.eval-expr ge ve te m e (eval-expr e ρ)).
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MANY THINGS CAN GO WRONG IN A C EXPRESSION — some are a bit surprising.
These are expression behaviors that are undefined in the C90 standard
used as the basis for the operational semantics of Clight [63]. Programs
containing these undefined behaviors cannot take advantage of the correct-
ness guarantees of either CompCert or our program logic (even though, in
practice, the machine-language program may have predictable behavior).

These expressions are stuck in the CompCert operational semantics:
shifting an integer value by more than the word size, dividing the minimum
int by −1 (which overflows), subtracting two pointers with different base
addresses (e.g., from different malloc’ed blocks), casting an out-of-range
float to an int, dereferencing a null pointer, arithmetic on an uninitialized
variable, and casts between integers and pointer (results in values that get
stuck when used). Our typechecker produces program-logic predicates that
(if satisfied) ensure the absence of these conditions.

OUR TYPECHECKER USES a technique very similar to proof by reflection. We
give an example of standard proof by reflection, followed by our approach
in order to highlight differences.

Proof by reflection is a three-step process. A program is reified (made
real) by translation from Prop to a data structure that can be reasoned about
computationally. Computation is then performed on that data structure and
the result is reflected back into Prop where it can be used in a proof (see
bottom of Fig. 25.2).

We could use reflection, for example, to remove True and False from
propositions containing conjunctions and disjunctions. (See Chlipala [34,
Reflection chapter] for a fuller explanation of this technique.) The first
step is to define a syntax tc_assert (see Figure 25.1) that represents
the propositions of interest. We will use the same syntax that describes
typechecking assertions, these match each case where a C expression does
not evaluate.

Next we need a function to reflect this syntax into the logic of proposi-
tions, that is, denotation function denote-tc-assert (Figure 25.1).
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Inductive tc-assert :=
| tc-FF: tc-assert
| tc-noproof : tc-assert
| tc-TT : tc-assert
| tc-andp’: tc-assert → tc-assert → tc-assert
| tc-orp’ : tc-assert → tc-assert → tc-assert
| tc-nonzero: expr → tc-assert
| tc-iszero: expr → tc-assert
| tc-isptr: expr → tc-assert
| tc-ilt: expr → int → tc-assert
| tc-Zle: expr →Z → tc-assert
| tc-Zge: expr →Z → tc-assert
| tc-samebase: expr →expr → tc-assert
| tc-nodivover: expr →expr → tc-assert
| tc-initialized: PTree.elt → type → tc-assert.

Definition denote-tc-nonzero (v: val) :=
match v with
| Vint i ⇒ if negb (Int.eq i Int.zero) then True else False

| -⇒ False
...

end.

Fixpoint denote-tc-assert (a: tc-assert) : environ →Prop :=
match a with
| tc-FF ⇒ F̀alse | tc-TT ⇒ `True
| tc-andp’ b c ⇒ ànd (denote-tc-assert b) (denote-tc-assert c)
| tc-nonzero e ⇒ d̀enote-tc-nonzero (eval-expr e)
| ...

end.

Figure 25.1: Reified (syntactic) type-checking assertions
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If we were doing standard reflection—which we are not—we would then
write a reification tactic,

Ltac p-reify P :=
match P with

| True ⇒ tc-TT | False ⇒ tc-FF
| ?P1 ∧ ?P2 ⇒ let t1 := p-reify P1 in

let t2 := p-reify P2 in
constr:(tc-andp t1 t2) ...

Finally, we do (as does standard reflection) write a simplification
function that operates by recursion on tc-assert. Comparing the steps, we
see that the reflection step, as well as any transformations on our reified
data, will be computational. Reification, on the other hand, operates by
matching proof terms. The computational steps are efficient because they
operate in the same way as any functional program.

To avoid the costly reification step, the typechecker generates syntax
directly—so we can perform the computation on it immediately, without
need for reification. This keeps interactive proofs fast. The typechecker
keeps all of its components real, meaning there are no reification tactics
associated with it.

We use this design throughout the typechecker. We keep data reified for
as long as possible, reflecting it only when it is in a form that the user needs
to solve directly:

Real

Reflected

Real

Reflected

Computation

Time

Reification
Proof
Reflection

X Proof endX

X X X

Figure 25.2: Our approach (top) vs. standard reflection (bottom)
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THE TYPE CONTEXT was briefly presented on page 153, along with the concept
of initialization. We keep the type context real (reified) for fast proofs. The
context is more than just an efficient way to store initialization—it is
predictable. That is, some of the facts derivable from the context at some
program points might also be derivable from the precondition (the user’s
assertions and invariants), but our proof automation can more easily digest
the information from the type context than from user assertions. This is
useful (for example) when our proof automation relates a variable name
with its value (because we know it is initialized!). This is what allows
go-lower (Chapter 27) to replace evaluated identifiers with values.

The type context is not always redundant with the precondition. A
user who is proving only safety properties of a program—or functional
correctness of a slice of the program with only shape properties of the rest
of the code—may not care what an expression evaluates to, only that it
doesn’t crash the program. Keeping initialization information in the type
context saves the user from needing to keep information about every single
variable in each program, allowing them to focus only on the variables
where one needs additional information about the value.

ALTHOUGH A TYPICAL TYPECHECKER makes recursive calls with a modified
context ∆ as it encounters variable declarations, typecheck-expr examines
only (C light) expressions, which don’t modify the state or contain internal
variable bindings. Thus all recursive calls can use the same ∆.

The Hoare logic rules do keep track of updates to ∆, as they traverse
commands that affect the type context. To understand how this works see
semax-seq on page 157. It shows that when two commands are used in
sequence, we must prove the first command correct with some initial type
context, and then prove the second command correct with∆ updated by the
command. No new variables are defined, but some variables’ initialization
status may have changed. updatetycon calculates which temporaries are
unambiguously initialized during statement execution, and the Hoare rules
for sequencing and if-then-else chain this information.

THE HOARE LOGIC IS FORMULATED to quantify only over dynamic environ-
ments that are well typed with respect to the type context. We can see how
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this is done in the definition of guards in Chapter 43. The Hoare rule that
enters a function body uses the function:

func-tycontext (func: function) (V: varspecs) (G: funspecs): tycontext

to automatically build a type context given the program function, local, and
global specifications. We have proved that the environment created by the
operational semantics when entering a function body will always be well
typed with respect to the context generated by this function.

The semax-seq rule for command sequencing (page 157) uses update-tycon
to update ∆. There are two changes that can occur in ∆ when a statement
is executed, and they only affect initialization information. All other infor-
mation about variables is available from the function header—C light does
not permit variable declarations nested inside statements—so is described
in ∆ at the start of the function body.

For the sequence rule to be sound, we must prove that if an environment
ρ is well typed with respect to a type context ∆, then ρ updated by
command c (dynamically) is well typed with respect to ∆ updated by c
(statically). This is proved by induction over the form of commands.

Moving type context maintenance into the rules benefits the users of the
rules: they don’t need to worry about the contents of ∆, they never need to
show that the environment typechecks, and they never need to mention ∆
explicitly in preconditions. Our rule of consequence illustrates the automatic
maintenance of ∆:

typecheck_environ(ρ,∆)∧ P ⊢ P ′ ∆ ⊢ {P ′} c {R}
∆ ⊢ {P} c {R}

The conjunct (typecheck_environ(ρ,∆) gives the user more information
to work with in proving the goal. Without this, the user would need to
explicitly strengthen assertions and loop invariants to keep track of the
initialization status of variables and the types of values contained therein.

ALTHOUGH COMPCERT’S OPERATIONAL SEMANTICS for statements and expres-
sions are written as (noncomputational) inductive relations, these call
upon some (computational) functions that can be used directly by our
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typechecker. For example, the typechecker calls upon CompCert’s classifi-
cation functions, that determine the behavior of overloaded operators by
examining the types of their arguments.

Despite the reuse of CompCert code on operations, the typechecker still
has many lines of code for checking binary operations. This is because of
the operator overloading on almost every operator in C. There are eight
operations the typechecker needs to be concerned with (shifts, boolean
operators, and comparisons can each be grouped together as they have the
exact same semantics with respect to the type returned). Each of these has
around four behaviors in the semantics giving a total of around thirty cases
that need to be handled individually for binary operations.

The typechecker matches on the syntax of the expression it is typecheck-
ing. If the expression is an operation, we use CompCert’s classify function
to decide which overloaded behavior to use. From there, we generate the
appropriate assertion. See Figure 25.3.

THEOREM (tc-expr-sound). If the dynamic environment ρ is well-typed
with respect to the static type context ∆, and the expression e typechecks
in ∆ producing an assertion that in turn is satisfied in ρ, then the value we
get from evaluating e in ρ will match the type that e is labeled with.

typecheck-environ ρ ∆ = true →
denote-tc-assert (typecheck-expr ∆ e) ρ →
typecheck-val (eval_expr e ρ) (typeof e) = true

This theorem guarantees that an expression will evaluate to the right
kind of value: integer, or float, or pointer. The undefined value belongs to
no type, so as a corollary we guarantee the absence of Vundef.

COMPARISONS BETWEEN POINTERS present a unique challenge, as discussed
on page 145. A comparison between two non-null pointers evaluates only
if each points to an allocated object—if each has nonempty permission.
Testing whether an object is allocated depends (dynamically) on the
memory, or (statically, in a proof) on the spatial parts of the precondition.
But our eval_expr does not see memory and our typechecker does not
handle spatial assertions. Therefore our Hoare logic needs a special-case
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Fixpoint typecheck-expr (Delta : tycontext) (e: expr) : tc-assert :=
let tcr := typecheck-expr Delta in
match e with

| Econst-int - (Tint - - -)
| Econst-float - (Tfloat - -) ⇒ tc-TT
| Etempvar id ty ⇒ (∗ nonaddressable local variable ∗)

if negb (type-is-volatile ty) then
match (temp-types Delta)!id with

| Some ty’ ⇒ if same-base-type ty (fst ty’) then
if (snd ty’) then tc-TT else (tc-initialized id ty)

else tc-FF (mismatch-context-type ty (fst ty’))
| None ⇒ tc-FF (var-not-in-tycontext Delta id)

end
else tc-FF (volatile-load ty)

| Eaddrof a ty ⇒ tc-andp (typecheck-lvalue Delta a)
(tc-bool (is-pointer-type ty) (op-result-type e))

| Ebinop op a1 a2 ty ⇒ (∗ call typecheck-binop function ∗) . . .
| Evar id ty ⇒ (∗ global or addressable local, by-reference only ∗)

match access-mode ty with
| By-reference ⇒

match get-var-type Delta id with
| Some ty’ ⇒

tc-andp (tc-bool (eqb-type ty ty’)
(mismatch-context-type ty ty’))

(tc-bool (negb (type-is-volatile ty))
(volatile-load ty))

| None ⇒ tc-FF (var-not-in-tycontext Delta id)
end

| - ⇒ tc-FF (deref-byvalue ty)
end

...
end.

Figure 25.3: Definition of the main typechecking function
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rule, semax-ptr-compare (page 164), that can be applied only to the
comparison of two pointers with nonempty permission.

The typechecker can guarantee that comparisons with the null pointer
evaluate by generating an assertion that one of the two pointers is null. The
comparison p==NULL returns a value even if p has empty permission. We
can use the semax-set rule (page 161) for these comparisons because the
typechecker can guarantee their evaluation.

To combine the two options for proving a pointer comparison, we create
a new rule, derived from semax-set and semax-ptr-compare, that allows the
user to decide which of the two cases to prove:

Lemma forward-ptr-compare’: ∀∆ P Q R id cmp e1 e2 ty sh1 sh2 Post,
is-comparison cmp = true →
typecheck-tid-ptr-compare ∆ id = true →

(PROPx P (LOCALx Q (SEPx R)) ⊢
local (tc-expr ∆ (Ebinop cmp e1 e2 ty)) &&
local (tc-temp-id id ty ∆ (Ebinop cmp e1 e2 ty))) ∨

(PROPx P (LOCALx (tc-environ ∆ :: Q) (SEPx R))
⊢ local (tc-expr ∆ e1) && local (tc-expr ∆ e2) &&
local ( (̀SeparationLogic.blocks-match cmp)

(eval-expr e1) (eval-expr e2)) &&
( (̀mapsto- sh1 (typeof e1)) (eval-expr e1 ) ∗ TT) &&
( (̀mapsto- sh2 (typeof e2)) (eval-expr e2 ) ∗ TT)) →

(normal-ret-assert (EX old:val,
PROPx P
(LOCALx ( èq (eval-id id) (subst id òld

(eval-expr (Ebinop cmp e1 e2 ty))) ::
map (subst id òld) Q)

(SEPx (map (subst id òld) R))))) ⊢ Post →

semax ∆ (PROPx P (LOCALx Q (SEPx R)))
(Sset id (Ebinop cmp e1 e2 ty)) Post.
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The disjunction in the precondition allows the user to either prove the
precondition for semax-ptr-compare or the precondition for semax-set.
The postcondition is valid for either precondition because the typechecker
allows eval-expr to return whatever it wants when the expression doesn’t
type check. We know that a comparison between two pointer values doesn’t
typecheck, so when eval-expr reaches that case we do exactly what the
semantics specify in the case where both pointers point to allocated objects.
The proof of this rule works in two cases:

1. We assume the left side of the disjunction, meaning that one of the
expressions evaluates to the null pointer. In this case, we know the
eval-expr in the post condition will give us a value that matches
CompCert’s semantics because we have the typechecking condition.

2. We assume the right side of the disjunction, meaning the correct
mapstos appear in the precondition. This tells us that the pointers
each point to allocated objects. Now eval-expr (which always
assumes the pointers are at allocated objects) is exactly equivalent to
the semantics.

To apply this rule, use the forward tactic when the first expression is a
top-level pointer compare. Automation may be able to solve the disjunction,
giving a result exactly like applying forward anywhere else. If the tactics
can’t solve the disjunction, it will be presented as a goal. The left (null
pointer compare) or right (pointer pointer compare) tactic can be used to
choose the solvable goal. Upon solving the goal, the rest of the proof will
be the same as following any other use of forward.



184

Chapter 26

Derived rules and proof automation
for C light

FOR CONVENIENT APPLICATION of the VST program logic for C light, we have
synthetic or derived rules: lemmas built from common combinations of
the primitive inference rules for C light. We also have proof automation:
programs that look at proof goals and choose which rules to apply.

For example, consider the C-language statements x:=e→ f; and
e1→f := e2; where x is a variable, f is the name of a structure field,
and e,e1,e2 are expressions. The first command is a load field statement,
and the second is a store field. Proofs about these statements could be
done using the general semax-load and semax-store rules—along with the
mapsto operator—but these require a lot of reasoning about field l-values.
It’s best to define a synthetic field_mapsto predicate that can be used as if
it were a primitive:

Definition field-mapsto (sh:share)(t1:type)(fld:ident)(v1 v2: val): mpred.

We do not show the definition here (see floyd/field_mapsto.v) but basically
field_mapstoπτ f v1 v2 is a predicate meaning: τ is a struct type whose
field f of type τ2 has address-offset δ from the base address of the struct;
the size/signedness of f is ch, v1 is a pointer to a struct of type τ, and the
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heaplet contains exactly v1 + δ
π

ch v2, (value v2 at address v1 + δ with
permission-share π), where v2 : τ2.

We can define a synthetic semax-load-field rule:

Lemma semax-load-field:
∀ (∆: tycontext) sh id t1 fld P e1 v2 t2 i2 sid fields ,
typeof e1 = Tstruct sid fields noattr →
(temp-types ∆) ! id = Some (t2,i2) →
t1 = typeof e1 →
t2 = type-of-field

(unroll-composite-fields sid (Tstruct sid fields noattr) fields) fld) →
semax ∆

(◃ (local (tc-lvalue ∆ e1) &&
( (̀field-mapsto sh t1 fld) (eval-lvalue e1) v2 ∗ P)))

(Sset id (Efield e1 fld t2))
(normal-ret-assert

(EX old:val, local ( èq (eval-id id) (subst id ( òld) v2)) &&
(subst id ( òld)

( (̀field-mapsto sh t1 fld) (eval-lvalue e1) v2 ∗ P)))).
Proof. (∗ in floyd/loadstore_lemmas.v ∗) Qed.

The typechecking premises (typeof, temp-types, type-of-field) are all
purely computational; that is, in any particular program they are all proved
by (compute; reflexivity). A synthetic semax-store-field rule is similar, for C
statements of the form e1→ f =e2.

IN STATEMENT PRECONDITIONS IT’S USEFUL TO SEGREGATE the assertion into
three kinds of conjuncts:

PROP: Propositional conjucts, of the form !!P for some Coq P : Prop—these
are independent of the program variables and the memory;

LOCAL: Local conjuncts, which depend on program variables but not on
memory; and
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SEP: Separation conjunctions, which may depend on both program vari-
ables and memory.

For easier processing and recognition of these conjunct classes, we can
write a canonical form of an assertion as,

PROP(P0; P1; . . . , Pl−1) LOCAL(Q0;Q1; . . . ,Qm−1) SEP(R0; R1; . . . , Rn−1)

defined formally as,

Definition PROPx (P: list Prop) (Q: assert) :=
andp (prop (fold-right and True P)) Q.

Notation "’PROP’ ( x ; .. ; y ) z" :=
(PROPx (cons x%type .. (cons y%type nil) ..) z) (at level 10) : logic.

Notation "’PROP’ ( ) z" := (PROPx nil z) (at level 10) : logic.

Definition LOCALx (Q: list (environ →Prop)) (R: assert) :=
andp (local (fold-right ( ànd) (`True) Q)) R.

Notation " ’LOCAL’ ( x ; .. ; y ) z" :=
(LOCALx (cons x%type .. (cons y%type nil) ..) z) (at level 9) : logic.

Notation " ’LOCAL’ ( ) z" := (LOCALx nil z) (at level 9) : logic.

Definition SEPx (R: list assert) : assert := fold-right sepcon emp R.

Notation " ’SEP’ ( x ; .. ; y )" :=
(SEPx (cons x%logic .. (cons y%logic nil) ..)) (at level 8) : logic.

Notation " ’SEP’ ( ) " := (SEPx nil) (at level 8) : logic.
Notation " ’SEP’ () " := (SEPx nil) (at level 8) : logic.

Thus, PROP(P0; P1)LOCAL(Q0;Q1)SEP (R0; R1) is equivalent to prop P0 ∧
prop P1 &&`propQ0 &&`propQ1 && (R0 ∗ R1). No expressive power is gained
by this—it just makes the components easier to match and process.

DERIVED RULES AND PROOF AUTOMATION go hand-in-hand: we formulate
derived rules to suit the needs of proof automation. For example, we can
write a corollary of the semax-load-field lemma in the PROP/LOCAL/SEP style:
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1 Lemma semax-load-field’’: ∀π ∆ (v: val) id fld P Q R e1 t2 i2 sid fields,
2 typeof e1 = Tstruct sid fields noattr →
3 (temp-types Delta) ! id = Some (t2,i2) →
4 t2 = type-of-field (unroll-composite-fields sid (typeof e1) fields) fld →
5 Cop.classify-cast t2 t2 = Cop.cast-case-neutral →
6 PROPx P (LOCALx(tc-environ ∆ :: ìsptr(eval-lvalue e1) ::Q) (SEPx R))
7 ⊢ local (tc-lvalue ∆ e1) →
8 PROPx P (LOCALx(tc-environ ∆ :: Q) (SEPx R))
9 ⊢ (̀field-mapsto sh (typeof e1) fld) (eval-lvalue e1) v̀ ∗ TT →

10 semax ∆ (◃ PROPx P (LOCALx Q (SEPx R)))
11 (Sset id (Efield e1 fld t2))
12 (normal-ret-assert (
13 EX old:val, PROPx P
14 (LOCALx ( (̀eq v) (eval-id id) :: map (subst id ( òld)) Q)
15 (SEPx (map (subst id ( òld)) R))))).

Not only do we characterize the pre-/postcondition in PROP/LOCAL/SEP
form, but here we do not require the first spatial conjunct to be the
field-mapsto in question. It suffices that the current precondition entail
(̀field-mapsto sh (typeof e1) fld) (eval-lvalue e1) v̀ ∗ TT , and of course

that entailment is modulo associativity/commutativity of the ∗ operator, as
well as any equality congruences implied by the local facts in P⃗ and Q⃗.

CONSIDER THE SITUATION DURING A PROGRAM VERIFICATION of a statement
sequence {Pre1} c1; c2; c3; c4 {Post4} where c2 is a load command such as
h=p→head. Suppose we are partway through a forward proof, that
is, we have just moved past c1 by proving {Pre1} c1 {Pre2}. We keep
our preconditions in canonical form for easy processing, that is, Pre2 =
PROP P⃗ LOCAL Q⃗ SEP R⃗. Now our proof goal G2 is

semax ∆ (PROP P⃗ LOCAL Q⃗ SEP R⃗)
(Ssequence (Sset -h (Efield (Ederef (Etempvar -p t-listptr) t-list)

-head t-int))
(Ssequence c3 c4))

Post4
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When preparing to verify the command c2 in the sequence c2; c3; c4

we apply the sequence rule (page 157) with a unification variable for the
postcondition of c2. That is, we eapply semax-seq, to obtain the two proof
goals {Pre2} c2 {?} and {?} c3; c4 {Post4}.

We will use the rule semax-load-field’’ to prove {Pre2} c2 {?}. That lemma
requires the later operator ◃ to be at the outside of the precondition, that is,
◃PROP(...) LOCAL(...) SEP(...). But in a typical situation, Pre2 = P⃗, Q⃗, R⃗
looks like this:1

PROP()
LOCAL( p̀tr-neq (eval-id -p) ( ǹullval);

(̀typed-true P.t-listptr) (eval-id -p);
(̀partial-sum contents (h :: r)) (eval-id P.i-s))

SEP( ◃ (̀ilseg r) ( ỳ) ( ǹullval);
(̀field-mapsto top t-list -head) (eval-id -p) ( (̀Vint n));
(̀field-mapsto top t-list -tail) (eval-id -p) ( ỳ);

TT))

Therefore the forward tactic calls upon our tactic hoist-later-in-pre to hoist
and combine ◃ to the outside (or insert it de novo), using the rules X ⊢ ◃X ,
◃ X ∧ ◃Y = ◃(X ∧ Y ), and ◃X ∗ ◃Y = ◃(X ∗ Y ). This works provided that
any occurrence of ◃ is at top-level within a conjunct—this will be the case,
when using typical indirection-theory recursive definitions for lists, trees,
segments, objects, closures, and so on.

Then we can eapply semax-load-field’’, which matches ∆, P, Q, R, id,
e1, fld, t2 all from the current proof goal (the Hoare triple for c2). This
eapply creates unification variables for (the remaining quantified variables
of the lemma) π, v, t2, i2, sid, fields, and produces six subgoals, for the
premises of the lemma (listed on lines 2–8 on page 187). The first four
premises (lines 2,3,4,5) are trivially proved by reflexivity, which at the
same time instantiates sid,fields,t2,i2. The remaining two (lines 6,8) are
entailments in separation logic; we prove these using an entailment solver
described below. This process instantiates the remaining variables, π and v.

Thus, given the proof goal G2 it suffices that the field-mapsto conjunct
appears anywhere within R⃗ with not more than one ◃ later operator applied

1This proof goal is from verifying the sumlist function shown in Chapter 27.



26. DERIVED RULES AND PROOF AUTOMATION FOR C LIGHT 189

to it; the user applies forward, and the proof goal is then {Pre3} c3; c4 {Post4}
for some Pre3. If the field-mapsto conjunct is not manifest within R⃗, our
entailer tactic may not find it—may be unable to solve the entailment
premise of semax-load-field’’. In this case the user must do some proving
work before applying the forward tactic. An example of this is at line 7
of Figure 3.1, where the precondition contains v ̸= 0 and v

σ2  0 but not
explicitly v.next p. The proofs from lines 7–10 unfold the list segment to
expose v.next p, and then the automatic forward proof can continue (see
the explanation on page 21).

THE TACTICAL SYSTEM for proving correctness properties of C light programs
in the VST separation logic comprises:

normalize: General-purpose simplification by rewriting (see Chapter 14).

forward: Symbolic execution from the precondition of a statement to its
postcondition.

go_lower: Reduces a proof goal from an entailment on environ→mpred to
one on mpred; unfolds PROP/LOCAL/SEP and all the lifting operators
(back-ticks and lifted ∗ and &&, see Chapter 21) in an entailment;
and changes C-language local variables into Coq variables. (go-lower
is part of entailer, and not usually called directly.)

entailer: Partial solver for entailments in separation logic.

cancel: Proves entailments by rearrangement and cancellation, of the
form (P ∗Q) ∗ (R ∗ S) ⊢ S ∗ (P ∗ R) ∗Q, or (P ∗Q) ∗ (R ∗ S) ⊢ S ∗⊤ ∗Q,
or frame inference of the form (P ∗Q) ∗ (R ∗ S) ⊢ S ∗ ? ∗Q where the ?
will be instantiated with P ∗ R.

There are also a few other tactics for symbolic execution and for entailment
proving in separation logic.

THE forward TACTIC DOES SYMBOLIC EXECUTION. In practice, that means
we apply Hoare logic rules. Suppose we want to prove a Hoare triple
{P}x=y+1;y=p→head;{Q}. We can almost apply semax-set-forward
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(page 161); all we have to do is use the rule of consequence (semax-pre-post,
page 170) to rearrange P into an assertion P1 that has the form required
by semax-set-forward. Starting on page 187 we illustrated that rear-
rangement for semax-load-field’’. Then we apply the Hoare rule to
{P1}x=y+1;{?}—it is the nature of forward-style rules that an appropriate
postcondition Q1 can be calculated from the precondition P1. Then if
necessary we use the rule of consequence to rearrange Q1 into an assertion
P2 that matches the semax-load-field’’, as illustrated starting on page 187.
Since semax-load-field’’ is also a forward-style rule, we can apply it to
{P2}y=p→head;{?} yielding postcondition Q2. Finally, we can use the rule
of consequence to prove Q2 ⊢Q.

In real execution, the program state has variables and memory locations
containing actual integer and pointer values. In symbolic execution we
describe the program state abstractly; in this case, we use assertions of
separation logic to characterize the state as we “execute” the program by
applying Hoare rules.

The forward tactic applies to a proof goal of the form ∆ ⊢ {P}c⃗{Q}
where c⃗ is typically a sequence of commands. If forward can manage to
rearrange P into a form required by a Hoare rule for the first command in c⃗,
then it will do so (applying the rule of consequence), then it will apply the
Hoare rule. This leaves a postcondition that will serve as the precondition
for the rest of c⃗, and forward can be applied again.

On the other hand, if forward cannot see how to rearrange P into
suitable form, the tactic will fail, and the user (of the interactive proof
system) must apply proof rules, perhaps the rule of consequence, to
massage P into a suitable form before going forward.

At the end of the line—in the case of {x=y+1;y=p→head;}, after two
applications of forward—there will remain an entailment (called Q2 ⊢ Q
above) that the user must prove.

HOW TO PROVE ENTAILMENTS. The forward tactic sometimes leaves an
entailment P ⊢Q for the user to prove, or sometimes forward will fail unless
the user first rearranges the precondition using the rule of consequence,
again requiring the proof of an entailment. As explained in Chapter 21,
proving entailments can be done in a simpler separation logic than the one
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we use for Hoare triples. When reasoning about {P}c{Q}, the program
state (local-variable environment and memory) will be different before c
(in P) than after (in Q). But for the entailment P ⊢ Q, the program state is
the same in both cases.

In our lifted separation logic, P and Q both have type env→mpred,
function from local-variable environment ρ to a predicate on memory. By
the definition of our lifted entailment, P ⊢Q on the env→mpred separation
logic means exactly ∀ρ. Pρ ⊢ Qρ. We can prove P ⊢ Q by first doing
intro ρ in Coq, leaving the proof goal Pρ ⊢Qρ.

Once ρ is fixed, there’s no practical difference between a PROP term and
a LOCAL term. Recall (from Chapter 21) that local(Q)ρ is just `(prop)(Q)ρ,
which is just prop(Qρ). So we can unfold the PROPx,LOCALx,SEPx
operators and all the lifting operators (backticks), then simplify.

This is what go_lower does. In addition, it recognizes C-language local
variables and replaces them with Coq variables (see also page 139).
Suppose an entailment contains eval-expr(Etempvar -a τ), for some
program-identifier a. Coq sees -a as actually a constant of type ident,
not as a logical variable of type τ. In any case, this expression simplifies to
eval-id -a; then when go-lower has specialized to a particular environment
ρ, this turns into eval-id -a ρ. In fact, if we are lucky, all the occurrences of
ρ are exactly of this form (with various identifiers in place of -a).

We have designed our expression-evaluation semantics (eval-expr,
eval-lvalue, eval-binop, etc.) and type-checking semantics (typecheck-expr,
etc.) to be curried in a type-directed fashion. That is, these functions take
their (C-language) type arguments first, then their value arguments. In the
context of a program proof, all the type arguments in pre/postconditions
will be instantiated by types from the program text. The go-lower tactic
unfolds all these type-directed operators, and then (because the types are
all instantiated) the semantics of expression-evaluation and type-checking
simplifies away to primitive operations on values, with a few subterms of
the form (eval-id -a ρ). These will be the only mentions of ρ, unless some
subterms have user-defined predicates or quantifiers that prevent unfolding
and simplification.

There are many implicit casts in C expressions, that the CompCert
front-end makes explicit in the abstract syntax. The semantic casts (in the
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eval-expr of these abstract syntax expressions) will simplify, since the types
are now concrete.

The Coq expression (eval-id -a ρ) has type val, the type of dynamic
values in C expression evaluation. It would be more convenient to replace
this with a : val, and eliminate the mention of ρ entirely. So the go_lower
tactic does this for us: it introduces a new Coq variable a, and then
“remembers” (eval-id -a ρ) as a. Then, if all the occurrences of ρ are
eliminated this way, it can even clear ρ from the hypotheses.

This would not be very useful unless we could know that a ̸=Vundef,
that a is a defined value of appropriate (C-language) type. The typechecker
allows us to accomplish this; see Chapter 25.

ENTAILMENT SOLVING. The forward tactic generates entailments that need
to be solved; and the user must sometimes explicitly use the rule of
consequence, which also generates an entailment to be solved.

Our entailer tactic is a partial solver for entailments in the separation
logic over mpred. If it cannot solve the goal entirely, it leaves a simplified
subgoal for the user to prove. The algorithm is this:

1. Apply go-lower if the goal is in the lifted separation logic (over
environ→mpred).

2. Gather all the pure propositions to a single pure proposition on
the left hand side (on each of the hypothesis and conclusion of the
entailment). This is by rewriting using the gather-prop rules, such as
!!P && (!!Q && R) =!!(P ∧Q)&& R and P ∗ (!!Q && R) =!!Q && (P ∗ R).

3. Given the resulting goal !!(P1∧ . . .∧ Pn)&& (Q1 ∗ . . .∗Qm) ⊢!!(P ′1∧ . . .∧
P ′n′)&& (Q′1 . . . ∗Q′m′), move each of the pure propositions Pi “above
the line.” Any Pi that’s an easy consequence of other above-the-line
hypotheses is deleted. Certain kinds of Pi are simplified in some ways,
in the process.

4. For each of the Q i, saturate-local extracts any pure propositions that
are consequences of spatial facts, and inserts them above the line
if they are not already present. For example, p τq has two pure
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consequences: isptr p (meaning that p is a pointer value, not an
integer or float) and tc-val τ q (that the value q has type τ).

5. For any equations (x = . . .) or (. . .= x) above the line, substitute x .

6. Simplify C-language comparisons. In the then-clause of if (i<j) or
in the loop body of while (i<j), the LOCAL part of the precondition
will contain the semantics of i < j. But i < j is actually rather
complicated, depending on the integer or pointer types of i and j, on
whether i and j type-check, on whether i is known to be the 32-bit
representation of a mathematical integer represented in some Coq
variable i′, and so on. After typechecking and substitution, many
of these complexities can be simplified away by the simpl-compare
tactic.

7. Rewriting: the normalize tactic, as explained in Chapter 14.

8. Repeat from step 2, as long as progress is made.

9. Now the proof goal has the form (Q1 . . . ∗ Qm) ⊢!!(P ′1 ∧ . . . ∧
P ′n′)&& (Q′1 . . . ∗Q′m′). Any of the P ′i provable by auto are removed.
If Q1 ∗ . . . ∗ Qm ⊢ Q′1 ∗ . . . ∗ Q′m′ is trivially proved, then the entire
&&Q′1 ∗ . . . ∗Q′m′ is removed.

AT THIS POINT the entailment may have been solved entirely. Or there may
be some remaining P ′i and/or Q′i proof goals on the right hand side. In that
case the user actually has to do some thinking and some mathematics, to
find the proof of the entailment. The idea is to prove each of the P ′i , and
to massage the Q i and Q′i into a form where each Q i cancels one Q′i. The
standard proof theory of Coq (with lemmas about separation logic), and
standard tactical proving, may be used here.

CANCELLATION. Finally the proof goal might look like

Q1 ∗Q2 ∗ . . . ∗Qn ⊢Q′1 ∗Q′2 . . . ∗Q′l .

In some cases one of the Q i or Q′i may be⊤ or may even be an uninstantiated
Coq logical variable (if frame inference needs to be performed). We say that
⊤ is trivial, as is an uninstantiated logical variable.
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One simple proof strategy is to find a nontrivial Q i that matches one of
the nontrivial Q′i, and cancel it from both sides of the entailment. This proof
strategy is sound (i.e., if the subgoal can be proved, then so can the original
goal), but it is not complete: it may turn a provable goal into an unprovable
subgoal. Even though incomplete, it is still quite useful in practice; it is
implemented by the cancel tactic. The Hint database called cancel contains
primitive cancellation lemmas of the form Q ⊢Q′ that the cancel tactic uses
for this purpose. Two examples of primitive cancellation rules are:

Q ⊢ Q x τ y ⊢ x _

THIS WORKFLOW—forward/entailer/think/cancel—does most of the work in
proving function-bodies correct. Somtimes entailer manages to dispose of
the entire entailment, or leaves a goal that can directly be proved by cancel.
The reason that entailer is distinct from cancel is that entailer (including
go-lower, gather-prop, normalize, etc.) does not lose information—it never
turns a provable goal into an unprovable goal—whereas cancel is permitted
to lose information. For example, suppose we had already proved a lemma
A∗ B ∗ C ⊢ D ∗ C , and we have the goal, A∗ B ∗ C ∗ E ⊢ E ∗ C ∗ D. Then the
cancel tactic will leave the goal A∗B ⊢ D, which is not necessarily provable.2

Therefore we leave the application of cancel to the user’s discretion, unless
it can solve the entire goal.

2It might seem strange that the presence of C is required to turn A∗ B into D, but the
theory of acyclic list segments has such lemmas. See the rule U4 on page 124.



195

Chapter 27

Proof of a program

We illustrate the use of tactical proof (semi)automation on the program
shown in Figure 27.1. We compile this source program reverse.c into a
C-light abstract-syntax data structure using the front end of CompCert,
the clightgen utility. This produces a Coq file reverse.v with a sequence of
definitions in the CompCert abstract-syntax tree structures (Figure 27.2).

Clightgen comprises CompCert’s (unverified) parser into CompCert C,
followed by CompCert’s (verified) translation into C light. The fact that
one or another of these front-end phases is unverified does not concern
us, because we apply the program logic to the output of these translations.
If we specify correctness properties of reverse.v and prove them, then
the C light program will have those properties, regardless of whether it
matches the source program reverse.c. Of course, it is very desirable for
reverse.v to match reverse.c, so the programmer may reason informally
about unverified properties of reverse.c such as timing, information flow, or
resource consumption.

THIS PROGRAM USES LINKED LISTS of 32-bit integers. Before proceeding with
the verification, we should develop the theory of list segments (a “theory”
is just what we call a collection of definitions, lemmas, and tactics useful
for reasoning about the subject matter). Chapter 19 explained the theory of
list segments; in the file list.v we build an lseg theory parameterized by a C
structure definition. Using this theory we can reason about any struct (such
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#include <stddef.h>

struct list {int head; struct list ∗tail;};

struct list three[] = { {1, three+1}, {2, three+2}, {3, NULL} };

int sumlist (struct list ∗p) {
int s = 0;
struct list ∗t = p;
int h;
while (t) {h = t→head; t = t→ tail; s = s + h;}
return s;

}

struct list ∗reverse (struct list ∗p) {
struct list ∗w, ∗t, ∗v;
w = NULL;
v = p;
while (v) {t = v→ tail; v→ tail = w; w = v; v = t; }
return w;

}

int main (void) {
struct list ∗r; int s;
r = reverse(three);
s = sumlist(r);
return s;

}

Figure 27.1: Program reverse.c
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Definition -p : ident := 8%positive.
Definition -struct-list : ident := 5%positive.
...

Definition t-struct-list :=
(Tstruct -struct-list

(Fcons -head tint (Fcons -tail (Tcomp-ptr -struct-list noattr) Fnil))
noattr).

Definition f-sumlist :=
...
(Ssequence
(Sset -t (Etempvar -p (tptr t-struct-list)))
(Ssequence

(Swhile
(Etempvar -t (tptr t-struct-list))
(Ssequence ... )))) ...

Figure 27.2: Coq definitions reverse.v (excerpt), produced from reverse.c
by the clightgen utility.

as t-struct-list in this program) with one link field (a pointer to the same
struct) and any number of data fields—regardless of the names of the fields
or the type of the data field. The user must simply build an Instance of the
listspec class that specifies the struct type and the name of the link field;
from this we can define the theory of list-segments over that C-language
struct type:

lseg: ∀{tstruct}{ιlink}(ls: listspec tstruct ιlink)
(π: share) (σ: list val) (p q: val), mpred.

An example of a listspec for our reverse.c program is,

Instance LS: listspec t-struct-list -tail.

which describes the list structure shown at the top of Figure 27.1.



27. PROOF OF A PROGRAM 198

We write lseg LS π σ p q for the list segment with ownership-share π,
contents σ (a sequence of C-language values), starting at pointer p and
ending at q; Coq learns the field-names from the LS.

It’s provable (from the definition of lseg) that every element of σ must
match the C-language type τ, the type of the struct’s data field (as specified
in LS). In our reverse.c program the τ of LS is tint; each of the list elements
must typecheck as tint, so therefore must be a Vint value.

WE PROCEED WITH THE PROGRAM VERIFICATION (file progs/verif_reverse.v)
by giving each function needs a specification. Consider the list-reverse
program-fragment proved correct in Figure 3.1 (page 22). The precondition
is {v

σ
  0} and postcondition is {w

revσ
  0}, and this must hold for whatever

σ is the contents of the input list v. Supposing this program-fragment to be
the function-body of the reverse function, we can specify the function as,

Definition reverse-spec : ident ∗ funspec :=
DECLARE -reverse
WITH π : share, σ : list int
PRE [ -p OF (tptr t--struct-list) ] !! writable-share π &&

(̀lseg LS π σ) (eval-id -p) ( ǹullval)
POST [ (tptr t--struct-list) ] (̀lseg LS π (rev σ)) retval ( ǹullval).

The DECLARE notation constructs an ident×funspec pair, where the ident is
the name of the function (in this case, -reverse). The WITH clause gives the
name(s) of Coq variable(s) that can be mentioned in both the precondition
and the postcondition (so that we can say the result is the reverse of the
same sequence σ, with the same permission-share π).

The PRE clause gives the function precondition, parametrized by the
C-language names (-p) and C-language types (struct list ∗) of the formal
parameters. Here, the precondition says that the fractional share π gives at
least write-permission, and the local-variable-identifier -p is the head of a
list-segment that terminates in nullval (= Vint 0).

The POST clause gives the function precondition, parametrized by the
return value (always called retval) and the return type (in square brackets)).
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THE SPECIFICATION OF main is special: The precondition of a program prog
is always main-pre(prog) and the postcondition is main-post(prog). The
main-pre operator constructs a separation-logic predicate describing the
extern global initializers of the C program. Here the global initializers are

struct list three[] = { {1, three+1}, {2, three+2}, {3, NULL} };

and the corresponding predicate is, roughly speaking, the separating
conjuction of six mapstos of the form,

(three[0].head 1) ∗ (three[0].tail &three[1]) ∗ (three[1].head 2) ∗ ...

THEOREM. One can view the initializers of the extern global three as a linked
list with contents (1::2::3::nil).

Lemma setup-globals:
∀u rho, tc-environ (func-tycontext P.f-main Vprog Gtot) rho →
main-pre P.prog u rho
⊢ lseg LS Ews (Int.repr 1 :: Int.repr 2 :: Int.repr 3 :: nil)

(eval-var P.-three (Tarray P.t-struct-list 3 noattr) rho)
nullval.

HAVING SPECIFIED ALL THE INDIVIDUAL FUNCTIONS, one builds a program
specification Γ, which is just a list of the function specifications. This is
exactly as shown in Chapter 18 (page 117), and for C it looks like this:

Definition Γprog : funspecs := sumlist-spec::reverse-spec::main-spec::nil.

To this we add the specifications of all the external functions callable in the
runtime system.

Definition Γ := do-builtins (prog-defs P.prog) ++ Γprog.

When we prove each of the three function bodies in this program, we
may assume Γ. The Γ hypothesis will be used if we want to call one of the
functions specified in Γ (even recursively or mutually recursively).
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GLOBAL VARIABLES are specified in a list of varspecs, that is, list(ident×type).
For the reverse.c program we have,

Definition Vprog : varspecs := (P.-three, Tarray P.t-struct-list 3 noattr)::nil.

One might wonder, “where is the initializer value?” but the varspec ex-
presses only that which is invariant during the entire program execution—
the initialized contents may be altered by the program, so we treat them as
separation-logic precondition of main, not as an invariant.

NEXT, WE PROVE THAT EACH FUNCTION BODY meets its specification, that is,

semax-body V Γ f spec f

meaning that in the context V,Γ (varspecs and funspecs), the function-
definition f satisfies its specification spec f . For example:

Lemma body-reverse: semax-body Vprog Gtot P.f-reverse reverse-spec.
Proof.
start-function.
name -p P.-p.
name -v P.-v.
name -w P.-w.
name -t P.-t.

A function-body proof always starts with the application of the start_function
tactic, which unpacks the formal parameters. Then we name the local vari-
ables (formal parameters and nonaddressable locals).1 The purpose of
name -w P.-w is to tell the go_lower tactic to use the name -w to hold
the value in the program-variable whose identifier is P.-w (henceforth we
qualify with P. anything imported from reverse.v).

1This name tactic is needed because Coq’s fresh tactic cannot handle a qualified name.
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This is the proof goal at the completion of function entry:

sh : share
contents : list int
∆ := func-tycontext P.f-reverse Vprog Gtot : tycontext
H : writable-share sh
-p : name P.-p
-v : name P.-v
-w : name P.-w
-t : name P.-t
--------------------------------------(1/1)
semax ∆

(PROP ()
LOCAL()
SEP( (̀lseg LS sh contents) (eval-id P.-p) ( ǹullval)))

(Ssequence (Sset P.-w (Ecast (Econst-int (Int.repr 0) tint) (tptr tvoid)))
. . . rest of commands in function body

)
(function-body-ret-assert (tptr P.t-struct-list)

( (̀lseg LS sh (rev contents)) retval ( ǹullval)))

The first lines sh,context come from the WITH clause of the funspec. The
type-context ∆ contains the types of all global variables, specifications
of all functions in Γ, and types of all this function’s local variables; it is
computed automatically by func-tycontext (and computed is the right word;
type contexts are entirely computational for efficient processing).

The hypothesis H was automatically extracted from the precondition of
the function; this is done for the purely propositional components (in the
PROP section) of the precondition.

FORWARD SYMBOLIC EXECUTION through assignment statements w=NULL;
v=p; is easy, using two applications of the forward tactic. If the right-
hand-side expression has nontrivial typechecking (which is rare) then
forward might generate an entailment subgoal (to show that the current
precondition entails the typechecking condition). Here (as usual) the
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expressions NULL and p have typechecking conditions of True and are
handled automatically.

This leaves us at the while loop, with the proof goal,

sh : share
contents : list int
H : writable-share sh
-p : name P.-p
-v : name P.-v
-w : name P.-w
-t : name P.-t
∆ := initialized P.-v (initialized P.-w (func-tycontext ...))
--------------------------------------(1/1)
semax ∆
(PROP ()
LOCAL
( èq (eval-id P.-v) (eval-expr(Etempvar P.-p (tptr P.t-struct-list)));
èq (eval-id P.-w)(eval-expr(Ecast(Econst-int Int.zero tint)(tptr tvoid)))

SEP
( (̀lseg LS sh (map Vint contents)) (eval-id P.-p) ( ǹullval)))

(Ssequence
(Swhile (Etempvar P.-v (tptr P.t-struct-list))

(... loop body ...)
(Sreturn (Some (Etempvar P.-w (tptr P.t-struct-list)))))

(... function postcondition ...)

Each of the two assignment statements is now manifest in the precondition
of the following statement: the consequence of w=NULL appears as

èq (eval-id P.-w)(eval-expr(Ecast(Econst-int Int.zero tint)(tptr tvoid)))

and v=p appears similarly.
The general semax-set-forward rule has, in its postcondition, an exis-

tential binding of the “old” value of the assigned variable. But here the
assigned variable (such as -w) does not appear in the precondition, so
there’s no need to mention its old value; a simpler (and weaker) version of
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semax-set-forward has been used (automatically), that omits any mention
of the old value.

Note that ∆ now contains all its previous information derived from
func-tycontext, plus the new information that v and w are initialized.
The symbolic execution tactic has derived this information from the
update-tycon clause in the Hoare rule for assignment.

SYMBOLIC EXECUTION OF A WHILE-LOOP requires the user to supply a loop
invariant and a postcondition; this is done as arguments to the forward-while
tactic:

forward-while
(* loop invariant *)
(EX cts1: list int, EX cts2 : list int,

PROP(contents = rev cts1 ++ cts2)
LOCAL()
SEP( (̀lseg LS sh (map Vint cts1)) (eval-id P.-w) ( ǹullval);

(̀lseg LS sh (map Vint cts2)) (eval-id P.-v) ( ǹullval)))
(* loop postcondition *)
(PROP() LOCAL()

SEP( (̀lseg LS sh (map Vint (rev contents)))
(eval-id P.-w) ( ǹullval))).

The loop invariant is just as in Figure 3.1 (page 22),

∃σ1,σ2.σ = rev(σ1) ·σ2 ∧w
σ1  0∧ v

σ2  0

expressed in clunky Coq notation. The postcondition is w
rev(σ)
  0.

Applying forward-while leaves five subgoals:

1. the loop precondition implies the loop invariant;

2. the invariant implies the typechecking condition of the loop-test
expression;

3. the loop invariant and the negation of the loop-test together imply
the loop postcondition;
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4. the loop body (with the assumption the loop-test is true) preserves
the loop invariant; and

5. symbolic execution of the rest of the function, after the loop.

Items 1,2,4 are entailments, proved by the general method described on
page 194: entailer/think/cancel. Items 3,5 are symbolic execution, handled
by forward (or forward-while if there are nested loops).

WHEN A return STATEMENT IS REACHED, forward leaves a proof obligation, to
show that the value returned satisfies the postcondition of the function. For
example, just before the return w at the end of reverse, we have the proof
goal,

semax ∆
(PROP () LOCAL()
SEP( (̀lseg LS sh (map Vint (rev contents))) (eval-id P.-w)

( ǹullval)))
(Sreturn (Some (Etempvar P.-w (tptr P.t-struct-list))))
(function-body-ret-assert (tptr P.t-struct-list)

( (̀lseg LS sh (rev (map Vint contents))) retval ( ǹullval)))

That is, the precondition is w
rev(σ)
  0, and the postcondition for return is the

function body return assertion for this function, which says that the return

value must have type pointer-to-struct-list, and that retval
rev(σ)
  0, where

retval is the name always given to the return-value, the argument of return.
Forward symbolic execution through this statement produces a goal

which after go_lower looks like,

lseg LS sh (map Vint (rev contents)) -w nullval
⊢ lseg LS sh (rev (map Vint contents)) -w nullval

which is easily proved by rewrite map-rev.

FUNCTION CALL AND FRAME INFERENCE. Recall the specification of reverse
on page 198. The precondition for calling reverse(p) is that (for some
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π and σ), writable_share(π) ∧ p
σ
 π 0. If the caller’s current assertion

(precondition) is

(p
α
 π′ p′) ∗ (s 7) ∗ (p′

β
 π′ 0) ∗Q

then the precondition holds on a portion (p
α
 π′ p′) ∗ (p′

α
 π 0) of the

current heap, with witness π= pi′, σ = α ·β . The remaining part (s 7)∗Q
is the frame.

In order to prove a function-call, both the witness and the frame must
be exhibited. The semiautomatic forward symbolic execution (through
a function-call) leaves an entailment subgoal with two uninstantiated
unification variables: the user must fill in the witness, and then the cancel
tactic automatically deduces the frame.

We illustrate (in the file progs/verif_reverse.v) in the main function that
has a call to reverse.2 Going forward from the C statement r=reverse(three);
yields this proof goal:

semax ∆ (PROP P LOCALQ SEPR)
(Ssequence
(Scall (Some x) (Evar P.-reverse τreverse) (Evar P.-three τthree))
(Sset P.-r (Etempvar x (tptr P.t-struct-list))))

(... postcondition ...)

Going forward yields a subgoal that looks like this:

witness := ?52 : share ∗ list int
Frame := ?53 : list assert
--------------------------------------(1/3)
PROP(P) LOCAL(Q) SEP(R)
⊢PROP() LOCAL(typecheck arguments) SEP(Prer(witness); Frame)

This means the user needs to find a witness such that the current precon-
dition (P/Q/R) implies the precondition of the function reverse, separated

2The Coq 1.12 clightgen front-end phases turn the command r=reverse(three); into
the commands x=reverse(three); r=x; where x is not used elsewhere in the function body.
Until this is fixed in some future version of CompCert, the symbolic-execution tactics will
match this pattern specially, to save work for the user, as if it were simply r=reverse(three).
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from a Frame assertion. The first step in proving this is to exhibit a witness
W by instantiating ?52, as follows:

instantiate (1:= (Ews, Int.repr 1 :: Int.repr 2 :: Int.repr 3 :: nil))
in (Value of witness).

In this case, W =(Ews, Int.repr 1 :: ... :: nil).
The next step is to prove the entailment, typically by entailer followed

by think. After doing so, a typical proof goal is something like this,

witness := (Ews, Int.repr 1 :: ... :: nil) : share ∗ list int
Frame := ?53 : list assert
--------------------------------------(1/3)
P ∗ S ∗Q ⊢Q ∗ P ∗ Frame

in which the Frame has still not been instantiated. The cancel tactic, which
does rearrangement to cancel P and Q, then automatically takes care of
instantiating (in this case) the term S as the Frame assertion.

Thus, to verify a function call, the pattern is,

forward. instantiate (1:=...) in (Value of witness).
enatailer. think. cancel.
auto with closed. (∗ see note3 ∗)

NOW WE HAVE PROVED EACH FUNCTION INDIVIDUALLY, with these three lemmas:

Lemma body-sumlist: semax-body Vprog Gtot P.f-sumlist sumlist-spec.
Lemma body-reverse: semax-body Vprog Gtot P.f-reverse reverse-spec.
Lemma body-main: semax-body Vprog Gtot P.f-main main-spec.

We tie the function-body proofs together into a whole-program proof. We
walk through the two parallel lists—the list of function definitions in the
program (prog-funct P.prog) and the list of function specifications Gtot—
and zip them together using semax-func-cons.

3At present, the system leaves one more proof obligation, to prove that the auxiliary
variable x is not free in the Frame assertion. This will always be true, and provable using
auto with closed.



27. PROOF OF A PROGRAM 207

Lemma all-funcs-correct:
semax-func Vprog Gtot (prog-funct P.prog) Gtot.

Proof.
unfold Gtot, Gprog, P.prog, prog-funct; simpl.
repeat (apply semax-func-cons-ext; [reflexivity | apply semax-external-FF | ]).
apply semax-func-cons; [reflexivity | apply body-sumlist | ].
apply semax-func-cons; [reflexivity | apply body-reverse | ].
apply semax-func-cons; [reflexivity | apply body-main | ].
apply semax-func-nil.
Qed.

This proves that the whole program meets its specification. In the process it
ensures that the specification of reverse assumed when proving the function-
call from main to reverse, matches the specification actually proved about
the implementation of reverse.

The reflexivity proofs all check the following computational premise of
semax-func-cons:

(id-in-list id (map (@fst - -) G)
&& negb (id-in-list id (map (@fst ident fundef) fs))
&& semax-body-params-ok f) = true

Respectively, the function-name appears in Γ, no two functions in the
program have this name, and this function’s parameters do not contain
duplicates.
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Chapter 28

More C programs

When we reason about programs that operate on structured data, it is useful
to have a structured (type-directed) mapsto operator. In conventional
presentations of separation logic it is common to write p (x , y) or
p ,→ (x , y) to mean p.fst x ∗ p.snd y . In our Floyd system for reasoning
about C programs, the operator is

typed_mapsto (π: share) (t: type) (v: val) (w: reptype t) : mpred.
typed_mapsto_ (π: share) (t: type) (v: val) : mpred.

This means, a heaplet containing just address v mapping to value w with
ownership share π. To describe an uninitialized structure, or one with
unknown contents, use typed-mapsto- instead. The size of the footprint
starting at v will be exactly sizeof(t).

For example, if txy is the C structure type struct {int x,y;}, then

typed-mapsto π txy v ((a,b): int∗int) =
field-mapsto π txy -x v a ∗ field-mapsto π txy -y v b.

We see that typed-mapsto is dependently typed. The type of w depends
on the value t, using reptype(t), shown in Figure 28.1. This calculates a
representation Type (in Coq) for any C-language type.

The internals of the typed-mapsto definition are rather complicated, be-
cause of the need for internal alignment-spacers in the layout of C-language
structure types. However, Floyd provides some useful tactics for simplifying
typed-mapsto and typed-mapsto-, in particular Ltac simpl-typed-mapsto.
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Fixpoint reptype (ty: type) : Type :=
match ty with
| Tvoid ⇒ unit
| Tint ---⇒ int
| Tfloat --⇒ float
| Tpointer t1 a ⇒ val
| Tarray t1 sz a ⇒ list (reptype t1)
| Tfunction t1 t2 ⇒ unit
| Tstruct id fld a ⇒ reptype-structlist fld
| Tunion id fld a ⇒ reptype-unionlist fld
| Tcomp-ptr id a ⇒ val
end

with reptype-structlist (fld: fieldlist) : Type :=
match fld with
| Fnil ⇒ unit
| Fcons id ty fld’ ⇒

if is-Fnil fld’
then reptype ty
else prod (reptype ty) (reptype-structlist fld’)

end
with reptype-unionlist (fld: fieldlist) : Type :=

match fld with
| Fnil ⇒ unit
| Fcons id ty fld’ ⇒ sum (reptype ty) (reptype-unionlist fld’)
end.

Figure 28.1: reptype
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We have already used a version of typed-mapsto—in particular a
predicate structfieldsof—in constructing the theory of list segments that we
use in specifying and proving reverse.c (Chapter 27).

IN THIS CHAPTER WE SHOW the specifications of three more C programs. The
reader may view—and interact with—the proofs that these programs meet
their specifications, in vst/progs.

In the sumarray.c program (Figure 28.2), the function sumarray adds
up the elements of an array; the array four is a global extern initial-
ized variable. To specify the contents of an array, we use the predicate
array-at-range t π f lo hi v, which says that there is an array at address v
whose elements from lo to hi− 1 all have C-language type t and ownership
share π. Furthermore, the element at index i satisfies f (i).

Definition rangespec (lo hi: Z) (P: Z →mpred) : mpred :=
∀i, lo≤ i < hi→ P(i).

Definition array-at (t:type) (π:share) (v:val) (i:Z) (e: reptype t): mpred :=
typed-mapsto π t (add-ptr-int t v i) e.

Definition array-at-range t π (f: Z → reptype t) (lo hi: Z) (v: val) :=
rangespec lo hi (fun i ⇒ array-at t sh v i (f i)).

These definitions can describe arrays of any element type, since array-at
uses typed-mapsto.

The proof system for arrays in VST 1.0 is rather primitive. The logic
is expressive enough to represent any reasonable assertion about arrays,
using definitions such as array\-at, but proofs tend to operate by unfolding
of these definitions. It might be preferable to use higher-level proof theories
that take advantage of the special structure of arrays and array indexing.
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p

int sumarray(int a[], int n) {
int i=0, s=0, x;
while (i<n) {

x=a[i]; s+=x; i++;
}
return s;

}

int four[4] = {1,2,3,4};

int main(void) {
int s = sumarray(four,4);
return s;

}

Definition add-elem (f: Z → int) (i: Z) := Int.add (f i).

Definition sumarray-spec :=
DECLARE -sumarray
WITH a0: val, sh : share, contents : Z → int, size: Z
PRE [ -a OF (tptr tint), -n OF tint ]

PROP(0 <= size <= Int.max-signed)
LOCAL( (̀eq a0) (eval-id -a);

(̀eq (Vint (Int.repr size))) (eval-id -n);
ìsptr (eval-id -a))

SEP( (̀array-at-range tint sh contents 0 size) (eval-id -a))
POST [ tint ]

local ( (̀eq (Vint (fold-range (add-elem contents) Int.zero 0 size)))
retval)

&& (̀array-at-range tint sh contents 0 size a0).

Definition four-contents (z: Z) : int := Int.repr (Zsucc z).

Lemma setup-globals:
∀u rho, tc-environ (func-tycontext f-main Vprog Gtot) rho →

main-pre prog u rho
⊢array-at-range tint Ews four-contents 0 4

(eval-var -four (tarray tint 4) rho).

Figure 28.2: sumarray.c and its specification
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THE queue.c PROGRAM (FIGURE 28.3) DEMONSTRATES AN ABSTRACT DATA TYPE,
as well as some interesting design issues for separation logic.

Consider a multithreaded application where a process control block (an
“element”) is sometimes placed on a “ready queue,” sometimes placed on
the queue of threads contending for resource A, sometimes on the queue
contending for resource B, and sometimes (when executing) not on any
queue at all. The element is never on two queues at once.

The queue data type can be designed to avoid any memory allocation
during ordinary queue operations. That is, we malloc to create a queue,
we malloc to create an element, but the elements move into and out
of various queues many times during their lifetimes without additional
memory allocation/deallocation. This typical C programming idiom leads
to an interface in which the queue elements are records with some non-
queue-related fields, and one next field that is dedicated to the use of
queues.

Our program’s element type,

struct elem { int a, b; struct elem ∗next; };

has application-specific fields, a and b, and
next is the link field.

a1
b1

a2
b2

n1

b
a

next

p

q

It’s a bit clumsy to mix the application-specific data in the same record
as the link field—but this is a typical C programming idiom, it can be done
correctly, therefore our program logic can prove it.

THE WRONG SPECIFICATION. Given the two-element list shown above, we
can write p

σ
  q where σ = (a1, b1) :: (a2, b2) :: nil. Our lseg operator (in

list_dt.v) calculates the Coq type (int∗int) from the C type t-struct-elem by
leaving out the next field, and relates p and q to σ.

This method is fine for situations where we care only about the contents
of a list, but the process-descriptor is at a particular location that must be
preserved as it enters and leaves different queues.

THE RIGHT SPECIFICATION is based on locations, just values. The thread that
uses a process descriptor may want to load and store from its fields (other
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extern void ∗mallocN (int n);
extern void freeN (

void ∗p, int n);

struct elem {
int a, b;
struct elem ∗next;

};

struct fifo {
struct elem ∗head;
struct elem ∗tail;

};

struct fifo ∗fifo-new(void) {
struct fifo ∗Q =

(struct fifo ∗)
mallocN(sizeof (∗Q));

Q→head = NULL;
Q→ tail = NULL;
return Q;

}

struct elem ∗fifo-get (
struct fifo ∗Q){

struct elem ∗h, ∗n;
h=Q→head;
n=h→next;
Q→head=n;
return h;

}

int fifo-empty (struct fifo ∗Q) {
struct elem ∗h;
h = Q→head;
return (h == NULL);

}

void fifo-put (struct fifo ∗Q,
struct elem ∗p) {

struct elem ∗h, ∗t;
p→next=NULL;
h = Q→head;
if (h==NULL) {

Q→head=p;
Q→ tail=p;

}
else {

t = Q→ tail;
t→next=p;
Q→ tail=p;

}
return;

}

struct elem ∗make-elem (
int a, int b){

struct elem ∗p;
p = mallocN(sizeof (∗p));
p→a=a;
p→b=b;
return p;

}

Figure 28.3: queue.c
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than next) and rely on the fact that it is in the same place—before it is
enqueued, after it is dequeued, and even while it is on a queue.

Separation logic describes “ownership.” The
location-based specification says that when a
record (a,b,next) is enqueued, ownership of
only the next field is transferred to the queue,
as shown at right; the dashed fields are re-
tained by the client.

a
b

next

p

qn1

We describe this data structure as links QS π σ p q, where QS is the
structure-specification (just as in lseg), π is the ownership share of the next
fields, σ is the list of addresses p :: n1 :: nil, and p and q are the end pointers
of the segment. The predicates lseg and links are much alike, except that

• the σ for lseg is the list of contents of all but the link field, whereas
the σ for links is the list of addresses of the records;

• the footprint of lseg includes all the fields, whereas the footprint of
links includes only the link fields.

The struct fifo data type keeps track of the head and tail of the linked
list, with the head is at the “get” end and tail is at the “put” end. In the
empty queue, the head is NULL and the the tail points anywhere.

head
tail

head
a
b

tail next

Definition fifo (contents: list val) (p: val) : mpred:=
EX ht: (val∗val), let (hd,tl) := ht in

field-mapsto Tsh t-struct-fifo -head p hd ∗
field-mapsto Tsh t-struct-fifo -tail p tl ∗
if isnil contents
then (!!(hd=nullval) && emp)
else (EX prefix: list val,

!!(contents = prefix++tl::nil)
&& (links QS Tsh prefix hd tl ∗ link tl nullval)).
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The representation relation for fifo queues is this: p is a fifo representing
the sequence contents so long as there exists a head-pointer hd and a tail-
pointer-pointer tl that are the contents of the header structure, and either
the contents-list is empty head is NULL, or the contents-list is nonempty,
there is a list of all-but-the-last elements (from hd to tl) and an ultimate
element pointed to by tl.

We will define,

Definition link := field-mapsto Tsh t-struct-elem -next.
Definition link- := field-mapsto- Tsh t-struct-elem -next.

Once we have the representation relation, it’s straightforward to specify
each of the queue functions. fifo-new creates a new queue, representing the
nil contents, out of emp.

Definition fifo-new-spec :=
DECLARE -fifo-new
WITH u : unit
PRE [ ] emp
POST [ (tptr t-struct-fifo) ] (̀fifo nil) retval.

Definition fifo-put-spec :=
DECLARE -fifo-put
WITH q: val, contents: list val, p: val
PRE [ -Q OF (tptr t-struct-fifo) , -p OF (tptr t-struct-elem) ]

PROP() LOCAL( (̀eq q) (eval-id -Q); (̀eq p) (eval-id -p))
SEP( (̀fifo contents q); (̀link- p))

POST [ tvoid ] (̀fifo (contents++(p :: nil)) q).

To put elem into the queue at address q, start with a fifo at q representing
the sequence contents, separated from the representation of elem at address
-p; finish with the fifo at q enlarged by one element at the tail end.

To test a queue for empty, start with a fifo at q, finish with the same
fifo at q but with the return-value =Vtrue if the contents was nil, otherwise
Vfalse.
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Definition fifo-empty-spec :=
DECLARE -fifo-empty
WITH q: val, contents: list val
PRE [ -Q OF (tptr t-struct-fifo) ]

PROP() LOCAL( (̀eq q) (eval-id -Q)) SEP( (̀fifo contents q))
POST [ tint ]

local ( (̀eq (if isnil contents then Vtrue else Vfalse)) retval)
&& (̀fifo (contents) q).

Definition fifo-get-spec :=
DECLARE -fifo-get
WITH q: val, contents: list val, p: val
PRE [ -Q OF (tptr t-struct-fifo) ]

PROP() LOCAL( (̀eq q) (eval-id -Q))
SEP( (̀fifo (p :: contents) q))

POST [ (tptr t-struct-elem) ]
local ( (̀eq p) retval) && (̀fifo contents q) ∗ l̀ink- retval.

To get the head element, the precondition requires the queue must not
be empty, it must contain at least a head element elem and a remaining
contents. Then fifo-get separates elem from the rest of the queue.

Finally, we have an (application-specific) initializer function for queue-
element records. The empty list of SEP() conjuncts is the same as emp.

Definition make-elem-spec :=
DECLARE -make-elem
WITH a: int, b: int
PRE [ -a OF tint, -b OF tint ]

PROP() LOCAL( (̀eq (Vint a)) (eval-id -a);
(̀eq (Vint b)) (eval-id -b)) SEP()

POST [ (tptr t-struct-elem) ] (̀elemrep (a,b)) retval.
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Chapter 29

Dependently typed C programs

When C programmers wish to implement higher-order features such as
objects or function pointers, they cast pointers to and from void∗. Statically,
any pointer can be cast to/from void∗; dynamically, one hopes that when
one actually dereferences a field, the appropriate data is present.

We will illustrate using a little object-oriented program (progs/message.c).
A message class describes a type that can be marshalled into a byte-string
or unmarshalled from a byte-string. That is, message is a class with
serialize and deserialize methods, as well as a constant bufsize that indicates
the maximum possible message length that this instance of serialize will
produce.

struct message {
int bufsize;
int (∗serialize)(void ∗p, unsigned char ∗buf);
void (∗deserialize)(void ∗p, unsigned char ∗buf, int length);

};

What type is being serialized here, is not made explicit in the C-language
typing of this program that uses void ∗p. Our specification in Coq will make
it explicit. Meanwhile let us make an instance of this class, for a type of
ordered pairs (x , y).

struct intpair {int x, y;};
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We can write serialize and deserialize functions for intpair. Here we do
something very simple: copy the integers verbatim, and force them into the
array of characters. This is machine-dependent, but (for any target-machine
instantiation of CompCert) it is well defined and our program logic can
reason about it.

int intpair-serialize(
struct intpair ∗p,
unsigned char ∗buf) {

int x = p→x;
int y = p→y;
((int ∗)buf)[0]=x;
((int ∗)buf)[1]=y;
return 8;

}

void intpair-deserialize(
struct intpair ∗p,
unsigned char ∗buf, int length) {

int x = ((int ∗)buf)[0];
int y = ((int ∗)buf)[1];
p→x = x;
p→y = y;
return;

}

Now we make the “instance” of the message class for intpair messages:

struct message intpair-message =
{8, &intpair-serialize, &intpair-deserialize};

The maximum intpair message length is 8, the serialize function-pointer is
intpair-serialize, and so on.

int main(void) {
struct intpair p,q; unsigned char buf[8]; int len, x,y;
int (∗ser)(void ∗p, unsigned char ∗buf);
void(∗des)(void ∗p, unsigned char ∗buf, int length);

p.x = 1; p.y = 2;
ser = intpair-message.serialize; len = ser(&p, buf);
des = intpair-message.deserialize; des(&q, buf, 8);
x = q.x; y = q.y;
return x+y;

}

Finally, we have a main function that creates an intpair p, serializes it into
buf, then deserializes buf back into an intpair q. The pattern for calling a
serialize “method” of a message “object” is to fetch the serialize function,
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and call it with two pointers, the value to be serialized and the buffer.
Of course, this particular main function could have called intpair-serialize
directly, but one can easily construct “object-oriented” functions that do not
know what type they are handling.

This program is “lightweight object-oriented” (without self pointers),
but the techniques described here can extend to full object orientation or to
function-closures with code-pointers and bindings for free variables.

THE VERIFICATION OF OBJECT-ORIENTED MESSAGES begins with a specification
of a message-format, which is not an object type but a theory of serialization
and deserialization.

Record message-format (t: type) : Type :=
mf-build {

mf-size: Z;
mf-assert: ∀ (π: share) (buf: val) (len: Z) (data: reptype t), mpred;
mf-size-range: 0 <= mf-size <= Int.max-signed;
mf-bufprop: ∀π buf len data,

mf-assert π buf len data ⊢
!!(0 <= len <= mf-size) && memory-block π (Int.repr len) buf;

mf-restbuf := fun (π: share) (buf: val) (len: Z) ⇒
memory-block π (Int.repr (mf-size-len))

(offset-val (Int.repr len) buf)
}.

A format φ(t) for a C type t has a size which is the maximum length of a
serialized encoding of t. It has a representation assertion assert π b l d,
meaning that the l bytes starting at address b represent a serialization of
the Coq value d. (See page 208 for an explanation of reptype.) Format φ(t)
has a size_range guarantee, that size is representable as a signed integer.
The buf_prop is an axiom that whenver the representation assertion holds
on a heaplet, that same heaplet can be viewed as a memory block of l bytes,
where 0 ≤ l < size. Finally, we make a definition for future use: the rest of
the buffer is a memory block from b+ l to b+ size− l.
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We can instantiate this for intpair, that is, create φ(intpair),

Program Definition intpair-message: message-format t-struct-intpair :=
mf-build 8 (fun π buf len data ⇒

!!(len=8) && typed-mapsto π t-struct-intpair buf data)
- -.

The underscores at the end represent the proofs of mf-size-range and
mf-bufprop that we will omit here.

A generic serialization specification takes t and φ(t) as parameters, and
gives the separation-logic specification for a serializer for t:

Definition serialize-spec {t: type} (format: message-format t) :=
WITH data: reptype t, p: val, buf: val, sh: share, sh’: share
PRE [ -p OF (tptr tvoid), -buf OF (tptr tuchar) ]

PROP(writable-share sh’)
LOCAL( (̀eq p) (eval-id -p); (̀eq buf) (eval-id -buf))
SEP( (̀typed-mapsto sh t p data);

(̀memory-block sh’ (Int.repr (mf-size format)) buf))
POST [ tint ]

EX len: Z,
local ( (̀eq (Vint (Int.repr len))) retval) &&
(̀typed-mapsto sh t p data)
∗ (̀mf-assert format sh’ buf len data)
∗ (̀mf-restbuf format sh’ buf len).

The generic deserializer specification is similar. Then we can say that the
intpair-serialize function is an instance of a generic serializer:

Definition intpair-serialize-spec :=
DECLARE -intpair-serialize (serialize-spec intpair-message).
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Finally, after writing specifications for all the functions in a program,
and combining them into Γ in the usual way (page 199), we can prove that
the function-body of intpair-serialize matches this specification:

Lemma body-intpair-serialize:
semax-body V Γ f-intpair-serialize intpair-serialize-spec.

Proof.
unfold intpair-serialize-spec.
unfold serialize-spec.
start-function.
name p0 -p.
name buf0 -buf.
name x -x.
name y -y.
. . .

Qed.

We can also reason about object-oriented calls to this function, as in the
proof of the main function in progs/verif_message.v.

What we have done is to make the static reasoning about void∗ sound,
using dependent types in Coq.
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Chapter 30

Concurrent separation logic

Concurrent threads operating on a shared state can be very difficult to
reason about. On uniprocessors it has been half a century now that we have
wanted such things as operating systems that support many independent
threads of control operated on shared resoures. Parallel computers have
existed also for about half a century, but it was about ten years ago that
Moore’s law (40% more transistors/chip every year) stopped being put into
the service of faster uniprocessors, and started being used for multicore.
Supporting concurrent and parallel computation is more important than
ever.

Here we will focus on shared-memory concurrency, where multiple
threads of control read and write to the same memory.1 A typical problem
is that one thread wants to do a composite operation on a data structure:
wants to read and modify a data structure using a series of load and store
operations.

For example, let r be a record whose n field contains an integer, and
whose t field contains the nth triangular number (n · (n+ 1)/2). We wish

1 One might think that an alternate approach to concurrency, via message-passing,
avoids some of the concerns that we will discuss here. But the threads of a message-passing
program will still need to talk about named objects in an external world; simultaneous
operations on an external named object can run into the same difficulties of atomicity that
we have with pointers in a shared memory; and concurrent separation logic can help solve
some of those same problems.
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to increment n and maintain t:

{ i := r.n; r.n := i+ 1; j := r.t; r.t := j+ i }

This local sequence of operations must be atomic: during the sequence,
other threads must not read or modify the same data structure because they
would see or create an inconsistent state.

Dijkstra [37] identified this problem in 1965 and proposed that the
solution is to treat the sequence of commands as a critical section in
which the threads must maintain mutual exclusion (no two threads in
the critical section at the same time) using semaphores. This is still the
standard solution and the standard terminology. Hoare [48] developed
and extended this idea (and ideas from Brinch-Hansen) into monitors with
condition variables; the key concept (as we would now express it) is that
an abstract data type has a set of interface functions that operate on a
private representation; the interface functions use programming-language
constructs for mutual exclusion to ensure that the private representation
stays in a consistent state and maintains its representation invariants. We
will call this the Dijkstra-Hoare paradigm for shared-memory programming,
and it is now the standard method, as embodied in the Pthreads (Posix
Threads) library for C, in the Java programming model, and in other
languages.

Dijkstra and Hoare showed us how to program in this model and how to
reason informally about it. In this century, O’Hearn showed how to reason
formally about Dijkstra-Hoare concurrent programming, in Concurrent
Separation Logic [71].

When we write concurrent programs (or some kinds of parallel pro-
grams) in a sequential programming language, we execute (mostly inde-
pendent) sequential threads that occasionally interact. When we reason
about a sequential thread using the separation logic Hoare triple {P} c {Q},
are saying (more or less) that command c reads only from the footprint of
P, and neither modifies nor cares about the rest of memory. Thus, if we
have two commands {P1} c1 {Q1} and {P2} c2 {Q2}, we can say:

parallel-composition
{P1} c1 {Q1} {P2} c2 {Q2}
{P1 ∗ P2} c1∥c2 {Q1 ∗Q2}



30. CONCURRENT SEPARATION LOGIC 224

which says that if P1 and P2 are invariants on disjoint footprints of memory,
then commands c1 and c2 can run in parallel. (If they are not disjoint,
then P1 ∗ P2 is false, so the inference is still valid.) Separation Logic is a
wonderful way of keeping track of this noninterference.

Concurrent threads must sometimes communicate, of course. In the
Dijkstra-Hoare model a thread communicates as follows: acquire a lock
(semaphore) controlling some resource (e.g., a data structure in memory);
read and write the resource; release the lock. The lock enforces mutual
exclusion (no two threads can hold the lock at the same time), so therefore
the sequence of reads and writes is atomic.

Concurrent separation logic uses locks in this way. We associate with
each lock a resource invariant, an assertion in separation logic. Let us write
l �→R to say “l is a lock with resource invariant R.” The assertion R must
be precise, meaning if it is satisfied by any subheap of some heap m then it
is satisfied by a unique subheap of m. Many common assertions are precise:
maps-to , list segment , conjunctions ∗ of precise predicates, and so on.
The assertion ⊤ is not precise.

Here are the rules for acquiring and releasing locks:

acq
{l �→R} acquire l {R ∗ l �→R}

rel
{R ∗ l �→R} release l {l �→R}

That is, if l is a lock, one can contend for the lock (do the P(l) semaphore
operation). Once it is acquired, this thread gains access to the resource,
whose footprint and internal invariant are described by R.

The thread can load and store from the memory described by R; during
which the resource might no longer satisfy R. Eventually, the thread may
bring the resource into a state that once again satisfies R, at which point it
may release the lock (V (l) semaphore operation).

For example, let the lock l control access to the record r described
earlier in the chapter. The resource invariant is

R = ∃x . r.n x ∗ r.t x(x + 1)/2

saying that the t field must contain the nth triangular number.
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Let C = (acquire l; i := r.n; r.n := i+1; j := r.t; r.t := j+ i; release l).
Then the triple {l �→ R}C {l �→ R} is valid: Initially the thread has no
access to the contents of r. After the acquire, the assertion {R ∗ l �→R}
holds; once the existential x is extracted, the thread has access to r.n
(containing x) and r.t (containing the nth triangular number). After the
store to r.n, the resource invariant R does not hold, but no matter: by the
time the release is executed, the resource invariant is established (with a
different value of x).

In a simple CSL (concurrent separation logic), assertions l �→ R are
static and nonspatial: that is, l �→R = (l �→R) ∗ (l �→R) and there is no
way to create new locks at runtime. We can use the parallel composition
rule to demonstrate that it is safe to run C in parallel with itself:

{l �→R}C {l �→R} {l �→R}C {l �→R}
{l �→R ∗ l �→R}C∥C {l �→R ∗ l �→R}

{l �→R}C∥C {l �→R}

The parallel composition does not exactly mean that each instance of
C runs in its own little disjoint world. The two instances do communicate,
by “borrowing” the resource R and then returning it. So the parallel
composition rule says something more subtle (and more useful) than
complete isolation.

THE FOOTPRINT OF A RESOURCE INVARIANT NEED NOT BE STATIC. In the
triangular-number example given above, the footprint is exactly two
addresses, r.n and r.t. But consider the assertion, s �→ (p 0). The lock
s controls access to a linked list of arbitrary nonzero length, starting at
address p. The following commands increase the size of the resource,
without changing the resource invariant:

p 0
acquire s;
t := p→next; r := alloc_list_cell(); r→next := t; p→next := r;
release s p

r t
0
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NOT ONLY CRITICAL SECTIONS, BUT OTHER PATTERNS of synchronization can be
expressed by semaphores, and by locks in CSL. The thread that acquires
a lock need not be the one that releases it, as long as the resource is
transferred. O’Hearn [71] describes many such patterns of use (invented
since the 1960s) can be verified in CSL. For example,

...
...

acquire(free); acquire(busy);
[10] := m; ∥ n := [10];
release(busy); release(free);
...

...

in which the left process assigns a message m to address 10 and then signals
the right process, which reads the message and then signals back that the
buffer is now emptied.

Let us further assume that messages must be well formatted, for
example that m must be an even number. Then the resource invariants are,

free�→(10 _) busy�→(∃i. even(i)∧ 10 i)

and the assertion-annotated programs are,

...
...

{even(m)∧ emp} {emp}
acquire(free); acquire(busy);
{10 _} {∃i. even(i)∧ 10 i}
[10] := m; ∥ n := [10];
{10 m} {even(n)∧ 10 _}
release(busy); release(free);
{emp} {even(n)∧ emp}
...

...

O’HEARN’S CSL IS AN INGENIOUS WAY to apply the local-reasoning strengths
of separation logic to solve difficult modular-verification problems for
concurrent programs. However, O’Hearn’s idealized Algol differs in several
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ways from the way locks-and-threads libraries are used in languages such
as C and Java. O’Hearn’s locks and threads are static: all exist at the start of
program execution, and none can be created dynamically. O’Hearn assumes
a parallel-composition operator c1∥c2 of the programming language,
where C spawns a thread by passing a function-pointer to the create
function. O’Hearn assumes that c1∥c2 can share read-only local variables,
whereas C threads cannot share local variables with each other. O’Hearn
omits discussion of read-only sharing between threads in concurrent-read
exclusive-write (CRXW) patterns of synchronization. In our CSL for the C
language, we address all these issues.

DYNAMICALLY ALLOCATED LOCKS. A typical object-oriented pattern of use
(even in the C language) is that one field of a structure is a lock that
controls access to the other fields. The program mallocs a structure,
then makes a Pthread call mutex-init() to turn (e.g.) the first field into
a semaphore. Henceforth, the program must not use ordinary loads and
stores to access that field, but must use synchronization operations such as
compare-and-swap, which are encapsulated within the Pthreads library’s
lock() and unlock() functions. Finally, when the object is to be deallocated,
the program first calls mutex-destroy to turn the lock field back into an
ordinary data field.

A dynamically created lock at address l is not a pure fact that will be

true forever, it is a resource subject to separation. We write l
π

�→ R to
mean a lock at address l with (nonempty) visibility share π and resource
invariant R. Any nonempty visibility share gives permission to contend for
the lock, that is, to perform the acquire operation that blocks until the lock
is available. The full visibility share • gives permission to convert the lock
back into ordinary data.

Figure 30.1 gives the inference rules for lock creation and deallocation
(makelock/freelock), lock acquire and release (acq/rel), and thread
creation and exit (spawn/exit).

An integer memory-field can be turned into a lock via the makelock
command. The lock starts out in the locked state, which means that the
resource invariant is not necessarily satisfied at present but must be satisfied
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makelock
R positive R precise

∆ ⊢ {l 0}makelock l {l •�→R}

freelock
∆ ⊢ {R ∗ l •�→R} freelock l {R ∗ l 0}

splitlock
π1⊕π2 = π

l
π1

�→R ∗ l
π2

�→R ↔ l
π

�→R

acq

∆ ⊢ {l
π

�→R} acquire l {R ∗ l
π

�→R}

rel

∆ ⊢ {R ∗ l
π

�→R} release l {l
π

�→R}

spawn
∆ ⊢ {(a : { y⃗ P}{emp}) ∧ (P x)[b⃗/ y⃗] ∗ F} spawn a(⃗b) {F}

exit
∆ ⊢ {emp} exit() {⊥}

Figure 30.1: CSL rules for threads and locks

before the lock can be released.
The lock can be turned back into an ordinary value location using

freelock. The requirement to satisfy R in the precondition guarantees that
the lock l is in the locked state, held by this thread. Freeing the lock does
not unlock the lock, does not release the resource R.

When the lock is first created, one thread has a full visibility share in
the predicate l •�→R) and no other thread has any access (the black circle
• above the arrow represents the a full share). A lock is not very useful for
synchronization between threads unless more than one thread can see it.
Therefore, the next step (in a program, or in a proof) is to split the predicate



30. CONCURRENT SEPARATION LOGIC 229

l •�→R into parts such as l
• ◦
�→ R ∗ l

◦ •
�→ R, and distribute some of the parts

to other threads. This can be done by releasing some other lock, already

shared between the threads, whose resource invariant contains l
◦ •
�→ R;

or it can be done by passing the lock l (with accompanying lock-visibility
resource) in the arguments to spawn a(⃗b) when creating a new thread.

CONSIDER THE EXAMPLE of a three-field structure type whose lock field
controls access to n and t, and t is the nth triangular number.

struct triang {int lock; int n; int t;}

p = (struct triang ∗)malloc(sizeof(∗p));
p→ lock = 0;
makelock(&p→ lock);
tell-another-thread-about(p);
p→n=0; p→ t=0;
release(&p→ lock);
For any instance p of this type, the resource invariant of p→ lock is,

(p→lock) •�→R where R= ∃i. p→n i ∗ p→t i(i+ 1)/2

and indeed, the program assertion immediately after the makelock com-
mand is, p→lock) •�→R ∗ p→n _ ∗ p→t _.

The program must now send the pointer p to another thread, otherwise
there was no point in making a lock to synchronize access to n and t. It’s
safe to communicate p before initializing the n and t fields, because those
are private to the creating thread until the release.

Suppose there is already a communications-buffer data structure already
set up for this purpose, akin to the busy/free example on page 226. The
buffer contents will be pointer values such as p, and the resource invariant
for the busy lock will be,

busy�→S where S = ∃q. 10 q ∗ (q→lock
• ◦
�→ R)

THE RESOURCE INVARIANT S DESCRIBES the binding of another resource
invariant R to a location q→lock. We call this phenomenon “predicates in
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the heap.” Just as the assertion 10 q describes a heap cell at address 10
containing value q, the assertion q→R describes a heap cell at address q
“containing” the predicate R.

The resource-invariant R has an existential quantifier (∃i) in it. In
this case the variable i ranges over a base type, the integers. In object-
oriented languages, in languages with ML-style polymorphism or C++ style
templates, or in C programs that use object-oriented programming styles
(Chapter 29) resource invariants may contain quantifiers over abstract data
types. Those quantifiers may be instantiated with assertions that themselves
contain quantifiers. This is known as impredicative quantification. It is
remarkably tricky to make a semantic model (for a soundness proof) of
that combines predicates in the heap with impredicative quantification. It is
for that combination that we apply Indirection Theory, which can construct
this powerful kind of semantic model (see Part V of this book).

IN OUR EXAMPLE we create a new object with its lock. In order to commu-
nicate it to another thread we use an existing lock that is already shared
with the other thread. But how did that lock become shared? Is it turtles
all the way down? No: the other way to share a lock is to pass it in the
initialization parameters of a newly spawned thread.

The thread-creation rule (Figure 30.1) describes the command
spawn a(⃗b), which creates a new thread executing the function a with
arguments b⃗, where the evaluation of expressions a and bi are done in
the caller’s context. The function precondition y⃗ P means that separation
logic assertion P has formal parameters y⃗ , which are matched to the actual
parameters b⃗. The memory footprint covered by P[b⃗/ y⃗] is transferred to
the new thread.

The postcondition emp for a spawned function a implies that when the
function a completes, it must have given away all its resources.2 A thread
can exit either by returning from its initial function a or by calling exit.

2 The way to give away resources is to release a lock. To release a lock, one needs at

least the resource l
π

�→R. In the rel rule (of Figure 30.1) the postcondition of release still

contains l
π

�→R, which is bigger than emp. To be able to release all resources, Hobor [49,
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HOBOR’S PHD THESIS [49] DESCRIBES A CONCURRENT SEPARATION LOGIC with
dynamic locks and threads, an operational-semantic model as a variant
of the CompCert operational semantics, and a CSL program logic with
soundness proof in Coq with respect to the operational model. One
significant limitation was that his CompCert variant had “predicates in
the heap,” whereas standard CompCert does not. Recent research since
Hobor’s thesis (by L. Beringer, G. Stewart, and A. W. Appel, summarized
in Chapters 33 and 42) has shown how to adjust the CompCert semantics
to permit shared-memory interaction (but without predicates in the heap),
and then how to interface the predicates-in-the-heap semantics model to
this adjusted CompCert semantics.

AT THE TIME OF THIS WRITING the Verified Software Toolchain at the user level
does not support concurrency or concurrent separation logic. We expect to
support concurrency in the near future, as the difficult semantic issues are
largely solved.

§4.8,4.9] shows a stronger release rule, which we can write,

rel-rec
R = R′ ∗ l

π
�→R

∆ ⊢ {R} release l {emp}

The premise, that R somehow can contain a binding of l that refers to R itself, can be
obtained using the recursion operator, as Hobor explains.
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Part IV

Operational semantics of
CompCert

SYNOPSIS: Specification of the interface between CompCert and its clients such
as the VST separation logic for C light, or clients such as proved-sound static
analyses and abstract interpretations. This specification takes the form of an
operational semantics with a nontrivial memory model. The need to preserve
the compiler’s freedom to optimize the placement of data (in memory, out
of memory) requires the ability to rename addresses and adjust block sizes.
Thus the specification of shared-memory interaction between subprograms
(separately compiled functions, or concurrent threads) requires particular
care, to keep these renamings consistent.
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Chapter 31

CompCert

PROGRAM LOGICS FOR CERTIFIED COMPILERS: We prove that the program logic
is sound with respect to the operational semantics of a source language—
meaning that if the program logic proves some claim about the observable
behavior of a program, then the source program actually respects that claim
when interpreted in the source-language semantics. But computers don’t
directly execute source-language semantics: we also need a proof about the
correctness of an interpreter or a compiler.

COMPCERT (compilateur certifié in French) is a formally verified optimizing
compiler for the C language , translating to assembly language for various
machines (Intel x86, ARM, PowerPC) [62]. Like most optimizing compilers,
it translates in several sequential phases through a sequence of intermediate
languages. Unlike most compilers, each of these intermediate languages
has a formal specification written down in Coq as an operational semantics.
Each phase is proved correct: the form of the proof is a simulation theorem
expressing that the observable behavior of the target program corresponds
to the observable behavior of the source program. The composition of
all these per-phase simulation theorems gives the compiler correctness
theorem.

Although there had been formally verified compilers before [67, 36, 61,
60], CompCert is an important breakthrough for several reasons:
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Language: One of Leroy’s goals has been that CompCert should be able to
compile real high-assurance embedded C programs, such as the avionics
software for a commercial jetliner. Such software is not trivially modified:
any tweak to the software—let alone rewriting it in another language—
requires months or years of rebuilding an assurance case. Thus CompCert
compiles the ANSI/ISO standard C language—or rather, a sufficiently large
subset to compile industrial software.

Specification: Before proving that a translation is correct with respect to
operational semantics, one must have a semantics. A formal specification
of the C language semantics is an important contribution of the CompCert
project.

Optimization: CompCert is an optimizing compiler. At present the perfor-
mance is similar to the code generated by gcc -O1, and about 5% worse
than gcc -O2. But it’s significantely better than trusted C compilers now
used in avionics—which deliberately do not optimize very much for fear
of bugs. CompCert’s code size is about 25% smaller and compiled-code
execution time is about 18% faster than a compiler currently used for
avionics.1 [15].

Memory model: A big hurdle in verifying optimizing compilers is the need
for a symbolic model of memory addressing. Each optimization phase may
relocate memory blocks, or adjust the size of memory blocks by adding new
fields, or merge (concatenate) memory blocks. Previous verified compilers
that assumed a traditional flat, concrete model of memory addressing could
not express the specification and proof of such optimizing compiler passes.

THE BIGGEST CHALLENGE IN SPECIFYING AND VERIFYING an optimizing C
compiler is the treatment of access to memory. C permits address arithmetic
within a malloc’ed or statically allocated object, so one might think
that addresses must be treated as integers (perhaps modulo 2k). On
the other hand, in order to account for register allocation, spilling, and
return addresses, each phase of an optimizing compiler must be free to

1Worst-case execution time, cited here, is of particular interest to developers of soft-
ware with hard real-time constraints, such as fly-by-wire avionics.
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adjust the size of stack frames and to choose whether some objects are
in addressible memory or nonaddressible registers. Furthermore, a global
flat address space of integers will overspecify too much—will improperly
allow properties of programs to be proved that should be left unspecified.
For example, the C standard [57] says that the subtraction of pointers to
different allocated objects is undefined, but in a flat-address-space model
they’re both numbers and of course a numeric difference must exist.

So, the address space must permit arithmetic but must not permit too
much arithmetic. Leroy and Blazy’s approach [64] is that an address should
be a pair of a symbolic base pointer with an integer offset. A memory is,
informally, a mapping from addresses to values, where a value is either
an integer, a floating-point number, an address, or undefined. At any
stage of compilation, one must give the next compiler/linker phases the
freedom to insert blocks, delete blocks (if they are dead, or to promote
them to registers), to increase the size of blocks (when spilling register into
stack frames), and in general to do transformations such as linking and
relocation. Within each block, integer addressing is permitted.

A compiler phase can arbitrarily rename/permute the symbolic base
pointers, delete some blocks, and change the integer offset of each block for
internal numeric addressing: Leroy and Blazy call this a memory injection.
The compiler can add extra words at the beginning or end of a block,
useful for accreting register-spills or return-addresses onto stack frames:
this is a memory extension. The observable behavior of every program
must somehow be invariant under injections and extensions—otherwise an
optimizing compiler would change the program’s observable behavior.

The Leroy/Blazy memory model—with symbolic blocks, hybrid sym-
bolic/numberic addresses, injections, and extensions—was very successful
in permitting a semantics for C that is sufficiently abstract, but concrete
enough for the address arithmetic programmers expect; while permitting
the compiler freedom to optimize.

BUT THE LEROY/BLAZY MODEL had some significant weaknesses as well.
CompCert could not support reasoning about the optimizing compilation
of shared-memory concurrent threads, because the permission model was
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not fine-grained enough. Chapter 32 describes our improvements in that
direction.

CompCert’s most significant limitation is that it does not permit shared
memory interaction with an operating system, and does not permit separate
compilation. The reason is exactly the symbolic nature of the memory
model. Each module must have the freedom to independently renumber
blocks for optimizing compilation, and yet all the separately compiled
modules (or the client and its operating system) must jointly agree on the
renumbering. It is a very difficult problem to specify how this should work.

The original CompCert could evade this problem by targeting the
problem domain of whole-program single-threaded embedded systems,
where there is no operating system. Without an operating system, the
execution thread has no shared-memory interaction, just the output and
input of atomic integer values to/from external devices. But we want the
Verified Software Toolchain to work in more general applications. So the
difficult problems with shared-memory interaction must be solved, and we
explain the approach in Chapter 33.
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Chapter 32

The CompCert memory model
by Xavier Leroy, Andrew W. Appel, Sandrine Blazy,
and Gordon Stewart

The imperative programming paradigm views programs as sequences of
commands that update a memory state. A memory model specifies memory
states and operations such as reads and writes. Such a memory model
is a prerequisite to giving formal semantics to imperative programming
languages, verifying properties of programs, and proving the correctness of
program transformations.

For high-level, type-safe languages such as ML or the sequential
fragment of Java, the memory model is simple and amounts to a finite
map from abstract memory locations to the values they contain. At the
other end of the complexity spectrum, we find memory models for shared-
memory concurrent programs with data races and relaxed (non sequentially
consistent) memory, where much effort is needed to capture the relaxations
(e.g. reorderings of reads and writes) that are allowed and those that are
guaranteed never to happen [1].

For CompCert we focus on memory models for the C language and for
compiler intermediate languages, in the sequential case and with extensions
to data race-free concurrency. C and our intermediate languages feature
both low-level aspects such as pointers, pointer arithmetic, and nested
objects, and high-level aspects such as separation and freshness guarantees.
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For instance, pointer arithmetic can result in aliasing or partial overlap
between the memory areas referenced by two pointers; yet, it is guaranteed
that the memory areas corresponding to two distinct variables or two
successive calls to malloc are disjoint. A very abstract memory model,
such as the popular Burstall-Bornat model [30, 26], can fail to account
for desirable features of the languages we are interested in, such as casts
between incompatible pointer types. A very concrete memory model, such
as the hardware view of memory as an array of bytes indexed by addresses
that are just machine integers [87], fails to enforce separation and freshness
guarantees, and makes it impossible to prove the correctness of standard
compiler passes and even of late, link-time or loading-time placement of
code and data in memory.

Version 1 of the CompCert memory model is described in detail by Leroy
and Blazy [64] and summarized in this chapter. In the years following
that publication, several limitations of this “v1” memory model appeared,
some related to low-level programming idioms used in embedded systems,
others related to the extension of CompCert towards race-free concurrent
programming as investigated in the Verified Software Toolchain project [7].

These limitations led us to refine the CompCert memory model in
two directions. One is to expose the byte-level machine representation of
integers and floating-point numbers, while keeping abstract the machine
representation of pointers, as required to preserve crucial invariance
properties of invariance by generalized renaming of block identifiers.
The other direction is to add fine-grained permissions, also known as
access rights, on every byte of the memory state, giving precise control
of which memory operations are permitted on these bytes. For instance,
the in-memory representation of a C string literal can be given read-only
permissions, allowing reads but preventing writes and deallocation.

The CompCert memory model, version 1

We first review version 1 of the CompCert memory model, referring the
reader to Leroy and Blazy [64] for full details. Underlined text describes
aspects that no longer apply in version 2.
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Memory states m are collections of blocks, each block being an array of
abstract bytes. Pointers are represented by pairs (b, i) of a block identifier b
and a byte offset i within this block. Each block b has two integer bounds,
low_bound m b and high_bound m b. Valid offsets within block b range
between low_bound m b inclusive and high_bound m b exclusive.

The CompCert C and C light semantics [23] associate a different block
to every global variable of the program, to every addressable local variable
of every active invocation of a function of the program, and to every
invocation of malloc. For local variables, fresh blocks are allocated at
function entry and deallocated when the function returns. The memory
model’s alloc and free do not directly model the C library malloc and
free; they model the creation of fresh blocks at function entry and their
destruction at function return, and could also be used to model acquisition
of address space via system calls.

Pointer arithmetic modifies the offset part of a pointer, keeping its block

identifier unchanged: (b, i) + n
def
= (b, i + n). As a consequence, blocks are

separated by construction: from a pointer to block b, no amount of pointer
arithmetic can create a pointer to block b′ ̸= b; pointer arithmetic can only
create other pointers within block b, or illegal pointers outside b’s bounds.

As an abstract data type, memory states are presented as a type mem, a
constant empty : mem, and the four operations,

alloc : mem→ Z→ Z→mem× block
free : mem→ block→mem
load : mem→memory-chunk→ block→ Z→ option val
store : mem→memory-chunk→ block→ Z→ val→ option mem
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alloc m l h allocates a fresh block of size h− l bytes, with low bound l
and high bound h. It returns the updated memory state and the block
identifier for the fresh block.

free m b deallocates block b, returning the updated memory state in which
b has bounds (0,0) and therefore can no longer be read or written.

store m τ b i v stores value v with type τ in block b at offset i.

load m τ b i reads a value of type τ from block b at starting offset i.

Values are the discriminated union of 32-bit machine integers, 64-bit
floats, pointer values, and Vundef which denotes an unknown value:

v ::= Vint(i) | Vfloat( f ) | Vptr(b, i) | Vundef

Memory types τ indicate the size, type and signedness of the value being
stored:

τ ::= Mint8signed |Mint8unsigned 8-bit integers
| Mint16signed |Mint16unsigned 16-bit integers
| Mint32 32-bit integers or pointers
| Mfloat32 |Mfloat64 32-bit and 64-bit floats

Each type τ comes with a size |τ| in bytes and a natural alignment 〈τ〉.
As shown by the option mem return type, memory stores can fail

because they perform bounds and alignment checking. The store succeeds
and returns Some m′ (where m′ is the updated memory state) if and only if
bounds and alignment constraints are respected:

〈τ〉 divides i ∧ low_bound m b ≤ i ∧ i+ |τ| ≤ high_bound m b

Otherwise, store returns None.
A load succeeds and returns Some v (where v is the value read) if and

only if bounds and alignments constraints are respected, as in the case of
store. Otherwise, None is returned.

The following “good variable” laws characterize most of the semantics
of these four memory operations.
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Load after alloc: if alloc m l h= (m′, b),

• load m′ τ′ b′ i′ = load m τ′ b′ i′ if b′ ̸= b

• If load m τ b i = Some v, then v = undef

Load after free: if free m b = m′,

• load m′ τ′ b′ i′ = load m τ′ b′ i′ if b′ ̸= b

• load m τ b i = None.

Load after store: if store m τ b i v = Some m′,

• Disjoint case: load m′ τ′ b′ i′ = load m τ′ b′ i′ if b′ ̸= b or
i′+ |τ′| ≤ i or i+ |τ| ≤ i′

• Compatible case: load m′ τ′ b i = Some(convert τ′ v) if |τ′|= |τ|

• Incompatible case: if load m′ τ′ b i = Some v′ and |τ′| ̸= |τ|,
then v′ = Vundef

• Overlapping case: if load m′ τ′ b i′ = Some v′ and i′ ̸= i and
i′+ |τ′|> i and i+ |τ|> i′, then v = Vundef

Store

Compatible load

Incompatible load

Disjoint loads

Overlapping loads

The four cases of the “load after store” laws are depicted above. The
disjoint case corresponds to a load outside the memory area affected by
the store. In the compatible case, we load exactly from the memory area
affected by the store, in which case we obtain the value just stored, after
conversion to the destination type τ′:
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convert (Vint(n)) Mint8unsigned = Vint(8-bit zero extension of n)
convert (Vint(n)) Mint8signed = Vint(8-bit sign extension of n)

convert (Vint(n)) Mint16unsigned = Vint(16-bit zero extension of n)
convert (Vint(n)) Mint16signed = Vint(16-bit sign extension of n)

convert (Vint(n)) Mint32 = Vint(n)
convert (Vptr(b, i)) Mint32 = Vptr(b, i)
convert (Vfloat( f )) float32 = Vfloat( f normalized to single precision)
convert (Vfloat( f )) float64 = Vfloat( f )

convert v τ = Vundef in all other cases

In the two remaining cases, “incompatible” and “overlapping”, the bytes
being read by the load include some but not all of the bytes written by the
store, possibly combined with other bytes that were not affected by the
store. To specify the result of the load in these two cases, we would need
to expose the byte-level representation of values in memory: Are integers
stored in big-endian or little-endian representation? What is the byte-level
encoding of floats? We chose not to do this in version 1. Therefore, we
just say that the value read is Vundef, as if we were reading from an
uninitialized memory area.

Assessment of the memory model, version 1

CAPABILITY: ACCOUNTING FOR ISO C99 AND POPULAR C PROGRAMMING IDIOMS.
The CompCert memory model version 1 correctly models the memory
behavior of C programs that conform to the ISO C99 standard [57]. As
specified in section 6.5 of the C99 standard, a C “object” (memory-resident
data) has an effective type, which is either its declared static type, if any,
or the type of the latest assignment into this object, if it has no declared
static type. A conformant program always accesses an object through an
l-value whose type is compatible with that of the effective type of the
object. Compatibility includes addition or removal of qualifiers, as well as
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changes in signedness. This corresponds to the “compatible” case of the
load-after-store laws:

if store m τ b i v = Some m′ and |τ′|= |τ|
then load m′ τ′ b i = Some(convert(τ′, v))

Indeed, two C types t, t ′ that are compatible in the sense of the C99
standard encode into CompCert memory chunks τ,τ′ that have the same
size (and differ only in signedness). Moreover, the C semantics guarantee
that the value v being stored with type t has been normalized (casted)
to type t before storing. In this case, CompCert’s conversion-at-load-time
convert(τ′, v) behaves like the C type cast (t ′) v.

Besides standard-conformant C programs, the CompCert memory
model can give meaning to several popular C programming idioms that
have undefined behavior according to the C standards. For example, in
CompCert, the representation of pointer values is independent of their
static pointer types. Therefore, casting from any pointer type to any other
pointer type and then back to the original pointer type is well defined and
behaves like the identity function:

int x = 3;
∗((int ∗) (double ∗) &x) = 4; // equivalent to x = 4;

For another example, CompCert memory blocks are accessed at byte
offsets within a block. The CompCert C and C light semantics compute
the byte offsets corresponding to array elements or struct fields before
performing memory accesses [23]. This makes it possible to give semantics
to non-conformant programs that access elements of arrays or structs via
nonstandard casts or pointer arithmetic. For example:

struct { int x, y, z; } s;
s.y = 42;
((int ∗) &s)[1] = 42;
∗((int ∗) ((char ∗) &s + sizeof(int))) = 42;

All three assignments above are well defined in CompCert C and have
the same semantics, namely storing the integer 42 at offset 4 in the block
associated with variable s.
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The same tolerance applies to non-discriminated unions. Consider:

union point3d {
struct { double x, y, z; } s;
double d[3];

};

For any object p of type union point3d, its three coordinates can be accessed
indifferently as p.s.x, p.s.y, p.s.z or as p.d[0], p.d[1], p.d[2].

LIMITATION: NO ACCESS TO IN-MEMORY DATA REPRESENTATIONS. Systems or
library C codes often cannot be written in standard-conformant C because
they need to operate over the in-memory representation of data, at the
level of individual bytes or bits. For example, changing the endianness of
an integer (converting it from little-endian to big-endian representation, or
conversely) is often written as follows:

unsigned int bswap(unsigned int x) {
union { unsigned int i; char c[4]; } src, dst;
int n;
src.i = x;
dst.c[3] = src.c[0]; dst.c[2] = src.c[1];
dst.c[1] = src.c[2]; dst.c[0] = src.c[3];
return dst.i;

}

In this example, the memory objects for src and dst are accessed simul-
taneously with types int and char. This is not supported by version 1 of
the CompCert memory model: we fall in the “incompatible” and “over-
lapping” cases of the load-after-store laws, therefore src.c[0], . . . , src.c[3]
read as Vundef values, and likewise dst.i reads as Vundef instead of the
byte-reversed value of x as expected.

The example above is not too serious because it can be rewritten into
standard-conformant code:

unsigned int bswap(unsigned int x) {
return (x & 0xFF) << 24 | (x & 0xFF00) << 8

| (x & 0xFF0000) >> 8 | (x & 0xFF000000) >> 24; }
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More delicate examples arise in floating-point libraries that need to
exploit the IEEE 754 bit-level representation of floating-point numbers to
implement basic float operations. For instance, taking the absolute value
of a single-precision IEEE 754 float amounts to clearing the top bit of its
representation:

float fabs-single(float x) {
union { float f; unsigned int i; } u;
u.f = x;
u.i = u.i & 0x7FFFFFFF;
return u.f;

}

Giving semantics to this function using the CompCert memory model
version 1, we obtain that it always returns Vundef instead of the expected
float result: the read u.i after the write u.f falls in the “incompatible” case
of the load-after-store laws.

Sometimes, “bit surgery” over floating-point numbers must be per-
formed by the compiler itself, to implement primitive C operations for
which the microprocessor provides no dedicated instructions. For example,
the PowerPC 32 bits architecture lacks an instruction to convert a 32-bit
integer to a double-precision float. This conversion must be implemented
by machine code equivalent to the following C code:

double double-of-signed-int(int x) {
union { double d; unsigned int i[2]; } a, b;
a.i[0] = 0x43300000; a.i[1] = 0x80000000;
b.i[0] = 0x43300000; b.i[1] = 0x80000000 + x;
return b.d -a.d;

}

This code exploits not only the fact that the PowerPC is a big-endian
architecture, but also the bit-level IEEE 754 representation: the bit pattern
of a, namely, 0x4330000080000000 represents the float 252 + 231, and the
bit pattern of b represents the float 252 + 231 + (double)x; moreover, the
floating-point subtraction between these two floats is exact, resulting in



32. THE COMPCERT MEMORY MODEL 246

(double)x. Again, version 1 of the CompCert memory model fails to give
the intended semantics to this code, predicting an Vundef result instead.

Finally, some library functions work over byte-level data representations
in a highly portable (but not standard-conformant) manner. This is the case
for the following naive implementation of the memcpy function from the C
standard library:

void ∗ memcpy(void ∗ dest, const void ∗ src, size-t n) {
for (i = 0; i < n; i++)

((char ∗) dest)[i] = ((const char ∗) src)[i];
return dest;

}

According to the CompCert memory model version 1, this memcpy works
as intended if it is passed arrays of char (signed or unsigned), or other
compound types consisting only of char fields. Otherwise, for example if src
points to an array of int or double, the read ((const char ∗) src)[i] returns
Vundef, and the destination block dest is filled with Vundef values.

CAPABILITY: INVARIANCE BY MEMORY TRANSFORMATIONS. In the implementation
of the memory model, block identifiers are integers (in CompCert 2.0,
positives) and are assigned consecutively at each alloc operation. However,
the operations of the memory model and the CompCert C formal semantics
are insensitive to this particular choice of block identifiers. For instance,
the CompCert C semantics, following the C99 standard, enables programs
to test whether two block identifiers are equal (using the == pointer
comparison), but not whether one identifier was allocated before another
one (the < comparison is undefined between pointers designating different
blocks). Consider two programs that are identical except for the order of
definition of some variables:

int x = 10; int y = 20;
int y = 20; int x = 10;

When executed according to the CompCert C semantics, the program on
the left will bind x to (say) block identifier 1 and y to block 2, while the
program on the right will bind x to block 2 and y to block 1. Nonetheless,
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the observable behaviors of the two programs are the same, because both
the memory model and the CompCert C semantics are invariant by a
renaming of block identifiers.

Invariance properties stronger than renamings are necessary to prove
the correctness of CompCert’s compiler passes. Here are two examples of
compilation passes that modify the memory layout of the program:

1. Local scalar variables whose addresses are never
taken (using the & operator) are “pulled out of
memory” and put into a variable environment sep-
arate from the memory state. (This enables much
more aggressive optimizations on uses of these vari-
ables.) Moreover, to simplify the semantics of Cminor
and later intermediate languages, the remaining local
variables are packed together as sub-blocks of a sin-
gle memory block representing the stack frame of the
function.

2. In the “stacking” pass performed after register al-
location, local variables that could not be allocated
to register are “spilled” to memory locations within
the stack frame of the current function. This stack
frame, therefore, needs to be extended to make room
for spilled variables.

To reason about such transformations, CompCert introduces the notion
of memory injections, which are a generalization of renamings of block
identifiers; and memory extensions, to permit extra fields to be added to a
block. A memory injection is a function F with type

F : block→ option(block×Z)

Let b be a block identifier in the memory state of the original program.
F(b) = None means that this block was “pulled out of memory” by the
program transformation. F(b) = Some(b′,δ) means that this block is
mapped to a sub-block of block b′ in the memory state of the transformed
program, said sub-block starting at offset δ.
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A memory injection F induces a relation F ⊢ v1 ,→ v2 between the values
v1 of the original program and the values v2 of the transformed program.
This relation corresponds to relocating pointer values as specified by F . It
also enables Vundef values in the original program to be replaced by more
defined values in the transformed program.

F ⊢ Vundef ,→ v2 F ⊢ Vint(n) ,→ Vint(n)

F ⊢ Vfloat(n) ,→ Vfloat(n)

F(b1) = Some(b2,δ) i2 = i1+δ

F ⊢ Vptr(b1, i1) ,→ Vptr(b2, i2)

Likewise, a memory injection F induces a relation F ⊢ m1 m2 between
the memory states m1 of the original program and m2 of the transformed
program. In version 1 of the CompCert memory model, this relation is
defined as “every load in m1 from a mapped block is simulated by a load in
m2 from the image of this block”:

F(b1) = Some(b2,δ) ∧ load τ m1 b1 i = Some(v1)
⇒ ∃v2, load τ m2 b2 (i+δ) = Some(v2) ∧ F ⊢ v1 ,→ v2

As demonstrated by Leroy and Blazy [64, section 5], memory injections
enjoy nice properties of commutation with the store, alloc and free oper-
ations of the memory model. These properties, in turn, support the proof
of semantic preservation for the CompCert compiler passes that modify the
memory behaviors of programs.

In conclusion, a crucial feature of the CompCert memory model
version 1 is that block identifiers are kept relatively abstract and can be
renamed, deleted or injected as sub-blocks of bigger blocks while preserving
the observable behaviors of programs. Without this feature, several passes
of the CompCert compiler could not be proved to preserve semantics.

LIMITATION: LIMITED COMPOSITIONALITY OF INJECTIONS AND EXTENSIONS. Dif-
ferent compiler passes do various injections and extensions, and the forward
simulation proofs of all passes must be composed to make the CompCert
correctness proof. Therefore it would be convenient to reason about the
composition of injections and extensions, but the version 1 definitions
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do not fully permit this. The CompCert correctness proofs survived this
awkwardness as long as there was no shared-memory interaction between
compilation units (see Chapter 33).

LIMITATION: POINTER COMPARISON. A standard-conformant C program can
only compare pointers to (certain offsets from) allocated blocks. To see the
danger, consider this program:

int ∗f(void) {int x; return &x;}
int g(void) {int ∗p = f(); int ∗q = f(); return (p==q);}

Most C implementations will have a consistent stack-frame size and
interframe padding, leading to p==q evaluating true. But it is quite legal
to have variable interframe padding, such as might occur when a C system
inserts a trampoline frame between g’s frame and f’s frame. In such a case,
p==q may be false. Thus the C standard makes comparisons to deallocated
pointers undefined.

Early version 1 modeled this by requiring nonempty bounds on blocks p
and q, but this would have prohibited certain legitimate patterns of use in
shared-memory programs in which one thread wants to (temporarily) give
away write permission while retaining the ability to compare pointers. Late
version 1 modeled this in a different way that was in fact unsound.

LIMITATION: COARSE-GRAINED ACCESS CONTROL. In version 1 of the memory
model, a load or store operation succeeds as long as the accessed location is
aligned and within the bounds of its enclosing block, and a free operation
always succeeds, even if the given block was already freed. This behavior is
too coarse in several situations that we now illustrate.

First, it should be the case that free fails if the given block has not
been allocated before, or was already freed earlier. In this way, programs
that perform double-free errors have undefined semantics, as they should.
Attempts to free global variables should also fail, for similar reasons.

Second, memory blocks corresponding to const variables in C or to
string literals should be marked read-only, so that a store into one of these
blocks always fails. Besides making the semantics of CompCert C closer to
the C standards, reflecting const-ness into the memory model in this way
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supports interesting optimizations such as constant propagation of const
global variables:

const int cst = 4;
int f(x) { return x ∗ cst; } −→ const int cst = 4;

int f(x) { return x << 2; }

Third, fine-grained access control over memory locations is also useful to
extend CompCert towards data race-free concurrent programs, as proposed
in the Verified Software Toolchain project [7, 9, 51]. In the VST approach,
data races are avoided by a locking discipline enforced via a concurrent
separation logic. Each area of shared memory is logically associated with a
lock through concurrent separation logic formulas. When a thread releases
an exclusive lock, the calling thread loses all access rights on the associated
memory area. If, later, this lock is reacquired, the calling thread recovers
these rights. Since our concurrent separation logic supports fractional
permissions, it is also possible for a thread to temporarily abandon write
rights, giving other threads the right to read (but not write) to this memory
area, while retaining read rights for itself.

At the source language level, the access rights mentioned above are
implied and enforced by the separation logic. The CompCert compiler must,
then, guarantee that these access rights are respected during compilation.
A typical violation would be for CompCert to move a load or store before a
lock acquisition or after a lock release. One way to prove that this does not
happen would be to apply the separation logic discipline to all intermediate
languages and compilation passes of CompCert. A much simpler approach,
which we follow in version 2 of the CompCert memory model, is to equip
the memory model with a notion of fine-grained, per-byte permissions,
governing for instance whether a byte can be written to. Concurrent
operations such as lock and unlock are, then, modeled as changing the
memory permissions as well as memory contents in an unpredictable
manner, under control of an oracle external to the semantics. This suffices
to prevent the compiler from moving memory accesses across lock and
unlock operations.

The changes to memory permissions that occur at external function
calls—in what appears to CompCert to be an “unpredictable” manner—
can be reasoned about in a logic external to CompCert and its memory
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model. That logic might use fractional or token-based permission models
(Chapter 41) to prove race freedom in a very predictable way. These
complex permission-models do not need to be completely reified into the
CompCert memory model; instead, a summary of their effects can be
described by the abstract permissions that we will show at page 252.

The CompCert memory model, version 2

Version 2 of the CompCert memory model enhances version 1 to address
the limitations described above without losing the invariance property or
ISO-C99 compatibility. The main changes are:

• exposing the byte-level, in-memory representation of integers and
floats, while keeping that of pointers abstract;

• introducing fine-grained, byte-level permissions in replacement for
memory bounds; and

• adding new operations over memory states: loadbytes, storebytes,
and drop-perm.

Operations

Version-2 memory states are presented as a type mem, a constant empty :
mem denoting the empty memory state, and the seven operations

alloc : mem→ Z→ Z→mem× block
free : mem→ block→ Z→ Z→ option mem

load : mem→memory_chunk→ block→ Z→ option val

store : mem→memory_chunk→ block→ Z→ val→ option mem

loadbytes : mem→ block→ Z→ Z→ option(list memval)
storebytes : mem→ block→ Z→ list memval→ option mem

drop_perm : mem→ block→ Z→ Z→ permission→ option mem
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alloc, load and store are as in version 1 of the model. The free operation,
free m b l h, no longer frees the whole block b, but rather the range of
offsets [l, h) within block b. This change simplifies the definition of a
separation logic on top of the memory model. It also makes it possible to
reduce the size of a block after allocation, and to “punch holes” within a
block, two possibilities that CompCert does not exercise currently. Another
change is that free can now fail, typically if the locations to be freed have
been freed already, or if a (concurrent) thread does not have exclusive
access to the block.

Three new operations were added. loadbytes and storebytes are similar
to load and store, but instead of reading or writing a value, they read or
write a list of byte contents (type memval, explained at page 256). loadbytes
and storebytes are useful to give semantics to block copy operations such
as memcpy, and also to reason over byte-level, in-memory representation
of data.

Finally, drop_perm m b l h p lowers the permissions (access rights) over
locations (b, l), . . . , (b, h− 1), setting them to p. A typical use of drop-perm
is to set to read-only a memory block corresponding to a const C variable,
after it has been initialized.

Permissions.

Memory states associate permissions, or access rights, to every byte location.
The various permissions are:

Freeable full permissions: can compare, read, write, and free
Writable can compare, read and write but not free
Readable can compare and read but not write nor free
Nonempty can only compare

In the table above, “compare” refers to the ability of comparing a pointer to
the given location with other pointers.1

1In CompCert C as in the C standards, pointer comparison involving invalid pointers
(e.g. pointers to freed locations) have undefined semantics. For the purpose of giving
semantics to pointer comparisons, we take that a pointer Vptr(b, i) is valid if the location
(b, i) has at least Nonempty permission.
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Permissions are cumulative: having permission p implies having all
permissions p′ < p, where the ordering on permissions is

Nonempty < Readable<Writable< Freeable

It is possible for a location to have no permission at all. In this case, we say
that the location is empty. This is typically the case for locations that have
not been allocated yet, or have been freed already.

Every byte location is associated not to one, but to two permissions:
the current permission and the maximal permission. At any time in the
execution, the current permission is less than or equal to the maximal
permission. The maximal permission evolves predictably throughout the
lifetime of the location: when the location is allocated, it has maximal
permission Freeable; this permission can later be lowered by a drop-perm
operation; finally, freeing the location removes all its maximal permissions,
making the location empty. The maximal permission can only decrease
once the location has been allocated. In contrast, the current permission
can decrease or increase (without ever exceeding the maximal permission)
during the lifetime of the location. For example, in the extension to
shared memory concurrency, an unlock operation temporarily drops current
permissions, which can be recovered by a subsequent lock operation. Here
is an illustration of the evolution of a location’s permissions:

alloc drop unlock read-lock unlock
time

write-lock
none

Nonempty

Readable

Writable

Freeable
Max

Cur

pe
rm

is
si

on
s

The association of permissions to locations is exposed as a Coq predicate:

perm : mem→ block→ Z→ perm_kind→ permission→ Prop

where perm-kind is the enumerated inductive type Max | Cur. The propo-
sition perm m b i k p holds if and only if in memory state m, location
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(b, i) has k-permission at least p. The cumulativity of permissions, and the
fact that current permissions are never above maximal permissions, are
expressed by the following implications:

perm m b i k p ∧ p′ ≤ p ⇒ perm m b i k p′

perm m b i Cur p ⇒ perm m b i Max p

Instead of checking block offsets against block bounds, as in version 1
of the memory model, the load and store operations check that the accessed
locations have current permissions at least Readable, resp. Writable.
Likewise, the free and drop-perm operations check that the affected
locations have current permissions at least Freeable. Defining

Definition range-perm (m: mem) (b: block) (lo hi: Z)
(k: perm-kind) (p: permission) : Prop :=

∀ofs, lo <= ofs < hi →perm m b ofs k p.

we have the following properties:

Operation. . . succeeds if and only if. . .
load m τ b i range_perm m b i (i+ |τ|) Cur Readable
store m τ b i v range_perm m b i (i+ |τ|) Cur Writable
free m b l h range_perm m b l h Cur Freeable
drop_perm m b l h p range_perm m b l h Cur Freeable

Owing to the availability of per-byte permissions, it is no longer useful
to associate low and high bounds to memory blocks. Version 2 of the
memory model therefore removes the low-bound and high-bound functions
of version 1. The main use of these functions in CompCert’s proofs was to
state that a location (b, i) is valid, i.e. already allocated but not yet freed,
using the following definition:

(b, i) is valid in m
def
= low_bound m b ≤ i < high_bound m b

Using version 2 of the model, the following alternate definition works just
as well:

(b, i) is valid in m
def
= perm m b i Max Nonempty
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Permissions are preserved by operations over memory states, with the
following exceptions.

Operation Effect on permissions
alloc m l h= (m′, b) (b, l) . . . (b, h− 1) get Freeable perms (Max & Cur)
free m b l h (b, l) . . . (b, h− 1) lose all permissions
drop_perm m b l h p (b, l) . . . (b, h− 1) get Max and Cur permissions p

To strengthen intuitions about permissions, it is useful to consider their
meaning in a shared-memory concurrent extension of CompCert. Different
threads will have different permissions over a given memory location. Using
a concurrent separation logic with fractional permissions (Chapter 41), and
projecting these rich logical permissions on CompCert’s simple permissions,
we can ensure that the permissions of two threads A and B over a given
memory location always fall within one of the following cases:

A’s perm B’s perm What A can do What B can do
Freeable none compare, load, store, free nothing
Writable ≤ Nonempty compare, load, store compare
Readable ≤ Readable compare, load compare, load
Nonempty ≤Writable compare compare, load, store
none any nothing compare, load, store, free

Combined with the permission checks performed by the various operations,
this interpretation of permissions causes programs containing data races to
have undefined semantics (“getting stuck”). If two threads are in danger
of approaching a data race, at least one of the threads will be “stuck” in
its own sequential operational semantics because it will have insufficient
permission. For example, if thread A stores at a location while thread B
loads from the same location, one or both of the load and store operations
will fail by lack of sufficient permissions. A similar failure occurs if A
compares a pointer while B is freeing the location. However, concurrent
loads are possible if the location has permission Readable in both threads.
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In-memory data representations

Memory states include a contents map that associates a value of type
memval to each byte, that is, each pair (block identifier, byte offset).

Inductive memval: Type :=
| Undef: memval
| Byte: byte →memval
| Pointer: block → int →nat →memval.

The contents of a given memory byte can be either

• Undef, standing for an unspecified bit pattern such as the contents of
an uninitialized memory area;

• Byte n where n is a concrete 8-bit integer in the range 0 . . . 255;

• Pointer b i n, standing for the nth byte of the abstract pointer (b, i).

The intent of this representation is that integer and float values, when
stored in memory, are decomposed into a sequence of bytes n1, . . . , nk,
taking endianness and IEEE encoding of floats into account, then stored in
the contents map as the memvals Byte n1, . . . ,Byte nk. (This is exactly what
the hardware processor does.) In contrast, when storing a pointer value
Vptr(b, i), we hide its hardware representation by storing the memvals
Pointer b i 0, . . . ,Pointer b i 3. Loading from memory performs the reverse
operation, recovering a value from a sequence of memvals.

These conversions between values and lists of memvals are governed
by a memory-chunk τ describing the encoding, and encapsulated in the
following two functions (see Figures 32.1 and 32.2):

encode-val: memory-chunk →val → list memval
decode-val: memory-chunk → list memval →val

The decode-val function is carefully engineered to be the left inverse
of encode-val: encoding a value, then decoding the resulting list of bytes,
recovers the original value modulo normalization of the value to the
memory-chunk used:

decode_val τ (encode_val τ v) = convert τ v
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encode_val Mint8unsigned (Vint(n)) =[Byte x1]
encode_val Mint8signed (Vint(n)) =[Byte x1]

where (x1) = encode_int 1 n
encode_val Mint16unsigned (Vint(n)) =[Byte x1;Byte x2]

encode_val Mint16signed (Vint(n)) =[Byte x1;Byte x2]
where (x1, x2) = encode_int 2 n

encode_val Mint32 (Vint(n)) =[Byte x1;Byte x2;Byte x3;Byte x4]
where (x1, . . . , x4) = encode_int 4 n

encode_val Mint32 (Vptr(b, i)) =[Pointer b i 0; . . . ;Pointer b i 3]
encode_val Mfloat32 (Vfloat(n)) =[Byte x1;Byte x2;Byte x3;Byte x4]

where (x1, . . . , x4) = encode_int 4 (bits_of_single n)
encode_val Mfloat64 (Vfloat(n)) =[Byte x1; . . . ;Byte x8]

where (x1, . . . , x8) = encode_int 8 (bits_of_double n)
encode_val τ v =[Undef; . . . ;Undef

︸ ︷︷ ︸

|τ| times

] otherwise

encode_int l n returns the list of the low l bytes of integer n, either
in big-endian or little-endian order depending on the target architecture.
bits-of-single and bits-of-double return as an integer the IEEE 754 repre-
sentation of a single-precision or double-precision float, respectively.

Figure 32.1: Definition of encode_val

This property still holds if the bytes are decoded with an integer memory-chunk
τ′ differing only in signedness from the τ used for encoding:

decode_val τ′ (encode_val τ v) =convert τ′ v
if {τ,τ′}= {Mint8u,Mint8s}
or {τ,τ′}= {Mint16u,Mint16s}
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decode_val Mint8u [Byte x1] = Vint(n)
decode_val Mint8s [Byte x1] = Vint(signextends(n))

where n= decode_int [x1]
decode_val Mint16u [Byte x1;Byte x2] = Vint(n)
decode_val Mint16s [Byte x1;Byte x2] = Vint(signextends(n))

where n= decode_int [x1; x2]
decode_val Mint32 [Byte x1; . . . ;Byte x4] = Vint(n)

decode_val Mfloat32 [Byte x1; . . . ;Byte x4] = Vfloat(single_of_bits(n))
where n= decode_int [x1; . . . ; x4]

decode_val Mfloat64 [Byte x1; . . . ;Byte x8] = Vfloat(double_of_bits(n))
where n= decode_int [x1; . . . ; x8]

decode_val Mint32 [Pointer b i 0; . . . ;Pointer b i 3] = Vptr(b, i)
decode_val τ L = Vundef in all other cases

decode_int L combines the given list of bytes L into an integer, using either
big-endian or little-endian convention depending on the target architecture.

Figure 32.2: Definition of decode_val

Moreover, encoding as a Mint32 and decoding as a Mfloat32, or conversely,
gives access to the IEEE bit-level representation of single-precision floats:

decode_val Mfloat32(encode_val Mint32 (Vint(i))) = single_of_bits(i)
decode_val Mint32(encode_val Mfloat32 (Vfloat( f ))) = bits_of_single( f )

Algebraic laws
LOAD AND LOADBYTES; STORE AND STOREBYTES. A load operation is equivalent
to a loadbytes operation plus a decode-val and an alignment check:

load m τ b i = Some (decode_val τ B) ⇔
loadbytes m b i |τ|= Some B ∧ 〈τ〉 divides i
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Similarly for a store operation and the corresponding storebytes operation:

store m τ b i v = Some m′ ⇔
storebytes m b i (encode_val τ v) = Some m′ ∧ 〈τ〉 divides i

DECOMPOSING LOADBYTES AND STOREBYTES OPERATIONS. A loadbytes operation
on a range of locations is equivalent to two loadbytes operations on two
adjacent ranges:

loadbytes m b i (n1+ n2) = Some B ⇔
∃B1,∃B2, B = B1.B2 ∧ loadbytes m b i n1 = Some B1

∧ loadbytes m b (i+ n1) n2 = Some B2

Likewise, a storebytes operation decomposes into two storebytes:

storebytes m b i (B1.B2) = Some m′ ⇔
∃m1, storebytes m b i B1 = Some m1

∧ storebytes m1 b (i+ |B1|) B2 = Some m′

LOAD AFTER ALLOC: Same properties as in version 1 of the model: if
alloc m l h= (m′, b),

• load m′ τ′ b′ i′ = load m τ′ b′ i′ if b′ ̸= b

• If load m τ b i = Some v, then v = Vundef

LOAD AFTER FREE: if free m b l h= m′,

• load m′ τ′ b′ i′ = load m τ′ b′ i′ if b′ ̸= b or i′+ |τ′| ≤ l or h≤ i′

• load m τ b i = None if l ≤ i and i+ |τ| ≤ h.

LOADBYTES AFTER STOREBYTES If storebytes m b i B = Some m′,

• Compatible case: loadbytes m′ b i |B|= Some B

• Disjoint case: loadbytes m′ b′ i′ n′ = loadbytes m b′ i′ n′ if b′ ̸= b or
i′+ n′ ≤ i or i+ |B| ≤ i′
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Cases of partial overlap can be reasoned upon by decomposing the
storebytes or the loadbytes operation into multiple operations.

LOAD AFTER STORE. if store m τ b i v = Some m′,

• Disjoint case: load m′ τ′ b′ i′ = load m τ′ b′ i′ if b′ ̸= b or i′+ |τ′| ≤ i
or i+ |τ| ≤ i′

• Compatible case: load m′ τ′ b i = decode_val τ′ (encode_val τ v)
if |τ′| = |τ|. In particular, if τ′ and τ are identical or differ only in
signedness, load m′ τ′ b i = convert τ′ v.

Compared with version 1 of the memory model, it is no longer the case
that the load must return an Vundef value in the “incompatible” and
“overlapping” cases. For example, if we write a 64-bit float f at location
(b, i), then read a 32-bit integer from this location, the result is not Vundef
but an integer corresponding to one half of the IEEE bit-level representation
of f . This is a strength of the new memory model, as it addresses the
limitations described at page 244. However, we can still say something in
the “incompatible” and “overlapping” cases if the value v just stored is a
pointer value.

• Incompatible case for pointer values: if v is a pointer value and
load m′ τ′ b i = Some v′ and τ ̸= Mint32 ∨ τ′ ̸= Mint32, then
v′ = Vundef.

• Overlapping case for pointer values: if v is a pointer value and
load m′ τ′ b i′ = Some v′ and i′ ̸= i and i′ + |τ′| > i and i + |τ| > i′,
then v′ = Vundef.

These special cases are related to a more general integrity property for
stored pointer values, described next.

INTEGRITY OF POINTER VALUES. As discussed above, it is possible to load
integer or float values that were never stored in memory, but arise from
combinations of byte-level representations of other integer or float values
previously stored in memory. However, the memory model guarantees that
this cannot happen for pointer values:
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If store m τ b i v = Some m′ and load m′ τ′ b′ i′ =
Some(Vptr(b′′, i′′)), then either

• the pointer value that is loaded is the value just stored: τ=
τ′ =Mint32 and b′ = b and i′ = i and v = Vptr(b′′, i′′);

• or the load is disjoint from the store: b′ ̸= b or i′ + |τ′| ≤
i or i + |τ| ≤ i′; therefore, the pointer value that is
loaded was already present in the original memory state:
load m τ′ b′ i′ = Some(Vptr(b′′, i′′))

This integrity property is important: if pointer values could arise “out of thin
air” by loading byte-level representations of other values, the properties of
invariance by memory transformations (page 246) would be invalidated,
and several passes of the CompCert compiler could no longer be proved
semantics-preserving.

Implementation.

The CompCert Coq sources provide an implementation of the memory
model in module Memory, which is proved to satisfy the algebraic laws
listed above and all the other properties specified in module Memtype.
Memory states are represented by the following record type:

Definition block : Type := positive.

Record mem : Type := mkmem {
mem-contents: PMap.t (ZMap.t memval);
mem-access: PMap.t (Z →perm-kind →option permission);
nextblock: block;
access-max: ∀b ofs, perm-order’’ (mem-access#b ofs Max)

(mem-access#b ofs Cur);
nextblock-noaccess:
∀b ofs k, b≥nextblock →mem-access#b ofs k = None

}.

A memory state is composed of three pieces of data:
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• A block identifier nextblock, which tracks the first nonallocated block.
The next alloc operation will return this block identifier.

• A map mem-contents from (block, offset) pairs to memvals. This
map is implemented using the Pmap and ZMap data structures from
CompCert’s Maps library. PMap (respectively, Zmap) provides an
efficient implementation of P-indexed (resp., Z-indexed) finite maps
with a default value. (Efficiency of the model makes no difference
to the speed of CompCert itself, or to the quality of the generated
assembly language. It makes a difference to simulators that execute
the memory model.)

• A map mem-access from (block, offset, permission-kind) triples to
the type option permission. This maps records, for every location,
the greatest Cur permission and the greatest Max permission. None
means no permissions at all.

Additionally, three invariants are packaged with this data: no location’s Cur
permission exceeds its Max permission; blocks that have not been allocated
yet have empty permissions; and any byte not explicitly mapped defaults to
Undef.

To give a flavor of the implementation, here is the definition of the store
operation:

Definition store (chunk: memory-chunk) (m: mem)
(b: block) (ofs: Z) (v: val) : option mem :=

if valid-access-dec m chunk b ofs Writable then
Some (mkmem (PMap.set b (setN (encode-val chunk v) ofs

(m.(mem-contents)#b))
m.(mem-contents))

m.(mem-access)
m.(nextblock)
m.(access-max)
m.(nextblock-noaccess)
(. . . contents-default . . .))

else
None.



32. THE COMPCERT MEMORY MODEL 263

valid-access-dec decides whether the offset is aligned with respect to
the memory chunk and whether all addressed bytes have Cur,Writable
permissions. If not, store fails, returning None. If so, an updated memory
state is returned, where the locations (b,ofs), . . . , (b,ofs+ |chunk ⊢ 1) are
set (by the auxiliary function setN) to the list of memvals returned by
encode-val chunk v, and all other locations are unchanged.

Some clients of the CompCert memory model, such as libraries of
lemmas about program transformations and program logics, often find it
convenient to reason about the constructive definitions (such as the one
shown here for store) instead of their axiomatizations. Other clients, such
as the correctness proofs for CompCert’s compilation passes, only need the
axiomatization in terms of algebraic laws outlined at page 258.

Assessment of the memory model, version 2

Version 2 of the memory model preserves the main features of version 1. It
gives the expected semantics to ISO C99 conformant programs. It gives the
expected semantics to those nonconformant C programs that perform wild
casts between pointers and make assumptions about the memory layout
of structs, unions and arrays. It enjoys useful properties of invariance
by memory transformations. The notion of memory injections initially
developed for version 1 extends easily to version 2 of the model and was
shown to commute with memory operations. We now discuss how version 2
removes the limitations of version 1.

CAPABILITY: LOW-LEVEL PROGRAMMING IDIOMS ON INTEGERS AND FLOATS.
Version 2 of the model is able to give precise semantics to programs
that make assumptions about the memory representations of base types
(integers and floats). We now revisit the examples (see pages 244ff) to
illustrate this new capability.

ENDIANNESS CHANGE. Using the store-storebytes equivalence, we see that
at program point 1, the memory block associated with src contains the
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encoding [Byte x1;Byte x2;Byte x3;Byte x4] of the integer x, where
(x1, . . . , x4) = encode_int 4 x.

unsigned int bswap(unsigned int x) {
union { unsigned int i; char c[4]; } src, dst;
int n;
src.i = x;
/∗ point 1 ∗/
dst.c[3] = src.c[0]; dst.c[2] = src.c[1];
dst.c[1] = src.c[2]; dst.c[0] = src.c[3];
/∗ point 2 ∗/
return dst.i;

}

Using the loadbytes-storebytes laws, we obtain that at program point 2, the
memory block associated with dst contains the memvals [Byte x4; Byte x3;
Byte x2; Byte x1]. The load-loadbytes equivalence, then, shows that the
integer returned by the function is decode_int [x4, x3, x2, x1], which is
indeed the byte-swapping of integer x.

SINGLE-PRECISION ABSOLUTE VALUE. According to the load-store-compatible
law, the value of u.i at program point 3 is

decode_valMint32(encode_valMfloat32x) = bits_of_single(x)

that is, the 32-bit integer corresponding to the IEEE 754 representation of
the single-precision float x.

float fabs-single(float x) {
union { float f; unsigned int i; } u;
u.f = x;
/∗ point 3 ∗/
u.i = u.i & 0x7FFFFFFF;
/∗ point 4 ∗/
return u.f;

}
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Using the same law again, the return value of the function is single_of_bits(n),
where n is the value of u.i at point 4. Since n= bits_of_single(x)&0x7FFFFFFF,
it follows that fabs-single computes the function

x single_of_bits(bits_of_single(x)&0x7FFFFFFF)

Using a formalization of IEEE 754 such as Flocq [25], it can be proved that
this function is floating-point absolute value.

CONVERTING INTEGERS TO DOUBLE-PRECISION FLOATS, POWERPC-STYLE.
Using many of the memory model laws (store-storebytes and load-loadbytes
equivalence; loadbytes-storebytes laws; and loadbytes and storebytes
decomposition properties) and assuming a big-endian architecture,

double double-of-signed-int(int x) {
union { double d; unsigned int i[2]; } a, b;
a.i[0] = 0x43300000; a.i[1] = 0x80000000;
b.i[0] = 0x43300000; b.i[1] = 0x80000000 + x;
/∗ point 5 ∗/
return b.d − a.d;

}

we obtain that at point 5,

a.d= double_of_bits(0x4330000080000000)
b.d= double_of_bits(0x4330000080000000+ x)

The return value of the function is, therefore, the double-precision floating-
point difference between these two floats. Using Flocq, it remains to prove
that this difference is indeed the float (double) x, taking advantage of the
fact −231 ≤ x < 231. The point is that the correctness of this function
was reduced to a pure floating-point arithmetic problem; the byte-level
manipulations over floats are now precisely defined thanks to the new
memory model.

LIMITATION: NO ACCESS TO BIT-LEVEL REPRESENTATIONS OF POINTERS.
Consider again the block copy example (page 244):
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void ∗ memcpy(void ∗ dest, const void ∗ src, size-t n) {
for (i = 0; i < n; i++)

((char ∗) dest)[i] = ((const char ∗) src)[i];
return dest;

}

Version 2 of the memory model is able to show that this function executes
as expected, but only if the source array src contains no pointer values;
more precisely, if the memvals at src . . . src+ n− 1 are all of the Byte or
Undef kind.

Indeed, when loaded with C type char, the memval Byte x reads as
the integer x or x ’s sign extension (depending on whether the char type
is signed). Storing this integer with C type char amounts to storing the
memval Byte x . If the source memval is Undef, it reads as the value Vundef,
and writes back as the memval Undef. Finally, if the source memval is a
pointer fragment Pointer b i n, it reads as the value Vundef and writes as
Undef.

Assuming no overlap between the src and dest memory areas, the net
effect of memcpy’s loop, is, therefore, to copy the memvals contained in src
to the area pointed by dest, turning pointer fragments into Undef memvals
and preserving Byte and Undef memvals. In other words, the expected
behavior of memcpy, namely, making an exact copy of src into dest, is
guaranteed by CompCert’s semantics only if src contains integers and floats,
but no pointers.

Similar limitations arise in examples other than memcpy. One is the
memcmp function from the C standard library, which compares the contents
of two memory areas as if they were arrays of characters. (Unlike memcpy,
the informal semantics of memcmp is very unclear to begin with, because it
observes the values of padding bytes introduced by compilers in compound
data structures.) Another example is the occasional need to reverse the
endianness of a pointer, for instance when a big-endian processor exchanges
linked data structures with a little-endian USB controller.

Is this a serious limitation? More practical experience with embedded
critical codes is needed to answer this question, but here are a few thoughts
about this issue.
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First, the C standards guarantee the existence of a correct memcpy
function in the C standard library, but never say that it can be written in
conformant C, as the simple byte-per-byte copy loop above or in any other
ways. Our memory model version 2 is perfectly able to axiomatize the
behavior of such a correct memcpy function, as a loadbytes operation over
the whole range src . . . src+ n− 1 followed by a storebytes at dest.

Second, like many C compilers, CompCert provides a predefined block
copy operation, --builtin-memcpy, whose semantics is precisely definedd as
a loadbytes operation followed by a storebytes (plus checks for absence of
overlap). A current limitation of this built-in operation is that the number n
of bytes to copy must be a compile-time constant. In exchange, CompCert
is able to produce very efficient assembly code for --builtin-memcpy, using
multi-byte memory accesses and unrolling the copy loop when appropriate.
The point is that CompCert-compiled systems code should never define its
own memcpy function and call it as memcpy(dest, src, sizeof(src)): using
--builtin-memcpy is not only better defined semantically speaking, but also
much more efficient.

Third, if the need arises to copy arrays of pointers, we can define a
version of memcpy specialized for this case:

void ∗ memcpy-ptr(void ∗∗ dest, const void ∗∗ src, size-t n) {
for (i = 0; i < n / sizeof(void ∗); i++)

dest[i] = src[i];
return dest;

}

Both version 1 and version 2 of the CompCert memory model show that
this function correctly copies arrays of pointers. With version 2, it might
be possible to show that structs containing a mixture of pointer fields and
numerical fields, or arrays of such structs, are copied unchanged as well.
This conjecture relies on the fact that pointer fields in structs are always
4-aligned, and force the alignment of the enclosing struct to be at least 4.

CAPABILITY: MORE PRECISE SEMANTICS. The permission mechanism introduced
in version 2 of the model is effective to better control the memory operations
that are allowed on global variables.
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The initial memory state in which a program starts execution is built as
follows by the CompCert operational semantics. For every global variable
of the C program, a memory block is allocated, then filled with the initial
value provided for this variable, if any, or by a default value of “all zeroes”
otherwise; then, permissions over the whole block are dropped to

• Nonempty if the type of the global variable is volatile;

• Readable if this type is const but not volatile;

• Writable, otherwise.

(CompCert treats string literals as global, initialized arrays of characters
with type const char [], hence string literals, too, get Readable permissions.)

Dropping permissions over global variables has several benefits. First,
attempting to deallocate a global variable or string literal by calling free on
its address now has undefined semantics, as it should. (This follows from
the fact that memory blocks corresponding to global variables always lack
the Freeable permission.) Second, it is now a semantic error for a program
to try to assign into a const global variable, or to access a volatile global
variable through normal load and store operations.

The latter point deserves more explanations on how CompCert handles
the volatile modifier. Accesses to l-values having volatile static type are com-
piled and given semantics not via normal load and store operations, but via
special built-in functions, --builtin-volatile-read and --builtin-volatile-write
that check whether the location actually accessed is an object declared
volatile or not. In the former case, the volatile access is treated as an
input/output operation, communicating with the outside world through
an event in the trace of observables for the program, and bypassing the
memory model entirely. In the latter case, the volatile access is treated as a
regular load/store operation. To summarize:

Static type Semantics & compilation Actual location accessed
not volatile volatile

not volatile regular load/store operation load/store error
volatile __builtin_volatile operation load/store I/O event
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The semantic error in the top right case is a consequence of the accessed
location lacking Readable and Writable permissions. It agrees with the
prescriptions of the C standards, which state that undefined behavior arises
if a volatile object is accessed through a non-volatile l-value, as can arise if
a pointer cast is used to remove the volatile modifier from the type of the
pointed object.

The discussion above is framed in terms of global variables. For
function-local variables, CompCert essentially ignores the const and
volatile modifiers: volatile local variables make little sense, as they cannot
correspond to a hardware memory device; const local variables cannot have
their permissions dropped, because there would be no way to raise these
permissions back to Freeable before deallocating them at function return
time.

CAPABILITY: MORE AGGRESSIVE OPTIMIZATIONS. We improved the constant
propagation pass of CompCert 1.11 to take advantage of the “const-ness”
of global variables. Consider:

const int n = 1;
const double tbl[3] = { 1.11, 2.22, 3.33 };
double f(void) { return tbl[n]; }

Owing to the const modifiers, the value of n is always 1 throughout
execution, and the value of tbl[1] is always 2.22. It is therefore legitimate
to optimize function f into

double f(void) { return 2.22; }

This is what the improved constant propagation pass now does. Its
correctness proof (semantic preservation) nicely exploits the new features
of the CompCert v2 memory model. Namely, the proof shows that the
contents of const global variables are identical in the initial memory state
and in the memory state at any point of the program execution. Indeed,
a successful store operation performed by the program cannot change the
contents of a memory block attached to a const global variables, because
(1) such a memory block has maximal permission Readable (at most) in
the initial memory state; (2) maximal permissions over already-allocated
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blocks can only decrease during execution; and (3) a successful store
requires Writable current permissions over the locations it modifies.

Constant propagation of const global variables noticeably improves the
quality of the assembly code produced by CompCert in some cases. One
example that we observed is C code automatically generated from Scade,
where the C code generator puts many numerical constants in const global
variables rather than naming them with macros.

CAPABILITY: IMPROVED COMPOSITIONALITY OF INJECTIONS AND EXTENSIONS.
Following a suggestion by Tahina Ramananandro, we refined the definition
of memory injections in such a way that the composition of two memory
injections, or of a memory injection and a memory extension, is itself a
memory injection:

Lemma extends-inject-compose:
∀ f m1 m2 m3, extends m1 m2 → inject f m2 m3 → inject f m1 m3.

However, for reasoning about shared-memory interaction (threads,
separate compilation) we will also want all CompCert passes to satisfy a
self-injection property: any memory must inject to itself (by the appropriate
choice of f ). This is the subject of current work, in connection with the
research we describe in Chapter 33.

Conclusions and perspectives

Version 2 of the CompCert memory model enables the semantics of the
source and intermediate languages of CompCert to describe the memory
behavior of programs with increased precision, while preserving all the
properties of memory operations that CompCert’s correctness proof relies
on. This increase in precision translates into two improvements: More of
the popular, low-level, non-standard-conformant C programming idioms,
such as bit-level manipulations of in-memory representations of integers
and floats, can be given well-defined semantics and, proved correct with
respect to their high-level specifications, but also guaranteed to be compiled
by CompCert in a semantics-preserving manner. (2) More of the serious C
undefined behaviors, such as modifying a string literal, can be captured as
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errors by the CompCert formal semantics, enabling the CompCert compiler
to perform more aggressive optimizations. (Verification tools based on
CompCert’s semantics can guarantee the absence of such errors.)

The main limitation that remains CompCert’s memory model is its
inability to model byte-level access to pointer values, as can happen in
block copy operations, for instance. We argued that this limitation seems to
be of low practical importance. Nonetheless, we see two ways to lift this
limitation:

• The first approach is fairly ad-hoc and consists in extending Comp-
Cert’s type of values with a fifth case, Vptr_fragment(b, i, n), denoting
the n-th byte of the in-memory representation of pointer Vptr(b, i).
Byte-sized load and store operations would translate between the
Vptr_fragment(b, i, n) value and the Pointer(b, i, n) memval without
loss of information. Most if not all arithmetic operations would be
undefined over values of the Vptr-fragment kind. This is the minimal
extension that would give semantics to the memcpy example.

• The second approach is much more radical: replace CompCert’s
current “value” type (a discriminated union of integer, float, pointer
and undefined values) by the type list memval of lists of byte-level,
in-memory representations of values. This is the approach followed
by Norrish in his Cholera formal semantics for the C language [70]:
r-value expressions evaluate (conceptually) to their byte-level, in-
memory representations. In this approach, encoding and decoding
integer/float/pointer values to and from lists of bytes is no longer
performed at load/store time, but at arithmetic operations. This is a
major departure from the approach followed in CompCert so far.

Finally, the introduction of fine-grained permissions in the memory model is
a first step towards extending CompCert to shared-memory, data-race-free
concurrency. Further steps in this direction include re-engineering the
operational semantics of CompCert’s languages as described in the next
chapter.
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Chapter 33

How to specify a compiler
by Lennart Beringer, Robert Dockins, and Gordon Stewart

In Part III we described program verification for C: tools and techniques
to demonstrate that C programs satisfy correctness properties. What we
ultimately want is the correctness of a compiled machine language binary
image, running on some target hardware platform. We will use a correct
compiler that turns source-level programs satisfying correctness properties
into machine-level programs satisfying those same properties. But defining
formally the interface between a compiler correctness proof and a program
logic has proven to be fraught with difficulties. Resolving these difficulties
is still the object of ongoing research. Here we will explore some of the
issues that have arisen and report on the current state of the integration
effort.

THE TWO ISSUES that have caused the most headaches revolve around
understanding and specifying how compiled programs interact with their
environment. First, how should we reason about the execution environment
when it may behave in unpredictable ways at runtime? In other words,
how do we reason about program nondeterminism? Second, how do we
specify correctness for programs that exhibit shared memory interactions?

The first question regarding nondeterminism is treated in detail in
Dockins’s dissertation [38]. Dockins develops a general theory of refine-
ments for nondeterministic programs based on bisimulation methods. This
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theory gracefully handles the case where the execution environment is
nondeterministic, and it has the critical feature that it allows programs
to become more defined as they are compiled. This is important for a
compiler for C, which has a large number of situations where program
behavior is undefined (e.g., indexing into an array out of bounds). The
compiler cannot, in general, detect when undefined behavior will occur,
so it must simply emit some compiled program under the assumption that
the program is well defined. When it is not, the actual behavior at runtime
will be unpredictable. Dockins’s behavioral refinement allows us to reason
precisely about this situation. Dockins also defines a notion of refinement
that allows us to reason about unspecified behaviors in C, such as the
evaluation order of expressions.1

One significant result of this work is that we validate, in a richer setting,
Leroy’s claim [62] that proving forward simulation passes is sufficient for
correctness when the target language of compilation is deterministic. Leroy
proved his claim under the assumption that the external environment is
deterministic as well as the target compilation language. Dockins lifted
this assumption on the environment and proved that, under the weaker
assumption that the target language is internally deterministic and under a
mild assumption on the source language (receptiveness to external events),
forward simulation implies behavioral refinement.

By lifting the assumption that the external world is deterministic, we can
now model realistic external interactions involving nondeterminism, such
as: the nondeterminism introduced by thread scheduling in multithreaded
programs; or that introduced by consulting a hardware source of entropy;
or that introduced by modeling an unpredictable agent (i.e., a human)
interacting with the program via hardware peripherals.

The proper way to reason about shared-memory interactions remains
an area of active research. The CompCert 1.x model of external interaction
did not allow shared-memory interactions with the environment. This
means that we could not faithfully model common patterns of interaction

1However, refinement with respect to unspecified behavior is not relevant to the “ver-
ifiable C” subset examined in this book, because verifiable C does not have unspecified
behaviors.
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in systems programs, such as the POSIX read and write system calls, which
communicate via in-memory buffers.

THE REST OF THIS CHAPTER describes the reformulation of CompCert’s
correctness theorem that lifts this restriction, made over a period of years
2006-2013 and still ongoing. We describe as “CompCert 1.x” early versions
of CompCert dating from 2006 in which Leroy et al. focused on whole-
program single-threaded execution. CompCert 2.0 (2013) has adopted
many of our suggestions for specification of the memory model, of small-
step operational semantics, and of interaction with external functions.
These adjustments to CompCert’s specification were made piecemeal
between 2006 and 2013 in discussion with Leroy. And, of course, Leroy et
al. have made many other improvements to CompCert that are unrelated to
our discussions with him of the specification interface for shared-memory
concurrency and separate compilation. We call this version, and near-
future versions in which other related adjustments to the specification
may be made to improve compositionality of shared-memory interaction,
“CompCert 2.x”.

The main difficulty that arises is the fact that the compiler must be free
to reorganize some aspects of memory layout during compilation. This
means we cannot simply expose the state of memory at each interaction
point and specify that the source language memory will be the same as
the target language memory. Instead, the memories will be related in a
sophisticated way that abstracts from the identities of pointer values and
the way that memory is organized into blocks.

The net result is a view of compiler correctness that has a logical
relations flavor: related programs, when run in related memories, yield
related results. In our model of fine-grained interaction for shared-memory
applications, we focus on the following four ingredients:

Core Semantics uniformly specify the interactions of running threads,
hiding language-specific details such as how control and local state
(e.g., the local environment or registers) are represented, while
exposing memory.
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Compositional Simulation Relations evolve CompCert 1.x’s notions of
compiler correctness simulations to the setting of shared memory, ex-
posing appropriate aspects of memory transformations such as block
relocation, and are compatible with core semantics. Compositionality
is obtained by showing that memory-aware compiler correctness
proofs compose transitively along the phases of the compiler.

Extensibility of core semantics (with respect to operational models of
external functions) enables flexible models of separate compilation
and linking, multithreaded concurrency, the integration of OS func-
tionality, and the gradual refinement of external functions to code.
All of this is achieved independently of any given language semantics.

Rely-Guarantee Composition of core semantics and external function
specifications ensures the compatibility of extensible core semantics
with compilation.

A SMALL-STEP OPERATIONAL SEMANTICS s 7−→ s′ specifies how one step of
computation evolves state s into s′. We denote multistep executions with
the Kleene star, s 7−→∗ s′.

When discussing compiler correctness, it is useful to distinguish between
core steps—the operational semantics of the programming language itself,
for which the compiler has responsibility—and external steps, calls to
external functions, system calls, and synchronization operations that permit
other threads to execute. Typically, the arguments to and return values from
such external calls include pointers to memory. Thus, compiler correctness
needs to be formulated compositionally, paving the way for shared-memory
cooperation with separately compiled and linked modules, multithreaded
execution, and interaction with the operating system. On the other hand,
not all aspects of a module’s memory behavior should be globally visible:
compiling a module should be permitted to relocate any memory block that
is unreachable from the pointers communicated to other modules, and must
be permitted to extend the memory by spill locations or other compiler-
internal data, even if these are typically placed in regions accessible from
other modules, as is the case for return addresses held in the stack frame.
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WHEN DISCUSSING PROGRAM CORRECTNESS using indirection theory, we are
particularly interested in the question, “is the execution safe for at least n
steps?” That is, within n steps of the 7−→ relation, can we reach a state that
has no successor, that is stuck?

We discuss safety in the context of a core semantics and an external
specification:

Section safety.
Context {G C M Z :Type}.
Context (Hcore:CoreSemantics G C M).
Variable (Hspec:external-specification M external-function Z).

Here, Hcore is the small-step semantics of a programming language, for
example C light. We say core semantics to emphasize that it covers small-
steps only of the programming language itself, not of calls to external
functions. A small-step semantics is a relation (c, m) 7−→ (c′, m′) over states
comprising a memory m : M and a core-state c : C comprising a control
stack and local variables. For C light, M is the type of CompCert memories
and C is C light core states (corestate in veric/Clight_new.v). The type Z
describes states of the external context.

An operational state is safeN(n) if it cannot get stuck within n small-
steps. We write

safeN Hcore Hspec (g : G) (n : nat) (z : Z) (σ : C)(m : M) : Prop

to mean that it is safe to execute n steps starting from the global environ-
ment g (giving the addresses of global variables), the oracle state z, the
local state σ, and memory m. At each of these (up to) n steps, if the state
is halted then safeN is True; if the state is at-external then the ext-spec
precondition for the external call must be satisfied and we continue with
any state that satisfies the ext-spec postcondition; otherwise we must be
able to take a core step (a small-step of the C-light operational semantics).

THE INTERFACE EXPOSED BY CORE SEMANTICS is organized according to the
lifetime stages of a running thread. A core semantics’ internal notion of
states is opaque, but states are classified as being either, an
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initial state of a single thread, i.e. a function applied to its arguments; a

running state of the programming language’s operational semantics; an

at_external state denoting an execution point at which a running thread
relinquishes control to the environment; an

after_external state at which internal execution is resumed, if and when
the environment yields back control; or a

halted state signifying successful termination of a thread.

A core semantics is equipped with a small-step relation of the form
c, m 7−→ c′, m′ where c and c′ represent the language-specific internal state
components (local environment, program representation), and m and m′

are externally visible CompCert memories. Additional constraints stipulate
(for example) that c, m 7−→ c′, m′ is only defined if c is a running state—
at_external states do not step within the core semantics. In general, core
semantics adhere to the following protocol.

initial_core running

halted after_external

at_external

interference

Interaction points (initial, at- & after-external, and halted states) do not
expose core components c, but do expose memories, arguments, and return
values. Thereby, pointers and integers are exchanged between threads that
employ different notions of cores.

The resulting model generalizes from the CompCert 1.x interaction
model, which exposed traces of observable events but coalesced call-
and return events to single external function call events, and limited
arguments and return values to be integers. (For example, CompCert 1.8
slightly generalized external-call arguments to permit pointers to statically
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allocated global data, but still did not permit pointers to dynamically
allocated objects and still did not permit shared memory external calls.)

THE SEMANTIC CORRECTNESS OF COMPILER PHASES in CompCert (1.x and
2.x) is formalized in terms of simulation relations between the appropriate
source and target languages. Leroy’s article [62] expertly lays out the
design space and the relationship between different variants of simulations.
In the context of the VST, the most crucial property is the preservation
of safety along compilation, leading us to focus our effort on forward
simulations when adapting the CompCert 1.x infrastructure to the setting
of shared memory.

The core challenge of compiler correctness is to identify a precise sense
in which computation interacts with (commutes with) compilation. For a
compiler pass with source language Src and target language Tgt, this means
that forward simulations are captured by diagrams of the shape

𝜎Src= (c1,m1)  ~  (c2,m2) = 𝜎Tgt

𝜎Src= (c1,m1)  ~  (c2,m2) = 𝜎Tgt' ' ' ' ' '
where

• Compilation Src→ Tgt evolves horizontally, left-to-right.

• Execution proceeds vertically, top-to-bottom.

• States σSrc and σTgt of the respective languages take the form
σSrc = (c1, m1) and σTgt = (c2, m2), respectively. That is, language-
dependent cores c1 : CSrc and c2 : CTgt are paired with language-
independent memories.

• Progress→ in execution direction may refer to an internal evolution
according to the core’s small-step relation σ 7−→ σ′, its multistep
variants σ 7−→n σ′, σ 7−→+ σ′, or σ 7−→∗ σ′, or to an environmental
evolution σ   σ′, in which case it represents the (terminating)
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execution of an external function call2. CompCert 1.x’s model
of observation events already includes a number of axioms that
external calls are expected to safisfy. Our development imposes
rephrasings of these axioms as appropriate for refactored core
semantics. Additional aspects of external evolutions—in particular the
concept of compilability, the refinement of environmental evolution
into code—will be briefly discussed later in this section.

• Horizontal relationships take the form of a binary matching relation
∼ that associates source language states to target language states and
is to be preserved by execution. Matching relations ∼ also exist for
values and memories—in fact, the exposure of memory requires us to
consider different kinds of simulation relations and to relax some of
the preservation conditions, as we outline below.

We will also use

• Solid fonts and solid arrows to indicate data assumed by a diagram.
Such data is typically universally quantified and is constrained by
terms that appear in negative positions in the nonpictorial formulation
of a diagram; and

• Dashed arrows to indicate conditions that are to be satisfied by
the existentially quantified items in the diagram. Such conditions
typically occur in positive positions in the nonpictorial formulation of
a diagram.

The refinement of CompCert 1.x’s memoryless forward simulations
to simulations for shared memory interation takes loose inspiration from
the theory of logical relations [77]. In the setting of higher-order typed
languages, such relations are defined in a type-directed manner: ∼ is given
by a type-indexed family of relations, so program execution is required to
preserve type structure.

In our setting, the absence of an expressive type system is partially
compensated for by the protocol stages we impose: we require that ∼

2To simplify the presentation we elide arguments and return values from diagrams.
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respect the classification into initial, running, at-external, after-external,
and halted cores.

Spelling out the conditions in more detail, and overloading ∼ to also
refer to underlying match relations on values and memories, we require
that initial cores be related by ∼ when paired with matching memories and
function arguments, and that (c1, m1)∼ (c2, m2) implies the following:

if c1, m1 7−→Src c′1, m′1, then there exist c′2 : C2 and m′2 such that c2, m2 7−→∗Tgt

c′2, m′2 and (c′1, m′1)∼ (c
′
2, m′2);

           c1,m1  ~   c2,m2

           c1,m1  ~ ∃c2,m2 ' ' ' '*

if halted(c1), then halted(c2), with matching return values and memories;

if at_external(c1) = ( f ,−→a1 ), then at_external(c2) = ( f ,−→a2 ) for some −→a2

such that −→a1 ∼
−→a2 , and m1 ∼ m2: the functions invoked by c1 and

c2 must coincide, and the lists of arguments must contain matching
values, and the memories must match;

At function returns, it must be possible to reestablish the simulation
relation ∼ for any pairs of related return-values and memories delivered
by the environments. Given the data ci and mi from the at-external clause,
and given return values v1 ∼ v2 and return memories m′1 ∼ m′2 (which are
external evolutions of the m1 and m2), we require that ∼ relates (c′1, m′1)
with (c′2, m′2), where the after-external cores c′i arise from the at-external
cores ci by appropriately injecting the return values v1 and v2.
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           c1,m1  ~F   c2,m2

           c1,m1  ~F' ∃c2,m2 ' '
'

' '
m1 'm2

at_external(ci) = ( f ,−→ai )−→a1 ∼
−→a2

m1 ∼ m2

mi   m′i
v1 ∼ v2

m′1 ∼ m′2
after_external(ci, vi) = c′i

Although we employ a formulation without contexts, the similarity to
logical relations is arguably most pronounced in the clauses for function
calls: indeed, type-indexed logical relations require a function f : A→ B
to return ∼B-related results whenever provided with ∼A-related arguments.
Our condition on after_external states treats Src and Tgt in a symmetric
fashion: it does not ask us to prove the existence of appropriate m′2 and v2

but merely that the simulation relation be reestablished whenever given
such data. That is, compilation steps of the module under consideration
must preserve semantics independently of changes in the environmental
behavior; even failure of the environment to yield back is not the module’s
fault. Indeed, as we are mostly interested in preservation of safety, a
scenario in which parts of the environment are refined to code (see below)
would allow an external call to be transformed into an infinite loop, a
translation that is legal from the point of view of the present module and
also (w.r.t. safety) from a whole-program perspective.

In contrast, the clauses for coresteps, halted executions, and at-external
states propagate the protocol stage information from Src to Tgt. Indeed,
these stages concern execution of the present execution thread rather
than environmental behavior, so the preservation of behavior should be
preserved under compilation of this core.

FOR REALISTIC VERIFIED COMPILERS such as CompCert, it is absolutely
essential that compiler correctness proofs be transitively composable along
the phases of the compiler. In this way, each phase (of which there are 20
in CompCert 2.0!) can be proved correct independently of all the others.
Then the individual proofs of each phase can be strung together to recover
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correctness end-to-end. This is significantly more modular than proving the
compiler correct monolithically.

Pictorially, transitive compositionality of simulations along the compila-
tion axis can be depicted as follows: given diagrams

           𝜎Src  ~  𝜎Mid

           𝜎Src  ~  𝜎Mid           ' '
and

           𝜎Mid ~  𝜎Tgt

           𝜎Mid ~  𝜎Tgt           ' '
representing compiler correctness of adjacent compiler passes Src→ Mid
and Mid→ Tgt, we wish to obtain

           𝜎Src  ~  𝜎Tgt

           𝜎Src  ~  𝜎Tgt           ' '
For the memory-ignorant observation model of CompCert 1.x, simulations
for adjacent compiler phases indeed compose rather easily.

In the presence of memory, the situation is significantly more complex.
First, the memories in a simulation (c1, m1) ∼ (c2, m2) need not be equal.
Instead, they may be related by a memory injection F ⊢ m1 m2 or a
memory extension m1 � m2. (see Chapter 32). Consequently, there are
three kinds of forward-simulation stuctures ∼: simulations ∼= apply to
memory equality passes, where matching states have equal memories;
simulations ≃ apply to passes that are memory extensions; and simulations
≈F apply to memory injection passes, where the index F denotes a concrete
injection F .

Each kind of simulation structure imposes appropriately refined versions
of the above compatibility conditions between execution and compilation.
For example, the clause for coresteps for injection simulations is as follows3:

3We write F m1
◃▹m2

F ′ for the condition that b1 /∈ dom(m1) and b2 /∈ dom(m2) holds
whenever b1 (b2, o) in F ′ \ F , where dom(m) denotes the valid blocks in m.
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           c1,m1  ≈F   c2,m2

           c1,m1  ≈F' ∃c2,m2 ' ' ' '*
F  ⊆  F'
Fm1⨝m2 F'

For (c1, m1) ≈F (c2, m2) and c1, m1 7−→Src c′1, m′1 there exist
c′2, m′2, and F ′ such that c2, m2 7−→∗Tgt c′2, m′2 and (c′1, m′1) ≈F ′

(c′2, m′2), where F ′ contains F , and F m1
◃▹m2

F ′.

At interaction points, memories that are supplied by the environment
are assumed to be related by appropriate injections; this affects the clauses
for initial and after_external cores. In exchange, the clauses for halted and
at_external cores must guarantee relatedness of the memories they provide
to the environment.

The evolution from ≈F to ≈F ′ in the above corestep-diagram—and a
similar evolution in the clause for after_external—captures corresponden-
cies between newly allocated blocks in the two executions, a pattern that
is well known from treatments of information flow and from Kripke logical
relations [59].

Second, the exposure of memories and memory transformations com-
plicates the composition of simulations: the kind of ∼Src→Tgt depends on the
kinds of ∼Src→Mid and ∼Mid→Tgt, like this:

Src→Mid Mid→ Tgt Src→ Tgt

∼= ∼ ∼
∼ ∼= ∼
≃ ≃ ≃
≈ ∼ ≈
∼ ≈ ≈

Each of the nine cases cases requires the definition of an appropriate
simulation relation between states (c1, m1) and (c3, m3), with proofs that
the compatibility conditions regarding the protocol stages of executions
in Src and Tgt are satisfied, based inductively on the similar clauses for
∼Src→Mid and ∼Mid→Tgt.
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For example, the case in which both passes are memory injection
phases admits ∼Src→Tgt to be defined as the injection simulation ≈F that
existentially quantifies over an intermediate state (c2, m2) and requires F to
decompose into F = F2 ◦ F1 with (c1, m1)≈Src→Mid

F1
(c2, m2)≈

Mid→Tgt
F2

(c3, m3).
The most interesting case in the verification of the compatibility clauses

is the one for after_external. In order to apply the induction hypotheses
(i.e., the after_external-clauses of ∼Src→Mid and ∼Mid→Tgt), it is necessary to
construct an interpolating memory m′2 that is applicable when the external
call returns in execution Mid, together with appropriate injections F ′1 and
F ′2:

3m 2m 1

F
1

F
2

m’1 m’3

m’2

F’
2

F’
1

F’

m

More specifically, given

• an injection F ⊢ m1 m3 that splits via F = F2 ◦ F1 into injections
F1 ⊢ m1 m2 and F2 ⊢ m2 m3,

• outer vertical evolutions m1   m′1 and m3   m′3 representing the
external calls as handled by the environments of Src and Tgt, and

• an injection F ′ ⊢ m′1 m′3 that represents the assumption that the
environment returns appropriately related memories; in particular, F ′

contains F and satisfies F m1
◃▹m3

F ′,

we need to show that a memory m′2 and injections F ′1 and F ′2 can be
constructed such that

• F ′1 ⊢ m′1 m′2 and F ′2 ⊢ m′2 m′3,

• m2  m′2,

• F ′ = F ′2 ◦ F ′1, and
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• for i ∈ {1, 2}, F ′i contains Fi, and Fi mi
◃▹mi+1

F ′i .

The construction of m′2 proceeds block by block, and pointwise inside each
block, as indicated in the following example4.

F ’

1
m

b2b1

3
m

b’’1

2
m

b’1

b
1

(b’ , d’ )
1 1

b
2

(b’ , d’ )
1 2

1F

b’
1 11

(b’’ , d’’ )

2F

b’
1 11

(b’’ , d’’ )

b’
2 22

(b’’ , d’’ )

2F ’

m’
2

b’2

b’1

m’
3

b’’2

b’’1

m’
1

b4b3b1 b2

b
1

(b’ , d’ )
1 1

b
2

(b’ , d’ )
1 2

b
4

(b’ , d’ )
2 4

1F ’

b
1

(b’’ , d’ + d’’ )
1 1 1 b

2 1
(b’’ , d’ + d’’ )

2 1

b
4 2 4

(b’’ , d’ + d’’ )
2

Blocks such as b1 and b2 that were already valid in m1 are mapped by F ′1
as prescribed by F1. Thus, the external function’s effect on the content at
individual offsets in these blocks is propagated from m1  m′1 to m2  m′2.
Additionally, we propagate content in b′1 from m2 to m′2 that does not
orginate in m1; typically, these locations are used for compiler-internal
purposes such as spilling and are unmodified by the external function.
Blocks valid in m1 but not mapped by F1 are not mapped by F ′1 either.

Blocks allocated by the external call, like b3 and b4, fall into two
categories: blocks not mapped by F ′, like b3, are not mapped by F ′1 either.

4 Note that the sets of nonprimed/primed/double-primed block numbers are not nec-
essarily distinct.
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Blocks mapped by F ′, like b4, are mapped by F ′1 to a fresh block b′2 that is
distinct from all blocks in m2. Finally, injection F ′2 is obtained by extending
F2 so that F ′ = F ′2 ◦ F ′1 is satisfied.

In order to satisfy all conditions required by the dashed relationships—
and also the well-definedness of memory m′2—the mapping of each block
involves not only the mapping of the data content but also defining the
permissions of each individual offset in m′2.

An important aspect is that the after_external-clauses of all simulation
kinds require the external evolutions mi   m′i to satisfy certain confinement
conditions that constrain the locations an external function may modify. In
our present development, the specification of these confinement relations
is directly lifted from CompCert’s original constraints on external functions,
intertwining properties of the injections F1 and F2 with the modification
permissions of certain locations in the at_external memories. Future work
may seek to refine these conditions to a notion of rely that is easier to
handle but can still be established to hold for m2   m′2 whenever being
safisfied for the evolutions m1  m′1 and m3  m′3.

We have successfully constructed interpolating memories for the four
possible combinations of extension and injection passes—the five combi-
nations involving equality passes can be proven in a more straightforward
manner, without the need for explicit interpolations—and combined these
results to a proof of transitivity of simulation structures.

The construction of interpolating memories significantly benefitted from
a recent upgrade to the specification of CompCert’s memory transformations
(at CompCert 1.13, late in the 1.x→2.x transition) ensuring that injections
compose, and additionally suggests a handful of additional tweaks to the
memory model that may be included in a future version of CompCert.

EXTENSION MECHANISM. In order to model composition of core semantics
(as is required to model linking of separately compiled modules, multi-
threaded concurrency etc.), we introduce a generic extension mechanism—
an endofunctor on core semantics that allows a core to be combined with
external code collections (individual functions, external libraries, or other
code modules) to yield an enlarged core. Typically, the code extensions
provide implementations for at least some of the original core’s external
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functions. As the extended core again adheres to the generic interface, such
combinations are transparent to external code modules.

We have defined a number of instantiations of the extension mechanism.
We have proved generic preservation of safety, which guarantees semantic
well-behavedness of extensions in compositional fashion.

WE HAVE IDENTIFIED THE ISSUES that make the specification of real-world
compilation so difficult: It is the combination of shared-memory external
interaction with an optimizing compiler that modifies and relocates memory
access. We have designed solutions, with Coq-verified proofs (in the
sepcomp directory). For (shared-memory) external calls to an operating
system, our proofs are complete. For shared-memory external calls that
implement synchronization operators for concurrent threads, our theorems
should suffice, but we are still working on the angelic erasure theorem—
see page 404. For separate compilation—external calls to functions that
themselves will be compiled by an optimizing compiler—our framework
will be directly applicable, but we will probably need one more modification
of CompCert’s operational semantics: each thread will need to identify its
own set of private locations at external function calls—locations that are
not to be touched by the oracle.

Although the transition from the CompCert 1.x interaction model to the
2.x model was nontrivial, it is certainly worth the trouble. We expect from
a C compiler that it supports modular separate compilation, that it supports
shared-memory concurrency, and that it supports optimizations such as
register allocation and spilling.

Almost a decade ago, Hans Boehm pointed out the bugs in interactions
between optimizing compilers and shared-memory concurrency libraries
[24]. He wrote, “we point out the important issues, and argue that they lie
almost exclusively with the compiler and the language specification itself,
not with the thread library or its specification.” Here, we have developed a
language-independent framework for compiler and language specifications,
that addresses the problems Boehm described.
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Chapter 34

C light operational semantics

CompCert defines a formal small-step operational semantics for every in-
termediate language (including C light) between C and assembly language.

For Verifiable C, we use the C light syntax with an alternate (non-
standard) operational semantics of C light (file veric/Clight_new.v). Our
nonstandard semantics is quite similar to the standard, but it makes fewer
“administrative small-steps” and is (in this and other ways) more conducive
to our program-logic soundness proof. We prove a simulation relation from
our alternate semantics to the CompCert standard C light semantics. This
ensures that the soundness we prove relative to the alternate semantics is
also valid with respect to the standard semantics.

In our operational semantics, an operational state is either internal,
when the compiled program is about to execute an ordinary instruction of
a single C thread; or external, when the program is requesting a system call
or other externally visible event.

An internal operational state contains:

genv Global environment, mapping identifiers to addresses of global
(extern) variables and functions, and a separate mapping of function-
addresses to function-bodies.

ve Variable environment, mapping identifiers to addresses of addressable
local variables—those to which the C-language & (address-of)
operator is somewhere applied.
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te Temp environment, mapping identifiers to values of ordinary local
variables—those to which & is never applied.

κ Continuation, representing the stack of control and data (including
the program counter, return addresses for function calls, and local
variables of suspended functions).

m Memory, representing the extern static variables, stack-allocated local
variables, and heap-allocated data. Any of these memory addresses
can be potentially shared with other threads. The CompCert opera-
tional semantics does not explicitly know about this sharing; instead,
each address is marked in the CompCert memory model as Writable,
Readable, No-access, and so on.

In addition, a CompCert memory contains the abstract heap boundary
(called “nextblock”), showing what is the highest-allocated (abstract)
block address (see page 261). This nextblock is primarily used for
reasoning about the allocation of stack blocks at function calls.

set




ge, ve, te
�

, m ⊢expr e ⇓ v

ge ⊢ (ve, te, (x := e) ·κ) , m 7−→ (ve, te[v/x],κ) , m

The step-set (assignment-to-local-variable) rule steps from the state with
variable-environment ve, temp-environment te, control Kseq(Sset x e)::κ,
and memory m to the state (ve, te[v/x],κ) , m, provided that e evaluates
(as an r-value) to v.

Unlike our program logic, which distinguishes between assignments that
load from memory and those that do not, the operational-semantic rule
permits the expression e to have zero, one, two, or more subexpressions
that load from memory—but one cannot use our program logic to reason
about multi-load commands.

assign




ge, ve, te
�

, m ⊢lvalue e1 ⇓ (b, z)



ge, ve, te
�

, m ⊢expr e2 ⇓ v2 (v2)
typeof e1
typeof e2

= v

ge ⊢
�

ve, te, (e1 := e2) ·κ
�

, m 7−→ (ve, te,κ) , m[(b, z) :=typeof e1
v]
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The step-assign rule, shown here, is for storing into memory. It steps
from the state with variable-environment ve, temp-environment te, control
Kseq(Sassign e1 e2)::κ, and memory m to the state (ve, te,κ) , m′, provided
that the type of e1 is not volatile (hypothesis not shown here), e1 evaluates
as an l-value to the address (b, z), e2 evaluates as an r-value to the value v2,
that v2 when cast from the type of e2 to the type of e1 is value v, and that
when typed store operation (assign-loc) is done in m at address (b, z) with
value v, the resulting memory is m′. The expressions e1 and e2 may have
subexpressions that load from memory.




ge, ve, te
�

, m ⊢expr e ⇓ vf ge(vf ) = internal f ftype = τ⃗→ τr



ge, ve, te
�

, m ⊢exprlist (τ⃗)e⃗ ⇓ v⃗ alloc_variables ve0 m ffn_vars = ve′, m′

bind_parameter_temps ffn_params v⃗ (create_undef_temps ffn_temps) = te′

ge ⊢ (ve, te, (x := e(e⃗)) ·κ) , m 7−→ (ve′, te′,fbody · return · (Kcall x f ve te) ·κ), m′

step-call-internal: To call a function e with arguments e⃗, first e is evaluated
yielding the address v f of the function; then the function-body f is looked
up in the global environment; suppose f has formal-parameter-types ⃗tau
and return type τr. Suppose f satisfies some conditions (not shown) that
it has no repeated formal-parameter names or local-variable names. Then
the expression-list e⃗, each value is casted to the correspnding type in ⃗tau,
yielding a list v⃗ of actual-parameter values. A new variable-environment
ve is created by allocating locations starting at nextblock(m), and binding
those locations to the addressable-local-variable names ffn_vars; the Vundef
value is stored at those locations. A new temp-environment te′ is created
by binding the nonaddressable local variables ffn_temps to Vundef values,
and binding the formal parameters ffn_params to the values v⃗. Then a new
control-continuation is created, using the entire function-body followed by
a return statement, followed by a function-call context Kcall that records the
caller’s context: what variable to assign the function’s return value to, the
caller’s local-variable environments, and the caller’s continuation κ. This
rule is actually more general, permitting x to be absent for void-returning
functions, but we do not show that here.
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κ= . . . ·Kcall x f ve′ te′ ·κ′
free_list m (blocks_of_env ve) = m′



ge, ve, te
�

, m ⊢expr e ⇓ vf (v)fn_return f
typeof e2

= v′

ge ⊢ (ve, te, (return e) ·κ) , m 7−→ (ve′, te′[v′/x],κ), m′

step-return: Find the first Kcall continuation in κ, and restore the local
environment ve′, te′ from that. Evaluate the expression e, cast it to the
function-return type, and update the value of x in te′. Free the memory
blocks for all addressable local variables. The case for void functions (where
fn_return( f ) = Tvoid and e is not present) is similar, but simpler.




ge, ve, te
�

, m ⊢expr e ⇓ vf ge(vf ) = external f ftype = τ⃗→ τr



ge, ve, te
�

, m ⊢exprlist (τ⃗)e⃗ ⇓ v⃗

ge ⊢ (ve, te, (x := e(e⃗)) ·κ) , m 7−→ ExtCall( f , τ⃗→ τr, v⃗, x , ve, te,κ), m

step-call-external: To call an external function, the function-expression e
and arguments e⃗ are evaluated—in fact, only after e is looked up in ge is
it known that the function is external. Then the small-step is to a special
ExtCall state that signals to the context that the core semantics wishes to
interact with its external environment.

seq
ge ⊢ (ve, te, c1 · c2 ·κ), m 7−→ σ′, m′

ge ⊢ (ve, te, (c1; c2) ·κ), m 7−→ σ′, m′

skip
ge ⊢ (ve, te,κ), m 7−→ σ′, m′

ge ⊢ (ve, te, skip ·κ), m 7−→ σ′, m′

The sequence-statement c1; c2 steps by making a control-continuation
with c1 followed by c2 and seeing what that steps to. In Leroy’s standard C
light semantics, the rule looks like, ge ⊢ (ve, te, (c1; c2) ·κ), m 7−→ (ve, te, c1 ·
c2 · κ), m, which actually takes a step to unpack the semicolon. In our
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program logic based on indirection theory, if unpacking the semicolon takes
a small-step, then we (unfortunately) cannot prove these associativity rules:

{P} (c1; c2); c3 {Q} ↔ {P} c1; (c2; c3) {Q}.

{P} c; skip {Q} ↔ {P} c {Q} ↔ {P} skip; c {Q}.

The reason is related to the step-indexing, the counting of small-steps.
When possible, of our control-rules (for sequencing and loop control) By
avoiding these administrative steps—by using rules such as the seq and skip
rules shown above—we enable transformation rules such as associativity of
sequencing, even in our step-indexed logic.




ge, ve, te
�

, m ⊢expr e ⇓ v bool_valtypeof ev = Some t rue

ge ⊢
�

ve, te, (if (e) c1; else c2) ·κ
�

, m 7−→ ge ⊢
�

ve, te, c1 ·κ
�

, m

step-ifthenelse: The rule for if is straightforward; here we show only the
e ⇓ true case.

C light handles all loops through the construct loop c1 c2 which means
the same as the C for-loop, for( ;;c2) c1. That is, execute the infinite loop
c1; c2; c1; c2; c1 . . . (unless c1 exits the loop using a break or return command).
Furthermore, if c1 executes a continue command, then control should pass
to c2 (and then c1; . . .).

loop
ge ⊢ (ve, te, (loop c1 c2) ·κ), m 7−→

(ve, te, c1 · continue · (Kloop1 c1 c2) ·κ), m

loop2
ge ⊢ (ve, te, (Kloop2 c1 c2) ·κ), m 7−→

(ve, te, c1 · continue · (Kloop1 c1 c2) ·κ), m

continue
ge ⊢ (ve, te, continue_cont(κ)), m 7−→ (ve, te,continue ·κ), m

break
ge ⊢ (ve, te, break_cont(κ)), m 7−→ (ve, te,break ·κ), m
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In our vocabulary of control-continuations κ, Kloop1 c1 c2 represents
the continue-cont just before c2, and Kloop2 c1 c2 represents the contin-
uation following c2, when c1 is about to be re-executed. The function
continue_cont(κ) searches in κ until it finds the first Kloop1 c1 c2 · κ′,
then returns c2 ·Kloop2 c1 c2 · κ′. The function break_cont(κ) searches for
Kloop1 c1 c2 ·κ′ or Kswitch c1 c2 ·κ′, then returns κ′.

CompCert translates the C-language {while (e) c} to the statement
loop {if (e) skip else break} c. Definition Swhile is a derived statement
form for this pattern. The translation of a standard for-loop is similar. The
clightgen pretty-printer will recognize the while-loop pattern and output an
Swhile command.

The C light operational semantics also has rules for switch statements
and goto statements, which we do not show here. At present there are no
rules in our program logic for reasoning about these, but in principle there
is no obstacle to implementing such rules.

IN PART VI WE WILL show how to build a semantic model of our VST program
logic with respect to this operational semantics. But first, in part Part V, we
establish some semantic foundations for higher-order program logics.
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Part V

Higher-order semantic models

SYNOPSIS: Indirection theory gives a clean interface to higher-order step
indexing. Many different semantic features of programming languages can be
modeled in indirection theory. The models of indirection theory use dependent
types to stratify quasirecursive predicates, thus avoiding paradoxes of self-
reference. Lambda calculus with mutable references serves as a case study to
illustrate the use of indirection theory models.

When defining both Indirection and Separation one must take extra care
to ensure that aging commutes over separation. We demonstrate how to
build an axiomatic semantics with using higher-order separation logic, for the
pointer/continuation language introduced in the case study of Part II.
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Chapter 35

Indirection theory
by Aquinas Hobor with Andrew Appel and Robert Dockins

In Part II we explained an application of indirection theory to a higher-order
separation logic. In this Part we explain what indirection theory really is.

In a naive set-theoretic model (in which pred A is simply A→Prop), we
can define predicates characterizing recursive data structures such as,

list(p) = p = 0 ∗ emp∨ p ̸= 0 ∧ ∃h, t. p h ∗ p+ 1 t ∗ list(t).

But certain kinds of higher-order reasoning are difficult or impossible in
naive models. Consider contravariant recursive types such as

object= {data : ref N; get : object→ N; set : (object×N)→ unit}

in which an object is a record (named tuple) with field data (a memory
cell containing a natural number) and two accessor methods get and set.
Observe that the type of the accessor methods contains object itself1 to the
left of the arrow—that is, in a contravariant position. This form of recursion
is used in many programming languages (Java, ML, even C) and naive
semantic techniques cannot model such predicates/types. In C, of course,

1In many object-oriented languages, this formal parameter is elided in the concrete
code. It is referred to explicitly via the “this” keyword, or implicitly simply by referring to
the fields or methods of the “current object”.
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the type system permits but does not fully support such programs; it is up to
our program logic to reason soundly about them, as in Chapter 29.

The recurring problem with such systems is to find semantic models
with three features: First, contravariant recursion, as in the example
above. Second, indirect reference: indirection via pointers gives us mutable
references; indirection via locks can be used for shared storage; and
indirection via code pointers gives us complex patterns of computation and
recursion. Models of program logics for systems utilizing indirection need
to associate invariants (or assertions, or types) with addresses in the store;
and yet invariants are predicates on the store: tying this “knot” has been
difficult. Third, clean abstraction—that is, impredicative quantification.

Consider adding general references to the polymorphic λ-calculus. The
type of mutable references should be ref τ into which one can store values
of type τ. By saying that references are general we mean that our choice
for τ should be any valid type, including quantified types, function types,
reference types, or arbitrary combinations thereof.

Ahmed [2] was the first to give a semantic model for general references;
the problem she solved is illustrated by considering the following flawed
semantic model of types for this calculus:

value ≡ loc of address + num of N + . . .
type ≡ (memtype× value)→ T

memtype ≈ address* type
(35.1)

Values are a tagged disjoint union, with the tag loc indicating a memory
address. T is some notion of truth values (e.g., the propositions of the
metalogic such as Prop in Coq) and a natural interpretation of the type
A→ T is the characteristic function for a set of A. We write ≈ to mean “we
wish we could define things this way” and A* B to indicate a finite partial
function from A to B.

The typing judgment has the form ψ ⊢ v : τ, where ψ is a memory
typing (memtype), v is a value, and τ is a type; the semantic model for
the typing judgment is ψ ⊢ v : τ ≡ τ(ψ, v). Memory typings are partial
functions from addresses to types. The motivation for this attempt is that
the type “ref τ” can use the memory typing to show that the reference’s
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location has type τ:

ref τ ≡ λ(ψ, v). ∃a. v = loc(a) ∧ ψ(a) = τ.

That is, a value v has type ref τ if it is an address a, and according to the
memory typing ψ, the memory cell at location a has type τ.

Unfortunately, this series of definitions is not well-founded: type
contains a contravariant occurrence of memtype, which in turn contains an
occurrence of type. A standard diagonalization proves that no solution to
these equations exists in set theory.

Ahmed’s solution was to create a sequence of increasingly close approx-
imations {memtype0,memtype1,memtype2, . . .} that in the limit “converge”
to the desired model. Each element memtypen in this sequence is a well-
defined model for a memory typing that can be “used” no more then n
times to determine the type associated with a memory cell. In a very real
sense the number of times a memory typing can be used is the amount of
“information” it contains, and a crucial ingredient in step-indexed models
is connecting the number of steps executed operationally with the amount
of information contained within the model such that no more than one
“information quantum” need be used per operational step. Given this
connection, we can use this style of model, by simply choosing an element
in the sequence that is “big enough” to prove the desired theorem—for
example, if we decide that we want to prove that a program will not get
stuck before we go on our coffee break in 100 instructions, we simply
choose memtype100.

In practical proofs, managing the bookkeeping of approximation indices
n can be quite tedious. The “very modal model” [11] significantly improved
the presentation of step-indexing, using a model logic to hide the indices.
Even so, we want to apply the basic step-indexing idea to a much broader
range of applications—without mixing up the complexities of step-indexing
with the complexities of the application domains or having to rebuild
the model from scratch each time. The solution is indirection theory,
whose model is characterized by just two axioms, which are equational,
orthogonal, complete, expressive, and modular.
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A KEY OBSERVATION UNDERLYING INDIRECTION THEORY is that many domains
can be described by the pseudoequation:

K ≈ F((K ×O)→ T), (35.2)

where F(X ) is a covariant functor, O is some arbitrary set of “other” data
and K is the object that we wish to construct. In the case of the polymorphic
λ-calculus with references discussed above, we select memtype for K , value
for O, and F(X ) as address* X to reach:

memtype ≈ address* ((memtype× value)→ T) (35.3)

The cardinality argument shows why we cannot construct K in set theory.
The motivation for indirection theory is that it can construct a clean,
generic approximation to K . We will start by explaining the construction
of basic indirection theory along the lines of our 2010 result [52]. Then
we will present a refinement that gives better guarantees about “hereditary
predicates”; it is this version we use to model higher-order separation
logics.

F must be covariant: it’s as if any value of type F(X ) is a data structure
with “positive” instances of values of type X sprinkled throughout. If, on
the other hand, F(X ) was the function type X → Y demanding inputs of
type X , then F would be contravariant; and more complicated functors
with both positive and negative occurences are “mixed-variant”; we cannot
apply indirection theory to contravariant or mixed-variant functors.

To continue: given F and O, indirection theory constructs K such that:

K ≼ N× F((K ×O)→ T) (35.4)

Here X ≼ Y means the “small” type X is related to the “big” type Y by two
functions: squash : Y → X and unsquash : X → Y . The squash function
“packs” an element y of the big type Y into an element of the small type X ,
applying an approximation when the structure of y is too complex to fit into
X . The unsquash function reverses the process, “unpacking” an element of
X into an element of Y ; since Y is bigger than X , unsquash is lossless.

The squash and unsquash functions form a section-retraction pair,
meaning that squash ◦ unsquash : X → X is the identity function and
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unsquash ◦ squash : Y → Y is an approximation function. Thus X ≼ Y
is almost an isomorphism, and informally one can read X ≼ Y as “X is
approximately Y”. Thus, with equation (35.4), indirection theory says that
the left hand side of pseudoequation (35.2) is approximately equal to a pair
of a natural number and the right hand side of pseudoequation (35.2).

APPLICATIONS FOR INDIRECTION THEORY. In "A theory of indirection via
approximation" [52]we show seven different previously published semantic
models by several different authors, all of which can be cleanly modeled in
indirection theory. These include,

1. general references in the λ-calculus,

2. general references on von Neumann machines,

3. object references,

4. substructural state,

5. embedding semantic assertions in program syntax,

6. concurrent separation logic with first-class locks, and

7. an industrial-strength CSL model for Concurrent C minor.

Indirection theory, as embodied in the VST’s ageable class, can be used for
each of these applications. We briefly gave the model for general references
in the λ-calculus above, and Chapter 36 will explain this case study in full.

Axiomatic characterization.

Our primary goal here is to present the “user view” for indirection theory—
that is, the axiomatization. Readers who do not even need this “user
view,” whose only need for indirection theory is the particular application
to resources in the Verified Software Toolchain, may be able to get by
entirely with the discussion of the ◃ later operator and its use in building
recursive predicates and reasoning about recursive programs in Chapter 15,
Chapter 17, and Chapter 18.



35. INDIRECTION THEORY 300

FUNCTORS. We use the concept of covariant functors from category theory
to specify the kind of input required to utilize indirection theory. Let Type
stand for the types of the metalogic and F : Type→ Type be a type function
(such as “list”, which is parameterized by the type of the list items). Equip F
with a function fmap : (A→ B)→ F(A)→ F(B) that satisfies the following
two axioms, in which idτ is the identity function on Type τ:

fmap idA = idF(A) (35.5)

fmap f ◦ fmap g = fmap ( f ◦ g) (35.6)

The function fmap can be thought of as a generalization of map from
functional languages, which applies a function to all the elements in a list.
Thus, fmap(g) should apply g to every X within an F(X ). In Coq, this
idea is captured by the functor typeclass given in figure 35.1. As with the
other mathematical structures we utilize, we predefine a number of functor
constructions—over constants, pairs, and so on—in msl/functors.v.

INPUT TO INDIRECTION THEORY. Start with a type O (“other data”) and a func-
tor F , as captured by the following Coq module type from msl/knot_hered:

Module Type TY-FUNCTOR-PROP.
Parameter F : Type →Type.
Parameter f-F : functor F.
Existing Instance f-F.

Parameter other : Type.
End TY-FUNCTOR-PROP.

For example, here is fmap for general references in the λ-calculus from
page 296, utilizing functional composition ◦ for partial functions:

fmap ≡ λg. λψ. g ◦ψ

Clearly equations (35.5) and (35.6) hold for this fmap. In Coq these
definitions and the associated proofs for identity and composition are
nearly trivial to define using the prebuilt functor constructors:
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Record functorFacts (PS : Type →Type)
(fmap : ∀A B (f : A →B), PS A →PS B) : Type :=

FunctorFacts {
ff-id : ∀A, fmap - - (id A) = id (PS A);
ff-comp : ∀A B C (f : B →C) (g : A →B),

fmap - - f oo fmap - - g = fmap - - (f oo g)
}.

Class functor (F : Type →Type) : Type := Functor {
fmap : ∀A B (f : A →B), F A →F B;
functor-facts : functorFacts F fmap

}.

Lemma fmap-id {F} {̀functor F} : ∀A, fmap (id A) = id (F A).

Lemma fmap-comp {F} {̀functor F} : ∀A B C (f : B→C) (g : A→B),
fmap f oo fmap g = fmap (f oo g).

Lemma fmap-app {F} {̀functor F} : ∀A B C (f : B→C) (g : A→B) x,
fmap f (fmap g x) = fmap (f oo g) x.

Figure 35.1: Functor typeclass, from msl/functors.v

Module TFP <: TY-FUNCTOR-PROP.
Definition F : Type →Type := fun K ⇒ addr →option K.
Definition f-F := f-fun addr (f-option f-identity).

Definition other : Type := value.
End TFP.

Here f_fun is the functor for function composition,2 f_option is the functor
for options, and f_identity builds the identity functor for K. Note that these

2Assuming the argument is a constant type, addr in this case.
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constructors build both the fmap function and the required functor proofs
for identity and composition. The functor is normally easy to define once F
is known.

OUTPUT. Indirection theory then constructs the following:

K : Type (35.7)

pred ≡ K×O→ T (35.8)

squash : (N× F(pred))→ K (35.9)

unsquash : K→ (N× F(pred)) (35.10)

The definitions of K (also called knot), squash, and unsquash are abstract
(hidden from the user). A predicate (pred) is a function in the metalogic
from a pair of a knot K and other data O to truth values T. As explained
previously, squash and unsquash are coercion functions between the “small”
type knot (K) and the “big” type N× F(pred).

To coerce an object from the small type to the big one is lossless, but
to go from big to small requires approximation. Equations (35.11) and
(35.12) define the approximation used in indirection theory:

|k| ≡ (unsquash(k)).1 (35.11)

approxn : pred→ pred ≡ λP. λ(k, o).

(

P (k, o) |k| < n
⊥ |k| ≥ n.

(35.12)

The key idea is that knots have levels, which can be accessed using the level
function |k|. A knot with a higher level is able to “store more information”
than a knot with a lower level. The way to determine the level of a knot
is to unsquash it and then take the first component (equation 35.11).
The approxn function (equation 35.12) does the actual approximation by
“forgetting” how a predicate behaves on knots with levels greater than or
equal to n. When an approximated predicate is passed a knot of too high a
level it just returns the default value ⊥; if the level is low enough then the
underlying original predicate is used.
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The behavior of squash and unsquash are specified by the following two
axioms, which constitute all of indirection theory:

squash (unsquash k) = k (35.13)

unsquash (squash(n, x)) = (n, fmap approxn x). (35.14)

Equation (35.13) guarantees that squash and unsquash form a section-
retraction pair, and demonstrate that unsquash is lossless. In contrast,
squash is lossy; equation (35.14) precisely specifies where the information
is lost. When an F(pred) is squashed to level n, all of the predicates inside it
are approximated to level n.

The simplicity of the axioms is a major strength of indirection theory.
The axioms are parametric over F(X ), whereas previous models exposed
numerous axioms specialized to their domains. For example, Hobor’s earlier
model for higher-order concurrent separation logic [51] had more than fifty
axioms, all of which follow from equations (35.13) and (35.14) once F(X )
is chosen. We view this pleasing fact as evidence that the axiomatization is
right. Later in this chapter we explain that the axiomatization is categorical,
providing a more formal kind of evidence.

COROLLARIES. The file msl/knot_lemmas.v contains a number of easy
corollaries to the axiomatization of squash and unsquash, such as the fact
that unsquash is injective and squash is surjective. Most of these are useful
but unsurprising; in contrast, the following fact is noteworthy:

Any predicate (pred) “pulled out” of an unsquashed knot has already
been approximated to the level of the knot:

unsquash k = (n, F) ⇒ F = fmap approxn F (35.15)

That is, whenever (n, F) is the result of an unsquash then F is unaffected
by approximating it to level n. All the information “above” n has already
been lost, so throwing it away again has no effect. This property is in fact
fundamental. Notice that this implies that a predicate P which was “pulled
out” of a knot k is not able to judge k itself. This is exactly how indirection
theory “approximates the circularity” given by the unsound pseudoequation
(35.2) to reach a sound construction.
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THE CONSEQUENCES OF THIS APPROXIMATION are profound. Suppose we are
in the λ-calculus with references and wish to model the type ref τ (where
τ is any other type, including another ref τ′). Recall from the discussion
surrounding pseudoequation 35.3 above that a memory typing k is a
squashed map from addresses to types. The intuition is that a value v has
type ref τ if the value is an address a and according to the memory typing,
the memory cell at location a has type τ. That is3:

ψ ⊢ v : ref τ
?
≡ let (n,ψ) = unsquash k in
∃a. v = loc(a) ∧ ψ(a) = τ.

(35.16)

Actually, this is almost correct. The only problem is that since ψ(a) has
been extracted from a knot k of level n, by equation (35.15) we know that
ψ(a) has been approximated to level n—that is,

ψ(a) = approxn ψ(a).

Comparing ψ(a) to τ, which may not have been approximated, is too
strong. Instead we introduce the idea of approximate equality:

P =n Q ≡ approxn P = approxn Q. (35.17)

That is, two predicates (type in this model) are approximately equal at level
n if they are equal on all knots of level less than n.

With approximate equality it is easy to fix equation 35.16:

ref τ ≡ λ(k, v). let (n,ψ) = unsquash k in
∃a. v = loc(a) ∧ ψ(a) =n τ

(35.18)

This definition for ref τ is correct and can type general references in the
polymorphic λ-calculus.4 Chapter 36 presents this semantic construction in
full detail.

3We write k ⊢ v : τ≡ . . . as a more pleasant notation for τ≡ λ(ψ, v). . . ..
4A reader may worry that it would be easy to write the incorrect definition (35.16) by

mistake. However, we will shortly define a restricted class of hereditary predicates (types)
which reject (35.16) but allow (35.18).
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The previous example shows that we must be mindful whenever
comparing predicates extracted from (the unsquashing of) a knot. A second
danger can be illustrated by considering the question of how a memory
typing k (≈ address* type) is related to a memory m (address→ value).
The intuition is that the memory typing k is a valid typing of the memory
m, written k ⊢ m valid, if all the values in m have the type given by k:

k ⊢ m valid
?
≡ let (n,ψ) = unsquash k in
∀a. k ⊢ m(a) :ψ(a).

(35.19)

Unfortunately, this definition is not quite right. The first problem is that
as the λ-calculus with references steps it allows new memory cells to be
allocated, such as during the execution of the expression new e. We will
defer the solution to this aspect of the problem until Chapter 36.

The second problem with pseudoequation (35.19) is more fundamental.
Notice that ψ(a)—that is, the predicate associated with address a in the
memory typing ψ unsquashed from k—is being applied to k itself! By
(35.15) and the definition of approxn, this will always be the constant ⊥.
Again, this is exactly where we weaken the unsound pseudodefinition
in equation (35.2) to achieve a sound definition: predicates cannot say
anything meaningful about the knot from whence they came. Accordingly,
we must weaken (35.19) so that k is valid if the types in it describe the
memory after k has been approximated:

k ⊢ m valid ≡ let (n,ψ) = unsquash k in
∀a, n′. n> n′ ⇒ squash (n′,ψ) ⊢ m(a) :ψ(a) (35.20)

By equation (35.14), squash (n′,ψ) is the same as k except the predicates
inside it have been further approximated (“rounded down”) to level n′ < n.

We call the process of unsquashing a knot and then resquashing it to a
lower level, causing it to become more approximate, aging the knot. Since
we must do so whenever we wish to use (apply) a predicate that we pull
out of a knot, we have developed some useful auxiliary definitions. The
age1 partial function reduces the level of a knot by first unsquashing and
then resquashing at one level lower, if possible:

age1 k ≡ squash (n, x), where unsquash k = (n+ 1, x) (35.21)
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Record ageable-facts (A:Type) (level: A →nat) (age1:A →option A) :=
{ af-unage : ∀x’:A, ∃x, age1 x = Some x’
; af-level1 : ∀x, age1 x = None↔level x = 0
; af-level2 : ∀x y, age1 x = Some y → level x = S (level y)
}.

Class ageable (A:Type) := mkAgeable {
level : A →nat

; age1 : A →option A
; age-facts : ageable-facts A level age1
}.

Definition age {A} {̀ageable A} (x y:A) := age1 x = Some y.

Figure 35.2: The ageable class and the age relation from msl/ageable.v.

Note that age1 is undefined (None) when |k| = 0. Define the age(k, k′)
relation between knots exactly when age1(k) = Some k′—that is, when the
predicates in k′ are slightly-more-approximate versions of the corresponding
predicates in k. We write necR and laterR to denote the reflexive and
irreflexive transitive closures of the age relation. All of these ideas are
captured in Coq using the typeclass ageable from Figure 35.2. As usual for
the mathematical structures we defined, the file msl/ageable.v also contains
useful lemmas and constructors for building more complex ageable objects
in a modular way.

A key observation: the age relation is noetherian (i.e., the world can
only be aged a finite number of times) because the level of k′ is always
decreasing towards 0. In practice, we will age the knot once each time we
might wish to pull a predicate out of it (e.g., once per step in the operational
semantics). The particular (but arbitrary, i.e. universally quantified) level
of our original knot will thus commit us to a proof about a finite-length
execution (before our coffee break).
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THE REPEATED AGING OF OUR KNOTS results in a third subtle problem. Aging
is essentially a technicality forced by the approximation inherent in the
underlying model; we do not want this technicality to cause any more proof
burden than is absolutely required. In particular, if we know that some
predicate P holds on a (k, o) pair, and we age k to k′, then we really expect
P to hold on (k′, o). To be more concrete, consider the λ-calculus: if, given
some memory typing k, a value v has type ref (ref int), then we expect v to
still have type ref (ref int) in any “more aged” version of k.

In general, we say that a predicate is hereditary over an age relation
when its truth is preserved under aging;5 that is:

P(w) → age(w, w′) → P(w′)

Are all predicates hereditary? Sadly not! Consider the following:

Pbad(k, o) ≡ |k|> 5

This predicate changes from ⊤ to ⊥ as k ages from level 6 to level 5.
The existence of nonhereditary predicates is a major hassle. Not only do

they force us to have to prove that our predicates are stable under aging,
but all the “useful” predicates seem to be actually hereditary. In other
words, the nonhereditary predicates are all pain with no gain.

The solution is to explicitly restrict the predicates we use to only those
function which are hereditary. That is, instead of predicate ≡ (K×O)→ T,
we will use

predicate ≡ {P ∈ (K ×O)→ T | hereditary(P)}. (35.22)

In Coq we carry this hereditary side condition around via a dependent type
as given in Figure 35.3. We then must prove that each predicate we use
actually is hereditary. Chapter 37 shows how to build a large, expressive,
and generic (independent of F) logic using these kinds of predicates: as
elsewhere in our approach (separation algebras, functors, etc.), the key is
to have suitable building blocks that allow one to construct large objects
(predicates, in this case) in a modular way.

5Here we extend the age relation to pairs of (k, o) by aging the knot and leaving the
other data constant; in Coq this is the ag-prod constructor from msl/ageable.v.
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Definition hereditary {A} (R:A→A→Prop) (p:A→Prop) :=
∀a a’:A, R a a’ →p a →p a’.

Definition pred(A:Type){AG: ageable A} :=
{p:A→Prop| hereditary age p}.

Definition app-pred {A}{AG: ageable A}(p:pred A) : A→Prop :=
proj1-sig p.

Coercion app-pred : pred >-> Funclass.

Delimit Scope pred with pred. Bind Scope pred with pred.

Lemma pred-hereditary {A} {̀ageable A} (p:pred A) :
hereditary age (app-pred p).

Proof. ... Qed.
Global Opaque pred.

Figure 35.3: Hereditary predicates in Coq (msl/predicates_hered.v). The
Scope directives govern notation-scopes for operators over predicates. The
coercion app_pred allows us to write P(x) instead of (proj1-sig P)(x).

Now we have an annoying mismatch: predicates inside the knot (which
we obtain via unsquash) are not hereditary, whereas predicates outside
the knot (defined using the constructor of equation 35.22) are hereditary.
This will make proofs difficult: a user of indirection theory might fetch a
predicate from the heap (the precondition of a function or the resource
invariant of a lock) and need the assurance that it is preserved under aging.

The solution is to reformulate the model to satisfy an axiomatization
in which predicates obtained from unsquash are hereditary. We have
done this (msl/knot_hered.v), but axiomatization itself must be adjusted,
as shown in Figure 35.4. First, the predicate type is built from the
dependent-product constructor of equation 35.22. Second, the age1
function is now opaque. Recall that in equation 35.21 we defined age1 as
squash(level(k)−1, unsquash k). In Figure 35.4, the Axiom knot-age1 is an
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Module Type KNOT-HERED.
Declare Module TF:TY-FUNCTOR-PROP.
Import TF.

Parameter knot:Type.
Parameter ag-knot : ageable knot.
Existing Instance ag-knot.
Existing Instance ag-prod.

Definition predicate := pred (knot ∗ other).

Parameter squash : (nat ∗ F predicate) →knot.
Parameter unsquash : knot → (nat ∗ F predicate).
Parameter approx : nat →predicate →predicate.

Axiom squash-unsquash : ∀k:knot, squash (unsquash k) = k.
Axiom unsquash-squash : ∀ (n:nat) (f:F predicate),

unsquash (squash (n,f)) = (n, fmap (approx n) f).

Axiom approx-spec : ∀n p k,
proj1-sig (approx n p) k = (level k < n ∧ proj1-sig p k).

Axiom knot-level : ∀k:knot, level k = fst (unsquash k).

Axiom knot-age1 : ∀k,
age1 k =
match unsquash k with
| (O,-) ⇒ None
| (S n,x) ⇒ Some (squash (n,x))
end.

End KNOT-HERED.

Figure 35.4: Hereditary knot axiomatization, from msl/knot_hered.v
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equation, not a definition. This equality is proved as a theorem, inside the
model.

The model for KNOT_HERED is rather more complex than the model for
“simple” knots that can contain nonhereditary predicates. It follows all the
same basic principles, but now there are quasicircularities in types as well
as in values. See msl/knot_hered.v for details.

INDIRECTION THEORY CAN BE EXTENDED in other ways. First, we can consider
an extension to an input expressed as a bifunctor rather than an ordinary
covariant functor, which allows the circularity to appear in additional
positions within F . Second, we can force the predicates inside the knot
to be hereditary over more general relations than aging (both over the
knot and over the other data). Finally, we can allow the right hand side of
predicates to be more general than T. Readers interested in any of these
bells and whistles should examine msl/knot_full.v.

Soundness and (a form of) completeness

INDIRECTION THEORY IS SOUND. We prove this by constructing a model in CiC
(the logic behind Coq). Here we will sketch the construction of the simpler,
nonhereditary knot mechanized in msl/knot.v. Hobor et al. [52, §8] give
the same construction in considerably more detail in a pen-and-paper style;
with one exception (type coercions between equivalent dependent types),
the mechanization follows that explanation quite closely. The construction
of the hereditary knot, whose Coq axiomatization is given above in figure
35.4, is broadly similar but considerably more delicate; interested readers
are referred to msl/knot_hered.v.

In the discussion the follows we elide the “other” data O, which adds no
fundamental difficulties but clutters the explanation.

STRATIFIED PREDICATES AND KNOTS. We start by taking a covariant functor
(F , fmap) as input. Now define an approximation to pred called predn, a
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finitely stratified type constructor indexed by the natural number n:

predn ≡

(

unit n= 0

predn−1× (F(predn−1)→ T) n> 0.
(35.23)

For n > 0, P : predn is a pair whose second component P.2 is an approxima-
tion to the recursive pseudodefinition (35.2) and whose first component P.1
is a simpler approximation P ′ : predn−1. A predn is thus a specialized sort of
list where the type of list members gets larger as the list gets longer. The
type of stratified knots of level n, Kn, is F(predn): a “data structure” whose
skeleton is F and whose “leaves” are stratified predicates of level n.

KNOTS AND PREDICATES. A knot (K) hides the index with a dependent sum:
K ≡ Σ(n : N). Kn. (35.24)

That is, a knot is a dependent pair of a natural n and an F with elements of
predn inside. Those who are less familiar with dependent types can consider
the right hand side of the above definition to be the type-theoretic version
of the infinite union

⋃

n∈N
Kn definable in set theory.

Some care is required to understand the definition of K. While K might
appear to be, in some sense, “infinitely stratified”, each element k : K
contains some particular Kn—in other words, every element of K only
contains some finite amount of stratification. Define the level of a knot k as:

level(k) = k.1 that is, level(n, f ) = n. (35.25)

A knot’s level gives how many layers of stratification it contains.
Now we can define the type of predicates (pred):

pred = K→ T. (35.26)

A pred is an “infinitely stratified” predn. Notice that, unlike K itself, a
P : pred can nontrivially judge knots of arbitrary level, as illustrated in
equation 35.18. That is, knots always contain some finite amount of
stratification, but predicates are not limited in the same finite way, essen-
tially because they are able to examine the (finite) amount of information
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provided to their argument before rendering their judgment: the power of
contravariance.

This is the key to creating an “initial knot” corresponding to the
beginning of a program execution. Indirection theory is typically used to
prove safety of an operational semantics. We do this by saying, “for all k,
the semantics is safe for k steps.” Once some abstract k is selected by this
universal quantification, we take some predicate of interest (such as ref in
equation 35.18) and squash it to level k. See also Chapter 39.

STRATIFICATION AND UNSTRATIFICATION. The key question is: how is the
“infinitely stratified” type F(pred) related to the finitely stratified type K?

Define a function stratn : pred → predn that collapses an infinitely
stratified pred into a finitely stratified predn:

stratn(P) =

(

() n= 0
�

stratn−1(P), λ f . P(n− 1, f )
�

n> 0.
(35.27)

The stratn function constructs the list structure of predn by recursively
applying P to knots of decreasing level. The finitely stratified type predn is
not big enough to store the behavior of P on knots of level ≥ n, and so that
information is thrown away.

To invert, first define a “floor” operator that given a P : predn+m,
constructs a P ′ : predn by stripping off the outer m approximations:

⌊P⌋mn ≡

(

P m= 0

⌊P.1⌋m−1
n m> 0.

(35.28)

Now define unstratn : predn → pred, which takes a finitely stratified predn

and constructs an infinitely stratified pred from it:6

unstratn(P) = λk.

(

(⌊P⌋mlevel(k)+1.2) k.2 n= level(k) +m+ 1

⊥ n≤ level(k).
(35.29)

6Note that the cases are exhaustive, though given in a slightly abnormal manner.
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When given a knot of level< n, the unstratn function uses the floor operator
to “look up” how to behave in the finite list of predicates inside a predn.
When applied to a knot k of level ≥ n, the unstratn function returns ⊥ since
the predn P does not contain any way to judge k.

What happens when we compose stratn and unstratn? The answer, the
key to indirection theory, is given by the following lemma.

LEMMA (unstratn AND stratn FORM A SECTION/RETRACTION PAIR):

(stratn ◦ unstratn) Pn = Pn (35.30)

(unstratn ◦ stratn) P = λk.

(

P(k) when level(k)< n
⊥ when level(k)≥ n

(35.31)

SQUASHING AND UNSQUASHING. Finally, we define squash and unsquash by
using fmap to lift stratn and unstratn to covariant structures as follows:

squash(n, f ) ≡ (n, fmap stratn f ) (35.32)

unsquash(k) ≡ (level(k), fmap unstratlevel(k) k.2). (35.33)

Notice that the “internal” level(k) (35.25) and the “external” |k| (35.11) are
extensionally equal, implying (by the key lemma above) that

approxn = unstratn ◦ stratn.

The axioms of indirection theory follow immediately. That is, the axioms of
indirection theory are sound, as they are derivable from a model.

THE AXIOMATIZATION IS CATEGORICAL: that is, not only is indirection theory
sound but there is a sense in which it is complete as well.

THEOREM. The axioms of indirection theory are categorical, that is,
determine the model uniquely up to isomorphism. More formally:

Assume that we have a single input (F , fmap). Now consider two
models A and B. To distinguish the operations defined on one construction
from the other, we will write, e.g., squashA or squashB.
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A and B will be isomorphic if we can find f : KA → KB such that
f is a bijection and preserves squash and unsquash as follows. Define
Φ : F(predA) → F(predB), which lifts the bijection f to objects of type
F(pred), as Φ ≡ fmap (λPB. PB ◦ f −1). Since f is a bijection and fmap
distributes over function composition, Φ is a bijection as well. Now prove:

1. f (squashA(n,ψA)) = squashB(n,Φ(ψA))

2. f −1(squashB(n,ψB)) = squashA(n,Φ−1(ψB))

3. unsquashB( f (kA)) = (n,Φ(ψA)), where (n,ψA) = unsquashA(kA), and

4. unsquashA( f
−1(kB)) = (n,Φ−1(ψB)), where (n,ψB) = unsquashB(kB).

PROOF. At first, the construction of f seems quite easy:

f
?
≡ squashB ◦ unsquashA. (35.34)

That is, take a kA : KA, unsquash it to get to a common form (of type
N× F(pred)), and then squash it into an element of type KB. Unfortunately,
this approach does not work since unsquashA produces an element of type
N× F(predA), while squashB requires an element of type N× F(predB). We
cannot assume that predA is compatible with predB without begging the
question, so (35.34) is invalid. The problem is tricky because the types are
isomorphic but need not be equal. The real construction requires significant
machinery to coerce the types from one construction to the other. Readers
interested in an informal sketch should consult [52, §9]; the full details can
find them in msl/knot_unique.v.

CATEGORICAL AXIOMATIZATIONS ARE SUFFICIENTLY UNCOMMON that it is worth-
while to ponder the implications. Most importantly, the axioms of indi-
rection theory are in some sense complete: they define a particular class
of models in a definitive way. Moreover, there seems to be little point in
developing alternatives to the construction we presented above, at least in
CiC. We view these facts as powerful evidence that these axioms are the
correct way to characterize step-indexing models.
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USING INDIRECTION THEORY—step indexing—we have proved the soundness
of the lambda calculus with mutable references. A different way to manage
the packing of step indexing is ultrametric spaces [21]; perhaps these could
be used just as well in a verified toolchain.

Could we have avoided step-indexing altogether? One can use syntactic
indirection, such as in Harper’s semantics for general references [46] or
Gotsman et al.’s semantics of storable locks [44]. But syntactic indirection
works best on whole-program semantics; when trying to express the
semantics of modular program components one runs into difficulties,
because the syntactic indirection table cannot be complete.
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Chapter 36

Case study: Lambda-calculus with
references
by Robert Dockins

Here we present a simple λ-calculus with references to illustrate the use of
indirection theory.1. The λ-calculus is well understood and its type system
presents no surprises, so it provides us as a nice vehicle for explaining how
to apply indirection theory.

One reason this language is interesting, from our point of view, is that
it was historically rather difficult to find a semantic theory for general
references—that is, references that may contain data of any type, including
quantified types. In contrast, the theory of references at base types (e.g.,
only containing integers) is much simpler. Tofte had an syntactic/opera-
tional theory of general references as early as 1990 [86], but it was not
until the step-indexed model of Ahmed, Appel and Virga [4, 2] in 2003 that
a semantic theory of general references was found.2 The model of Ahmed et
al. was refined and generalized in the following years by Appel et al. [11],
and then further refined by Hobor et al. [52] into the indirection theory
that appears in this book.

1The Coq development for this chapter is in examples/lam_ref/
2To be clear, we mean that the meanings of types are given semantically; they still used

operational methods for the dynamic semantics of the language, as do we.
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The λ-calculus with references is a bit of a detour from our main aim
in this book, which is building program logics for C. However, it provides a
relatively simple, self-contained example that illustrates the techniques we
will be using later in more complicated settings. In particular, we will use
indirection theory to build the Hoare tuple for program logics for C along
similar lines to how we construct the expression typing predicate in this
chapter.

The syntax of the language we investigate in this chapter is given below.
The language has a single base type (the natural numbers), and ML-style
references in addition to the usual functions of λ-calculus.

nat n ::= 0, 1,2, . . .
loc ℓ ::= 0, 1,2, . . .
var v ::= 0, 1,2, . . .

expr e ::= Nat n
| Prim f e
| Var v
| Loc ℓ
| λe
| e e
| New e
| !e
| e1 := e2; e3

Definition var-t : Type := nat.
Definition addr : Type := nat.

Inductive expr : Type :=
| Nat : ∀n : nat, expr
| Prim : ∀ (f:nat →expr)

(e:expr), expr
| Var : ∀n : var-t, expr
| Loc : ∀ l : addr, expr
| Lam : ∀e : expr, expr
| App : ∀e1 e2 : expr, expr
| New : ∀e : expr, expr
| Deref : ∀e : expr, expr
| Update : ∀e1 e2 e3: expr, expr.

We use a presentation of the λ-calculus based on de Brujin indices,
which means λ abstractions do not bind named variables. Instead, variables
are natural numbers, refering to the ith enclosing lambda. For example
λVar 0 is more usually written λx . x , and λλ(Var 1) (Var 0) is the same as
λx . λy. x y .

The Nat syntactic form represents natural number values. The Prim
form allows us to build all sorts of primitive functions over naturals. The
intuitive meaning of Prim f e is that we first evaluate the expression e to a
value n (expected to be a natural number) and then compute the resulting
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expression by passing n to f (which is a function in Coq).
The Loc form represents location values. Locations are essentially the

addresses of allocated reference cells. Locations are not allowed to appear
in programs users write, but can only occur during evaluation. The New
form allocates a new reference cell, returing the location where the cell was
allocated, and !e dereferences the value of a cell. The form [e1] := e2; e3

causes the value of e2 to be written into the cell e1 and then evaluates e3.
Among the expressions, we select a subset of values: these consist of the

natural numbers, the location constants, and the lambda abstractions. We
will also be interested in the subset of closed expressions, i.e., those with
no free variables.

Fixpoint closed’ (n : nat) (e : expr) : Prop :=
match e with (∗ No vars greater than n in e ∗)
| Var n’ ⇒ n’ < n
| Prim f e ⇒ closed’ n e
| Lam e ⇒ closed’ (n + 1) e
| Nat -⇒ True
| Loc -⇒ True
| App e1 e2 ⇒ closed’ n e1 ∧ closed’ n e2
| New e ⇒ closed’ n e
| Deref e ⇒ closed’ n e
| Update e1 e2 e3 ⇒ closed’ n e1 ∧ closed’ n e2 ∧ closed’ n e3

end.
Definition closed (e : expr) : Prop := closed’ 0 e.

Definition openValue (e:expr) : Prop :=
match e with Nat -⇒ True | Loc -⇒ True | Lam -⇒ True | -⇒ False
end.

Definition isValue (e : expr) : Prop := closed e ∧ openValue e.

Definition value : Type := {v : expr | isValue v}.

In order to defined the notion of closed expressions, we need the
auxiliary closed′ definition, which says that an expression contains no free
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variables above a cutoff. The cutoff value is incremented every time we
pass under a λ. Values are then defined as expressions that are both closed
and of one of the three value forms.

The semantics of this language is an unsurprising call-by-value small-
step operational semantics. The states of the operational semantics consist
of a memory and an expression. Evaluation proceeds by reducing the
expression, using the memory to store the values of reference cells.

We define memories very directly, as a pair of a “break” value and a
function from locations to values. The break value is the lowest location
number not yet allocated. Allocating a new reference cell is done by simply
incrementing this break value.

Definition mem : Type := (nat ∗ (addr →value))%type.

Definition new (m : mem) (v : value) : (mem ∗ addr) :=
match m with (n, m’) ⇒

((S n, fun a ⇒ if beq-nat a n then v else m’ a), n)
end.

Definition deref (m : mem) (a : addr) : value := (snd m) a.

Definition update (m : mem) (a : addr) (v : value) : mem :=
match m with (n, m’) ⇒

(n, fun a’ ⇒ if beq-nat a a’ then v else m’ a’)
end.

Definition state : Type := (mem ∗ expr)%type.

Because we are presenting a call-by-value operational semantics we
expect only to substitute values, not general expressions. Values have no
free variables, and we can therefore simplify the definition of substitution
for de Brujin terms as compared to a fully general definition, which must
shift and unshift the free variables.
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Fixpoint subst (var : var-t) (v : value) (e : expr) : expr :=
match e with
| Nat n ⇒ Nat n
| Prim f e ⇒ Prim f (subst var v e)
| Loc l ⇒ Loc l
| Var var’ ⇒ if (beq-nat var var’) then val-to-exp v else Var var’
| Lam e ⇒ Lam (subst (var + 1) v e)
| App e1 e2 ⇒ App (subst var v e1) (subst var v e2)
| New e ⇒ New (subst var v e)
| Deref e ⇒ Deref (subst var v e)
| Update e1 e2 e3 ⇒

Update (subst var v e1) (subst var v e2) (subst var v e3)
end.

Finally we are ready to present the operational semantics and the safety
policy. The relation step st st′ is defined by the rules in figure 36.1. The
safety policy is totally standard—a state st is safe if every reachable st′ is
either a value or can take an additional step.

(∗ Reflexive, transitive closure of stepping ∗)
Inductive stepstar : state → state →Prop :=

| step-refl : ∀ st, stepstar st st
| step-trans: ∀ st1 st2 st3,

stepstar st1 st2 → stepstar st2 st3 → stepstar st1 st3
| step1 : ∀ st st’, step st st’ → stepstar st st’.

(∗ Statement of safety policy ∗)
Definition can-step (st : state) : Prop := ∃ st’, step st st’.

Definition at-value (st : state) : Prop := isValue (snd st).

Definition safe (st : state) : Prop :=
∀ st’, stepstar st st’ →can-step st’ ∨ at-value st’.

Definition safe-prog (e:expr) : Prop := ∀m, safe (m, e).
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app1
step (m, e1) (m′, e′1)

step (m, e1 e2) (m′, e′1 e2)
app2

step (m, e2) (m′, e′2)

step (m, (λe1) e2) (m′, (λe1) e′2)

app3
isValue e2

step (m, (λe1) e2) (m, subst 0 e2 e1)

new1
step (m, e) (m′, e′)

step (m,New e) (m′,New e′)
new2

isValue e
new m e = (m′,ℓ)

step (m,New e) (m′,Loc ℓ)

deref1
step (m, e) (m′, e′)

step (m, !e) (m′, !e′)
deref2

deref m ℓ= v
step (m, !(Loc ℓ)) (m, v)

update1
step (m, e1) (m′, e′1)

step (m, [e1] := e2; e3) (m′, [e′1] := e2; e3)

update2
step (m, e2) (m′, e′2)

step (m, [Loc ℓ] := e2; e3) (m′, [Loc ℓ] := e′2; e3)

update3

isValue(e2)
update m ℓ e2 = m′

step (m, [Loc ℓ] := e2; e3) (m′, e3)

prim1
step (m, e) (m′, e′)

step (m,Prim f e) (m′,New f e′)

prim2
isValue( f (n))

step (m,Prim f (Nat n)) (m, f (n))

Figure 36.1: Operational semantics of λ-calculus with references
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OUR GOAL IS TO BUILD A TYPE SYSTEM for this λ-calculus and prove it sound.
For us, soundness will mean that well-typed programs are safe in the sense
defined above. Our approach is to assign mathematical meanings to the
usual constructs of the type system so that our desired theorem (safety)
follows as a simple corollary. Note that in this development we will not
address other concerns that are sometimes of interest for type systems:
decidability of type checking or type inference. Such questions only make
sense for a particular syntactic presentation of a type system—that is, an
explicit collection of inductively-closed typing rules. We will not be giving
such a presentation.

Instead, we will be concentrating on building a semantic model of types.
Roughly, the meaning of a type is a set of values. The meaning of types can
then be extended to general expressions—the intuition is that an expression
has type τ if it evaluates to a value of type τ (or fails to terminate). Some
types are quite easy to define. For example, the type nat simply denotes all
the values of the form Nat n for some n ∈ N. Function types are somewhat
more involved, but are handled by well known techniques. The type A→ B
contains λ-abstractions such that substituting in a value of type A results in
an expression of type B.

However, reference types require some additional work. Suppose we
want to define the meaning of ref τ—the idea is that reference types denote
location values, where the referenced location contains a value of type
τ. However, given just a location, we do not have enough information to
determine if the cell referenced by ℓ contains a value of type τ.

One option is to change the meaning of types, so that they denote sets
of states, that is pairs of memories and values. Then the meaning of ref τ
can refer to the current memory, so it can simply look up the value at ℓ to
evalutate τ. However, this simple plan also does not work, because ML-style
references are so-called weak references that are guaranteed to keep the
same type throughout their lifetime. Simply examining the current memory
works fine for strong references (whose type can change over time) but is
unworkable here because strong references cause subject reduction to fail.
The essential difference is that the type of strong references refers only to
the current state of the machine, whereas the type of weak references also
gives a guarantee about future behavior. In other words, the type of a weak
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reference is an invariant of a program.
Instead, we want to keep track of the type at which each reference was

initially created in a memory type. A memory type is simply a partial map
from locations to types. Then, the denotation of types examines both a
value and a memory type. We call a pair of a memory type and a value
a world—the purpose of the value component is to keep track of the first
unallocated location. We say that the meaning of a type is a set of worlds.
To evaluate the meaning of ref τ, we require the value to be a location ℓ
and that the memory type tells us that location ℓ has type τ.

If all this seems confusing now, don’t worry—it will be explained later
in more detail. For now, the main point is that we want to define the
denotation of types as sets of memory types and values, and that memory
types are partial functions from locations to types.

In other words we would like to build a semantic domain satisfying the
following equations:

type= (mtype× value)→ Prop

mtype= loc* type

Unfortunately, there are no solutions to this series of equations in set
theory (or in type theory). Basically, this is because type occurs in con-
travariant recursive position in its own definition. A simple diagionalization
argument shows that there can be no sets satisfying these equations. For
the rest of this section, we will set aside this issue—in the following section
we will see how to use indirection theory to build an approximation to these
equations that will suffice for our purposes.

Before getting into the technical details, however, we will first lay out
a roadmap that should help orient the reader when we start getting into
the formal definitions. Our main task is to build the three basic type
constructors that correspond to the computational aspects of the system:
the base type of natural numbers, the ref type constructor, and the arrow
type of functions. Given the appropriate definitions of these main type
formers, it will be fairly straighforward to define the main typing judgment,
prove that typing implies program safety, and to prove the usual typing
rules of the call-by-value λ-calculus with references as derived lemmas.
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The base type nat is by far the simplest of the three; the type nat accepts
any world where the value component is Nat n for some n ∈ N.

The type ref τ is somewhat more complicated, and is the reason we
introduced memory typings. The type ref τ accepts a world (ψ, v) when
v = Loc ℓ, for some location value ℓ, and when ψ(ℓ) = τ. In other words,
the reference type accepts location values that have type τ claimed in the
memory type. As we shall see, the actual definitions will be a bit more
complicated, but this is the basic idea.

Finally, we consider the function type τ1 → τ2. The intuition here
is that a value of type τ1 → τ2 is a lambda abstraction whose body has
the property that whenever a value of type τ1 is substituted into it, an
expression of type τ2 results. Note carefully that until now we have only
talked about types applying to values—however, to discuss the type of
functions, we need a notion of types applying to general expressions as well.
The main difficulty in defining the function type involves finding the correct
way to lift the notion of types from values to expressions.

Finally, we can define the meaing of the typing judgment. Γ ⊢ e : τ
holds when substituting values of the types listed in Γ for the free variables
of e results in an expression of type τ. This allows us to prove the main type
safety theorem without too much difficulty. A term e which is typeable in
the empty context is simply a closed expression of type τ, and the semantic
definition of expression typing implies the safety theorem we desire by a
simple induction.

Once these definitions are made, it is a straightforward proof exercise
to prove that the usual typing rules hold. The proof for these rules typically
breaks down into two distinct parts: one part closely resembles the proof
one would do in a standard subject reduction proof, whereas the other part
closely resembles a case in a progress proof.

Unfortunately, the simple picture painted above is complicated some-
what by the need to account for some tricky details. The first of these is the
fact that the defining equations above for type and mtype are inconsistent.
The second detail is the need to build into our type system the invariant
that all type judgments are stable under the allocation of new reference
cells. In other words, allocating a new cell cannot cause values to change
their types or to become untypeable. In a syntactic presentation of a type
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system, such a fact would be a derived lemma, but here we must build it
into the semantic definitions of types. In the next several sections, we show
how these details are handled in the formal proof before moving on to the
main type definitions.

IT IS NOT POSSIBLE TO BUILD A SIMPLE SET-THEORETIC MODEL, because con-
travariance between types and memory types leads to a Cantor paradox.
Fortunately, we have a way to handle this problem—we developed indi-
rection theory expressly to build approximate solutions to such systems
of equations. Recall from Chapter 35 that indirection theory applies to
covariant functors F and an arbitrary set O of other data and constructs a
type knot where:

knot≼ N× F((knot×O)→ Prop)

We can instantiate this pattern to our current situation by setting:

F(X ) = loc* X
O = value

Indirection theory then constructs the approximation, and we can
proceed by setting:

mtype= knot ≼ N× (loc* type)
world=mtype× value
type= pred world

We call a pair of a memtype and a value a world, which means that a
type is a predicate on worlds (recall that the second component is just to
keep track of the boundary between allocated and unallocated locations).
Furthermore, a memtype is approximately a partial map from locations
to types. As usual when working with step-indexed models built using
indirection theory, we are only interested in predicates on worlds that are
closed with respect to approximation. This is built into the definition of
pred. For a type A equipped with an ageable structure, pred A represents the
predicates on A that are hereditary: that is, closed under approximation.
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The Coq code that sets up the indirection theory structure needed for
this example is given below.

Module TFP <: TY-FUNCTOR-PROP.
Definition F : Type →Type := fun K ⇒ addr →option K.
Definition f-F := f-fun addr (f-option f-identity).

Definition other : Type := value.
End TFP.

Export TFP.

Module K := KnotHered(TFP). (∗ Wow, that was easy... ∗)
Module KL := KnotHered-Lemmas(K).

Export K KL.

(∗ Let’s define our typing system on values ∗)
Definition mtype : Type := knot.
Definition world : Type := (mtype ∗ value)%type.

Definition world-ag : ageable world :=
ag-prod mtype value ag-knot.

Existing Instance world-ag.

For someone new to doing proofs in this style, it may not be obvious
what is going on with the appoximations built by indirection theory, so here
we will explain how the pieces fit together in more detail. The main idea to
keep in mind is that the level of an mtype is a step-index. This means that
an mtype of level n will correctly describe a program that runs for no more
than n steps. An mtype of level n contains predicates that are only accurate
for worlds of level n− 1. However, this turns out to be sufficent because
dereferencing a cell takes a step of computation. In other words, every time
we make essential use of a type stored in an mtype, the program must use a
step of computation. Thus, if the mtype is good for n steps, then its stored
types are good for n− 1 steps—and by the time it matters, we will have
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used a step of computation so n− 1 steps is enough.
The preceeding paragraph puts a design constraint on the operational

semantics of programs if one wishes to use indirection theory. Basically, this
constraint is that every memory access must take at least one operational
step. One should not, for example, write an operational rule that follows
an entire chain of pointers in one step, otherwise the step-indexing proof
will break down.

With this in mind, let us review the constructions of indirection theory,
specalized to the current λ-calculus example. When we invoke indirection
theory, it builds two functions squash and unsquash:

squash : N× (loc* type)→memtype (36.1)

unsquash : memtype→ N× (loc* type) (36.2)

squash takes a pair of a level and an element of the intially desired object
(in this case partial functions from locations to types) and constructs an
mtype. The function unsquash reverses this process, returning the level and
the mapping. However, for the same cardinality reasons as before, these
two functions cannot be inverses. Instead, they form a section-retraction
pair, which means that the composed function squash ◦ unsquash is the
identity function, but composition in the other direction results in an
approximation function.

squash(unsquash(k)) = k (36.3)

unsquash(squash(n,ψ)) = (n, fmap approxn ψ) (36.4)

The function fmap, when applied to a partial map, simply applies the
given function to every element in the map. In this case, it applies the
function approxn to every type in the map. The function approxn takes a
pred world and returns a new pred world that accepts the same worlds as the
original, provided their level is strictly less than n. Thus, fmap approxn ψ
is a new map from locations to types where every type in the map is
approximated to only accept worlds of level (strictly) less than n.

The reader may be confused as to why we would want to approximate
predicates—why throw away information? The answer is that this approx-
imation is necessary to get a well-founded construction. By making the
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predicates contained within an mtype only accept worlds of strictly smaller
level, we can stratify the entire construction according to level, which
allows us to complete the construction. Dealing with the approximation is
the price we must pay for a sound construction.

In addition to the notion of approximating predicates, there is also an
important notion of approximating knots. Approximating knots involves
decreasing their level and approximating all their enclosed predicates down
to the new, lower, level. This is accomplished by first unsquashing the
knot at level n+ 1 and then squashing the enclosed map at level n. This
process is called “aging” the knot. Aging knots is how we implement the
step-indexing strategy; roughly, the knot (mtype in this instance) gets aged
every time we take a step in the operational semantics.3

Because we are constantly aging knots as we execute programs, we
are usually only interested in predicates on worlds that are stable under
approximation. In other words, if a predicate P holds on a world w, then
we also want P to hold on all worlds w′ that are approximations of w.
In our current setting, this means that when a type holds on a value, it
continues to hold as the mtype becomes more approximate over time. This
is critical to ensure that subject reduction holds in the system.

We call predicates with this property hereditary predicates. Hereditary
predicates are so critical that we require all predicates to be hereditary.
Recall from Chapter 37 that pred world refers only to sets of worlds that
are closed under approximation, i.e., that are hereditary. In the formal
proofs, whenever a new primitive predicate is introduced, it must be
proved hereditary at the time of definition. Ususally, this is straightforward;
however, it occasionally requires some thought to build an appropriately
hereditary predicate. As we shall see later, the definition of ref τ requires
some care in order to get a hereditary predicate.

Associated with the action of aging knots there is a modality ◃, which
can be read “approximately,” or “later.” The predicate ◃P means that P
holds on all strictly more approximate worlds. Because of the tight tie
between the levels of worlds and steps of the operational semantics ◃P can

3This restriction to age every step can be relaxed in some instances, but aging every
operational step is a good rule of thumb.
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also reasonably be read “P will hold after taking one more step.”
Recall that the formal definition of ◃ is:

(ψ, v) |= ◃P ≡ ∀ψ′. age+(ψ,ψ′)→ (ψ′, v) |= P

Here age is a relation on knots (here, mtypes) built by indirection theory
that corresponds to the “unsquash and then squash again at a lower level”
process discussed above.

IN ADDITION TO BECOMING MORE APPROXIMATE, there is another way that
mtypes change as program execution proceeds. Every time a new reference
cell is allocated, the mtype needs to be extended with the type of that new
cell. Because we are modeling ML-style references, once a reference comes
into existence, it persists forever (in principle) and retains the same type
throughout its lifetime.

It is convenient to set up a modality to represent extension of the mtype,
much as ◃ represents approximation. To do this we follow the general
recipe for setting up a new modality (cf. Chapter 37), which involves
defining a relation on worlds and proving that it commutes with the age
relation. Informally, we say a memory type ψ is extended by ψ′ when, for
every location ℓ in the domain of ψ it is the case that the ψ(ℓ) =ψ′(ℓ).

The formal definition is more complicated because of the need to deal
with unsquashing the knots.

Definition knot-extends (k1 k2 : knot) : Prop :=
match (unsquash k1, unsquash k2) with

((n, psi), (n’, psi’)) ⇒ n = n’ ∧
∀a, (psi a = None) ∨ (psi’ a = psi a)

end.

Definition R-extends (w1 w2 : world) : Prop :=
match (w1, w2) with

((k1, v1), (k2, v2)) ⇒ knot-extends k1 k2 ∧ v1 = v2
end.

Definition R-contracts := transp -R-extends.
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R_extends holds between two worlds when their values are the same
and both knots have the same level, but the second knot may have
more locations defined. The relation R_contracts is simply the transpose
(inverse) of R_extends. To make these relations into modalities, we
must prove that they commute with aging. This done, we defined the
corresponding modalities and define % as notation for the box modality of
extension.

Definition extendM: modality := exist - R-extends R-extends-valid-rel.
Definition contractsM: modality := exist - R-contracts R-contracts-valid-rel.
Notation "’%’ e" := (box extendM e)

(at level 30, right associativity): pred.

Thus, when we write the predicate %P, this means that P holds on the
current world and also on all extended worlds. In order to achieve the
desired invariant that all types are closed under extension, we will make
frequent use of the % mode in the definitions that follow. In one important
case, we will also use the complementary mode diamond contractsM, which
expresses that a predicate holds on some extended world.

WE ARE NOW READY TO DEFINE the operators of our type system. First, we
define two auxiliary predicates. The just v predicate claims that the value
in the world is equal to v, whereas the with_val v p predicate replaces the
current value in the world with v before evaluating predidate p.

Program Definition just (v:value) : pred world :=
fun w ⇒ snd w = v.

Next Obligation. ... Qed.

Program Definition with-val (v:value) (p:pred world) : pred world :=
fun w ⇒ p (fst w,v).

Next Obligation. ... Qed.

Note here we are using Coq’s “Program Definition” facility. This allows
us to state the definition of these predicates directly and relegate the proof
that they are hereditary to a proof oblibation we can discharge later using
tactics. Both of these predicates are easy to show hereditary.
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With these in hand, it is straightforward to define the type of naturals.

Definition ty-nat := EX n:nat, just (v-Nat n).

The meaning of ty_nat is quite simple—it simply ignores the memory type
and examines the value to see if it is a natural number value.

Next, we are going to start working toward the definition of reference
types, which we will take in several steps. First, we need a notion of
“approximate equality,” which says that two predicates are equal up to a
certain level of approximation.

Definition approx-eq (n : nat) (τ1 τ2 : predicate) : Prop :=
approx n τ1 = approx n τ2.

This simply states that two predicates are equal when they are approximated
to level n. We use approximate equality to define the predicate type_at,
which claims that cell l in the memory type contains type τ.

Program Definition type-at (l:addr) (τ:pred world) : pred world :=
fun w:world ⇒ let (n,ψ) := unsquash (fst w) in

match ψ l with
| None ⇒ False
| Some p ⇒ approx-eq n p τ
end.

Next Obligation. ... Qed.

This predicate first unsquashes the memory type to get the underlying
map and looks up the type a cell l, which must exist and be approxmately
equal to the given type. In order to get a hereditary predicate, we must
use approximate equality to compare the types. Now we can complete the
definition of reference types.

Definition ty-ref (τ: pred world) : pred world :=
EX a:addr, just (v-Loc a) && type-at a τ.

Much like the type of natural numbers, we say that a world satisfies the
reference type if its value is a location; however, we also require that the
type at that location be τ.

The final major type constructor we need for our type system is τ1⇒ τ2,
the constructor for the function space. The main idea here is that a value
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is of type τ1 ⇒ τ2 if it is a lambda term such that substituting a value of
type τ1 into the body of the term results in a term of type τ2. Note that this
refers to the type of both values and of terms.

Types, by definition, apply only to values. To understand the typing of
function bodies (and to have a useful type system), we will need to define
what it means to apply types to general expressions. We lift the notion of
typing to expressions by codifying the commonsense idea that an expression
has type τ if it reduces to a value of type τ.

Formally, we define expression typing as a predicate in our logic so that
the predicate expr_type e τ holds if expression e has type τ according
to the memory typing in the current world. The definition, rougly, means
that expr_type e τ holds if either e is a value of type τ OR if e can take
additional steps and every expression e′ that e may step to is an expression
of type τ. Therefore, expression typing captures the familiar “progress and
preservation” properties common to syntactic type soundness proofs.

expr-type is a recursive definition, characterized by the equation:

expr-type e τ =
%ALL m:mem, mtype-valid m −→

(ALL m’:mem, ALL e’:expr, !!(step (m,e) (m’,e’)) −→
◃(diamond contractsM (mtype-valid m’ && expr-type e’ τ)))

&&
(!!(stopped m e) −→EX H:isValue e, with-val (exp-to-val e H) (%τ)).

Let us postpone briefly a discussion of the various pieces of this
definition, and focus on what must be done to produce an expr-type
satisfying this equation. First we must define the type operator over which
we wish to take the fixpoint; then we prove it contractive which allows us
to use the higher-order fixpoint operator. The equation above then follows
from a straightforward use of the fixpoint equation for HORec.

Definition expr-typeF
(τ:pred world) (F: expr →pred world) (e : expr) : pred world :=
%ALL m:mem, mtype-valid m −→

(ALL m’:mem, ALL e’:expr, !!(step (m,e) (m’,e’)) −→
◃(diamond contractsM (mtype-valid m’ && F e’))) &&

(!!(stopped m e) −→EX H:isValue e, with-val (exp-to-val e H) (%τ)).
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Lemma expr-type-sub1 :
∀τ P Q, ALL e:expr, ◃(P e Q e)

⊢ALL e:expr, expr-typeF τ P e expr-typeF τ Q e.

Lemma expr-type-cont : ∀τ, HOcontractive (expr-typeF τ).
Definition expr-type e τ := HORec (expr-typeF τ) e.

The proof of contractiveness is a straightforward application of facts
about the various operators making up the definition of expr_typeF. In
the end, the proof goes through because the recursive call is “guarded” by
the later operator. Note that τ is a parameter of the recursive definition
because it does not vary at each recursive call, whereas e is an argument
that must be threaded through the recursion.

Now, to the pieces of the definition itself. Recall that the operator %P
means that P holds under all extensions of the current memory typing. This
operator must be applied at the outermost level of the definition in order to
force expression typing to be stable under extension of memory typings. In
general, implications to not preserve these sorts of closure properties, even
if their subexpressions do, making this additional operator necessary.

The next major piece of the definition is the quantification over all valid
memories. The predicate mtype_valid is defined below.

Program Definition mtype-valid (m : mem) : pred world :=
fun w ⇒
match w with (k, v) ⇒
let (n,φ) := unsquash k in
∀ (a : addr),

match φ a with
| None ⇒ fst m <= a
| Some τ ⇒ fst m > a ∧ (%◃τ) (k, deref m a)
end

end.
Next Obligation. ... Qed.

Unpacking the notation, what mtype_valid m means is that, for each
address a in the domain of the current memory typing, the value at a has
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type %◃τ, where τ is the type recorded in the memory typing at location
a. Furthermore, locations not in the domain of the memory typing are
unallocated. In other words, the memory m is correctly described by the
current memory typing.

So, we are next ready to examine the two conjuncts in the definition
of expr_type. The first says that for each valid memory m, and for each
expression configuration (e′, m′) that can be reached from (e, m) via one
step of computation, there is some extended memory typing such that, up
to approximation, m′ is valid for that memory typing and e′ (recursively)
has type τ. The operator diamond contractsM is the dual form of %
and means “there exists an extended memory typing making the predicate
true.” It is assigned no special notation because it is used only here in the
proof.

The second conjunct states that if the configuration (e, m) cannot take
any further steps, then it must be that e is a value and that value has type
%τ. As noted above, these two conjuncts correspond to the “preservation”
and “progress” properties from standard type safety arguments.

At first, the operator that allows us to extend the memory typing may
seem a bit mysterious. It is needed to account for the fact that stepping
from (e, m) to (e′, m′) may have allocated a new reference. In order to
account for this new reference, we must allow the memory typing to be
extended with a new entry for that cell’s type. As we shall see below,
this operator gives a neat explaination for why something like the value
restriction becomes necessary when we consider polymorphic types.

Now that we have defined expression typing, we are ready to define the
funtion type.

Definition ty-lam (τ1 τ2 : pred world) : pred world :=
EX e:expr, EX H:closed’ 1 e, just (v-Lam e H) &&
◃%(ALL v’:value, with-val v’ (%τ1) −→expr-type (subst 0 v’ e) τ2).

As with the other operators, we begin by stating that the value must
syntactically be a lambda; furthermore, the enclosed expression has
exactly one free variable. The meat of the definition states that (under
approximation and extension) whenever we substitute a value of type τ1

into the body of the lambda expression, we get an expression of type τ2.
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With this definition made, we are now almost done with the core
definitions making up our type system. All that remains is to define the
typing judgment itself. The typing judgment has a similar feel to the typing
definition for lambdas: informally, we say Γ ⊢ e : τ holds if, whenever
we substitute values of the types given in Γ for the free variables of e, the
resulting expression is of type τ.

Definition env : Type := list value.

Fixpoint subst-env’ (n : nat) (rho : env) (exp : expr) : expr :=
match rho with
| nil ⇒ exp
| v :: vx ⇒ subst n v (subst-env’ (n + 1) vx exp)

end.

Definition subst-env (rho : env) (exp : expr) : expr :=
subst-env’ 0 rho exp.

Definition etype : Type := list (pred world).

Fixpoint etype-valid (e : env) (G : etype) : pred world :=
match (e,G) with
| (v :: es, τ :: Gs) ⇒ with-val v (%τ) && etype-valid es Gs
| (nil, nil) ⇒ TT
| -⇒ FF

end.

Definition Typ (G : etype) (exp : expr) (τ : pred world) : Prop :=
closed’ (length G) exp ∧
∀env, etype-valid env G ⊢expr-type (subst-env env exp) τ.

In this definition (subst_env env exp) refers to the result of simulta-
neously substituting all the values in env into the expression exp.

FINALLY WE ARE DONE STATING THE DEFINITIONS leading up to our type system.
Now we have two remaining tasks ahead of us: we must prove soundness—
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that well-typed programs do not go wrong—and we must prove that the
standard typing rules are valid. Let us examine the first task, as it is much
easier. We specifically designed the typing system to prove soundness, so
that property is deeply “baked-in” to the system. This proof goes in two
steps. First we show that well-typed expressions are safe to run for n steps,
where n is the level of the world in which the expression is safe.

Lemma expr-type-safen: ∀k v e τ,
expr-type e τ (k,v) →
∀m, mtype-valid m (k,v) → safen (level k) (m,e).

This lemma is really the core of the entire soundess proof. It is here
that we do induction on the level of worlds, and it is here that the entire
step-indexing strategy finally comes together. The proof itself, however, is
fairly short and uneventful, consisting mostly of bookeeping. By and large,
it involves unfolding the various definitions and exploiting the progress and
preservation facts built into the definition of expr_type.

The final theorem puts all the pieces together to show that expressions
typeable in the empty context are safe programs.

Theorem typing-implies-safety: ∀e τ, Typ nil e τ → safe-prog e.

The key step in this proof is to show that for a program to be safe, it
is sufficent for it to be safe up to n steps, for all n and for all memories
m. Then, given an arbitrary n, we can construct an initial world such that
expr_type e τ holds on that world, as does mtype_valid m. Then we can
apply the previous lemma to complete the proof.

Thus we have shown that program safety follows from typeability in the
empty context—this theorem was the aim of all the definitions occuring
previously. Note that we have not yet said anything about typing rules.
Unlike in a syntactic proof, where the typing rules define the judgment,
here the rules are instead consequences of the definitions.

To ensure we have not defined a useless typing system, we prove the
standard typing rules of the lambda calculus with references. A selection of
the rules we have proved for this system are listed below; the form of these
rules should be unsurprising.
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Lemma T-weaken : ∀G G’ e τ, Typ G e τ →Typ (G++G’) e τ.

Lemma T-Nat : ∀G n, Typ G (Nat n) ty-nat.

Lemma T-Var: ∀G x τ,
nth-error G x = Some τ (∗ G(x) = τ ∗) →Typ G (Var x) τ.

Lemma T-Abs: ∀G σ e τ,
Typ (σ :: G) e τ →Typ G (Lam e) (ty-lam σ τ).

Lemma T-App: ∀G e1 σ τ e2,
Typ G e1 (ty-lam σ τ) →Typ G e2 σ →Typ G (App e1 e2) τ.

Lemma T-New: ∀G e τ,
Typ G e τ →Typ G (New e) (ty-ref τ).

Lemma T-Deref: ∀G e τ,
Typ G e (ty-ref τ) →Typ G (Deref e) τ.

Lemma T-Update: ∀G e1 τ e2 e3 σ,
Typ G e1 (ty-ref τ) →Typ G e2 τ →Typ G e3 σ →
Typ G (Update e1 e2 e3) σ.

By and large, these proofs break down three recognizable parts. For
syntactic forms containing expressions, one has to show that typing respects
the congruence rules of the operational semantics; this part of the proof is
largely routine. The other two parts occur when a term resembling a redex
occurs. For such terms, one must show that the reduced expression has the
same type as the original and one must show that the redex is not stuck.
In other words, there is a progress and a preservation aspect to each of the
typing rule proofs.

ONCE THE BASIC TYPING RULES are established, the story is not yet over.
Because the meaning of types and the typing jugement are given by
definition, nothing prevents us from adding additional types and rules
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after the fact. Unlike with a syntactic proof, we need not worry that
our additions will break any parts of the previous proof—there are no
complicated induction hypotheses that may need to be adjusted.

As an example of this property, here we define additional type construc-
tors related to polymorphism. In fact, for universal polymorphism, there
is not much to do. The universal quantification operator we have been
using in the logic over worlds serves this role! We must simply prove the
characteristic rules for universal introduction and elimination.

Lemma T-UnivI : ∀G e (X:pred world →pred world),
openValue e → (∀ τ, Typ G e (X τ)) →Typ G e (allp X).

Lemma T-UnivE : ∀G e (X:pred world →pred world) τ,
Typ G e (allp X) →Typ G e (X τ).

The elimination rule for universals is totally standard: if one has a term
of universal type, then one instantiates the universal type with an arbitrarily
chosen instance type. The introduction rule is also standard: to prove a
term has universal type, it suffices to prove it has the same type with an
arbitrary type variable.

However, notice that the universal introduction rule only applies for
expressions that are open values, that is, expressions that are of one of the
three value forms, but that may contain free variables. This is the usual
“value restriction” from ML [89]. It (or some other restriction, e.g., the
“imperative” type discipline of Tofte [86]) is necessary because the rule
without any restriction is unsound! It is not hard to show that unrestricted
universal generalization in a calculus with references leads to an unsound
type system; examples demonstrating this are well known [86].

Despite this fact, it is interesting to attempt to prove the unsound
rule in order to understand where the proof breaks down. Unfolding
the definitions far enough, one eventually finds expression typing hiding
underneath. In the recursive clause of expression typing there appears the
“diamond” operator that allows the memory typing to extend. Unwinding
its definition, we find that it is basically an existential quantifier. One
way of reading the unsound universal generalization rule is in terms of
manipulating formulae: it says that a universal quantifier can be “pushed
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inside” the definition of expression typing. This works as long as all the
elements of the definition commute with universal quantifiers. However,
this existential quantifier blocks the universal quantifier from traveling
inward. It is not sound in general to push a universal quantifier inside
an existential quantifier. From the hypothesis, one knows that for each τ
there exists some sound way to extend the memory typing, but you need
the stronger fact that there is some way to extend the memory typing that
is sound for every type τ. That is, the memory type extension must be
uniformly chosen.

The counterexamples regarding unrestricted universal generalization
attack exactly the issue raised by this quantifier inversion. They always
involve setting up a reference cell with a polymorphic type and using the
same reference cell at two distinct types. This makes it so that there is no
uniform choice that can be made about the cell’s typing and unsoundness
follows.

With this understanding, it becomes easy to see why the value restriction
works. By only considering values, we can discharge the recursive clause
of expression typing via contradiction. This avoids the need to do unsound
quantifier manipulations and allows the proof to go through. More
complicated systems, such as Tofte’s imperative typing discipline, essentially
require that a term not allocate any new references with free variables for
that term to be polymorphic. This restriction ensures that a uniform choice
can be made about how to extend store typings.
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Chapter 37

Higher-order Hoare logic

In an ordinary Hoare logic we have first-order assertions, and we may also
have quantifiers over first-order values. For more expressive specification
of programs in more expressive languages—recursive types, recursive
predicates, function-pointer specifications, objects—we want higher-order
features in our program logic. Such higher-order features can be difficult
to construct models for, and we do want models so that we can prove
soundness of the program logic.

We will make use of indirection theory’s concept of an approximation or
aging operator ◃P, pronounced “later P”. We define x |= ◃P if, whenever
age+(x , x ′) then x ′ |= P. Clearly, ◃P is a more approximate predicate than
P, since it looks at elements that are less informative (and if level(x) = 0,
then ◃P is simply true).

Hoare-logic assertions operate on states containing local variables,
memories, function-pointers, and mutex locks. But only some of these com-
ponents of the state are associated with assertions or predicates: namely,
the function-pointers and mutex locks. It is only these components that
are affected by aging: the associated assertions become more approximate.
Meanwhile, aging does not alter “ordinary” state components such as
integer and pointer values stored in local variables and memory.

WE BEGIN A LOGIC OF AGEABLE PREDICATES with the entailment operator ⊢,
pronounced derives:
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Definition derives {A} {̀ageable A} (P Q:pred A) := ∀a:A, P a →Q a.

Notation "P ’|--’ Q" := (derives P Q) (at level 80, no associativity).

Here are some very generic lemmas that follow from the definition of
derives:1

equiv_eq
P ⊢Q Q ⊢ P

P =Q
derives_cut

P ⊢Q Q ⊢ R

P ⊢ R

Even before we populate the logic with “interesting” operators, we can
write down the basic connectives such as true, false, and, or, implication.

Program Definition TT {A} {̀ageable A}: pred A := fun a:A ⇒ True.
Next Obligation. split; auto. Qed.

Program Definition FF {A} {̀ageable A}: pred A := fun a:A ⇒ False.
Next Obligation. split; auto. Qed.

Program Definition orp {A} {̀ageable A} (P Q:pred A) : pred A :=
fun a:A ⇒ P a ∨ Q a.

Next Obligation. ... Qed.

Program Definition andp {A} {̀ageable A} (P Q:pred A) : pred A :=
fun a:A ⇒ P a ∧ Q a.

Next Obligation. ... Qed.

Definition necR {A} {̀ageable A} : relation A := clos-refl-trans A age.

Program Definition imp {A} {̀ageable A} (P Q:pred A) : pred A :=
fun a:A ⇒ ∀a’:A, necR a a’ →P a’ →Q a’.

We use Coq’s Program Definition here, because the left-hand side of
each := is supposed to be a pred A, that is, a package containing a
function A →Prop and a proof that the function is hereditary; but on the

1We can write P = Q for the equivalence of assertions because we use Leibniz equality
(the axiom of extensionality).
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right-hand side of each := we write down only the function. The job of
Program Definition is to let us write tactical proof-scripts of the missing
Obligations, and then it builds the package for us.

The true (TT) and false (FF) predicates are naturally invariant under
aging, as are andp and orp. But a naive definition of implication would not
be. We define the relation “necessary” (necR) that is the reflexive-transitive
closure of the age relation, and force imp to be closed under that relation.

Now we add notation for these operators:

Infix "||" := orp (at level 50, left associativity) : pred.
Infix "&&" := andp (at level 40, left associativity) : pred.
Notation "P ’-->’ Q" := (imp P Q) (at level 55, right associativity): pred.
Notation "P ’<-->’ Q" := (andp (imp P Q) (imp Q P))

(at level 57, no associativity) : pred.

One can prove the usual inference lemmas on the propositional connectives;
there is no need to show more than a couple of examples here:

modus_ponens
P && (P →Q) ⊢Q

andp_right
X ⊢ P X ⊢Q

X ⊢ P &&Q

OUR LOGIC IS modal, in that the “later” operator ◃ is a mode, and there will
be other modes as well. In fact, there is a whole system of modalities: any
relation that commutes with age can form a modality. That is, a modality is
a package of a relation plus a proof that it commutes with age.

Definition valid-rel {A} {̀ageable A} (R:relation A) : Prop :=
commut A age R ∧ commut A R age.

Definition modality {A} {̀ageable A} := sig valid-rel.

Definition app-mode {A} {̀ageable A} (m:modality) : A →A →Prop :=
proj1-sig m.

Definition mode-valid {A} {̀ageable A} (m:modality) := proj2-sig m.
Global Opaque modality.
Coercion app-mode : modality >-> Funclass.
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Program Definition box {A} {̀ageable A}(M:modality)(P:pred A): pred A
:= fun a:A ⇒ ∀a’, M a a’ →P a’.

We define modality over ageable types, not just any type that happens
to have an age relation, because we want to ensure that age follows the
laws of the ageable class. The coercion app_mode allows us to elide the
projection from the modality package. Finally, for any modality M , we
have a modal operator �M such that x |= �M(P) whenever, in all worlds x ′

reachable from P using the app_mode(M) relation, the assertion P holds.
The relation laterR, which is just the transitive closure of the age

relation, (obviously) commutes with age, so it can form a modality that we
call laterM:

Definition laterR {A} {EQ: Equiv A} {̀Age A} : relation A :=
clos-trans A age.

Lemma valid-rel-later {A} {̀ageable A} : valid-rel laterR.

Definition laterM {A} {̀ageable A} : modality :=
exist - laterR valid-rel-later.

Notation " ’|>’ e" := (box laterM e) (at level 30, right associativity): pred.

In fact, necR also commutes with age and therefore forms a modality, but
we do not need an explicit operator for it, because every assertion would be
invariant under the application of this operator. Also, age commutes with
age, therefore forms a modality; but �ageM turns out to be equivalent to
�laterM, so the ageM modality adds nothing new to our system.

We write ◃P, or in Coq the notation |> P, for the mode “later P”.

THE MODAL OPERATORS BUILT FROM box behave as they should in a modal
logic, satisfying axioms such as these:

axiomK
�M(P →Q) ⊢�M P → �MQ

box_positive
P ⊢Q

�M P ⊢�MQ

box_and
�M(P &&Q) = �M P && �MQ

box_or
�M(P ∥Q) = �M P ∥ �MQ
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Since ◃ is just �laterM, these rules all apply to the “later” operator. In
addition, there are some rules specifically about ◃ itself.

now_later
P ⊢ ◃P

later_
commute �M ◃ P = ◃�M P

loeb
◃P ⊢ P
⊢ P

THE LOEB RULE2 is the most important thing about the ◃ operator. It is a rule
for induction over recursive types. We use it in Chapters 36, 19, and 39.

EXISTENTIAL AND UNIVERSAL QUANTIFIERS are modeled in the ageable Hoare
logic almost exactly as they were in the ageless logic of Chapter 8. As
before, we use the variable-binding machinery of the enclosing logical
framework to implement binding in our embedded logic.

Program Definition allp{A} {̀ageable A}{B: Type}(f: B→pred A): pred A
:= fun a ⇒ ∀b, f b a.

Next Obligation. ... Qed.

Program Definition exp{A} {̀ageable A}{B: Type}(f: B→pred A): pred A
:= fun a ⇒ ∃b, f b a.

Next Obligation. ... Qed.

Notation " ’ALL’ x ’:’ T ’,’ P " := (allp (fun x:T ⇒ P%pred))
(at level 65, x at level 99) : pred.

Notation " ’EX’ x ’:’ T ’,’ P " := (exp (fun x:T ⇒ P%pred))
(at level 65, x at level 99) : pred.

Also as before, we define a prop operator for embedding Coq proposi-
tions into our assertion language:

Program Definition prop {A} {̀ageable A}(P: Prop): pred A :=
(fun -⇒ P).

Next Obligation. repeat intro. intuition. Qed.
Notation "’!!’ e" := (prop e) (at level 25) : pred.

2Martin H. Löb, 1921–2006, proved Löb’s theorem in 1955. We use ◃P meaning “ap-
proximately P”; Löb used Bew(#P) meaning “the formula with Gödel number #P is prov-
able.”
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SO FAR WE HAVE THE BEGINNINGS of Hoare logic that is higher-order in two
distinct ways: The existential and universal quantifiers are impredicative
higher-order; and assertions can predicate over assertions. Let’s take these
one at a time.

(1) First-order logic allows quantification only over base types such as
the integers. Higher-order logic allows quantification over predicates, for
example,3

Q(x : nat) = ∀P : (nat→ Prop). P(x)∨ P(x + 1).

A predicative higher-order logic stratifies the predicates, with base
(quantifier-free) formulas at level 0, and formulas at level n + 1 can
quantify only over predicates of level n or less. An impredicative logic
does not stratify, so that any quantifier can be instantiated with any other
predicate of the right type, regardless of its internal quantification.

The semantics of predicative logics are often easier to model, but for
reasoning about real programming languages (such as the closures of
functional languages or the instance variables of object-oriented languages)
we need impredicative logics [82, §2.2]. The quantification in our Verified
Software Toolchain is the more powerful kind, impredicative.

In fact, even the “ageless” separation logic of Chapter 8 can quantify at
higher types. But that quantification becomes much more interesting and
powerful when combined with indirection, that is—

(2) In a language with function pointers (or method-containing objects or
higher-order functions), we would like to specify a function-pointer in an
assertion by giving its pre- and postconditions (or, similarly, its type). For
example, if f is a function-pointer to any of several functions that all return
even numbers when passed odd numbers, then we can write approximately
the following Hoare triple:

{ f : {odd}{even} ∧ x = 2y} z := f (x + 1) {∃i. z = 2i}
3The predicate Q is not meant to be useful, as of course it is always false.
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where f : {odd}{even} is a function specification with precondition {odd}
and {even}. Function specifications can and should be more expressive than
the sketch shown here; see Chapters 18 and 24.

When an assertion R = { f : {P}{Q}} can characterize the bindings of
other assertions P and Q to an address f , paradoxes can appear if we are
not careful, especially in the presence of recursive functions, and when
a pointer to f can be passed as an argument to function f . Here the
step-indexing power of indirection theory is really useful; Chapter 39 shows
how to construct models of higher-order program logics from the primitives
of indirection theory.
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Chapter 38

Higher-order separation logic

To our higher-order Hoare logic, we can add the operators (such as ∗)
of separation logic. We are working here in the semantic framework
(separation algebras), so when we write the notation P ∧Q we mean that
P and Q are (ageable) predicates over an element type A. A type-class
instance {agA: ageable A} is implicit in this formulation.

For separation P ∗ Q there must also be (implicitly) a join relation
{JA: Join A}. When a type has both a separation algebra and an age
relation, these must interact according to the axioms of the Age_alg class:

Class Age-alg (A:Type) {JOIN: Join A}{as-age : ageable A} := mkAge {
age1-join : ∀x {y z x’}, join x y z →age x x’ →

∃y’:A, ∃ z’:A, join x’ y’ z’ ∧ age y y’ ∧ age z z’
; age1-join2 : ∀x {y z z’}, join x y z →age z z’ →

∃x’:A, ∃y’:A, join x’ y’ z’ ∧ age x x’ ∧ age y y’
; unage-join : ∀x {x’ y’ z’}, join x’ y’ z’ →age x x’ →

∃y:A, ∃ z:A, join x y z ∧ age y y’ ∧ age z z’
; unage-join2 : ∀ z {x’ y’ z’}, join x’ y’ z’ →age z z’ →

∃x:A, ∃y:A, join x y z ∧ age x x’ ∧ age y y’
}.

The axioms of Age_alg explain that the age relation must commute with
the join relation in all the ways shown.

So, in order to prove that P ∗Q is a well-behaved predicate, i.e. that it
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is preserved under aging, we require also that join commutes with age as
specified by the Age_alg axioms. Thus we have,

Program Definition sepcon
{A}{JA: Join A}{PA: Perm_alg A}{AG: ageable A}{XA: Age_alg A}
(p q:pred A) : pred A :=

fun x:A ⇒ ∃y:A, ∃ z:A, join y z x ∧ p y ∧ q z.
Next Obligation.

destruct H0 as [y [z [H0 [? ?]]]].
destruct (age1-join2 - H0 H) as [w [v [? [? ?]]]].
exists w; exists v; split; auto.
split.
apply pred-hereditary with y; auto.
apply pred-hereditary with z; auto.

Qed.

Notation "P ’∗’ Q" := (sepcon P Q) : pred.

This is a Program Definition, not just a Definition, because there is the
proof obligation that P ∗Q is hereditary over the age relation. The proof
script uses age1_join2 (from Age_alg) and pred_hereditary (from ageable).

Lemmas about the operators of separation logic will need all of these
typeclass-instance parameters, and in addition will typically need the
axioms of permission algebras or separation algebras. For example, the
associativity of ∗ relies on the associativity of join, which is found in
Perm_alg:

Lemma sepcon-assoc {A}{JA: Join A}{PA: Perm_alg A}{AG: ageable A}{XA: Age_alg A}:
∀ (P Q R:pred A), (P ∗ Q) ∗ R = P ∗ (Q ∗ R)

Proof. ... Qed.

Although in this text we will present many of these lemmas in a more
“mathematical” style,

sepcon_assoc
(P ∗Q) ∗ R= P ∗ (Q ∗ R)

sepcon_comm
P ∗Q =Q ∗ P

one must remember that they are typeclass-parametrized out the wazoo,1

1to use a technical term
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which will cause Coq proof-scripts to fail if the required typeclass instances
do not exist.

As in the first-order case (Chapter 8), emp is sensible only in cancellative
separation algebras: an element satisfies emp iff it is an identity.

Program Definition emp
{A}{JA: Join A}{PA: Perm_alg A}{AG: ageable A}{XA: Age_alg A}

: pred A := identity.
Next Obligation. ... Qed.

The Age_alg requirement that aging must interact gracefully with
separation allow us to prove these rules:

later_sepcon
◃(P ∗Q) = ◃P ∗ ◃Q

later_wand
◃(P −∗Q) = (◃P)−∗ (◃Q)

THE CONSEQUENCES OF COMBINING indirection theory (ageable) with separa-
tion (Join, Perm-alg, etc.) follow straightfowardly from the commutation
axioms (Age_alg). There are a few small surprises, as we will now explain.

WE CAN DEFINE MAGIC WANDS (universal and existential) in ageable sepa-
ration logics. We find that wand needs explicit quantification over future
worlds x ′, while ewand has a definition that is practically identical to the
first-order case.

Program Definition wand {A}{JA: Join A}{AG: ageable A} (p q:pred A) : pred A :=
fun x ⇒ ∀x’ y z, necR x x’ → join x’ y z →p y →q z.

Program Definition ewand
{A}{JA: Join A}{PA: Perm_alg A}{AG: ageable A}{XA: Age_alg A}

(P Q: pred A) : pred A :=
fun w ⇒ ∃w1, ∃w2, join w1 w w2 ∧ P w1 ∧ Q w2.

EACH UNIT ELEMENT of an ASA, because it is an element of an ageable type,
has a level; and elements with different levels are not equal. Thus, an ASA
is naturally a multi-unit separation algebra.
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PRODUCT OPERATORS. Because every ageable separation algebra (ASA) is
also a separation algebra (SA), one can apply the SA operators such as
Cartesian product (see Chapter 7). But often one wants the result to be
an ASA, not just an SA. So we need some operators on ASAs. Age_prod
gives the cartesian product ASA of a SA with an ASA: the age operator
can applies to the ASA component while leaving the SA component alone.
We have not found the product of two ASAs (with possibly different ages)
useful.

THE TRIVIAL ASA. Sometimes we have separation-logic formulas that are not
predicates on particular elements, but behave more like modal propositions
that are true on all elements of a certain level. To fit these into our
framework, we treat them as assertions over the Triv ASA whose elements
have no more to them than a level. Here, the join relation is join_equiv,
meaning that each element joins only with itself (and is a unit for itself);
the age relation is decrement; and the level of an element is itself.

THE LOGIC OF AGEABLE PREDICATES was presented in Chapter 15 (the
Indir and SepIndir classes) and Chapter 16 (the RecIndir class). The file
msl/alg_seplog.v demonstrates that ageable separation algebras provide
a model for this logic. The axioms of Indir are the Löb rule, plus the
commutation of ◃later with universal and existential quantifiers and with
implication; these laws are proved in msl/predicates_hered.v. The axioms
of StepIndir are the commutation of ◃ with ∗,−∗,−◦; these are proved in
msl/predicates_sl.v. The axioms of RecIndir concern the fash operator,
written #, and its interaction with other operators; these are proved
in msl/subtypes.v. Finally, the SepRec class (page 103) has one axiom
showing how the unfash operator distributes over separation; this is proved
in msl/subtypes_sl.v. In addition, such a model must include a Triv class
(page 100) and the fash_triv axiom (that #P = P for all P in Triv); these
are in msl/alg_seplog.v.

THE SPECIAL POWER OF AGEABLE SEPARATION ALGEBRAS is that they can build
models of quasi-self-referential resource maps for modeling higher-order
separation logics. We will demonstrate this in the next chapter.
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Chapter 39

Semantic models of
predicates in the heap

Our Hoare logic of separation is quasicircular in two ways. (1) An assertion
R can characterize the binding of an address to another assertion P, or
even to the same assertion R (using a recursively defined predicate). (2) In
proving the correctness of (mutually) recursive functions, one can assume
the specifications of functions f , g in the proof that function-bodies f , g
meet their specifications.

HOW DOES ONE BUILD SEMANTIC MODELS FOR SUCH LOGICS? In Part VI we will
present the semantic model for the Verifiable C logic, but in this chapter
we present the basic ideas in a much simpler setting. Recall the tiny
continuation-language with first-class functions, and its separation logic,
from Chapter 18. That Hoare judgment had rules such as,

semax_assign
∆ ⊢type y x ,∆;Γ ⊢ {P}c

∆;Γ ⊢ {◃P[y/x]} x := y; c

semax_func_cons

x ̸∈map fst F⃗ no_dups( y⃗) | y⃗|= |formals(S)|
y⃗;Γ ⊢ {call S y⃗}c Γ ⊢func F⃗ : Γ′

Γ ⊢func




x , y⃗ .c
�

::F⃗ : 〈x , S〉 ::Γ′

for the assignment statement and for a function-body, respectively.
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The semax-func-cons rule concludes that the function-body



x , y⃗ .c
�

satisfies the specification 〈x , S〉. The main premise is that y⃗;Γ ⊢ {call S y⃗}c,
that is, that S( y⃗) is an adequate precondition for the safety of the function-
body, command c. Let us examine that premise more closely:

y⃗;Γ ⊢ {call S y⃗}c

On the left-hand side we have y⃗ , saying that the formal parameters y⃗ are
available for c to use; and we have Γ, containing function-specifications for
calls to global functions. The function-spec S is 〈 x⃗ , P〉 with formals x⃗ and
precondition P : env→ pred(rmap). On the right hand side, the assertion
call S y⃗ applies P to an environment formed by binding y⃗ to x⃗ , producing
a precondition for the function-body c.

We use the power of indirection theory to build a semantic model,
and prove soundness, for such Hoare judgments. First we will construct a
semantic model of resource maps (rmap), and define assertions as ageable
predicates on rmap. Then we construct a semantic model for the Hoare
judgment, y⃗;Γ ⊢ {P}c. (Recall that in a continuation-based language, there
are no postconditions, so we have Hoare “doubles” instead of “triples.”)

THE THEORY OF RESOURCE MAPS, Module Type RMAPS (Figures 39.1–39.3),
has a model constructed in the file msl/rmaps.v. RMAPS is parameterized
over an AV structure, which defines an address type and a kind type. Just as
a memory maps addresses to values, an rmap maps addresses to resources
of different kinds. In a typical application, one of the kinds will be VAL(v)
with a value v (see examples/cont/model.v). But there can be other kinds
as well, for function-specifications attached to function-pointers, for locks
(semaphores), and so on.

Figure 39.1 shows that the theory RMAPS concerns the type rmap, over
which there is a cancellative ageable separation algebra with disjointness.
There is also a type resource, with the empty resource NO, a spatial
resource YES, and a PURE resource. There is a disjoint cancellative
ageable separation separation algebra over resource, such that NO is a unit
for both NO and YES, and every PURE resource is a unit for itself. Both
YES and PURE resources carry a kind and some predicates. In a typical
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Module Type RMAPS.
Declare Module AV:ADR-VAL. Import AV.

Parameter rmap : Type.
Axiom Join-rmap: Join rmap. Axiom Perm-rmap: Perm-alg rmap.
Axiom Sep-rmap: Sep-alg rmap. Axiom Canc-rmap: Canc-alg rmap.
Axiom Disj-rmap: Disj-alg rmap.
Axiom ag-rmap: ageable rmap. Axiom Age-rmap: Age-alg rmap.

Inductive preds : Type :=
SomeP : ∀A : list Type, (listprod A →pred rmap) →preds.

Definition NoneP := SomeP ((Void:Type)::nil) (fun -⇒ FF).

Inductive resource : Type := NO : resource
| YES: pshare →kind →preds → resource
| PURE: kind →preds → resource.

Inductive res-join : resource → resource → resource →Prop :=
| res-join-NO1 : res-join NO NO NO
| res-join-NO2 : ∀π k p, res-join (YES π k p) NO (YES π k p)
| res-join-NO3 : ∀π k p, res-join NO (YES π k p) (YES π k p)
| res-join-YES : ∀ (π1 π2 π3: pshare) k p, join π1 π2 π3 →

res-join (YES π1 k p) (YES π2 k p) (YES π3 k p)
| res-join-PURE : ∀k p, res-join (PURE k p) (PURE k p) (PURE k p).

Instance Join-resource: Join resource := res-join.
Axiom Perm-resource: Perm-alg resource.
Axiom Sep-resource: Sep-alg resource.
Axiom Canc-resource: Canc-alg resource.
Axiom Disj-resource: Disj-alg resource.

Figure 39.1: Module Type RMAPS, part 1
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Definition preds-fmap (f:pred rmap →pred rmap) (x:preds) : preds :=
match x with SomeP A Q ⇒ SomeP A (f oo Q) end.

Definition resource-fmap (f:pred rmap→pred rmap) (x:resource) :=
match x with NO ⇒ NO

| YES π k p ⇒ YES π k (preds-fmap f p)
| PURE k p ⇒ PURE k (preds-fmap f p)

end.

Definition valid(m: address→ resource):Prop:= AV.valid(res-option oo m).
Definition rmap’ := sig valid.

Definition rmap-fmap (f: pred rmap →pred rmap) (x:rmap’) : rmap’ :=
match x with exist m H ⇒ exist (fun m ⇒ valid m)

(resource-fmap f oo m) (valid-res-map f m H) end.
Axiom rmap-fmap-id : rmap-fmap (id -) = id rmap’.
Axiom rmap-fmap-comp : ∀ f g,

rmap-fmap g oo rmap-fmap f = rmap-fmap (g oo f).

Parameter squash : (nat ∗ rmap’) → rmap.
Parameter unsquash : rmap → (nat ∗ rmap’).

Axiom rmap-level-eq: @level rmap -= fun x ⇒ fst (unsquash x).
Axiom rmap-age1-eq: @age1 - -=

fun k ⇒ match unsquash k with
| (O,-) ⇒ None
| (S n,x) ⇒ Some (squash (n,x))
end.

Definition resource-at (φ:rmap) : address → resource :=
proj1-sig (snd (unsquash φ)).

Infix "@" := resource-at (at level 50, no associativity).

Figure 39.2: Module Type RMAPS, part 2
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Instance Join-nat-rmap’: Join (nat ∗ rmap’) :=
Join-prod -(Join-equiv nat) - -.

Axiom join-unsquash : ∀φ1 φ2 φ3,
join φ1 φ2 φ3↔
join (unsquash φ1) (unsquash φ2) (unsquash φ3).

Definition rmap-unage (k:rmap) : rmap :=
match unsquash k with (n,x) ⇒ squash (S n, x) end.

Program Definition approx (n:nat) (p: pred rmap) : pred rmap :=
fun w ⇒ level w < n ∧ p w.

Next Obligation. ... Qed.

Axiom squash-unsquash : ∀φ, squash (unsquash φ) = φ.
Axiom unsquash-squash : ∀n rm,

unsquash (squash (n,rm)) = (n,rmap-fmap (approx n) rm).
End RMAPS.

Figure 39.3: Module Type RMAPS, part 3

application, the VAL kind will be carried by a YES resource with the trivial
predicates, NoneP. That is, we permit “predicates in the heap” but a VAL
has no interesting predicates.

YES resources separate—that is, YESπ1 k1 p1 ⊕ YESπ2 k2 p2 =
YESπ3 k3 p3 if and only if π1 ⊕ π2 = π3 and k1 = k2 = k3, p1 = p2 = p3.
Since we use YES • (VAL v) NoneP to model the value v in memory,
this rule for ⊕ leads to the expected behavior of memory cells in separation
logic. On the other hand, PURE resources join only with themselves, and
do not obey the rule for separation. Since we use PURE(FUN y⃗)P to model
function specifications—where y⃗ are the formal parameters and P is the
function precondition—this rule for ⊕ leads to the expected behavior of
“timeless, eternal” function specifications in Hoare logic. (If we wanted
run-time code generation, we would have to use YES for FUN resources,
which would mean more bookkeeping for user-level proofs.)
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Predicates in the heap are modeled by the inductive datatype preds
with a single constructor SomeP. In some applications we want a simple
predicate on rmaps, of type pred rmap. In other applications, we want
the predicate to have more arguments: For the cont language, a function-
precondition predicate must also see the list of actual-parameter values.
In our Verifiable C program logic, in addition to the actual parameters the
precondition predicate must also see the extra “specification variables” that
relate the precondition to the postcondition—for example, the variables
π,σ in reverse-spec on page 198. Therefore SomeP is a dependent product:
the first argument A is a list of the Types of the extra parameters, and the
second argument has type listprod A →pred rmap, where listprod simply
makes the cartesian product type of all the elements of A.

When no interesting predicates are desired, one can simply use
A=(Void:Type)::nil and set the predicate itself to False; this is what
the definition NoneP does.

FIGURE 39.2 EXPLAINS THAT, given a predicate-transformer f , the function
resource_fmap composes f with the predicates in a resource. We define
rmap′: a function from address to resource, packaged with a proof that the
function is valid according to the AV structure.1 The resource_fmap function
must preserve identities and composition, as explained at page 300.

Figure 39.2 continues with the squash and unsquash functions, ex-
plained at page 298. We define the resource_at function, which takes an
rmap φ and an address l and looks up the (approximate) value at l in φ.
We use @ as infix notation for resource_at.

Figure 39.3 explains how join interacts with unsquash, and how squash
and unsquash form a section-retraction (page 298).

1The notion of AV.valid is a digression from our main story here: it allows the AV
structure to impose some structural conditions on how resources may be joined together.
In our concurrent separation logic for C, we ensure that a 4-byte word used as a semaphore
is not split apart by the join relation. In our cont-language example, AV.valid is trivially
true. In general, AV.valid must depend only on structural properties derivable from the
permission-shares and the kinds, not from the levels or predicates of an rmap. Thus in Fig-
ure 39.2 the valid predicate is formed from AV.valid(res-option oo m), where res-option
extracts only the share and kind from the resource m(l).
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THE MODEL FOR RMAPS is built using indirection theory. Since the “para-
dox” is that the type rmap contains instances of the type pred which is
(approximately) a predicate on rmap, we avoid the paradox by first making
a stratified model (StratModel in file msl/rmaps.v) in which the entire
construction is parameterized by an abstract type PRED instead of the
circular type pred. Then we use the stratified model as the parameter to
the knot construction (page 311). That is, in module Rmaps we use apply
KnotHered module of indirection theory to our stratified model, and the
result is the rmap type (with its axioms). We lift the squash-unsquash
proofs from the “raw” knot to the rmap type. Then, from the properties of
rmap, we derive the axioms of the resource type, and prove that resource
maps form a separation algebra.

From the RMAPS axioms, we can derive many useful lemmas about
resource maps, some of which are shown in Figure 40.1 and Figure 40.2.2

WE DO NOT BUILD OUR PROGRAM LOGIC directly on program states. We relate
program states to abstract environments and resource maps, partly for
reasons explained on page 58 and mainly because the rmaps contain richer
specification information than is available in the concrete states. That is:

Concrete state Abstract state
Functions p: program —
Func. Specifications Γ: funspecs φ: rmap (PURE(FUN) resources)
Local variables σ′: locals σ: env
Memory h: heap φ: rmap (YES(VAL) resources)
Continuation k: control k: control
State (σ′, h, k) k,σ,φ

The assertion funassert Γ: pred rmap is a predicate on a resource-map
φ. It says that every address with a specification in Γ is also claimed as a
FUN resource in φ with the same predicate—and vice versa, every FUN in
φ is also in Γ.

2 Compared to the RMAPS presented in this chapter, the C light separation logic uses
a slightly different version of RMAPS in which a NO resource carries a permission share.
This is to model retainer shares (page 365). Thus where in this chapter we would write
NO, in Figures 40.1 and 40.2 we write NO◦, with an empty share ◦.
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A PROGRAM STATE IS safe IF, in the Kleene-closure of the small-step relation,
it cannot reach a stuck state (a nonhalted state with no successor). In our
step-indexed reasoning, make a slightly smaller claim: a program is safe for
N steps if it cannot reach a stuck state within N small-steps:

Definition safeN (p: program) (sk: state) (n: nat) : Prop :=
∃ sk’, stepN p sk n = Some sk’.

We can lift this into our assertion logic as a predicate on abstract states:

Program Definition assert-safe
(p: program) (V : varset) (k: control) (σ: env): pred rmap :=

fun φ ⇒ ∀σ′ h,
varcompat V σ′ → locals2env σ′ = σ →
cohere h φ → safeN p (σ′, h, k) (level φ).

Next Obligation. (∗ prove it is hereditary ∗) Qed.

That is, consider a concrete state (σ′, h, k) with local variables σ′, heap
h, continuation k. Suppose the resource map φ coheres with h, meaning
that whenever h(x) = Some v then φ@x = YES • (VAL, v)NoneP, and vice
versa. Suppose σ′ corresponds to environment σ, and all variables in V are
mapped in σ′. Then it is safe to execute n steps from the state (σ′, h, k),
where n is the approximation-level of φ.

A PREDICATE P GUARDS A CONTINUATION k whenever: from any state that
satisfies P, it is safe to execute k. Chapter 4 introduced this concept. Here
we write it in our indirection-theory logic.

Definition guard (p: program) (Γ: funspecs) (V : varset)
(P : assert) (k: control) : pred nat :=

ALL σ:env, P σ && funassert Γ assert-safe p V k σ.

That is, in program p with specification-context Γ at control-point k, given
any σ,φ such that Pσφ and funassertΓφ, then the state k,σ,φ is safe for
level(φ) steps. The resource-map φ is implicitly quantified by the definition
of (see Chapter 16).

NEXT WE BUILD THE MODEL OF THE HOARE JUDGMENT, V ;Γ ⊢ {P}c, in
examples/cont/model.v. Informally it means, “assuming all the function-
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specifications in Γ can be believed, then P serves as an adequate precon-
dition for the safety of executing the command c.” (The variables V are
permitted to be free in c and in P.) But the meaning of a specification
( f , [ y⃗]P) in Γ is that (Γ; y⃗; P) serves as an adequate precondition for exe-
cuting f . That is, the semax judgment is defined recursively. To make such
a (contravariant) recursive definition work, and we use the contravariant
recursion operator HORec.

Parameter HORec: ∀{A}{NA: NatDed A}{IA: Indir A}{RA: RecIndir A}
(X: Type} (F: (X→A)→ (X→A)), X →A.

Parameter HORec : ∀{A} {Ag: ageable A}
{X: Type} (F: (X →pred A) → (X →pred A)), X →pred A.

The first of these definitions is the logical (%logic) view of HORec, de-
scribed in Chapter 17 (and msl/alg_seplog.v). The second is the semantic
(%pred) view of the same operator (in msl/predicates_rec.v). During the
construction of the semax judgment, we work entirely at the semantic level;
at the very end, we abstract to obtain the logical view.

The semax judgment takes parameters Γ, V, P; this triple we will call a
semaxArg and it will instantiate the parameter X of HORec.

Record semaxArg :Type :=
SemaxArg {sa-vars: varset; sa-P: env →pred rmap; sa-c: control}.

The semax judgment V ;Γ ⊢ {P}c is akin to a proposition, a nullary
predicate. Thus, where HORec demands a pred(A) on some ageable type A,
we use the most trivial A possible: nat. The natural number n serves as the
level (approximation index).

Definition semax- (semax: semaxArg→pred nat)(a: semaxArg): pred nat :=
match a with SemaxArg V P c ⇒

ALL p: program, ALL Γ: funspecs,
believe-all semax Γ p Γ −→guard p Γ V P c

end.

This says, let semax be some hypothetical model of the Hoare judgment.
Then semax-(semax) is a one-level-more-accurate model: Given a program
p and its specification Γ, suppose we can believe all the claims that semax
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makes—that all the functions in p satisfy their specifications in Γ. Then it
will be the case that (V ;Γ; P) guards the safety of executing c.

Definition believe (semax: semaxArg →pred nat)
(p: program) (( y⃗ , P): funspec) ( f : adr) : pred nat :=

EX ( x⃗ , k): list var ∗ control,
!!(table-get p f = Some k ∧ | x⃗ |= | y⃗|) &&
◃semax (SemaxArg x⃗ (fun s ⇒ call ( y⃗ , P) (map s x⃗)) k).

Definition believe-all (semax: semaxArg →pred nat) (Γ: funspecs)
(p: program) (Γ′: funspecs) : pred nat :=

ALL v:adr, ALL x⃗ : list var, ALL P: env→pred rmap,
!! (table-get Γ′ v = Some ( x⃗ ,P)) −→
believe semax p ( x⃗ , fun s ⇒ P s && funassert Γ) v.

Given a (hypothetical) semax, to believe that the function at address
f satisfies the specification ( y⃗ , P) means that whenever P is satisfied
in some state, it is safe to call the function body k. (The predicate
call ( y⃗ , P) (map s x⃗) adjusts P by substituting actuals for formals.)

To believe that all functions in Γ′ satisfy their specifications—believe-all—
is to say that whenever an address v has a specification ( y⃗ , P) in Γ′, then
we can believe that specification relative to Γ. Typically we can expect Γ
to be all the function specifications of a whole program, and Γ′ to be some
subset of those specifications, representing the ones proved correct “so far;”
see page 122.

We prove that the function semax- is contractive, then use HORec to
find a fixed point. What it makes it contractive is the judicious use of ◃later
in the definition of believe. We can afford the ◃ operator at just that point,
because performing a function-call uses up one exection step.

NOW THAT WE HAVE A MODEL of the Hoare judgment, we use it to prove
correctness of all the inference rules given in Figure 18.1 and on page 122.
Each of these rules is derived as a Lemma in Coq, following from the
definition of semax.
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In addition, we prove the whole-program soundness theorem, which also
follows from the definitions:

Definition program-proved (p: program) :=
∃Γ, semax-func Γ p Γ ∧

table-get Γ 0 = Some (0::nil, fun σ ⇒ allocpool (eval (Var 0) σ)).

Theorem semax-sound:
∀ p, program-proved p →∀n, run p n <> None.

The definition program-proved corresponds precisely to the description on
page 122.

The proof of every inference rule for semax, and for this soundness
theorem, can be found in examples/cont/model.v.
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Part VI

Semantic model and soundness of
Verifiable C

SYNOPSIS: To prove soundness of the Verifiable C separation logic, we first give
a model of mpred as pred(rmap), that is, predicates on resource maps. We
give a model for permission-shares using trees of booleans. We augment the C
light operational semantics with juicy memories that keep track of resources
as well as “dry” values. We give a semantic model of the Hoare judgment,
using the continuation-passing notion of “guards.” We use this semantic model
to prove all the Hoare rules. Our model and proofs have a modular structure,
so that they can be ported to other programming languages (especially in the
CompCert family).
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Chapter 40

Separation algebra for CompCert

In building a Hoare logic over a language specified by an operational
semantics, we can view the assertions of the Hoare logic as predicates on
the states of the operational semantics. But we do this in two layers: first,
relate the operational states into semantic worlds; then, apply the Hoare
assertions to the worlds. We do this for several reasons: The operational
states may contain information that we want to hide from the Hoare
assertions, particularly control information (program counter, control stack)
that is not supposed to be visible to a Hoare-logic assertion. The semantic
worlds may contain information that we want to hide from the operational
semantics, such as step-indexes, ghost variables, predicates in the heap
(for modeling first-class functions or mutex locks), and permission-shares.
For convenience in reasoning, we require Liebniz equality on worlds—
equivalent worlds should be equal—but operational states do not generally
satisfy Liebniz equality. In our two different toy examples (Chapter 9 and
Chapter 39) we have separated operational states from semantic worlds,
and we do so for the VST Separation Logic for CompCert C light.

Some components of the world are subject to separating conjunction
(∗), and others are not. Generally, to “heap” or “memory” or any other
addressable component of the world, we apply separation in order to reason
about antialiasing. Nonaddressable local variables (and the addresses of
addressable local variables) do not require separation, because there is no
aliasing to worry about.
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THE worlds SEEN BY SEPARATION-LOGIC PREDICATES INCLUDE,

ge Global environment, mapping identifiers to addresses of global (extern)
variables and functions. This is extracted from the genv of the
operational state, but omits the mapping of function-addresses to
function-bodies.

ve Variable environment, mapping identifiers to addresses of addressable
local variables, extracted from the ve of the operational-semantic
state but represented instead as a function satisfying Liebniz equality.
(The index-tree data structure used in the operational semantics does
not have unique representations, so we cannot use the axiom of
extensionality to reason about it, and we do not wish to use setoids.)

te Temp environment, mapping identifiers to values of ordinary local
variables, the conversion of the operational state’s ve to a function.

̸ k The operational semantics’ control contexts are not present in worlds.

̸m Instead of memories, we have,

φ Resource map (of type rmap), giving an enriched view of memory,
including step-indexed predicates in the heap. Also, resource maps
associate a permission-share (see Chapter 11, Chapter 41) with each
address, giving finer distinctions than just “Readable” or “Writable.”

An assertion in our Separation Logic has the form environ → mpred
where the environ contains 〈ge,ve, te〉, and mpred = pred(rmap). That is,
it is a lifted separation logic (Chapter 21) where the underlying separation
logic has abstract formulas (type mpred) which are modeled by predicates
on resource-maps (rmap).

COMPCERT’S MEMORY MODEL HAS A PERMISSION HIERARCHY that is not just
Writable/Readable/None. The permission Freeable is stronger than

Writable, giving permission to deallocate the location. The permission
Nonempty is weaker than Readable but stronger than None, and assures
that no other thread can deallocate the object. In this permission system,
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one thread can hand off a Writable permission to another thread, while
retaining a Nonempty permission that ensures the address stays allocated.

On the other hand, CompCert’s Readable permission is not expressive
enough to model the kind of permission accounting described in Chapter 11
and Chapter 41. This is not a bug in CompCert’s specification, since
CompCert’s permission model is expressive enough for reasoning about
compiler correctness—even correctness in compiling sequential threads for
concurrent shared-memoryshared memory execution. The inexpressiveness
is relevant to reasoning about source programs.

Our program logic for reasoning about source programs has a finer-
grain permission-share model than does CompCert, and we relate it to
the discrete CompCert permission hierarchy. Our full share, written as
Share.top or notated as •, relates to the strongest possible permission,
Freeable. Our empty share, Share.bot or ◦, gives no permission. The left
split of •, that is fst(split(top))=• ◦ models a Nonempty permission. Any
nonempty subshare of • ◦ is called a “retainer,” whose purpose is to retain
an object from being deallocated.

The right split of T , snd(split(top))=◦ •, models the smallest Writable
permission. (“The right share is the write share.”) Any share that has a
nonempty overlap with ◦ • is readable, and any share that wholly contains
◦ • is writable. Any permission share π can be broken into two disjoint
pieces, a retainer share (π⊓ • ◦) and a read/write share (π⊓ ◦ •).

Any nonempty share, even if just a retainer share, permits pointer-
equality tests on addresses. Requiring a nonempty share avoids the kind of
undefined pointer comparisons described on page 249.

A RESOURCE-MAP φ has at every address, a resource. Our resource maps
for CompCert are similar to those in the higher-order case study of
Chapter 39. The differences are: for addresses, we use the CompCert
notion of block×offset; we associate a retainer-share and an operation-
share with every “YES” resource; we have LOCK resources in addition to
VAL and FUN; and the FUN resources describe functions that return, not
just continuations.

NOπ models an address of which this share has either no permission at all
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(if π= ◦) or at most Nonempty permission (if π ̸= ◦).

YESπrπ (VAL v)NoneP models an address with retainer-share πr and
read/write share π, containing CompCert value v. The positive-share
π cannot be empty—π belongs to the Pos_alg of lifted shares—and if
π = • then this address is Writable, otherwise just Readable. NoneP
means that there are no predicates associated with VAL addresses.

YESπrπ (LK k) (SomeP R) models an address that implements a mutex
lock. The retainer-share is πr. Holding the nonempty share π
permits a thread to (attempt to) acquire the lock. Although a mutex
(semaphore) can be implemented with a single bit, some computers
require a full k-byte word for the compare-and-swap instruction,
hence the parameter k.

The resource invariant of the lock is a separation-logic indirection-
theory predicate R.

YESπrπ (CT i)NoneP is the ith byte of a k-byte mutex lock, 0< i < k.

PURE (FUN sig) (SomeP [A]PQ) represents a function-pointer with pa-
rameter/result type-signature sig, precondition P, and postcondition
Q. The semantics of [A] P Q is discussed in pages 165–167.

Resources form a cancellative separation algebra (Canc_alg) with the
disjointness (Disj_alg) property. The resource NO◦ is the only unit for NO
or YES resources; any PURE resource is a unit for itself.

For example, the rmap 3 1 4 1 5P0 P1 P2 indicates PURE resources
P0, P1, P2 describing the specifications of functions at three different ad-
dresses in the lower part of memory, and five bytes of YES(VAL) resources
containing the values 3,1, 4,1, 5. This can be divided (in many ways) into
subheaps, for example,

( 3 1 5P0 P1 P2 ) ⊕ ( 1 4P0 P1 P2 ) = 3 1 4 1 5P0 P1 P2

where each subheap contains the function specifications.
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The join relation for resources (Join_alg resource) is inductively defined
as:

res_join_NO1
π1⊕π2 = π3

NOπ1 ⊕ NOπ2 = NOπ3

res_join_NO2
π1⊕π2 = π3

NOπ1 ⊕ YESπ2π k p = YESπ3π k p

res_join_NO3
π1⊕π2 = π3

YESπ1π k p ⊕ NOπ2 = YESπ3π k p

res_join_YES
π1⊕π2 = π3 πa⊕πb = πc

YESπ1πa k p ⊕ YESπ2πb k p = YESπ3πc k p

res_join_PURE
PURE k p ⊕ PURE k p = PURE k p

For technical reasons in the construction of concurrent separation logic,
we must not split a k-byte mutex lock into separate pieces. That is, in an
rmap φ1, any resource of the kind YES(LK k) must have all k bytes in φ1,
or none of them. We must not use φ1 ⊕φ2 = φ to separate a YES(CT i)
resource from its base resource YES(LK k). We enforce this structural
constraint relating CT to LK via the notion of AV.valid in the ADR-VAL
module-type.

Since rmap is an instance of indirection theory, there are squash and
unsquash functions satisfying the axioms of indirection theory. (These
axioms are presented in the Module Type RMAPS in veric/rmaps.v.) That
is, the type rmap’ of “unpacked” resource-maps is just the function from
address to resource, restricted to those functions that also satisfy the
structural validity constraint AV.valid described in the previous paragraph.
Then squash packs (and approximates) an rmap’ into an abstract rmap, and
unsquash unpacks.

Definition rmap’ := {m: address → resource | AV.valid (res-option ◦ m)}.
Parameter rmap : Type.
Parameter squash : (nat ∗ rmap’) → rmap.
Parameter unsquash : rmap → (nat ∗ rmap’).
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Along with unsquash comes the notion of level and approxn as defined on
page 302.

As an instance of indirection theory, resource maps are equipped with
an fmap function to apply an arbitrary transformation to every predicate
contained within an rmap (see page 300).

Definition resource-fmap (f:pred rmap →pred rmap) (x:resource): resource
:= match x with

| NO rsh ⇒ NO rsh
| YES rsh sh k p ⇒ YES rsh sh k (preds-fmap f p)
| PURE k p ⇒ PURE k (preds-fmap f p)
end.

Axiom resource-fmap-id : resource-fmap (id -) = id resource.
Axiom resource-fmap-comp :
∀ f g, resource-fmap g ◦ resource-fmap f = resource-fmap (g ◦ f).

Definition rmap-fmap (f: pred rmap →pred rmap) (x:rmap’) : rmap’ :=
... (∗ apply resource-fmap(f) to the resource at each address ∗)

Axiom rmap-fmap-id : rmap-fmap (id -) = id rmap’.
Axiom rmap-fmap-comp :
∀ f g, rmap-fmap g ◦ rmap-fmap f = rmap-fmap (g ◦ f).

The operator resource-at φ l, notated φ@l, looks up a resource at
location l in resource-map φ. It works by unsquashing φ (to extract the
rmap’), then projecting (to extract the address→resource function):

Definition resource-at (phi:rmap) : address → resource :=
proj1-sig (snd (unsquash phi)).

Infix "@" := resource-at (at level 50, no associativity).

From the axioms of indirection theory and resource maps we can prove
many useful lemmas, shown in Figure 40.1.
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approx_p
approxn P ⊢ P

approx_lt
level w < n w |= P

w |= approxn P

approx_ge
level w ≥ n

w ̸|= approxn P
o ageN_level

ageN n φ1 = Someφ2

level φ1 = n + levelφ2

NO_identity
identity(NO◦)

PURE_identity
identity(PURE k P)

identity_NO
identity r

r = NO ∨ ∃k, p. r = PURE k p

age1_resource_at_identity
age φ φ′

identity(φ@l) ↔ identity(φ′@l)

unage1_resource_at_identity
age φ φ′ identity(φ′@l)

identity(φ@l)

make_rmap
valid f ∀l. resource_fmap approxn ( f l) = f l

{φ : rmap | levelφ = n ∧ resource_atφ = f }

approx_oo_approx′
n′ ≥ n

approxn ◦ approxn′ = approxn

approx_oo_approx′′
n′ ≥ n

approxn′ ◦ approxn = approxn

deallocate
valid f valid g ∀l. f l ⊕ gl = φ@l

∃φ1,φ2.φ1⊕φ2 = φ ∧ resource_atφ = f }

unsquash_inj
unsquash x = unsquash y

x = y

rmap_ext
levelφ1 = levelφ2 ∀l. φ1@l = φ2@l

φ1 = phi2

Figure 40.1: Lemmas about resource maps (part 1)
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resource_at_join
φ1⊕φ2 = φ3

φ1@l ⊕φ2@l = φ3@l

resource_at_join2
levelφ1 = levelφ2 = levelφ3 ∀l. φ1@l ⊕φ2@l = φ3@l

φ1⊕φ2 = φ3

resource_at_approx
resource_fmap approxlevelφ (φ@l) = φ@l

necR_resource_at
necR φ φ′ φ@l = resource_fmap approxlevelφ r

φ′@l = resource_fmap approxlevelφ′ r

all_resource_at_identity
∀l. identity(φ@l)

identity φ

YES_join_full
YES • n p⊕ r2 = r3

r2 = NO

preds_fmap_fmap
preds_fmap f (preds_fmap g p) = preds_fmap ( f ◦ g) p

resource_fmap_fmap
resource_fmap f (resource_fmap g p) = resource_fmap ( f ◦ g) p

necR_YES
necRφφ′ φ@l = YESπ k p

φ′@l = YESπ k (preds_fmap (approx(levelφ′)) p)

necR_NO
necRφφ′

φ@l = NOπ ↔ φ′@l = NOπ

rmap_valid
valid(resource_at φ)

core_resource_at
Õφ@l = bφ@l

Figure 40.2: Lemmas about resource maps (part 2)

N.B. In this figure and in Figure 40.1, the ◦ symbol is used both for the empty share
and for function composition.



40. SEPARATION ALGEBRA FOR COMPCERT 371

Separation-logic predicates for resources

Given a separation algebra of resource maps, we want to build at a slightly
higher level of abstraction a set of separation-logic operators.1 A simple
example is a one-byte full-permission heap-mapsto predicate: p v. This
is a predicate on resource-maps, pred rmap. When φ |= p v this means
that φ@p = YES • • (VAL v)NoneP and at all other addresses q ̸= p, φ@q
is an identity.2 (The two bullets •• indicate a full retainer share and a full
operational share.) To put this another way, we write

p v := fun φ ⇒ (φ |= yesat NoneP (VAL v) • • p)
∧ ∀q. q ̸= p → φ |= noatq

where yesat . . . p means that there is a YES resource at address p, and
noatq means that there is an identity resource at address q.

This pattern—one resource at a decidable set S of addresses and a
different resource at all other addresses—is so common that we can make
an operator for it:

jam (S : B→ Prop) (P Q : B→ pred rmap) : B→ pred rmap :=
fun l φ ⇒ if Sl then φ |= Pl else φ |=Ql

and then we can rephrase the one-byte full-permission heap-mapsto as,

p v := ALL p : address. jam (eq p) (yesat NoneP (VAL v) • •) noat

The value v is not really a C-light value, it is a memval, which is a one-byte
in-memory encoding of (part of) a C-light value. In a more useful example,
the function decode-val from the CompCert specification would also need
to be used in the right place.

THIS PATTERN OF SPECIFICATION, “use a yesat at some addresses and a
noat elsewhere,” allows us to specify several predicate-operators in the
separation logic of rmaps.

1This section describes definitions in veric/res_predicates.v.
2We cannot say that φ@q = NO◦, because it may be a PURE resource. For an ex-

planation of how and why PURE resources inhabit the heap, describing function-pointer
specifications, see Chapter 39.
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VALspecπrπ l: At address l there is a byte with retainer-share πr, operator-
share π, and unknown contents; elsewhere nothing.

VALspec_rangenπrπ l: At addresses l, l + 1, . . . , l + n− 1 there is a byte
with retainer-share πr, operator-share π, and unknown contents;
elsewhere nothing.

address_mapsto ch vπrπ l: The C-light value v is represented as a memory-
chunk ch starting at address l with permissions πrπ; elsewhere
nothing. A CompCert memory-chunk (such as Mint8signed, Mint32,
Mfloat64) indicates a word-size and memory-representation of a C
value.

LKspecRπrπ l: a mutex lock with resource invariant R is at address l;
elsewhere nothing.

FUNspecA P Q l: A function with precondition P and postcondition Q is at
address l; elsewhere anything. The parameter A gives the type of a
logical value to be shared between precondition and postcondition.
“Elsewhere anything” because function-specifications are not meant
to separate from other resources; the appropriate conjunction to
use is && , not ∗. This is appropriate for immutable objects such as
functions.

The definition of address_mapsto conveys an idea of the complexity of
the C semantics:

Definition address-mapsto (ch: memory-chunk) (v: val)
(rsh sh: Share.t) (l: AV.address) : pred rmap :=

EX b⃗: list memval,
!! (length b⃗ = size-chunk-nat ch ∧

decode-val ch b⃗ = v ∧ (align-chunk ch | snd l)) &&
allp (jam (adr-range-dec l (size-chunk ch))

(fun l ′ ⇒ yesat NoneP (VAL (nth (nat-of-Z (snd l ′ -snd l))
b⃗ Undef)) rsh sh l ′)

noat).
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That is, location l is the beginning of an n-byte in-memory value. The
memory-type-description ch (such as Mint16signed or Mint32) describes
the size (n) and signedness; the n-byte list b⃗ describes the bytes in memory
that decode into value v; the address l is aligned to the appropriate
multiple as specified by the align-chunk rules for ch. Then, at each byte in
the range l ≤ l ′ < l + n, there is a YES resource with retainer-share rsh and
read/write-share sh, containing the (l ′ − l)th byte of b⃗; and outside that
range there is an empty resource.

From this definition, we can construct the umapsto predicate (“untyped
maps-to”) visible to the user of the separation logic:

Definition umapsto (π: share) (τ: type) (v1 v2 : val): pred rmap :=
match access-mode τ with
| By-value ch ⇒

match v1 with
| Vptr b z ⇒

address-mapsto ch v2 (unrel Lsh π) (unrel Rsh π) (b, Int.unsigned z)
| - ⇒ FF

end
| - ⇒ FF
end.

The type τ must be an access-by-value type such as integer or pointer. Then
its memory-type-description (memory-chunk) is ch, which is used as an ar-
gument to address-mapsto. The value v1 must be a pointer type (Vptr b z);
then z is converted from a 32-bit unsigned representation into a mathemat-
ical integer for the construction of the address (b, Int.unsigned z). Finally,
the share π is decomposed into a retainer-share and a read/write share for
separate arguments to address-mapsto. This is “untyped” in that it does not
enforce that value v2 belongs to type τ; but it is type-dependent insofar as
it depends on the size of τ.

THE RELATION OF SEMANTIC rmapS TO OPERATIONAL MEMORIES is discussed in
Chapter 42.
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Chapter 41

Share models
by Robert Dockins1

An important application of separation algebras is to model Hoare logics of
programming languages with mutable memory. We generate an appropriate
separation logic by choosing the correct semantic model, that is, the correct
separation algebra. A natural choice is to simply take the program heaps as
the elements of the separation algebra together with some appropriate join
relation.

In most of the early work in this direction, heaps were modeled as
partial functions from addresses to values. In those models, two heaps join
iff their domains are disjoint, the result being the union of the two heaps.
However, this simple model is too restrictive, especially when one considers
concurrency. It rules out useful and interesting protocols where two or
more threads agree to share read permission to an area of memory.

There are a number of different ways to do the necessary permission
accounting. Bornat et al. [27] present two different methods; one based on
fractional permissions, and another based on token counting. Parkinson, in
chapter 5 of his thesis [74], presents a more sophisticated system capable of
handling both methods. However, this model has some drawbacks, which
we shall address below.

Fractional permissions are used to handle the sorts of accounting
1This chapter is adapted from the second half of Dockins et al. [40].
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situations that arise from concurrent divide-and-conquer algorithms. In
such algorithms, a worker thread has read-only permission to the dataset
and it needs to divide this permission among various child threads. When a
child thread finishes, it returns its permission to its parent. Child threads, in
turn, may need to split their permissions among their own children and so
on. In order to handle any possible pattern of divide-and-conquer, splitting
must be possible to an unbounded depth.

The token-counting method is intended to handle the accounting
problem that arises from reader-writer locks. When a reader acquires a
lock, it receives a “share token,” which it will later return when it unlocks.
The lock tracks the number of active readers with an integer counter that is
incremented when a reader locks and decremented when a reader unlocks.
When the reader count is positive there are outstanding read tokens; when
it is zero there are no outstanding readers and a writer may acquire the
lock.

Here we will show how each of the above accounting systems arises
from the choice of a “share model,” and we present our own share model
which can handle both accounting methods and avoids a pitfall found in
Parkinson’s model.

SUPPOSE WE HAVE A SEPARATION ALGEBRA 〈S, JS〉 of shares. If L and V are
sets of addresses and values, respectively, we can define a SA over heaps as
follows:

H ≡ L → (S× V=)⊥ (41.1)

This equation is quite concise but conceals some subtle points. The
operators in this equation are the operators on SAs defined in Chapter 7.
We let V= be the “discrete” SA over values (i.e., values V with equality
for the join relation) and S × V= is the SA over pairs of shares and values.
Next we construct the “lowered lifted” SA (S × V=)⊥, which removes the
unit values and adds a new, distinguished unit ⊥. This requires values to
be paired only with nonunit shares. Finally, L → (S × V=)⊥ builds the
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function space SA. Thus, heaps are partial functions from locations to pairs
of nonunit shares and values.2

Now we can define the points-to operator of separation logic as:

ℓ sv ≡ λh. h(ℓ) = (s, v)∧ (∀ℓ′.ℓ ̸= ℓ′→ h(ℓ′) =⊥) (41.2)

Here, ℓ ∈ L is an address, v ∈ V is a value, and s ∈ S+ is a nonunit share. In
English, ℓ sv means “the memory location at address ℓ contains v, I have
share s at this location, and I have no permission at any other locations.”
Now the exact behavior of the points-to operator depends only on the share
model S.

An important property of this definition is that the separation algebra
on shares lifts in a straightforward way through the separation logic:

s1⊕ s2 = s ↔ (ℓ sv ↔ ℓ s1
v ∗ ℓ s2

v) (41.3)

Thus we can use properties of our share model in the separation logic.
A traditional separation logic, in which each heaplet has either full

ownership or no ownership of address a, can be achieved by choosing S to
be the SA over Booleans with the smallest join relation such that “false” is
the unique unit:

THE BOOLEAN SHARE MODEL is 〈{◦,•}, J〉 where J is the least relation
satisfying J(◦, x , x) and J(x ,◦, x) for all x ∈ {◦,•}.

Here ◦ and • stand for “false” and “true”, respectively. This share model
is unsophisticated: one either has unrestricted permission or no permission
at all. Note that the lifting operator removes ◦, leaving • as the only legal
annotation. This justifies omitting the annotation, resulting in the more
familiar ℓ v.

Boyland proposed a model which takes shares as fractions in the interval
[0,1] as shares [28]. Although Boyland works in the reals, the rationals
suffice.

2Our heaps are quite similar those defined by Bornat et al. [27]. Their “partial com-
mutative semigroup” of shares arises here from the nonunit elements of a SA.
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THE FRACTIONAL SHARE MODEL is 〈[0, 1]∩Q,+〉 where + is the restriction of
addition to a partial operation on [0, 1].

The main advantage of the fractional share model is that it is infinitely
splittable. The splitting function is simple: to split a share s, let s1 = s2 =
s/2. The fractional share model satisfies the positivity axiom but not the
disjointness axiom, which leads to the problems noticed by Bornat et al.
[27].

Bornat et al. also examined the token factory model, where a central
authority starts with total ownership and then lends out permission tokens.
The authority counts the outstanding tokens; when the count is zero,
all have returned. A slight modification of Bornat’s construction yields a
suitable model:

THE COUNTING SHARE MODEL is 〈Z ∪ {⊥}, J〉 where J is defined as the least
relation satisfying:

J(⊥, x , x) for all x ∈ Z∪ {⊥} (41.4)

J(x ,⊥, x) for all x ∈ Z∪ {⊥} (41.5)
(x < 0∨ y < 0)∧ ((x + y ≥ 0)∨ (x < 0∧ y < 0))→ J(x , y, x + y)

for all x , y ∈ Z. (41.6)

This definition sets up the nonnegative integers as token factories and
negative integers as tokens. To absorb a token back into a factory, the
integers are simply added. The token factory has collected all its tokens
when its share is zero. Like the fractional model, the counting model
satisfies positivity but not disjointness.

This share model validates the following logical axioms:

ℓ nv ↔ (ℓ n+mv ∗ ℓ −mv) for n≥ 0 and m> 0 (41.7)

ℓ −(n+m)v ↔ (ℓ −nv ∗ ℓ −mv) for n, m> 0 (41.8)

(ℓ 0v ∗ ℓ nv) ↔ false (41.9)

Equation (41.7) says that a token factory with n tokens outstanding can be
split into a token (of size m) and a new factory, which has n+m tokens
outstanding. Furthermore the operation is reversable: a token and its
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factory can be recombined to get a factory with fewer outstanding tokens.
Equation (41.8) says that the tokens themselves may be split and merged.
Finally, equation (41.9) says that it is impossible to have both a full token
factory (with no outstanding tokens) and any other share of the same
location (whether a factory or a token).

If one only utilizes tokens of size one, then equations (41.7)–(41.9)
describe the sorts of share manipulations required for a standard reader-
writer lock. Other token sizes allow more subtle locking protocols where,
for example, one thread may acquire the read tokens of several others and
release them all at once.

In his thesis, Parkinson defines a more sophisticated share model that
can support both the splitting and the token counting use cases.

PARKINSON’S NAMED SHARE MODEL is given by 〈P (N),⊎〉, where P (N) is the
set of subsets of the natural numbers and ⊎ is disjoint union.3

This model satisfies the disjointness axiom, and thus positivity. It also
satisfies the cross-split axiom: the required subshares are calculated by set
intersection.

In order to support the token-counting use case, Parkinson considers
the finite and cofinite subsets of N. These sets can be related to the
counting model given above by considering the cardinality of the set (or set
complement, for cofinite sets). We will see the details of this embedding
later.

Unfortunately, this share model is not infinitely splittable, since there is
no way to split a singleton set into two nonempty subsets. Therefore we
cannot define a total function which calculates the splitting of a share in this
model, and this makes it difficult to support the parallel divide-and-conquer
use case.

We can fix this problem by restricting the model to include only the
infinite subsets of N (and the empty set). We can split an infinite set s by
enumerating its elements and generating s1 from those in even positions
and s2 from the those in odd positions. Then s1 and s2 are infinite, disjoint,
and partition s.

3That is, the union of disjoint sets rather than discriminated union.
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Unfortunately, restricting to infinite subsets means that we cannot use
finite and cofinite sets to model token counting. This problem can be solved,
at the cost of some complication, with an embedding into the infinite sets
[74].

The problem with that solution is that the infinite subsets of N are also
not closed under set intersection, which means the share model no longer
satisfies the cross split axiom. To see why this axiom fails, consider splitting
N into the primes/nonprimes and the even/odd numbers. All four sets are
infinite, but the set {2} of even primes is finite and thus not in the share
model.

Hobor suggested further restricting the model by reasoning about
equivalence classes of subsets of N, where two subsets are equivalent when
their symmetric difference is finite; but developing this model in Coq was
difficult [49].

We will present a new model with all the right properties: disjointness
axiom, cross-split axiom, infinitely splittable, supports token counting, and
is straightforward to represent in a theorem prover. As a bonus, we also
achieve a decidable test for share equality.

Binary tree share model

Before giving the explicit construction of our share model, we shall take
a short detour to show how we can induce a separation algebra from a
lattice.

LATTICE SEPARATION ALGEBRA. 4 Let 〈A,⊑,⊓,⊔, 0, 1〉 be a bounded distribu-
tive lattice. Then, 〈A, J〉 is a separation algebra where J is defined as:

J(x , y, z) ≡ x ⊔ y = z ∧ x ⊓ y = 0 (41.10)

Disjointness follows from the right conjunct of the join relation; cross
split follows from the existence of greatest lower bounds. 0 is the unique
unit for a lattice separation algebra.

4msl/boolean_alg.v
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It is interesting to note that all of the share models we have examined
thus far that satisfy the disjointness axiom are instances of this general
construction.5 The Boolean share model is just the lattice SA derived from
the canonical 2-element Boolean algebra, and Parkinson’s model (without
the restriction to infinite subsets) is the separation algebra derived from
the powerset Boolean algebra. Restricting Parkinson’s model to infinite sets
as described above buys the ability to do infinite splitting at the price of
destroying part of the structure of the lattice. Below we show that paying
this price is unnecessary.

If the structure is additionally a Boolean algebra, then we can make the
following pleasant connection:

x ≼ y ↔ x ⊑ y (41.11)

That is, the SA order coincides with the lattice order. (Recall that x ≼ y
means ∃u. x ⊕ u = y .) The forward direction holds for any bounded
distributive lattice. The backward direction relies on the complement
operator to construct the witness (¬x ⊓ y) for the existential quantifier in
the definition of ≼. Furthermore, any bounded distributive lattice satisfying
(41.11) is a Boolean algebra; the witness of ≼ gives the complement for x
when y = 1. Therefore (41.11) holds iff the lattice is Boolean.

TREES.6 Now we can restate our goal; we wish to construct a bounded
distributive lattice which supports splitting and token counting. This
means we must support a splitting function and we must be able to embed
the finite and cofinite subsets of the naturals. We can build a model
of shares supporting all these operations by starting with a very simple
data structure: the humble binary tree. We consider binary trees with
Boolean-valued leaves and unlabeled internal nodes.

τ ::= ◦ | • | τ τ (41.12)

We use an empty circle ◦ to represent a “false” leaf and the filled circle • to
represent a “true” leaf. Thus • is a tree with a single leaf, ◦ • is a tree with
one internal node and two leaves, etc.

5This is not necessarily so. There exist disjoint SAs which are not distributive lattices.
6msl/tree_shares.v, msl/shares.v
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We define the ordering on trees as the least relation ⊑ satisfying:

◦ ⊑ ◦ (41.13)

◦ ⊑ • (41.14)

• ⊑ • (41.15)

◦ ∼= ◦ ◦ (41.16)

• ∼= • • (41.17)

x1 ⊑ x2 → y1 ⊑ y2 → x1 y1 ⊑ x2 y2 (41.18)

Here, x ∼= y is defined as x ⊑ y ∧ y ⊑ x . The intuitive meaning is that
x ⊑ y holds iff x has a ◦ in at least every position y does once we expand
leaf nodes using the congruence rules until the trees are the same shape.
The congruence rules allow us to “fold up” any subtree which has the same
label on all its leaves.

This relation is reflexive and transitive; however it is not antisymmetric
because of the structural congruence rules. We can get around this by
working only with the “canonical” trees. A tree is canonical if it is the tree
with the fewest nodes in the equivalence class generated by ∼=. Canonical
trees always exist and are unique, and the ordering relation is antisymmetric
on the domain of canonical trees. Therefore we can build a partial order
using the canonical Boolean-labeled binary trees with the above ordering
relation.

The details of canonicalization are straightforward but tedious, so we
will work informally up to congruence. In the formal Coq development,
however, we give a full account of canonicalization and show all the
required properties. The short story is that we normalize trees after every
operation by finding and reducing all the subtrees which can be reduced by
one of the congruence rules.

Our next task is to implement the lattice operations. The trees ◦ and
• are the least and greatest element of the partial order, respectively. The
least upper bound of two trees is calculated as the pointwise disjunction of
Booleans (expanding the trees as necessary to make them the same shape).
For example, • • ◦ ⊔ • ◦ ◦

∼= • • • ◦ ⊔ • ◦ ◦ ◦
∼= • • • ◦

∼= • • ◦ .
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Likewise, the greatest lower bound is found by pointwise conjunction, so
that • • ◦ ⊓ • ◦ ◦

∼= • • • ◦ ⊓ • ◦ ◦ ◦
∼= • ◦ ◦ ◦

∼= • ◦ ◦ . Finally, this
structure is a Boolean algebra as well as a distributive lattice, and the
complement operation is pointwise Boolean complement: ¬ • • ◦

∼= ◦ ◦ • .
The Boolean algebra axioms can be verified by simple inductive arguments
over the structure of the trees.

We can also define a decidable test for equality by simply checking
structural equality of trees. Trees form a lattice, and thus a decision
procedure for equality also yields a test for the lattice order. In contrast,
Parkinson’s model over arbitrary subsets of N lacks both decidable equality
and decidable ordering.

In addition to the lattice operations, we require an operation to split
trees. Given some tree s, we wish to find two trees s1 and s2 such that
s1 ⊔ s2

∼= s and s1 ⊓ s2
∼= ◦ and both s1 � ◦ and s2 � ◦ provided that s � ◦.

We can calculate s1 and s2 by recursively replacing each • leaf in s with • ◦
and ◦ • respectively.

We can usefully generalize this procedure by defining the “relativization”
operator x \ y , which replaces every • leaf in x with the tree y . This
operator is associative with identity •. It distributes over ⊔ and ⊓ on the
left, and is injective for non-◦ arguments.

x \ •= x = •\ x (41.19)

x \ ◦= ◦= ◦\ x (41.20)

x \ (y \ z) = (x \ y)\ z (41.21)

x \ (y ⊔ z) = (x \ y)⊔ (x \ z) (41.22)

x \ (y ⊓ z) = (x \ y)⊓ (x \ z) (41.23)

x \ y1 = x \ y2 → x = ◦ ∨ y1 = y2 (41.24)

x1\ y = x2\ y → x1 = x2 ∨ y = ◦ (41.25)

Given this operator, we can more succinctly define the split of x as
returning the pair containing x \ • ◦ and x \ ◦ •. The required splitting
properties follow easily from this definition and the above properties of \.

If this were the only use of the relativization, however, it would hardly
be worthwhile to define it. Instead, the main purpose of this operator is to
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allow us to glue together arbitrary methods for partitioning permissions.
In particular, we can split or perform token counting on any nonempty
permission we obtain, no matter how it was originally generated. In
addition, we only have to concentrate on how to perform accounting of the
full permission • because we can let the \ operator handle relativizing to
some other permission of interest.

Following Parkinson, we will consider finite and cofinite sets of the
natural numbers to support token counting. This structure has several
nice properties. First, it is closed under set intersection, set union and
set complement and it contains N and ;; in other words, it forms a sub-
Boolean algebra of the powerset Boolean algebra over N. Furthermore the
cardinalities of these sets can be mapped to the integers in following way:

JpKZ =
�

−|p| when p is finite and nonempty
|N\p| when p is cofinite (41.26)

The cardinalities of disjoint (co)finite sets combine in exactly the way
defined by the counting share model (equation 41.6).

We can embed the (co)finite subsets of N into our binary tree model
by encoding the sets as right-biased trees (where the left subtree of each
internal node is always a leaf). Such trees form a list of Booleans together
with one extra Boolean, the rightmost leaf in the tree. Then the ith Boolean
in the list encodes whether the natural number i is in the set. The final
terminating Boolean stands for all the remaining naturals. If it is ◦, the set
is finite and does not contain the remaining naturals, and if it is • the set
is infinite and contains all the remaining naturals. This interpretation is
consistent with the congruence rules that allow you to unfold the rightmost
terminating Boolean into a arbitrarily long list of the same Boolean value.

For example, the finite set {0,2} is encoded in tree form as • ◦ • ◦.

The coset N\{0,2} is encoded as ◦ • ◦ •.

And, of course, • ◦ • ◦ ⊕ ◦ • ◦ • = •.

This encoding is in fact a Boolean algebra homomorphism; GLBs,
LUBs, complements and the top and bottom elements are preserved.
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This homomorphism allows us to transport the token counting results on
(co)finite sets to binary trees. We write JpKτ = s when s is the tree encoding
the (co)finite set p.

Now we can define a more sophisticated points-to operator which allows
us to incorporate token counting along with permission splitting.

ℓ s,nv ≡ λh. ∃p. h(ℓ) = (s\JpKτ, v)∧JpKZ = n∧∀ℓ′.ℓ ̸= ℓ′→ h(ℓ′) =⊥
(41.27)

Then ℓ s,nv means that ℓ contains value v and we have a portion of the
permission s indexed by n. If n is zero, we have all of s. If n is positive, we
have a token factory over s with n tokens missing, and if n is negative, we
have a token of s (of size −n).

This points-to operator satisfies the following logical axioms:

(ℓ s,0v ∗ ℓ s,nv) ↔ false (41.28)

s1⊕ s2 = s → ((ℓ s1,0v ∗ ℓ s2,0v) ↔ ℓ s,0v) (41.29)

n1⊕ n2 = n → ((ℓ s,n1
v ∗ ℓ s,n2

v) ↔ ℓ s,nv) (41.30)

ℓ s,nv → ∃!s′. ℓ s,nv ↔ ℓ s′,0v (41.31)

Equation (41.28) generalizes both the disjointness axiom from Parkin-
son and the disjointness axiom for token factories (41.9). Likewise,
equation (41.29) generalizes the share axiom (41.3). Essentially, if we fix
n = 0 we get back the simpler definition of the points-to operator from
above as a special case. In equation (41.30), n1⊕ n2 = n refers to the token
counting join relation on integers defined in equation (41.6), and this ax-
iom generalizes the token factory axioms (41.7) and (41.8). Both of those
axioms follow as a special case when we fix s =⊤. Finally, equation (41.31)
allows one to project a tokenized share into a nontokenized share (one
where n = 0). This might be useful if one needs to perform share splitting
on a share which was derived from a token factory, for example.

These axioms allow fluid reasoning about both the token-counting and
splitting use cases, which enables a unified way to do flexible and precise
permission accounting.



385

Chapter 42

Juicy memories
by Gordon Stewart and Andrew W. Appel

Indirection theory is a powerful technique for using step-indexing in model-
ing higher-order features of programming languages. Rmaps (Chapters 39
and 40), which figure prominently in our model of Verifiable C, rely heavily
on indirection theory to express self-reference.

When reasoning in a program logic, step indexes are unproblematic:
the step indexes can often be hidden via use of the ◃ operator, and therefore
do not often appear explicitly in assertions. Indirection theory provides a
generic method for constructing the underlying step-indexed models.

More problematic is how to connect a step-indexed program logic
like Verifiable C to a certified compiler such as CompCert. CompCert’s
model of state is not step-indexed, nor would it be reasonable to make
CompCert step-indexed. To do so introduces unnecessary complication
into CompCert’s correctness proofs. It also complicates the statement of
CompCert’s correctness theorem: naively requiring the compiler to preserve
all step indexes through compilation makes it difficult to reason about
optimizations that change the number of steps.

Previous chapters of this book outlined one way in which this difficulty
can be resolved, by stratifying our models into two layers: operational states
corresponding to states of the operational semantics used by CompCert, and
semantic worlds appearing in assertions of the program logic. Chapter 40 in
particular gave some motivation for why this stratification makes sense: We
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may not want all the information found in operational states to be visible
to Hoare logic assertions (in particular, control state should be hidden).
Likewise, some information used only for static reasoning—lock invariants,
function specifications, and the step indexes that facilitate the encoding of
this higher-order data—should be hidden from the compiler.

In this chapter, we describe the particulars of how stratification is
achieved for the specific case of Verifiable C and CompCert. The stratifica-
tion relies on a technique we call juicy memories (veric/juicy_mem.v).

TO A FIRST APPROXIMATION, a juicy memory j defines what it means for
an rmap φ to erase to a CompCert memory m. By erasure, we mean the
removal of the “juice” that is unnecessary for execution (as in Curry-style
type erasure of simply typed lambda calculus). The “juice” has several
components: permission shares controlling access to objects in the program
logic; predicates in the heap describing invariants of objects in the program
logic; and the classification of certain addresses as values, locks, function
pointers, and so on.

In the soundness proof of the program logic, we erase the predicates in
the heap, but we do not completely erase the permission shares: we abstract
them into the coarser-grain permissions present in CompCert memories.
Only after compilation to machine code will it be appropriate to erase the
CompCert permissions.

OUR PROGRAM LOGIC HAS A SYSTEM OF OWNERSHIP SHARES (Chapter 11,
Chapter 41) permitting detailed accounting of “fractional” permissions. A
permission share on some memory location can be split into smaller pieces,
given to a set of concurrent threads for shared read-only access, and then
later reassembled for exclusive write access by one thread. Of course, such
splitting and reassembly is in the proof about a program; it does not need
to occur at execution time.

CompCert has a much simpler permission model (page 252) that
does not distinguish one Readable permission from another. These “dry”
permissions are too coarse for our program logic, but they are sufficient for
compiler-correctness proofs.
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CompCert can survive with a less expressive permission model than
the program logic, for this combination of reasons: (1) Permissions do
not change during core-language execution.1 (2) The compiler correct-
ness proof is tolerant of permissions changing at external function calls.
Synchronization operations (such as lock acquire/release) are modeled as
external function calls, and it is at those points that a thread might give
away some of its ownership-share to some addresses, leaving it with read
permission or no permission; or a thread with only a read-share might
give away some fraction of its share, leaving it with a smaller fraction that
corresponds to the same coarse-grain CompCert permission. Ownership
shares do not change at ordinary instructions.

So in the semantic model that relates the pro-
gram logic to the operational semantics, we
use a simple function perm-of-res that trans-
lates resources (ownership-shares) to Comp-
Cert permissions. The function follows the lat-
tice at right, where the top share Tsh cor-
responds to CompCert’s Freeable permission.
The right-half share of the top share (or any

Tsh 

Lsh

a'a

c
d

b

Rsh

Share.bot

b'

share containing it such as d) is sufficient to grant Writable permission to
the data: “the right share is the write share.” A thread of execution holding
only Lsh—or subshares of it such as a, a′—has only Nonempty permission:
the thread cannot read or write the object, but other threads are prevented
from deallocating the object. Any nonempty subshare b of Rsh, in fact any
share such as c that overlaps Rsh, grants Readable permission to the object.
Overlap can be tested using the glb (greatest lower bound) operator.

IN OUR MODEL OF THE C-LIGHT HOARE JUDGMENT presented in Chapter 43,
we maintain two views of the state simultaneously: the “rmap” view, for
reasoning in the program logic, and the “CompCert” view, for connecting
assertions and judgments in the Hoare logic to operational facts about
program executions.

1Except that stack frames may be allocated and deallocated at procedure call/return;
but this exception does not change the basic point.
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In veric/juicy_mem.v, we define juicy memories as pairs of a memory m
and an rmap φ. The rmap and memory must be consistent with each other,
in a way we will make precise in a moment. In the code, we represent this
pair with the following inductive type.

Inductive juicy-mem: Type :=
mkJuicyMem: ∀ (m: mem) (φ: rmap)

(JMcontents: contents-cohere m φ)
(JMaccess: access-cohere m φ)
(JMmax-access: max-access-cohere m φ)
(JMalloc: alloc-cohere m φ),

juicy-mem.

We equip the type juicy_mem with accessor functions of the form

Definition m-dry ( j: juicy-Mem) :=
match j with mkJuicyMem m - - - - - ⇒ m end.

Definition m-phi ( j: juicy-Mem) :=
match j with mkJuicyMem -φ - - - - ⇒ φ end.

The four proof objects beginning JM. . . enforce the four consistency
requirements:

Contents. If φ@l = (YES πr π (VAL v) pp) then m l = v and pp= NoneP.
That is, a VAL in the rmap must have no “predicates in the heap”
associated with it, and the v in the rmap must match the v in the
CompCert memory. Predicates will only occur in PUREs, to give
function specifications, and in locks (YES πr π (LK k) (SomeP R)) to
give resource invariants.

Access. For all locations l, m l = perm_of_res (φ@l). The fractional share
φ@l must “erase” to that location’s CompCert memory permission.

Max Access. For all locations l,
max_access_at m l ⊒ perm_of_sh πr π when φ@l = YES πr π
max_access_at m l ⊒ perm_of_sh πr ⊥ when φ@l = NO πr

fst l < nextblock m when ∃ f pp.
φ@l = PURE f pp.



42. JUICY MEMORIES 389

Alloc. For all locations l, if fst l ≥ nextblock m then φ@l = NO ⊥.
CompCert treats addresses whose abstract base pointer is beyond
nextblock as not-yet-allocated. Here we ensure that φ makes no
claim to those addresses.

The juicy-memory consistency requirements are mostly straightforward.
Max Access is a bit more complicated. It does case analysis on the resource
φ@l, ensuring that the maximum permission in m at a given location is
greater than or equal to the permission corresponding to the pair of shares
(πr ,π) or (πr ,⊥). Maximum permissions are a technical device used in
CompCert’s memory model to express invariants useful for optimizations
like constant propagation (see page 253). The current permission in m at
location l, or just permission, is always less than the maximum permission.
When φ@l contains a PURE resource, Max Access just ensures that l is
a location that was allocated at some point (fst l < nextblock m). Here
nextblock m is the next block in CompCert’s internal free list.

THE CONSISTENCY REQUIREMENTS together ensure that assertions expressed
in the Hoare logic on the φ portion of the juicy memory actually say
something about the CompCert memory m. For example, suppose we
know—perhaps because φ satisfies the assertion l πv—that φ contains
the value v with share π at location l. Then, in order to prove that a load
from m at location l will succeed, we would also like to be able to show
that m contains v at l, with at least readable permission.

To validate that the consistency requirements described above satisfy
laws of this form, we prove such a lemma for each of the basic CompCert
memory operations: load, store, alloc, and free. For example, here is the
lemma for mapsto with writable share.

Lemma mapsto-can-store: ∀ ch v πr b ofs j v′,
(address-mapsto ch v πr ⊤ (b, ofs) ∗ TT) (m-phi j) →
∃m′, Mem.store ch (m-dry j) b ofs v′ = Some m′.

This lemma relies on the consistency requirements to prove that the store in
m-dry j will succeed. The lemmas for the other memory operations differ
in the predicate on m-phi j but are otherwise similar.
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In addition to “progress” lemmas of the form mapsto-can-store, we
prove “preservation” lemmas for juicy memories. That is, we would like to
know that after each CompCert memory operation on m-dry j, yielding a
new memory m′, it is possible to construct a new juicy memory j′ such that
m_dry j′ = m′. The intuition here is that memory operations on m-dry j
never touch the hidden parts of m-phi j, e.g., the function specifications
and lock invariants appearing in Hoare logic assertions. Thus it is possible
to construct j′ generically from m′ and m-phi j, by copying hidden data
unchanged from m-phi j to m-phi j′, and by updating m-phi j′ at those
locations that were updated by the memory operation.

For example, the function after-alloc’ defines the map underlying the
new m-phi j′ after an allocation Mem.alloc (m-dry j) lo hi.

Definition after-alloc’
(lo hi: Z) (b: block) (φ: rmap)(H: ∀ofs, φ @ (b,ofs) = NO ⊥)
: address → resource := fun l ⇒

if adr-range-dec (b, lo) (hi - lo) l
then YES ⊤ pfullshare (VAL Undef) NoneP
else phi @ l.

Then the lemma

Lemma juicy-mem-alloc-at:
∀ j lo hi j′ b,

juicy-mem-alloc j lo hi = ( j′,b) →
∀ l, m-phi j′ @ l =

if adr-range-dec (b, lo) (hi - lo) l
then YES ⊤ pfullshare (VAL Undef) NoneP
else m-phi j @ l.

gives an extensional definition of the contents of the juicy memory j′ that
results. Here juicy-mem-alloc uses after-alloc’ to construct the new juicy
memory j′ resulting from the allocation.

WE HAD MODULARIZED EVERY OPERATIONAL SEMANTICS of the CompCert family
into a core semantics and an external specification (see Chapter 33). Based
on any core semantics that uses “dry” CompCert memories m, now we
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can construct a “juicy” operational semantics that uses juicy memories
(m,φ)—see veric/juicy_ext_spec.v. We prove the program logic sound
with respect to this juicy semantics.
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Chapter 43

Modeling the Hoare judgment

WE MODEL1 THE C-LIGHT HOARE JUDGMENT ∆ ⊢ {P} c {Q} using the
continuation-passing style explained in Chapter 4 (pages 29–32). There we
defined {P} c {Q} to mean that for any continuation κ, if Q guards κ then
P guards c;κ. We say Q guards κ, written {Q}κ, if from any state σ that
satisfies Q, then it is safe to execute forward from κ.

In C it’s more complicated: the C language has control flow, so Q is not
just a single postcondition but covers all the ways in which c might exit.
Our program logic is step-indexed (using indirection theory) so we can
weaken P. Our operational states do not directly satisfy separation-logic
assertions; the operational states use the CompCert model of environments
and memories, whereas our assertions use a more abstract semantic model
of environments and rmaps.

EACH C-LIGHT THREAD EXECUTES in the context of an external world, which
we can call an oracle (see Chapter 33). Both the thread and its oracle
have access to the same CompCert memory m. An external function
may be a separately compiled module, or an operating system-call, or (in
a concurrent setting) a synchronization lock-acquire that permits other
threads to run on the shared memory. Any of these kinds of external

1This chapter describes definitions in veric/semax.v.
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functions may modify memory before returning, and we wrap up all these
external mechanisms in the oracle. When the thread makes an external
function call, the oracle can modify m before returning, and the oracle can
also modify its own internal state, which is the external state from the point
of view of the C-light thread. The type of the oracle’s internal state is an
abstract type; that is, the semantic model of our Hoare logic must not make
any assumptions about how the oracle represents its internal state.

We interact with the oracle by means of calls to specifically enumerated
external functions. Different oracles may have different external functions;
each oracle comes with a specification of the behavior of these external
functions. That is, an oracle comes with a structure of type OracleKind
characterizing the internal representation of oracle states and the precondi-
tions and postconditions of external functions (how they interact with the
memory and the oracle-state). We parameterize the semax judgment (and
other predicates) by (Espec:OracleKind).

THE NOTION OF guards RESTS ON THE DEFINITION OF safety. An operational
state is safeN(n) if it cannot get stuck within n small-steps:

safeN (ge : genv) (n : nat) (z) (σ : state)(m : juicy_mem) : Prop

This means, in global environment ge we cannot get stuck within n steps
starting from the the oracle state z, the local state σ = 〈ve, te,κ〉, and juicy
memory m. Page 276 explains this in detail.

We model safety as an assertion in our separation logic:

assert_safe Espec ge ve te κ : environ → pred rmap

Given a semantic state with environment ρ and rmap φ we can write,
φ |= assert_safe Espec ge ve te κ ρ to mean: If the abstract environment ρ
corresponds to the CompCert environment




ge, ve, te
�

(global-env, var-env,
temp-env); and if φ is the rmap part of some juicy memory m, and if the
approximation level of φ is n, then it is safe to execute n operational steps:2

safeN ge n z 〈ve, te,κ〉 m.
2The oracle-state z is left unspecified here. Thus the definition is oblivious to the state

of the external world. Consequently, it will not be possible to reason explicitly about the
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WITH SAFETY DEFINED AS AN ASSERTION we can now define “P guards κ",
{P}κ, as P −→ safe(κ). The formal definition is,

Definition guard (Espec : OracleKind)
(gx: genv) (∆: tycontext) (P : assert) (κ: cont) : pred nat :=
ALL tx : Clight.temp-env, ALL vx : env,

let ρ := construct-rho (filter-genv gx) vx tx in
!! (typecheck-environ ρ ∆ = true) && P ρ && funassert ∆ ρ

assert-safe Espec gx vx tx κ ρ.

That is, we write n |= guard gx ∆ P κ to mean that, to approximation level
n, in program gx, in type-context∆, the assertion P guards the continuation
κ. We call gx the program because it contains a mapping from function
addresses to function bodies.

The essence of guards (pages 29–32) is, “for all data-states σ, Pσ
implies that 〈σ,κ〉 is safe". Here our definition of guard quantifies over
all tx and vx; together the temp-environment and the var-environment
comprise CompCert’s local data state. From these we construct ρ, a
semantic environ; this together with the juicy memory m comprises our
notion of state σ.

The assertion P (on the next-to-last line of the definition) takes the
explicit argument ρ and the implicit argument m. The m argument is
implicitly quantified in the predicate-subtyping operator , of which both
the left and right sides are pred rmap.

So “P guards κ:” on the left side we have Pρ(m) and a few other things,
and on the right we have assert-safe Hspec gx vx tx κ ρ (m). What are the
“few other things?" First, that the semantic environment ρ comports with
the type-checking context ∆; second, that all the function-specifications in
∆ are actually present (as “predicates in the heap”) in m.

state of the oracle (such as the history of I/O events) inside the separation logic itself.
Instead, we can adapt our predicates-in-the-heap mechanism to implement dependently
typed ghost variables; core-language (C light) function specifications can interact with the
ghost variables (see veric/ghost.v). The specifications of external functions (and therefore,
oracle state) can also interact with the same ghost variables, thus connecting the specifica-
tions of internal and external functions. This is an interesting topic for future research.
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THIS IS A STEP-INDEXED DEFINITION. That is, we have the subtyping operator
instead of the entailment ⊢ . The difference is that entailment quantifies

over all juicy memories, and subtyping quantifies only over those at
approximation level less than n.

GUARDING A STATEMENT EXIT. In our simplified summary explanation of the
Hoare triple (at the beginning of the chapter) we wrote, “{P} c {Q} means
that if Q guards κ then P guards c;κ." But because the command c can
fall-through, continue, break, or return—and because (therefore) Q is really
four different postcondition assertions—it’s a bit more complicated. These
ways of exiting are called an exitkind:

Inductive exitkind := EK-normal | EK-break | EK-continue | EK-return.

Definition exit-cont (ek: exitkind) (v: option val) (κ: cont) : cont :=
match ek with
| EK-normal ⇒ κ
| EK-break ⇒ break-cont κ
| EK-continue ⇒ continue-cont κ
| EK-return ⇒ ... (∗ elided ∗)
end.

Exiting into κ using EK-normal yields just κ; using EK-break throws away
items from the head of κ up to and including a loop-control; exiting using
EK-continue throws away items from the head of κ up to but not including
a loop-control; and using EK-return throws away the top of the control
stack down to a function-call frame, and at that point inserts the optional
return-value v into the local-variable environment of the caller. For other
than EK-return, v must be None.

We define rguard (for “return guard”) as the relation between Q and κ
that takes into account the different ways that c can return. This is just like
guard except that: (1) The type-context ∆ is parameterized by ek, since we
might have a stronger type-context after a fall-through than after a break,
if the command c unambiguously initializes a variable. (2) The guarded
continuation is not just κ, it is the continuation obtained by exiting into κ
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using the exit-kind ek (and optional value v); (3) The guarding assertion R
is parameterized by ek and the optional function-return-value v.

Definition rguard {Z} (Hspec : juicy-ext-spec Z)
(gx: genv) (∆: exitkind→ tycontext) (R: ret-assert) (κ: cont): pred nat :=
ALL ek: exitkind, ALL v: option val,

ALL tx: Clight.temp-env, ALL vx : Clight.env,
let ρ := construct-rho (filter-genv gx) vx tx in
!! (typecheck-environ ρ (∆ ek) = true) &&

(R ek v ρ && funassert (∆ ek) ρ)
assert-safe Hspec gx vx tx (exit-cont ek v κ) ρ.

IN THE HOARE TRIPLE semax ∆ P c Q, the command c may call a global func-
tion (or grab the address of a global function), using the rule semax-fun-id
shown on page 165. In that case we use the specification of that function
contained in ∆. The type/proof context ∆ incorporates (in addition to
types of local variables) the list of global function-specifications claimed by
the user, such as Γprog shown on page 199. But just because the user claims
that functions meet their specifications, why should we believe this? After
all, none of these function-bodies have yet been proved!

Definition believepred {Z} (Hspec: juicy-ext-spec Z)
(semax: semaxArg →pred nat)
(∆ ∆′: tycontext) (gx: genv) : pred nat :=

ALL v:val, ALL fsig: funsig,
ALL A: Type, ALL P: A →assert, ALL Q: A →assert,

!! claims gx ∆′ v fsig A P Q −→
(believe-external Hspec gx v fsig A P Q

|| believe-internal- semax gx ∆ v fsig A P Q).

The predicate believepred says that every function specification in
∆′ is satisfied by the actual function-body in the program, at least to an
approximation. That is, if the type-context∆′ claims a function specification
for the function at address v, then you can believe it. In particular, v might
be an external function—so you can believe-external its specification, or it
might be an internal function.
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To believe a specification means that the function-body of v satisfies the
Hoare triple of the function’s pre- and postcondition. But that Hoare triple
takes ∆ as a parameter (in case the function calls itself or other functions).
To avoid circularity and paradox, believepred takes both ∆ and ∆′, and
says: if ∆′ claims something, then you can believe it about ∆.

We will use believepred in the definition of the Hoare judgment, semax.
But the meaning of believe-internal refers to semax—also a potential
circularity. Here we just take a semax as a parameter; we will close the loop
using step-indexing.

Definition believe-internal-
(semax:semaxArg →pred nat) (gx: genv) (Delta: tycontext)
v (fsig: funsig) A (P Q: A →assert) : pred nat :=
(EX b: block, EX f: function,
prop (v = Vptr b Int.zero ∧ Genv.find-funct-ptr gx b = Some (Internal f)
∧ list-norepet (map fst f.(fn-params) ++ map fst f.(fn-temps))
∧ list-norepet (map fst f.(fn-vars)) ∼∧ ∼fsig = fn-funsig f)

&& ALL x : A, ◃semax (SemaxArg (func-tycontext’ f Delta)
((bind-args f.(fn-params) (P x) ∗ stackframe-of f)
&& funassert (func-tycontext’ f Delta))

f.(fn-body)
(frame-ret-assert (function-body-ret-assert (fn-return f) (Q x))

(stackframe-of f)))).
The definition of believe-internal v fsig A P Q says that the address v

points to a function-body whose calling-convention is the function-signature
fsig, whose precondition is [x : A]P, and whose postcondition is [x : A]Q.
The prop conjunct is concerned with the existence of the function-body f
and the well-formedness of its formal-parameter list. The ALL x conjunct
says that the body f.(fn-body) meets its specification ◃later, to a slightly
weaker approximation.

WERE IT NOT FOR THE CIRCULARITIES inherent in predicates-in-the-heap and
mutually recursive functions, we would define the semax semantically as
shown on page 30, something like,

{P} c {Q} := ∀k. {Q}k→ {P}(c; k).



43. MODELING THE HOARE JUDGMENT 398

But now, the very notion of guards, {Q}k, refers to the definition of the
Hoare triple {P} c {Q}. So instead of a direct definition we will establish an
equation. The equation that characterizes semax is:

semax Hspec ∆ P c R =
ALL gx: genv, ALL ∆′: tycontext,

!!( ∆⊑∆′ ) −→
believe- Hspec semax ∆′ gx ∆′ −→
ALL κ: cont, ALL F : assert,
(!! (closed-wrt-modvars c F)
&& rguard Hspec gx (exit-tycon c ∆′) (R ∗ F) κ) −→
guard Hspec gx ∆′ (F ∗ P) (Kseq c :: κ).

To paraphrase—the meaning of Hoare triple ∆ ⊢ {P} c {R} for a program
run in an operating system Hspec is: For all programs gx, forall∆′ that is an
extension of ∆, assume that all the functions in gx obey their specifications
in ∆′ to a slightly weaker approximation. Then for all control-continuations
κ and all separation-logic frames F that are closed w.r.t. the modified
variables of c, if R ∗ F guards κ then P ∗ F guards c ·κ.

The semax is defined in terms of a ◃weaker version of itself. We solve
this recursive definition using the indirection-theory Löb rule, as explained
in Chapter 39 and implemented in veric/semax.v.

ONCE THE semax JUDGMENT IS DEFINED, each of the Hoare-logic inference
rules is proved as a derived lemma. The proofs are straightforward, though
the complexities of the C operational semantics make the inference-rule
proofs rather complex in places. Mostly it’s a matter of unfolding the
definitions and blundering around until Coq responds with “No more
subgoals.” These proofs are in veric/semax_straight.v (straight-line instruc-
tions such as assignment, load, and store), veric/semax_loop.v (control
flow such as if-then-else, loops and loop-exit, and semicolon-sequencing),
veric/semax_call.v (function call and return).

AN IMPORTANT PROPERTY OF THIS SEMANTIC METHOD for defining the program
logic is that it is not inductive over the syntax of commands, nor on the
operational-semantic small-step relation. That means new commands could
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be added to the language without touching all the existing proofs of the
Hoare rules.

However, some rules do not fit comfortably into this paradigm. The
seq-assoc rule (see page 158) says,

∆ ⊢ {P} (c1; (c2; c3)) {Q}
∆ ⊢ {P} ((c1; c2); c3) {Q}

∆ ⊢ {P} ((c1; c2); c3) {Q}
∆ ⊢ {P} (c1; (c2; c3)) {Q}

We prove these (with some difficulty) by induction on the small-step
relation (see the corestep-preservation-lemma in veric/semax_lemmas.v).
If new commands were added to the language, more cases would need to
be proved in this lemma.

THE DEFINITION OF semax IS COMPLICATED—HOW DO WE KNOW IT’S RIGHT?
Each of the inference rules (in Chapter 24) is a derived lemma in CiC,
checked by the Coq kernel. Thus, when we use those rules to prove a
program, we have at least correctly produced a semax judgment. But we
still need to know that the semax tells us something useful; how do we
consume a semax judgment?

The whole-program sequential semax safety theorem for C light says that
if we have semax judgments for every function in a program, then the
program runs safely in the operational semantics of C light.

Theorem whole-program-sequential-safety:
∀ p V Γ m,
semax-prog p V Γ →
Genv.init-mem p = Some m →
∃b, ∃q,

Genv.find-symbol (Genv.globalenv p) (prog-main p) = Some b ∧
make-initial-core cl-core-sem

(Genv.globalenv p) (Vptr b Int.zero) nil = Some q ∧
∀n, safeN cl-core-sem dryspec (Genv.globalenv p) n tt q m.

Let p be a C light program, let V be a global-variable specification (describ-
ing the types of global variables), let Γ be a list of function-specifications.
Suppose we have proved that all the function bodies in p satisfy their speci-
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fications in Γ, that is, semax-prog p V Γ. Now suppose3 that the initializers
of all the global variables succeed, yielding a CompCert memory m.

Then there will exist a block-number b that is the address of the main
function of p; and there will be an initial core-state q that is the start state
of the program running main; and for any n, it will be safe to run n steps
starting at the state (q, m).

This statement is proved in veric/SequentialClight.v, relying on
semax-prog-rule in SeparationLogicSoundness.v.

In later chapters we discuss generalizations of this soundness theorem
for separately compiled modules and for concurrent programs.

3It should be possible to prove that for any program compiled by CompCert’s front-end
phase into C light, the global initializers will succeed, yielding a memory m.
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Chapter 44

Semantic model of CSL

Dijkstra presented semaphore-based mutual exclusion as an extension
to a sequential language [37]. Posix threads present Dijkstra-Hoare
concurrency as an extension to a sequential language [55]. O’Hearn
presented concurrent separation logic (CSL) as an extension to separation
logic, in which all the rules of sequential separation logic still hold [71].

Can we really model concurrency as an extension to sequentiality?
Boehm explains why it is very tricky to explain shared-memory concurrency
as an extension to a sequential language [24]. But we have taken great
care to specify our language’s external-interaction model (Chapter 33), in
order to do this soundly.

Therefore we do something ambitious: we present the semantic model
of CSL, for the C language, in the presence of an optimizing compiler and
weak cache coherency, as a modular extension to our semantic model for
sequential separation logic. This chapter is based on Aquinas Hobor’s PhD
thesis [49, 51] and on current work by Gordon Stewart.

CONCURRENT SEPARATION LOGIC WITH FIRST-CLASS LOCKS. O’Hearn’s presen-
tation of CSL had several limitations, most importantly a lack of first-class
locks (locks that can be created/destroyed dynamically, and in particular
can be used to control access to other locks). Hobor et al. [51] and Gotsman
et al. [44] independently extended CSL to handle first-class locks as well as
a number of other features.
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Chapter 30 explains our CSL with first-class locks. Acquiring a lock
allows a thread access to additional resources (e.g., memory), and releasing
a lock relinquishes said resources. The “shape” of the resource acquired or
relinquished—and the invariant it satisfies—is described by a predicate in
separation logic.

So, certain addresses in the heap (the locks) are associated with resource
invariants that are assertions of separation logic. As new locks are created,
the associated lock invariants must be attached to those addresses—in
other words, the heap must be updated to “contain” the invariants. But
each assertion is a predicate over program-states that contain heaps—that
is, the resource invariant of one lock can describe the binding of a resource
invariant to another lock. The intuitive model for this contains a circularity:

res ≡ VAL of (share× value) + LK of (share× bool× pred)
pred ≡ (heap× locals)→ T
heap ≈ address* res

Heaplets (heap) are partial functions mapping locations to resources (res):
either regular data (VAL) or locks (LK). Regular data locations contain
values. Since multiple threads can each own part of a lock, each lock
is associated with a share, which tracks how much of the lock is visible.
Locks also have a boolean, which is true if this thread holds the lock (more
precisely, if this thread has the right to unlock the lock); and a predicate
(pred) specifying the lock’s resource invariant. Predicates (pred) simply
judge pairs of heap and locals (local variables). We set

F(X ) ≡ address*(VALof (share× value)+LKof (share×bool×X ))
O ≡ locals,

and then can use indirection theory to construct the approximation

res ≡ VAL of (share× value) + LK of (share× bool× pred)
pred ≡ (heap× locals)→ T
heap ≼ N× (address* res).

We can apply indirection theory, because F is covariant.
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We will define the assertions points-to “a π v” and is-a-lock “a
π

�→ P”.
The points-to assertion is standard (but with permission shares); is-a-lock
has a share π that indicates how much of the lock is visible and a predicate
P that is the lock’s resource invariant. Both of these assertions depend on
the structure of F(X ).

The intuition for points-to is that if a points to v (a π v), then the
heaplet φ contains VAL(π, v) at location a and nothing else:

a π v ≡ λ(k,ρ). let (n,φ) = unsquash k in
φ(a) = VAL(π, v) ∧ domain(φ) = {a}. (44.1)

Defining the is-a-lock assertion starts with the idea of looking up the
address in φ: (35.17):

a
π

�→P ≡ λ(k,ρ). let (n,φ) = unsquash k in
∃P ′, b. φ(a) = LK(π, b, P ′)∧ domain(φ) = {a} ∧ P=n P ′.

(44.2)

Location a is a lock with share π and resource P if the resource map φ
contains a LK(π, b, P ′) for some boolean b and predicate P ′ at location a, φ
is empty everywhere else, and P is approximately equal to P ′. The invariant
P ′ will have been squashed down to level n, whereas the “query” P may
make finer distinctions. The clause P =n P ′ means that P is approximately
equal to P ′ (at level n), meaning that is-a-lock can only enforce the resource
invariant to a level of accuracy commensurate with the current age.

RESOURCE MAPS containing locks (with resource invariants) and ordinary
values fit straightforwardly into the juicy memory construction shown in
Chapter 42. Then we can construct a concurrent operational semantics
based on the CompCert sequential operational semantics. Where a se-
quential state has a core (containing local variables and control-stack of a
thread), a juicy memory, and an oracle (which models the external world),
a concurrent state has many cores—each representing one thread—but all
cores share the same memory and external oracle.

But the Hoare judgment of separation logic—semax—treats only a
single thread. So, following Hobor [49, 51] we create an oracle semantics,
an operational semantics for a single thread that sweeps all the other
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threads into the oracle. When thread A performs a lock-acquire, we know
that this may cause thread A to block, that the scheduler may suspend
execution of A and run other threads until the lock is available for A to
acquire; then resume A. But from A’s point of view, the lock-acquire simply
succeeds. That is, the call to the external function acquire returns, having
made some changes to the shared memory. This fiction is the essence of
oracle semantics, and it allows us to use the Hoare triples of separation
logic in (seemingly) sequential reasoning.

Hobor proved that if the (pseudosequential) oracle semantics is safe,
then the underlying concurrent machine is safe. Our sequential soundness
proof for semax (Chapter 43), with respect to a juicy operational semantics,
proves that if one carries out a verification in separation logic then the
operational execution really is correct. Hobor showed that the composition
of these two results demonstrates the soundness of CSL.

But there was still a subtle gap, between “juicy” resource maps and
“dry” CompCert memories.

ANGELIC NONDETERMINISM FOR CONCURRENT SEPARATION LOGIC. A juicy
memory (Chapter 42) contains an rmap φ and a CompCert memory m. We
need the juice—information in φ that is not present in m—to understand
how permissions transfer in concurrent separation logic. That is, the
lock-release rule (page 224) transfers permissions away from the current
thread. For a lock at address l, the transferred permissions are exactly the
footprint of the resource invariant R located in the rmap φ at address l—it
is a predicate in the heap. The juicy operational semantics looks up φ@l
to get R, then (nonconstructively!) finds the unique subheap of (m,φ) that
satisfies R. If the user has managed to prove any property of the program
using the Verifiable C program logic, then we know that this step is safe,
not stuck—that this subheap exists.

That is all very well—but the CompCert compiler-correctness proof is
with respect to the “dry” operational semantics using CompCert memories
m, not with respect to our juicy semantics. We need to perform erasure,
converting executions of the juicy semantics to executions of the dry
semantics. But the dry execution has memory permissions that must
be altered at lock-synchronization points, to accomplish the transfer of
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permissions. We cannot fully erase all notion of memory permission, or
else the optimizing compiler will have too little information to know which
load-store hoisting optimizations are permitted.

Therefore we will use a form of angelic nondeterminism in the dry
semantics: we prove that at each lock-release point in the execution,
there will exist some choice of what permissions to release, such that the
whole execution will be safe. Concretely, we determinize the semantics by
equipping it with an angel—a stream of permission-sets. In the dynamic
execution, at every lock-release, the next element of the angel stream will
determine the set of permissions to transfer out of the executing thread.

Because permissions never change at core-language instructions—only
at external function calls to such things as synchronization operators—the
angel never needs to be consulted in core-language steps. In fact, the core-
language semantics does not even know it is there: the angel is contained
entirely within the external-specification (ext-spec) that gives an execution
context for the core semantics.

FROM THE HOARE-LOGIC (concurrent separation logic) proof of a program,
we derive that the juicy semantics executes safely, using methods described
in the next chapter. From the safe execution of the juicy semantics, we
prove that an angel exists that justifies the safe execution of the dry
semantics. From the safe execution of the dry C light semantics, the
CompCert correctness proof guarantees the corresponding safe execution
of the angelic assembly language. By the time we get to assembly language,
we have finished all those optimizing transformations that depended on
(dry) permissions, so we can erase those permissions (and the angel). And
finally, in a sufficiently expressive Hoare logic, safety implies correctness
(page 30).
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Chapter 45

Modular structure of the development

The Verified Software Toolchain has many components, put together in a
modular way:

msl. The proof theory and semantics of separation logics and indirection
theory is independent of any particular programming language,
independent of the memory model, independent of particular theories
of concurrency.

compcert. The CompCert verified C compiler is independent of any par-
ticular program logic (such as separation logic), of any particular
theory of concurrency, and of the external-function context (such
as an operating system-call setup). CompCert incorporates several
programming languages, from C through C light to C minor and then
(in various stages) to assembly languages for various target machines.
The CompCert family may also include source languages such as C++
or ML. These various operational semantics all use the same memory
model, and the same notion of external function call.

sepcomp. The theory of separate compilation explains how to specify the
compilation of a programming language that may make shared-
memory external function calls, shared-memory calls to an operating
system, and shared-memory interaction with other threads. This
depends on CompCert’s memory model, but not on any particular one
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of the CompCert languages. Eventually, parts of the sepcomp theory
will migrate into CompCert itself.

Some parts of the separate-compilation system concern modular
program verifications of modular programs. We may even want to
link program modules—and their verifications—written in different
languages (C, ML, Java, assembly). This system requires that
each language have a program logic that uses the same mpred
(memory predicates) modeled using resource maps (rmap). But these
languages will have different forms of Hoare judgment, that is, the
separate compilation system is independent of semax.

veric. The Verifiable C program logic is a higher-order impredicative
separation logic. It and its semantic model depend on CompCert
memories and the theory of separate compilation. Many parts of
VeriC (such as memory predicates mpred and their model, rmap) are
independent of any particular CompCert language. If we wanted to
build a program logic for a different language in the CompCert family,
all these parts would be re-usable.

The model of semax and the Hoare inference rules for semax) depend
specifically on the syntax and semantics of CompCert C light. But the
semax, its semantic model, and its rules for the C language should
be independent of any particular instance of a separate-compilation
context. Thus we parameterize semax by the Espec:OracleKind as
described in Chapter 33 and Chapter 43.

The semantic model of semax is even independent of whether the
programming language is sequential or concurrent. Just as the proof
theory of concurrent separation logic [71] incorporates all of the
sequential rules of separation logic (as if they were oblivious of
operating in a concurrent setting), our model of semax and all our
sequential proof rules for C light are still valid in the concurrent
setting.

However, to achieve first-class threads and locks, we need the illusion
of “predicates in the heap”—that is, we want to create a new mutex
lock at address l, with a binding l : lock(R) that binds l to a resource
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invariant R that is a predicate in separation logic; and yet R itself
predicates over the very heap that it lives in. We need a sufficiently
powerful notion of rmap (resource map) in the semantic model that
can handle such quasicircularity. It is for this reason that we took the
trouble to use indirection theory to build our resource maps.

We present the program logic in two stages. First, definitions for
the various assertion operators, all based on the two primitives,
address-mapsto (for addresses containing data values) and func-ptr
(for addresses pointing to function bodies). Second, the semax
judgment and its proof theory.

veric proof theory. The proof theory of Verifiable C is specified in the Mod-
ule Type CLIGHT_SEPARATION_LOGIC in veric/SeparationLogic.v. This
depends on the syntax of C light but not (directly) on the operational
semantics of C light, nor on the CompCert memory model, nor on re-
source maps (rmap). That is, the semax judgment is presented with a
sealed abstraction: the module SoundSeparationLogic has an opaque
module type, presenting the client with an abstract (proof-theoretic)
view of the CLIGHT_SEPARATION_LOGIC rules for semax.

On the other hand, the expression-evaluation component of the semax
proof theory is quite concrete and computational, not abstract; this is
presented in veric/expr.v. This allows us to reason about expression
evaluation efficiently via unfolding and simplification. Expression
evaluation does not have the complexities (such as step-indexing and
predicates in the heap) that impel us to keep the semax abstract.

floyd. The proof automation lemmas and tactics depend on semax’s proof
theory, but not its model. Thus they depend on the logical view of
separation logics (Chapter 12), not the separation-algebra model
(Chapter 6).

progs. Our case studies (such as reverse.c, sumarray.c, queue.c) depend
on the floyd proof-automation system. As part of our case studies we
present the general theory of list segments, progs/list_dt.v. Although
we could just as well have made this lseg theory a part of the floyd
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system, we want to emphasize that our separation logic is expressive
enough for users to be able to construct their own theories of data
structures, such as lists, trees, trees with cross-edges and back edges,
DAGs, graphs, hash tables, and so on.

concurrency. Our concurrent separation logic will be an extension to the
program logic, proved sound w.r.t. an extension of the operational
semantics. In both cases, the extensions will be accomplished by using
extensibility features already in the specifications of the operation
semantics and the program logic, using the oracle semantics approach
along with angelic erasure (Chapter 44). Every rule of the sequential
program logic is (therefore) still valid in the concurrent setting, and
all proofs of sequential program modules are (therefore) still valid as
part of concurrent programs.

Verifications of individual programs do not depend on the particular
operational semantics used for C, nor on the semantic model used to
prove soundness of the program logic, as long as the operational- and
program-logic- semantics combine to justify the proof rules.



410

Part VII

Applications

SYNOPSIS: In Part III we showed how to apply a program logic interactively
to a program, using tactics. Here we will show a different use of program
logics: we build automatic static analyses and decision procedures as efficient
functional programs, and prove their soundness using the rules of the program
logic.
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Chapter 46

Foundational static analysis

A static analysis is an algorithm that checks (or calculates) invariants of a
program based on its syntactic (static) structure, in contrast to a dynamic
analysis which observes properties of actual program executions. Static
analysis can tell us properties of all possible executions, while dynamic
analysis can only observe executions on particular inputs.

A sound static analysis is one with a proof that any invariants checked
by the analysis will actually hold on all executions. A foundationally sound
analysis is one where the soundness proof is (ideally) machine-checked,
(ideally) with respect to the machine-language instruction-set architecture
specification—not the source language—and (ideally) with no axioms other
than the foundations of logic and the ISA specification.

Some of the first foundationally sound static analyses were proof-
carrying code systems of the early 21st century [5, 45, 35, 3]. It was
considered impractical (at that time) to prove the correctness of compilers,
so these proof-carrying systems transformed source-language typechecking
(or Hoare logic [14]) phase by phase through the compilation, into an
assembly-language Hoare logic.

With the existence of foundationally correct compilers such as Comp-
Cert, instead of proof-carrying code we can prove the soundness of a static
analysis from the source-language semantics, and compose that proof with
the compiler-correctness proof. See for example the value analysis using
abstract interpretation by Blazy et al. [22]
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SOME KINDS OF STATIC ANALYSIS may be easier to prove sound with respect
to a program logic than directly from the operational semantics. We will
show this for shape analysis, a category of static analysis that analyzes
the program’s use of pointer variables to determine the shape of the data
structures that these variables are creating and traversing. By shape, we
mean questions such as, “is it a tree, a DAG, or a cyclic graph?” [42]
By answering such questions, shape analysis can guarantee that a pointer
dereference in the program is not fetching a null-pointer or uninitialized
pointer; can guarantee certain anti-aliasing properties useful to other
analyses, and can guarantee other safety properties of the program.

Shape analysis (and static analysis in general) does not require interac-
tive verification effort of the kind described in Chapter 27—the analysis is
fully automatic. Shape/static analysis may require the user to provide cer-
tain invariants—pre/postconditions of functions, or loop invariants—or the
analysis may even infer those invariants automatically. But shape analysis
does not concern itself with the semantic contents of the data structure, so
there are many correctness properties that it cannot prove automatically.
We demonstrated an example of this on page 18: a shape analysis of the
list-reverse program can prove that it takes one list segment as input, and
returns one list segment as output; but does not prove that if the contents
of the input list is σ, then the contents of the output is rev(σ). The former
is a shape property, the latter is a correctness property. Even though shape
analyses prove “shallow” properties, their full automation makes them very
useful in practice.

THE SMALLFOOT STATIC ANALYSIS ALGORITHM [18, 19] is a shape analysis
based on separation logic. Shape analysis was invented in the early 1990s,
but after the invention of separation logic in 2000/2001 it is obvious1

that the simple way that separating conjunction keeps track of antialiasing
makes it natural for expressing the action of a shape analysis.

Smallfoot analyzes list and tree data structures, but here we will show
only lists. The inductive presentation of list segments (page 123) is not
directly suitable for the Smallfoot analysis—it makes for easy reasoning

1It is obvious now, after the publication of the Smallfoot papers [18, 19].
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about the head end of the segment, but not about the tail end. Therefore
Smallfoot uses the Berdine-Calcagno proof theory of lists (see page 124),
which is provable from the inductive presentation (and also provable from
our indirection-theory description of list segments, see Chapter 19).

The Berdine-Calcagno rules form a decidable fragment of separation logic,
meaning that there is an algorithm for finding a proof or counterexample
of any entailment P ⊢ Q that uses only the operators ∗,∧, emp,=, ̸=, , and
next . The Smallfoot algorithm uses this by calling upon an entailment
checker as a subroutine.

Smallfoot’s user annotates the program with function pre/postcondi-
tions and loop invariants that are shape assertions in separation logic.
Subsequent work that builds on Smallfoot shows how the shape analyzer
can infer many of those assertions automatically, so the user has even less
work to do [31, 20].

We illustrate with the canonical example: list reversal.

assert(v  0)
w=0;
while (v != 0) invariant (v  0 ∗w  0)

{t = v.next; v.next = w; w = v; v = t; }
assert(w  0)

The job of Smallfoot is to prove that the program comports with these
assertions. What does that mean? Berdine et al. [19] demonstrate that
whenever the Smallfoot algorithm runs successfully on an annotated
program, then there exists a separation-logic proof of that program with
those annotations.

Not only is Smallfoot proved correct with respect to a program logic, it
is even explained by using the program logic. Figure 46.1 shows operational
symbolic execution rules. Here we assume the program is using a linked-list
data structure with fields data and link. Berdine’s notation Π|Σ means the
conjunction of pure conjuncts Π with spatial conjuncts Σ; in Chapter 26 we
would write this as LOCAL(Π)SEP(Σ).

The algorithmic interpretation is this: given a current symbolic state
{Π|Σ} c {Post}, match the current goal against this state. This will yield
hypotheses to be solved by repeating this algorithmic interpretation; or
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skip
Π|Σ ⊢ Π′|Σ′

{Π|Σ} {skip}Π′|Σ′

set
{x = e[x ′/x]∧ (Π|Σ)[x ′/x]} c {Π′|Σ′}

{Π|Σ} x = e; c {Π′|Σ′}
x ′ fresh

load
{x = e1[x ′/x]∧ (Π|Σ ∗ e→link e1)[x ′/x]} c {Π′|Σ′}
{Π|Σ ∗ e→link e1} x = e→link; c {Π′|Σ′}

x ′ fresh

store
{Π|Σ ∗ e e2} c {Π′|Σ′}

{Π|Σ ∗ e→link e1} e→link= e2; c {Π|Σ}

if
{Π∧ e|Σ} c1; c {Π′|Σ′} {Π∧¬e|Σ} c2; c {Π′|Σ′}

{Π|Σ} if e then c1 else c2; c {Π′|Σ′}

assert
(Π|Σ) ⊢ A {A} c {Π′|Σ′}
{Π|Σ}assert A; c {Π′|Σ′}

while
{Π∧ e|Σ} c1 {Π|Σ} {Π|Σ∧¬e} c {Π′|Σ′}

{Π|Σ}while (e) c1; c {Π′|Σ′}

Figure 46.1: Smallfoot operational symbolic execution rules.

in the case of skip will check the entailment (Π|Σ) ⊢ Post. Note that
each while statement must be preceded by an assert statement bearing
its loop invariant. The user also annotates functions with their pre- and
postconditions, which gives us the initial (Π|Σ) and (Π′|Σ′) with which to
start the algorithm. The full Smallfoot algorithm also has operational rules
for new, dispose, and function call, which we do not show here.

Each one of these operational rules is easy to prove as a derived lemma
in separation logic, using the primitive command rules, plus the frame rule
and the rule of consequence.
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Running the algorithm is not quite as easy as matching a rule’s con-
clusion to the current goal: in both the load rule and the store rule, the
precondition of the left-hand side must take the form P = (Π|Σ∗e→ f e1).
If the current symbolic state has a precondition equivalent but not identical
to this form, then we must apply an algorithm to rearrange the precondition
to match. lookin There are several cases:

• We examine every conjunct of Σ, looking for the pattern (_→link _).
When Σ is A ∗ e′→ link e′1 ∗ B, we try to prove the entailment
P ⊢ e = e′ ∧ e1 = e′1. If this succeeds, then we use the rule of
consequence with (A ∗ B) ∗ e→ link e1, which matches the goal;
otherwise we look at the next conjuncts.

• Suppose Σ = A ∗ e′  r ∗ B. Then if P ⊢ e = e′ ∧ e′ ̸= r, we can
use the rule, e ̸= r ∧ e r ⊢ ∃d, q. e→data d ∗ e→link q ∗ q r
to derive P ⊢ (A∗ B ∗ e→data d ∗ q r) ∗ e→link q, which has the
desired form; otherwise we look at the next conjuncts.

• The spooky disjunction is this case: Σ is A∗ e′ r ∗ B ∗ e′′ s ∗ C where
P ⊢ e = e′ ∧ e = e′′ ∧ r ̸= s. Then it cannot be that both list-segments
are empty, for then e = r and e = s leading to a contradiction;
and it cannot be that both are nonempty, otherwise the conjuncts
e′ r ∗ e′′ s would overlap. Therefore P ⊢Q1 ∨Q2, where

Q1 = ∃d, q.Π∧ e = e′ ∧ e = e′′ ∧ e = s
| (A∗ B ∗ C ∗ e→data d ∗ q r) ∗ e→link q

Q2 = ∃d, q.Π∧ e = e′ ∧ e = e′′ ∧ e = r
| (A∗ B ∗ C ∗ e→data d ∗ q s) ∗ e→link q

Instead of making an entailment checker that can handle disjunctions,
we consider the cases P ⊢ Q1 and P ⊢ Q2 as two separate symbolic
executions. We do forward symbolic execution for Q1 (until we reach
the end of the function body, or the next loop invariant) and do
forward symbolic execution for Q2, and only if both succeed do we
know the program is safe in all cases. Then we look at the rest of the
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conjuncts of Σ to see if there are other matches, and for each we do
forward symbolic execution.

The rearrangement algorithm relies on the ability to test an entailment
P ⊢Q for validity—that is it relies on a decision procedure for this decidable
fragment of separation logic. See Chapter 47.

The rules for set and load are annotated with (x ′ fresh), meaning that
variable x ′ is not free in Π,Σ, x , e, e1. Operationally this means we keep
track of a positive integer, a variable name, that is greater than the names
of all variables used so far in the program or in its specification.

WE CAN MAKE SMALLFOOT foundational.2 Where Berdine et al. write an ML
program and explain its principles with respect to an algorithm presented
in Latex, we write a Gallina program automatically extracted into ML.
Where their algorithm is proved correct informally with respect to a Latex
presentation of operational rules, our program is proved correct with a
machine-checked proof in Coq with respect to the VST separation logic.
Where they prove soundness of their operational rules by a model of an
ideal language presented in Latex, we prove the VST separation logic (our
semax judgment) sound with respect to CompCert’s operational semantics.

None of this means that there’s something wrong with the original
Smallfoot; it means that we view the presentation of Smallfoot via axiomatic
separation-logic rules as a description of the foundational implementation
and proof that we can build in Coq.

WE WANT A SHAPE ANALYZER THAT RUNS FAST. Since it can be slow to
manipulate propositions and lambda-terms in a general-purpose proof
assistant such as Coq, instead we write a special-purpose program in ML.
Actually we write in Gallina (the functional programming language inside
Coq) and extract an ML program. Our algorithm completely avoids using Coq

2 This chapter describes VeriSmall [8], a verified implementation of Smallfoot. Our
original VeriSmall implementation was a static analysis for the CompCert C minor program-
ming language and operational semantics. C minor is a lower-level intermediate language,
below C light in the phases of CompCert. The formal verification was done with respect to
our foundational separation logic (semax) for C minor, which in turn is built and verified
on similar principles to the program logic for C light described in this book.
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variables, Coq propositions, Coq tactics. So we need a syntactic encoding of
separation-logic expressions, formulas, and assertions:

Definition var := positive.
Inductive expr := Nil: expr | Var: var →expr.
Inductive pure-atom := Eqv : expr→expr→pure-atom

| Neqv : expr→expr→pure-atom.
Inductive space-atom := Next: expr →expr → space-atom

| Lseg: expr →expr → space-atom.
Inductive assertion :=

Assertion: ∀ (Π: list pure-atom) (Σ: list space-atom), assertion.
Inductive entailment := Entailment : assertion →assertion →entailment.

In our syntactic separation logic fragment, variable-names are represented
by positive numbers. An expression is either Nil or a variable. A pure
(nonspatial) atom is of the form e1 = e2 or e1 ̸= e2; an assertion contains
(the conjunction of) a list Π of pure atoms, and the separating conjunction
of a list of space atoms. Each space atom describes either a list cell or a list
segment Next e1 e2 represents a cons cell at address e1 whose tail-pointer
contains the value e2. Lseg e1 e2 represents a list segment e1 e2.

Fixpoint exorcize (e: expr) Π Σ0 Σ (x: var) : option(list assertion) :=
match Σ with
| nil ⇒ if incon (Assertion Π (rev Σ0)) then Some nil else None
| Lseg f f’ :: Σ1 ⇒

if oracle (Entailment (Assertion Π (rev Σ0 ++ (Lseg f f’) :: Σ1))
(Assertion (Eqv e f :: nil) (rev Σ0 ++ Lseg f f’ :: Σ1)))

then match exorcize e (Eqv f f’ :: Π) (Lseg f f’ :: Σ0) Σ1 x with
| Some l ⇒ Some (Assertion Π

(Next e (Var x) :: Lseg (Var x) f’ :: rev Σ0 ++ Σ1) ::l)
| None ⇒ None
end

else exorcize e Π (Lseg f f’ :: Σ0) Σ1 x
| a :: Σ1 ⇒ exorcize e Π (a :: Σ0) Σ1 x
end.
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We factor Berdine et al.’s rearrangement algorithm into an exorcize
function which eliminates spooky disjunctions, and isolate which does ev-
erything else (calling upon exorcize). These functions call the incon decision
procedure to test the inconsistency of a separation-logic entailment.

Fixpoint isolate’ (e: expr) Π Σ0 Σ (x: var) (count: nat)
: option(list assertion) :=

match Σ with
| nil ⇒ if count < 2 then None

else if incon (Assertion (Eqv e Nil :: Π) (rev Σ0))
then exorcize e Π nil (rev Σ0) x

else None
| Next e1 e2 :: Σ1 ⇒

if eq-expr e e1
then Some [Assertion Π (Next e e2 :: rev Σ0 ++ Σ1)]
else if oracle(Entailment(Assertion Π (rev Σ0 ++ (Next e1 e2)::Σ1))

(Assertion (Eqv e e1 :: nil) (rev Σ0 ++ (Next e1 e2) :: Σ1)))
then Some [Assertion Π (Next e e2 :: rev Σ0 ++ Σ1)

else isolate’ e Π (Next e1 e2 :: Σ0) Σ1 x count
| Lseg f f’ :: Σ1 ⇒

if oracle (Entailment (Assertion Π (rev Σ0 ++ (Lseg f f’) :: Σ1

(Assertion (Eqv e f :: Neqv f f’ :: nil )
(rev Σ0 ++ (Lseg f f’) :: Σ1)))

then Some [Assertion Π
(Next e (Var x) :: Lseg (Var x) f’ :: rev Σ0 ++ Σ1)]

else if oracle (Entailment (Assertion Π (rev Σ0 ++ (Lseg f f’) :: Σ1))
(Assertion (Eqv e f :: nil) nil (rev Σ0 ++ (Lseg f f’) :: Σ1)))

then isolate’ e Π (Lseg f f’ :: Σ0) Σ1 x (S count)
else isolate’ e Π (Lseg f f’ :: Σ0) Σ1 x count

end.

Definition isolate (e: expr) (P: assertion) (x: var): option(list assertion) :=
match P with Assertion Π Σ ⇒ isolate’ e Π nil Σ x 0 end.
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The variable x is the freshness counter, the lowest-numbered fresh
variable. We we need to introduce a new variable (such as q in the
description of spooky-disjunction-elimination, page 415), we use x . The
oracle function is the decision procedure for entailments, returning a
boolean. What exorcise returns is a list of all the ways that e→next _
can match, each in the context of a larger assertion. Σ0 accumulates the
conjuncts we have already seen.

The isolate’ function walks through the list Σ, accumulating conjuncts
it has already seen in Σ0. If it finds Next e1 e2, meaning e1→next e2, then
it tests P ⊢ e = e1; if so, it has found the unique match. (No other conjunct
could overlap, or the original assertion would be inconsistent.) Otherwise,
it finds candidates f  f ′ for unfolding. For each one, if it can prove f ̸= f ′

then it unfolds, using x as the free variable for the intermediate link.
Otherwise, it adds to the count of spooky-disjunction candidates.

By the time isolate’ reaches the end of Σ, if the count≥ 2 (and if P is
inconsistent with e = nil) it is worth trying exorcize.

TO PROVE SOUNDNESS OF isolate, we first give a model of syntactic assertions
in our semantic separation logic.

Definition expr-denote (e : expr): environ→ val :=
match e with Nil ⇒ ǹullval | Var x ⇒ (eval-id x) end.

Definition pure-atom-denote (a : pure-atom) : mpred :=
match a with Eqv e1 e2 ⇒ èq (expr-denote e1) (expr-denote e2)

| Neqv e1 e2 ⇒ ǹeq (expr-denote e1) (expr-denote e2)
end.

Definition space-atom-denote (a : space-atom) (ρ: environ) : mpred :=
match a with
| Next x y ⇒ (̀field-mapsto- Tsh tlist -data) (expr-denote x) ∗

(̀field-mapsto- Tsh tlist -next) (expr-denote x) (expr-denote y)
| Lseg x y, State -h ⇒ (̀lseg tlist Tsh) (expr-denote x) (expr-denote y)
end.



46. FOUNDATIONAL STATIC ANALYSIS 420

Definition assertion-denote (f : assertion) : spred :=
match f with Assertion Π Σ ⇒

fold-right andp TT (map pure-atom-denote Π)
∧ fold-right sepcon emp (space-atom-denote Σ)

end.

GHOST VARIABLES. Throughout Part III of this book, when we write
(eval-id x) the variable x is a variable from the source program. When we
neet to talk about intermediate values (e.g., in the unfolding of a list) we
use a Coq variables y of type val; then it would make no sense (nor would
it typecheck) to write (eval-id y).

But our implementation of Smallfoot is purely syntactic, and as such
when we choose a “fresh variable” it comes out of the same syntactic space
as x. We simply the augment the environment ρ by binding ghost variables.

Our function freshmax-expr finds the highest-numbered variable in an
expression; we write fresh freshmax-expr e x to mean that x’s name is
greater than any name in e. We write existsv x A to mean that there is a
value v such that the assertion A[v/x] holds

With this, we can state the soundness theorem for exorcize.

Lemma exorcize-sound: ∀ e Π Σ x,
fresh freshmax-expr e x →
fresh freshmax-assertion (Assertion Π Σ) x →
∀ l, (exorcize e Π nil Σ x) = Some l →

(assertion-denote (Assertion Π Σ) ⊢
fold-right orp FF (map (fun P ⇒ existsvx (assertion-denote P)) l) ∧

(∀ Q, In Q l →
match Q with
|Assertion -(Next e0 -:: -) ⇒ e = e0

| -⇒ False
end ∧ fresh freshmax-assertion Q (Psucc x)).

Assuming x is fresh for e and for the assertion (Π|Σ), suppose exorcize
returns a list l = l0 :: l1 :: . . . :: ln :: nil of assertions. Let l ′ = (∃v.l0[v/x])∨
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(∃v.l1[v/x]) ∨ . . . ∨ (∃v.ln[v/x]) ∨ ⊥. Then the denotation of (Π|Σ) ⊢ l ′.
Furthermore, the first spatial conjunct of each assertion in l has the form
Next e -, and the next variable after x is fresh for every assertion in l.

The soundness theorem for isolate is like the one for exorcize. Both are
proved by applying the rules and definitions of our separation logic, by
induction over the execution of the Fixpoint functions.

Lemma isolate-sound: ∀ e P x l,
isolate e P x = Some l →
fresh freshmax-expr e x → fresh freshmax-assertion P x →
assertion-denote P ⊢

fold-right orp FF (map (fun Q ⇒ (existsv x (assertion-denote Q))) l) ∧
∀Q, In Q l →

match Q with
|Assertion -(Next e0 -:: -) ⇒ e = e0

| -⇒ False
end ∧ fresh freshmax-assertion Q (Psucc x).

THE SYMBOLIC EXECUTION ALGORITHM is our functional-program implemen-
tation of the operational rules shown in Figure 46.1. It uses some auxiliary
functions: Cexpr2expr translates a C expression to an expr of our syntactic
fragment of separation logic; getSome extracts a value from an option.

Symbolic execution is flow-sensitive, and when interpreting an if
statement, “knows” in the then clause that the condition was true, and in
the else clause that the condition was false. For this purpose we define
a function Cexpr2assertions e a f that takes C expression e and assertion
a = (Π|Σ), generates two new assertions equivalent to (Π ∧ e|Σ) and
(Π∧¬e|Σ), and applies the continuation f to both of these assertions.

Symbolic execution relies on functions subst-expr x e e’, subst-pures x e Π,
and subst-spaces x e Σ that substitute expression e for the variable x in
(respectively) an expression e’, a pure term Π, or a space term Σ.

Definition getSome {A} (x: option A) (f: A →bool):=
match x with Some y ⇒ f y | None ⇒ false end.
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Definition Cexpr2assertions(e:Clight.expr)(a:assertion)
(f:assertion→assertion→bool):=

match a with Assertion Π Σ ⇒
match e with
| Ebinop Oeq a b ⇒

getSome (Cexpr2expr a) (fun a’ ⇒ getSome (Cexpr2expr b) (fun b’ ⇒
f (Assertion (Eqv a’ b’ ::Π) Σ) (Assertion (Neqv a’ b’ ::p) Σ)))

| Ebinop One a b ⇒
getSome (Cexpr2expr a) (fun a’ ⇒ getSome (Cexpr2expr b) (fun b’ ⇒

f (Assertion (Neqv a’ b’ ::Π) Σ) (Assertion (Eqv a’ b’::Π) Σ)))
| -⇒ getSome (Cexpr2expr e) (fun a’ ⇒

f (Assertion (Neqv a’ Nil ::Π) Σ) (Assertion (Eqv a’ Nil ::Π) Σ))
end end.

Smallfoot symbolic execution uses a restricted form of assertion without
disjunction. Therefore when a disjunction would normally be needed,
Smallfoot does multiple symbolic executions over the same commands. For
example, for

(if e then c1 else c2); c3; c4; assert Q

with precondition P, Smallfoot executes the commands c1;c3;c4 with
precondition e ∧ P and then executes c2;c3;c4 with precondition ∼e ∧ P.
Because Berdine et al.’s original Smallfoot used only simple “if and while”
control flow, this re-execution was easy to express.

C has break and continue commands to exit from loop bodies or from
loops. One branch of an if statement might exit, while the other might
continue normally. To handle this notion, the parameters of the check
function include not only a precondition P but a break-condition list BR
that gives exit-postconditions for break, continue, and return. For simplicity
of presentation, we omit BR and breaks from the check function in this
chapter.

In order to handle re-execution mixed with breaks, we write the
symbolic execution function in continuation-passing style. The argument
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Fixpoint check (P: assertion) (c: stmt) (x’: positive)
(cont: assertion →positive →bool) : bool :=

if incon P then true
else match c with
(∗ {P} skip {-} ∗)
| Sskip ⇒ cont P x’

(∗ {P} assert(Q) {-} ∗)
| Sassert Q ⇒ oracle (Entailment P Q) && cont Q x’

(∗ {P} x=i {-} ∗)
| Sset x (Etempvar i -) ⇒

match P with Assertion Π Σ ⇒
let P’:=Assertion(Eqv (Var x) (subst-expr x (Var x’) (Var i))

:: subst-pures x (Var x’) Π)
(subst-spaces x (Var x’) Σ)

in cont P’ (Psucc x’)
end

(∗ {P} x=i→next {-} ∗)
| Sset x (Efield (Ederef (Etempvar i -) -) f -) ⇒

eq-id f -next &&
getSome (isolate (Var i) P x’) (fun l ⇒
forallb(fun P’ ⇒

match P’ with
| Assertion Π′ (Next -f :: Σ′) ⇒

cont (Assertion (Eqv (Var x) (subst-expr x (Var (Psucc x’)) f)
:: subst-pures x (Var (Psucc x’)) Π′)

(subst-spaces x (Var (Psucc x’)) (Next (Var i) f ::Σ′)))
(Psucc (Psucc x’))

| -⇒ false
end)

l)
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(∗ check (P: assertion) (c: stmt) (x’: positive)
(cont: assertion →positive →bool) := ∗)

(∗ {P} e1→next=e2 {-} ∗)
| Sassign (Efield (Ederef e1 -) f -) e2 ⇒

eq-id f -next &&
getSome (Cexpr2expr e1) (fun e1’ ⇒
getSome (Cexpr2expr e2) (fun e2’ ⇒
getSome (isolate e1’ P x’) (fun l ⇒
forallb(fun P’ ⇒

match P’ with
| Assertion Π′ (Next -f :: Σ′) ⇒

cont (Assertion Π′ (Next e1’ e2’ :: Σ′)) (Psucc x’)
| -⇒ false
end)

l)))

(∗ {P} while (e) c {-} ∗)
| Swhile e c ⇒

Cexpr2assertions e P (fun P1 P2 ⇒
check P1 c x’ P && cont P2 x’)

(∗ {P} if (e) c1; else c2 {-} ∗)
| Sifthenelse e c1 c2 ⇒

Cexpr2assertions e P (fun P1 P2 ⇒
check P1 c1 x’ cont && check P2 c2 x’cont)

(∗ {P} c1; c2 {-} ∗)
| Sseq c1 c2 ⇒ check P c1 x’ BR (fun P’ y’ ⇒

check P’ c2 y’ BR cont)

| -⇒ false
end.
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cont is the check function’s continuation. Once check has computed the
postcondition Q for a given statement, it calls cont with Q. If it needs to
call cont more than once, it may do so. For example, in the clause for
Sifthenelse notice that cont is passed to two different recursive calls to
check, each of which will perhaps call cont.

THE MIRACLE OF TERMINATION. In Coq, a Fixpoint function must have a
structurally inductive parameter, such that in every recursive call the actual
parameter is a substructure of the formal parameter. Here the structural
parameter is the statement c. Most of the recursive calls are buried in
continuations (lambda-expressions passed to the cont parameter)—and
may not actually occur until much later, inside other calls to check. The
miracle is that Coq still recognizes this function as structurally recursive.

AT THE START OF THE SYMBOLIC EXECUTION, the check0 function computes the
first fresh variable x for the given program by taking the max of all variable
names in use:

Definition check0 (P: assertion) (c: stmt) (Q: assertion) : bool :=
let x := Pmax (Pmax (freshmax-assertion P) (freshmax-stmt c))

(freshmax-assertion Q)
in check P nil c x (fun Q’ -⇒ oracle (Entailment Q’ Q)).

Theorem check-sound: ∀∆ P c Q,
check0 P c Q = true →
semax ∆ (assertion-denote P) (erase-stmt c)
(normal-ret-assert (assertion-denote Q)).

SOUNDNESS OF SYMBOLIC EXECUTION. If the symbolic executor checks
a Hoare triple (check0 P c Q) then that triple is semantically sound,
according to our axiomatic semantics semax. Since check0 takes syntactic
assertions and semax takes semantic assertions, the statement of this
theorem must take assertion-denotations. The function erase-stmt removes
the assert statements from the program.
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Chapter 47

Heap theorem prover
by Gordon Stewart, Lennart Beringer, and Andrew W. Appel

VeriStar is the machine-verified theorem prover for separation logic that
lies at the core of the Smallfoot-style program analyzer of Chapter 46. To
decide heap entailments, VeriStar implements an algorithm (cf. Navarro
Pérez and Rybalchenko [69]) based upon the paramodulation calculus, a
variant of resolution specialized for equality. The system is proved sound in
Coq with respect to an axiomatization of separation logic, instantiated by
the CompCert C model.

The VeriStar fragment of separation logic, which includes the usual
separation logic connectives such as (maps-to) and ∗ (separating
conjunction) as well as inductively defined list segments (lseg), corresponds
quite closely to the fragment used by Smallfoot and similar tools. The main
limitations of this fragment with respect to the more expressive separation
logics described in previous chapters of this book is that it is first-order
and it does not allow arbitrary nesting of pure and spatial terms. These
restrictions are necessary for efficiency but are usually not prohibitive when
verifying shape properties.

FIGURE 47.1 presents the main components of the VeriStar theorem prover.
To build an intuition for how the pieces fit together, consider the following
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...lseg(b,d) ├─ lseg(a,c)

check_entailment

HeapResolve Superpose.check_pures

ClauseSet.cnf

Validcontradiction?
yesno

Figure 47.1: The main components of the VeriStar system. Superpose and
HeapResolve form the heart of the heap theorem prover, performing equa-
tional and spatial reasoning respectively. The ClauseSet module defines the
clausal embedding of assertions as well as the prover’s clause database using
a tuned red-black tree implementation of the Coq MSets interface.

(valid) VeriStar entailment

a ̸= c ∧ b = d ∧ a b ∗ lseg(b, c) ∗ lseg(b, d) ⊢ lseg(a, c) (47.1)

which consists of two assertions separated by a turnstile (⊢). The first
assertion states that program variable a does not equal c, b equals d and
the heap contains a pointer from a to b and two list segments with heads
b and tails c and d, while the assertion to the right of the turnstile states
that the heap is just the list segment with head a and tail c. The task of
the theorem prover is either to show that this entailment is valid—that
every model of the assertion on the left is a model of the assertion on the
right—or to return a counterexample in the process.

Most theorem provers for separation logic (e.g., Smallfoot [18],
SLAyer [20]) attack the entailment problem top-down, exploring proof
trees rooted at the goal. Each step of a top-down proof is an entailment-
level deduction justified by a validity-preserving inference rule.

VeriStar, by contrast, is bottom-up and indirect. Instead of exploring
proof trees rooted at the goal, it first decomposes the negation of the goal
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(hence indirect) into a logically equivalent set of clauses (its clausal normal
form), then attempts to derive a contradiction from this set through the
application of clausal inference rules. The clauses that form this initial set
are a logically equivalent encoding of the original entailment into its atomic
parts.

In particular, a VeriStar clause is a disjunction

(π1 ∨ . . .∨πm)∨ (π′1 ∨ . . .∨π′n)∨ (σ1 ∗ . . . ∗σr)

of positive pure literals π (by pure we mean those that are heap-
independent), negated pure literals π′ and a spatial atom Σ consisting
of the star-conjoined simple spatial atoms σ1 ∗ . . . ∗σr . The atom Σ may
be negated or may occur positively but not both: we never require clauses
containing two atoms Σ and Σ′ of different polarities. We write positive
spatial clauses (those in which Σ occurs positively) as Γ→ ∆,Σ, where Γ
and ∆ are sets of pure atoms and Σ is a spatial atom, and use analogous
notation for pure and negative spatial clauses. For example, in negative
spatial clauses, Σ appears to the left of the arrow (Γ,Σ→ ∆), and in pure
clauses Σ does not appear at all (Γ→ ∆). The empty clause ; → ; has no
model because on the left, the conjunction of no clauses is True, and on the
right, the disjunction of no clauses is False. Clauses such as Γ→ a = a,∆
and Γ, a = b→ a = b,∆ are tautologies.

ClauseSet.cnf (Figure 47.1) expresses the negation of the entailment as
a set of clauses, taking advantage of the fact that it can encode any positive
atom π as the positive unit clause ; → π and any negative atom π′ as the
negative unit clause π′ → ;. It can do the same for negative and positive
spatial atoms. Since the negation of any entailment F ⊢ G is equivalent,
classically, to F ∧¬G, the original entailment becomes:

a = c→ ; (47.2)

; → b = d (47.3)

; → a b ∗ lseg(b, c) ∗ lseg(b, d) (47.4)

lseg(a, c)→ ; (47.5)

Here the spatial atom lseg(a, c) appears to the left of the arrow in clause
(47.5) since it appears in the right-hand side of the original entailment.
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Likewise, the spatial atom a b ∗ lseg(b, c) ∗ lseg(b, d) appears to the right
of the arrow in clause (47.4) since it appears in the left-hand side of the
original entailment.

After encoding the entailment as a set of clauses, VeriStar enters
its main loop (VeriStar.main-loop in Figure 47.1). First, it filters the
pure clauses from the initial clauseset (clauses (47.2) and (47.3) above),
then passes these clauses to Superpose.check-pures, the pure prover.
Superpose attempts to derive a contradiction from the pure clauses by
equational reasoning. In this case, however, Superpose is unable to derive a
contradiction, or indeed, any new clauses at all from the set, so it constructs
a model of the pure clauses by setting b equal to d (completeness of
the superposition calculus guarantees that this model exists) and passes
the model, along with the current clauseset, to HeapResolve for spatial
normalization and unfolding.

HeapResolve uses the fact that b equals d in the model as a hint to
normalize the spatial clauses (47.4) and (47.5) by clause (47.3), resulting
in the new spatial clause

; → a d ∗ lseg(d, c) ∗ lseg(d, d) (47.6)

in which b has been rewritten to d and therefore no longer appears. But
now the spatial prover recognizes that since list segments are acyclic,
lseg(d, d) can hold only if it denotes the empty heap. Thus lseg(d, d) can
be simplified to emp, resulting in the new clause

; → a d ∗ lseg(d, c). (47.7)

This new clause can almost be resolved against clause (47.5) using
spatial resolution—an inference rule allowing negative and positive occur-
rences of spatial atoms in two different clauses to be eliminated—but only
if clause (47.5) is unfolded to accommodate the next atom a d in clause
(47.7). Unfolding lseg(a, c) to a d ∗ lseg(d, c) is sound, in turn, only when
lseg(a, c) is nonempty, i.e., when a ̸= c. To encode this fact, HeapResolve
generates the new clause

a d ∗ lseg(d, c)→ a = c. (47.8)
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a = c→ ;
;→ b = d
; → a b ∗ lseg(b, c) ∗ lseg(b, d)

lseg(a, c)→ ;
;→ a d ∗ lseg(d, c) ∗ lseg(d, d)
; → a d ∗ lseg(d, c)

a d∗lseg(d, c)→ a = c
; → a = c
; → ;

Figure 47.2: VeriStar-style resolution proof of Entailment (47.1)

Clause (47.8) can then be resolved with clause (47.7) to produce the
positive unit clause

; → a = c. (47.9)

Superpose resolves clause (47.9) with clause (47.2) to derive the empty
clause ; → ;, which is unsatisfiable. Since the inference rules of the
HeapResolve and Superpose systems preserve all models, the original set of
clauses (encoding the negation of the entailment VeriStar set out to prove)
is unsatisfiable; the entailment is therefore valid. Figure 47.2 presents the
completed proof.

ATOMIC ASSERTIONS IN VERISTAR (Figure 47.3) denote equalities and in-
equalities of program variables, singleton heaps and acyclic list segments.
The assertion emp denotes the empty heap. The assertion a b (Next a b
in VeriStar syntax) denotes the heap containing just the value of variable b
at the location given by a (and is empty everywhere else), while Lseg a b
denotes the heap containing the acyclic list segment with head pointer a
and tail pointer b. Equalities and inequalities of variables are pure asser-
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Expressions a, b
Nil null pointer
Var x Program variable

Pure Atoms π (pn_atom)
Equ a b Expression a equals b.
Nequ a b Expression a does not equal b.

Spatial Atoms σ (space_atom)
emp Empty heap
Next a b Singleton heap with a b
Lseg a b Acyclic list segment from a to b

Assertions F , G
Assertion Π Σ Pairs of pure atoms Π and spatial

atoms Σ
Entailments ent

Entailment F G Assertion F implies G.

Figure 47.3: VeriStar syntax

tions because they make no reference to the heap, whereas a b and Lseg
are spatial assertions.

A complex assertion Π ∧ Σ is the conjunction of the pure atoms Π
with the separating conjunction of the spatial atoms Σ. The separating
conjunction σ1 ∗σ2 of two assertions—a notion from separation logic—is
satisfied by any heap splittable into two disjoint subheaps satisfying σ1

and σ2, respectively. The assertion Π ∧Σ is satisfied by any environment
e and heap h such that e satisfies all the assertions in Π and the pair (e, h)
satisfies the separating conjunction of the assertions in Σ. Entailments
F ⊢ G are valid whenever all the models satisfying F also satisfy G, i.e.:
∀(e, h). F(e, h)→ G(e, h).

SEMANTICS. To ensure VeriStar can be retargeted to separation logics for
a variety of languages and compiler frameworks, we proved the system
sound with respect to an abstract model of separation logic. We first defined
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a generic separation algebra Interface (described in a companion technical
paper [85]) with a join relation ⊕, a linked-list maps-to operator, and so
on, that serves as a model for the Smallfoot fragment of separation logic.
We then constructed an abstract model of separation logic generically for
any concrete implementation satisfying the interface. This interface can be
instantiated by any reasonable programming model, such as CompCert C
light (we demonstrated it using CompCert C minor). The interface, and
hence VeriStar’s soundness proof, is general enough to be widely applicable.

THE INTERFACE axiomatizes the types of locations loc and values val; the
special values nil_val, corresponding to the null pointer, and empty_val,
corresponding to undefined (i.e., not in the domain of a given heap); an in-
jection val2loc from values to locations; the types of variable environments
env and heaps (heap) and a points-to operator on heaps (rawnext).

We assume a separation algebra on values, meaning that in addition to
the operators on values specified in the interface (e.g., val2loc) we may use
the join operator, written ⊕, to describe the union of two disjoint values.

The heap parameter gives the type of program memories. We require
a separation algebra on heaps. We also require two operators on heaps,
rawnext, a low-level version of the predicate of separation logic, and
emp_at (l:loc) (h:heap), which defines when a heap h is empty at a location
l. The behavior of these operators is defined by axioms [85].

THE ABSTRACT MODEL of separation logic is defined with respect to the
interface we just described. States are pairs of environments e and heaps h.

Inductive state := State: ∀ (e:env) (h:heap), state.

The Coq keyword Inductive declares a new inductively defined datatype
with, in this case, a single constructor named State. State takes as
parameters an environment e and a heap h. In more conventional ML-like
notation, this type is equivalent to the product type State of (env ∗ heap).
Predicates on states, called spreds, are functions from states to Prop.

Notation spred := (state →Prop).
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Prop is the type of truth values True and False, except that predicates
in Prop need not be decidable and are erased during program extrac-
tion. Thus, we use Prop in our proofs, but bool in the verified code.
A Coq Notation simply defines syntactic sugar. The interpretations of
expressions (expr-denote), expression equality (expr-eq) and pure atoms
(pn-atom-denote) are standard so we do not describe them here.

List segments are defined by an inductive type with two constructors.

Inductive lseg : val →val →heap →Prop :=
| lseg-nil : ∀ x h, emp h →nil-or-loc x → lseg x x h
| lseg-cons : ∀ x y z l h0 h1 h,

x ̸= y →val2loc x = Some l → rawnext l z h0 →
lseg z y h1 → join h0 h1 h → lseg x y h.

The lseg-nil constructor forms the trivial list segment whose head and tail
pointers are equal and whose heap is emp. The lseg-cons constructor builds
a list segment inductively when x does not equal y , x is injected to a
location l such that l z, and there is a sub-list segment from z to y .

The function space-atom-denote maps syntactic spatial assertions such
as Lseg x y to their semantic counterparts (i.e., lseg x y).

Definition space-atom-denote (a: space-atom) : spred :=
match a with Next x y ⇒ fun s ⇒

match val2loc (expr-denote x s) with
| None ⇒ False
| Some l ⇒ rawnext l (expr-denote y s) (hp s) ∧

nil-or-loc (expr-denote y s)
end

| Lseg x y ⇒ (fun s ⇒ lseg (expr-denote x s) (expr-denote y s) (hp s))
end.

For Next x y assertions, it injects the value of the variable x to a location
l and requires that the heap contain just the location l with value v (that
is, the heap must be the singleton l v), where v is the interpretation
of variable y . Coq’s match syntax does case analysis on an inductively
defined value (here the space atom a), defining a distinct result value for
each constructor.
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An Assertion Π Σ is the conjunction of the pure atoms π ∈ Π with the
separating conjunction of the spatial atoms σ ∈ Σ.

Definition assertion-denote ( f :assertion) : spred :=
match f with Assertion Π Σ ⇒

fold pn-atom-denote andp (space-denote Σ) Π
end.

The function space-denote interprets the list of spatial atoms Σ as the fold
of space-atom-denote over the list, with unit emp. Thus (space-denote Σ)
is equivalent to
�

∗
⊙

σ∈Σ space_atom_denote(σ)
�

∗ emp

(where ∗
⊙

is iterated separating conjunction) and the denotation of
Assertion Π Σ is
∧

π∈Π

pn_atom_denote(π)∧
�

∗
⊙

σ∈Σ space_atom_denote(σ)
�

if one simplifies P ∗ emp to P (recognizing that emp is the unit for ∗).
Here space-denote Σ is the unit of the fold. Entailments from F to G are
interpreted as the semantic entailment of the two assertions.

THE VERISTAR ALGORITHM. A key strength of the Navarro Pérez and
Rybalchenko algorithm is that it splits the theorem prover into two modular
components: the equational theorem prover for pure clauses (Superpose)
and the spatial reasoning system HeapResolve, which calls Superpose
as a subroutine in between rounds of spatial inference. This modular
structure means well-studied techniques from equational theorem proving
can be applied to the equational prover in isolation, while improving the
performance of the heap theorem prover as a whole.

In this section, we describe our verified implementation of the algorithm
of Navarro Pérez and Rybalchenko and give an outline of its soundness
proof in Coq.

Listing 47.4 defines the main procedures of the VeriStar system, in
slightly simplified form (we have commented out the termination proof for
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1Function main-loop
2(n: positive ) (Σ: list space-atom) (ncl: clause) (S: M.t)
3{measure nat-of-P n} :=
4if Coqlib. peq n 1 then Aborted (M.elements S) else
5match Superpose.check-pures S with
6| (Superpose.Valid , units, -, -) ⇒ Valid
7| (Superpose.C-example R sel, units, S∗, -) ⇒
8let Σ′ := simplify-atoms units Σ in
9let ncl′ := simplify units ncl in
10let c := norm sel (PosSpaceClause nil nil Σ′) R in
11let S1 := incorp (do-wellformed c) S∗ in
12if isEq (M.compare S1 S∗)
13then if is -model-of-Π (List.rev R) ncl′

14then let c′ := norm sel ncl′ in
15let us := pures (unfolding c c′) in
16let S2 := incorp us S1 in
17if isEq (M.compare S1 S2) then C-example R
18else main-loop (Ppred n) Σ′ ncl′ S2 c
19else C-example R
20else main-loop (Ppred n) Σ′ ncl′ S1 c
21| (Superpose.Aborted l, units, -, -) ⇒ Aborted l
22end.
23Proof. (∗Termination proof here, that n decreases∗)
24Defined.
25
26Definition check-entailment (ent: entailment) :=
27let S := pure-clauses (map order-eqv-clause (cnf ent)) in
28match ent with
29| Entailment (Assertion Π Σ) (Assertion Π′ Σ′) ⇒
30match mk-pureR Π, mk-pureR Π′ with
31| (Π+, Π−), (Π′+, Π

′
−) ⇒

32main-loop m Σ (NegSpaceClause Π′+ Σ
′ Π′−)

33(clause - list2set S)
34end
35end.

Figure 47.4: The main VeriStar procedures
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main-loop, line 24). The first step is to encode the entailment, ent, as a
set of clauses (its clausal normal form, line 28). The algorithm then enters
its main loop, first calling Superpose.check-pures (line 5) on the current
set of pure clauses S, a subset of the clauses that encode ent, and checking
whether the equational prover was able to derive the empty clause from
this set. If it was, the algorithm terminates with Valid (line 6). Otherwise,
Superpose returns with a model R of the set of pure clauses (line 7) and a
list of unit clauses units derived during superposition inference (also line 7).
VeriStar first rewrites the spatial atoms Σ and spatial clause ncl by units
(lines 8-9), then normalizes the rewritten positive spatial atom Σ′ using the
model R (line 10). It then adds any new pure clauses implied by the spatial
wellformedness rules to the pure set (line 12). This process repeats until
it converges on a fixed point (or the prover aborts abnormally; see [85]
for details). Once a fixed point is reached, more normalization of spatial
atoms is performed (line 14), and unfolding of lsegs is attempted (line 15),
possibly generating new pure clauses to feed back into the loop. If no new
pure clauses are generated during this process, the algorithm terminates
with a counterexample.

VERISTAR DIVIDES SPATIAL REASONING (lines 10-15 in Figure 47.4) into four
major stages: normalization of spatial atoms, wellformedness inference,
unfolding of list predicates and spatial resolution.

Normalization rules perform substitutions into spatial atoms based
on pure facts inferred by the superposition system, as well as eliminate
obviously redundant list segments of the form lseg(x , x).

Wellformedness rules generate new pure clauses from malformed spatial
atoms. Consider, for example, the clause

Γ→∆, lseg(x , y) ∗ lseg(x , z)

which asserts that Γ implies the disjunction of ∆ and the spatial formula
lseg(x , y) ∗ lseg(x , z). Since the separating conjunction in the spatial part
requires that the two list segments be located in disjoint subheaps, we know
that the list segments cannot both start at location x unless one of the list
segments is empty. However, we do not know which one is empty (see
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spooky disjunction, page 415). To formalize this line of reasoning, VeriStar
generates the clause Γ → x = y, x = z,∆ whenever it sees a clause
with two list segments of the form given above. This new clause states that
Γ implies either ∆ (the positive pure atoms from the original clause) or
x = y ∨ x = z. The other wellformedness rules allow VeriStar to learn pure
facts from spatial facts in much the same way.

The spatial unfolding rules formalize the notion that nonempty list
segments can be unfolded into their constituent parts: a points-to fact and
a sub-list segment, or in some cases, two sub-list segments. List segments
should not be unfolded ad infinitum, however—it would be sound to do
so, but our algorithm would infinite-loop. VeriStar performs unfolding only
when certain other spatial facts are present in the clause database. These
hints or triggers for rule application make the proof procedure tractable.

As an example, consider Navarro Pérez and Rybalchenko’s inference
rule U3

Γ→∆, lseg(x , y) ∗Σ Γ′, lseg(x ,nil) ∗Σ′→∆′

Γ′, lseg(x , y) ∗ lseg(y,nil) ∗Σ′→∆′

which states that list segments lseg(x ,nil) in negative positions should be
unfolded to lseg(x , y) ∗ lseg(y,nil), but only when there is a positive spatial
clause somewhere in the clause database that mentions lseg(x , y). In this
rule, the left-hand side clause Γ → ∆, lseg(x , y) ∗ Σ is unnecessary for
soundness but necessary operationally for limiting when the rule is applied.

Our Coq implementation of this rule follows the declarative version
rather closely.

Definition unfolding3 (sc1 sc2:clause) :=
match sc1, sc2 with
| PosSpaceClause Γ ∆ Σ, NegSpaceClause Γ′ Σ′ ∆′ ⇒

let l0 := unfolding3’ nil Σ Σ′ in
let build-clause Σ0 := NegSpaceClause Γ′ Σ0 ∆′ in

map build-clause l0
| -, -⇒ nil
end.
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Here unfolding3’ is an auxiliary function that searches for and unfolds
list segments from variable x to Nil in Σ′ with counterpart lists of the
appropriate form in Σ.

Finally, VeriStar performs spatial resolution of spatial atoms that appear
both negatively and positively in two different clauses.

Γ,Σ→∆ Γ′→∆′,Σ
Γ,Γ′→∆,∆′

Like the wellformedness rules, spatial resolution makes it possible to infer
new pure facts from clauses with spatial atoms, in the special case in which
Σ occurs both positively and negatively in two different clauses.

TO FACILITATE VERISTAR’S SOUNDNESS PROOF, we divided the prover into the
following major components:

• Clausal normal form encoding of entailments;
• Superposition;
• Spatial normalization;
• Spatial wellformedness inference rules;
• Spatial unfolding rules; and
• Model generation and selection of clauses for normalization.

We then proved each of these components sound with respect to a formal
interface (Module Type in Coq).

As an example of one such interface, the main soundness theorem for
the clausal normal form encoding states that the negation of the clausal
normal form of an entailment is equivalent to the original entailment before
it was encoded as a clauseset.

Theorem cnf-correct: ∀ (e:entailment),
entailment-denote e↔
∀ (s:state), ¬(fold clause-denote andp TT (cnf e) s).

Here the notation fold f andp TT l s means
∧

x∈l( f x s). TT is the always
true predicate. The function clause-denote defines our interpretation of
clauses, i.e., disjunctions of pure and spatial atoms. Theorem cnf-correct is
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the only theorem about the clausal normal form encoding that we expose
to the rest of the soundness proof, thus limiting the exposure of the rest of
the proof to isolated updates to the cnf component.

Likewise, the main soundness theorem for the superposition system
states that if Superpose.check-pures was able to derive the empty clause
from a set of clauses init, then the conjunction of the clauses in init entails
the empty-clause.

Theorem check-pures-Valid-sound: ∀ init units g u,
check-pures init = (Valid, units, g, u) →
fold clause-denote andp TT (M.elements init)
⊢clause-denote empty-clause.

We need an additional theorem for Superpose, however, since the pure
prover may return C-example for some clausesets, in addition to those for
which it returns Valid. In the counterexample case, VeriStar constructs
a model for the pure clauses, then uses this model to normalize spatial
ones. Any clauses inferred by the pure prover while it was searching for the
empty clause must therefore be entailed by the initial set of clauses.

Theorem check-pures-Cexample-sound:
∀ init units final empty R sel,
check-pures init = (C-example R sel, units, final, empty) →
fold clause-denote andp TT (M.elements init)
⊢ fold clause-denote andp TT (M.elements sel) &&

fold clause-denote andp TT (M.elements final) &&
fold clause-denote andp TT units.

TO PROVE THE SOUNDNESS of VeriStar.check-entailment, the main function
exported by the prover (Listing 47.4), we made each of the components
described above a functor over our abstract separation logic model,
VERISTAR-MODEL. As we described earlier in this chapter, our abstract
model is itself a functor over modules satisfying the VERISTAR-LOGIC
interface. VERISTAR-MODEL—and by extension, our soundness proof—is
therefore entirely parametric in the low-level details of the target separation
logic implementation (e.g., the definition of the maps-to operator).
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In the main soundness proof for VeriStar.check-entailment, we imported
the soundness proof for each component, instantiated each of the functors
by Vsm:VERISTAR-MODEL, then composed the soundness theorems
exported by each component to prove the main correctness theorem,
check-entailment-sound.

Module VeriStarSound (Vsm:VERISTAR-MODEL).
Module SPS := SP-Sound Vsm. (∗Superposition∗)
Module NS := Norm-Sound Vsm. (∗Normalization∗)
...
Module WFS := WF-Sound Vsm. (∗Wellformedness∗)
Module UFS := UF-Sound Vsm. (∗Unfolding∗)

Theorem check-entailment-sound: ∀ (ent:entailment),
VeriStar . check-entailment ent = Valid →
entailment -denote ent.

End VeriStarSound.

check-entailment-sound states that if the prover returns Valid, the original
entailment is semantically valid in the Vsm model. Because of VeriStar’s
modular design, the proof of this theorem goes by a straightforward
application of the soundness lemmas for each of the subcomponents.

TO TARGET THE SOUNDNESS PROOF to CompCert, we built an implementation
of the VERISTAR-LOGIC interface for C minor1 addresses, values, local
variable environments and heaps (CminLog). We instantiated our abstract
separation logic by this module

Module Cmm:VERISTAR-MODEL:=VeriStarModel CminLog.

then applied VeriStarSound to Cmm,

Module Vss : VERISTAR-SOUND := VeriStarSound Cmm.

1C minor is a CompCert intermediate language two levels below C light. At the time
we built VeriStar (2011), our Verified Software Toolchain targeted the C minor language.
Since then, we have ported the VST to the C light language.
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yielding an end-to-end proof. Here the module CminLog defines the
operators and predicates on environments and heaps (env-get, env-set,
rawnext, etc.) required by our soundness proof, and proves all of the
required properties for these operators and predicates.

AS THE VERISMALL STATIC ANALYZER calls on VeriStar to check separation-
logic entailments, VeriSmall’s soundness theorem (page 425) relies on Vss
for the semantic validity of those entailments.

WHAT WE HAVE ACHIEVED HERE is a foundational static analyzer. The
ML program extracted from VeriSmall and VeriStar runs efficiently over
(the abstract syntax of) C programs. Where the C program manipulates
only data structures within the “Smallfoot fragment” of separation logic,
VeriSmall accepts the program, implicitly making claims about the safety
of the program and the shape of its data structures. The foundational
soundness proof for those claims relies on the proofs of correctness (in
Coq) for the Gallina programs from which the ML program is extracted.
These correctness proofs are done with respect to the axioms of the
VST program logic, which is proved sound (in Coq) with respect to the
operational semantics of CompCert. Then the correctness proof (in Coq) of
the CompCert compiler ensures that the behavior of the assembly-language
program comports with the safety property claimed by the source-level
static analyzer. The toolchain is verified from top to bottom.
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HORec, 109, 359
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