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Abstract

i
i

It may be that the large clusters and shperclusters
of galaxies observed today in the universe formed from a
randomly distributed arrangement of galaxies in a
matter-dominated universe. If this is the case, then
the details of their clustering may be investiéated
numerically in an N-body simulation of gravitational
forces.

Current algorithms for N-body integrations require
an amount of computation time proportional to the squafe
of the number of bodies, due to the need to compare each
body with every other. However, using the fact that the
gravitational force felt from a distant clump of bodies
is well approximated by considering it as a single
object, located at the center of mass of the bodies and
having a mass equal to their total mass, the number of
calculations may be greatly reduced. An improved
algorithm is described which requires computation time
proportional to Nxlog(N) for N bodies.

This algorithm is then used, with suitable
parameters, to investigate the behavior of randomly

placed galaxies in the Friedman universe.




Introducticn

A reasonable hypothesis for the form of the early
~universe is that galaxies were originally (shortly
after their formation) randomly distributed throughout
an isotropic, expahding universe. One reason that this
model is attractive is that it proposes conditions very
similar to those observed today, differing quantita-
tively but not qualitatively. Today, though, galaxies
are not distributed randomly: on very large scales
there is a homogenous distribution of mass, but on a
smaller scale, clusters containing thousands of galax-
ies are observed. These clusters are far larger than
would occur by random fluctuations.

It could be, however, that clumps could form spon-
taneously from a random distribution of galaxies. By
random fluctuation, there will be areas where the dis-
tribution of mass is slightly denser than in neighbor-
ing areas. As the universe expands, these areas will
tend to hold together because of their strong internal
gravitational forces, and weak external forces. Clus-
ters observed today would have been the same size ear-
iier in the development of the universe, after galaxy
formation, but they would have been much closer
together, in fact nearly touching.

It is thus useful to know under what conditions a
randomly arranged set of galaxies will form clumps due

to expansion, and what form these clumps will take.
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One way of finding out is to perform a massive gedanken
experiment: specify some initial condition% -- a few
thousand or tens of thousands of randomly plgced mass
points -- and parameters for the expansion of the uni-
vetse, and calculate the final positions of the masses
after a suitable time interval.

The N-body problem cannot be done in closed form,
however, and so the calculation must be done numeri-
cally. That is, at each time t, the gravitational
forces of each mass on each of the others may be com-
puted by Newton's laws (for a sufficiently small por-
tion of the universe). This is because the metric of
the Friedman solution, for a universe of size compara-
ble to the one which exists now, will not change appre-
ciably over distances of a few million light-years.
(The size of our universe, although it is not precisely
known, is certainly large enough for this to be true.)
Furthermore, in the Schwarzschild solutions which are
in some sense imbeddea into (or superimposed upon) the
universe, the various galaxies are far enough apart so
that Newton's laws constitute a very good approxima-
tion. Thus, using the inverse-square force law, an
approximation to the true acceleration and velocity of
each particle over a time dt can be computed. By many
iterations of‘this method, the position of each parti-

cle after an arbitrary length of time may be found.
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I. An Algorithm to Solve N-body Problems

Obviously, the numerical calculation of thousands
of accelerations would become very tedious without the
aid of a computer, and conversely, with a computer it
is not difficult to compute the acceleration on mass-
point i caused by gravitational attraction of all other

mass points j:

RE
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This formula can be implemented straightforwardly.in
the following procedure, in which X[i] is the'position
vector of galaxy i, M[i] is the mass of galaxy i, and
Ali] is the computed acceleration vector:

FOR i :=1 to N

DO FOR j := i+l to N
DO ‘BEGIN r := X[3j1 - X[il;
a :=G*r/lclf ;
Ali] := A[I] + M[j]*a;
A[3] == A[3] - M[i]*a
END

The Straightforward Algorithm

To get a rough idea of how large N should be for
an interesting calculation, one can take the ratio of
the size of the universe-patch for which the calcula-
iion is made, to the typical intergalactic distance.
If N galaxies afe put into a cube measuring axara, then
the galaxies will be separated by approximately a/N3,
Thﬁs, to achieve an accuracy of ten percent in measur-

ing the clustering effect, then as a‘bare mimimum 1000
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galaxies should be simulated. (This is not a rigorous
argument, but serves to give some indication of héw
large N must be.)

Given a number N, it is desirable that the simula-
tion of N galaxies should be feasible on a digital com-
puter. It is clear that the statements between the
BEGIN-END will be executed N(N-1)/2 times. For large

2

N, the N° term will dominate to such an extent that it

will be sufficient to note that the running time of
this procedure is roughly proportional to Nz. Further-
more, this term will be the dominant one even when the
cost of all other operations on the mass points is con-
sidered. Actually moving the points in space, once
their acceleration is computed, will take time propor-
tional only to N, the number of points.

When N is large, it becomes very expensive to com-
pute-N2 individual accelerations as required by the
straightforward algorithm. At a certain point (for N
equal to a few thousand) it will take on the order of a
minute to compute the gravitational accelerations for
only one iteration, even on the fastest computers. To
increase N by an order of magnitude would require that
either a hundred times more computational resources be
obtained, or that computers become faster by two orders

of magnitude. It is conceivable that the efficiency of

the computer program to compute the steps between the




PAGE 5

BEGIN-END could be improved, but it is difficult to see
how two orders of magnitude of improvement could be

accomplished.

Reducing the Number of Calculations:

For a real improvement in the speed of the algor-
ithm (that is, changing the dominant term of the run-
ning time, rather than the constant of proportional-
ity), it will be necessary to execute the BEGIN-END
significantly fewer than_const*N2 times. This is QUite
possible, thanks to the wonderful fact that there are
" no gravitational dipoles.

Consider the following . arrangement of masses,

where y is the center of mass of the masses m;

e

y .-
L ]

Figure 1: A Clump

We can approximate the strength of the gravitational
field at point p by G(Zmi)/(x—g)z, and its direction by
p-y. Furthermore, this approximation is accurate to
first order in dr/r, since the first term to contribute
to the error will be the quadrupole term, with error

pfoportional to (dr/r)z.
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The implication of this is that only one calcula-
tion (such as that between the BEGIN-END in‘phe
straightforward algorithm) needs to be made,!no matter
how many mass.points there are in the cluste} about y.
What is needed is not a miraculous trick of algebra
(other than the simple approximation above), but a way
of organizing the calculation to take advantage of the
center-of-mass attraction. This will be accomplished
by writing down the positions and masses of clumps,
just as the positions and masses of indiviual galaxies
are written down. A clump will always be defined to
contain two subclumps, either of which may be a single
galaxy or another clump.

Consider the confiqguration of galaxies shown in

Figure 2: A Clump Structure

figure 2. There is a cluster of five galaxies on the
left, and two on the right. These will be represented

in clumps as in figure 2b: Clump E contains two galax-
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ies, whereas clump A contains two clumps (B and C).
Clump B contains one clump and one galaxy. It is also
useful to think of the entire picture as one clump U,
which contains the two subclumps A and E.

The calculation for figure 2 can now proceed by
calculating only once the attraction between the object
A (with mass 5) and object E (with mass 2). Then, the
internal accelerations of A are computed, and the
internal accelerations of E. Furthermore, the internal
motion of clump E may be computéd'in closed form --
since it contains only two bodies -- so that instead of
computing an acceleration, a velocity, and a position
for each of galaxies 6 and 7 every iteration, a
closed-form calculation needs to be computed only on
the first iteration. Note that the position of the
center of mass of 6 and 7 (that is, the position of

clump E) must be computed numerically, every iteration.

— — P - - . i B S. e e

A Faster Algorithm:

Assume, for the present, that an arbitrary
arrangement of galaxies can be represented as clumps in
a natufal way. (Note that if .the distribution of gal-
axies is homogenous and not clustered, there will still
be portions of the universe which from the point of
view of some galaxies will be sufficiently distant rel-

ative to their diameter that they may be treated as
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clumps.) The procedure for calculating all of the gra-
vitational forces in the universe, while not as simple
as the straightforward method, is not much more compli-
cated:
Procedure ComputeAccel( B )
BEGIN IF B is a nontrivial clump
THEN BEGIN ComputeAccel (B

ComputeAccel (B

TwoNode ( Bl’ 82

.
r
.
4
)

END
END

This procedure's function can be easily expressed
in English: To compute all of the accelerations inter-
nal to a clump, first compute all the accelerations
internal to its first subclump, then compute all the
accelerations internal to its second subclump, then
compute all the accelerations which involve a galaxy
from each of the subclumps. It is clear that of all
pairs of galaxies, either both are iﬁ the same sub-
clumé, in which case their mutual attraction will be
calculated in the first or the second line, or they are
not both in the same subclump, in which case their
attraction will be computed in the third liné.

The line "IF B is é nontrivial clump" serves to
stop the recursion -- if B is trivial, i.e. a point
ﬁass, it has no internal accelerations to be computed.

If ComputeAccel is called to execute upon the
clump containing all of the galaxies -- "ComputeAc-
cel (Universe)"™ -- then the result will be the same as

that of invoking the straightforward algbrithm.
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Finally, the details of the procedure TwoNode,

\

\
which computes all of the gravitational attractions

which involve one member of clump A and one member of
) |

Procedure TwoNode( A , B ) ,
BEGIN d := distance between centers of mass of A and
IF (r,/d > &8) aND (r, > rB)
THEﬁ BEGIN TwoNode( A, ,

TwoNode ( Al

)i
5 ¢+ B)

END
ELSE IF r_/d4d > ¢ .
THEN BEGIN TwoNode( A , Bl };
TwoNode( A , 82 )

+ G*d*m;/d
G*g*mA/d

END

ELSE BEGIN A 3
B

A .
A <A 37
A Ap

e e
nu

END

END ‘
clump B: If the ratios of the sizes of clumps A and B
to their separation is smaller than 3, then it is a
good approximation to perform a center-of-mass calcula-
tion. That is what the last ELSE clause does. Other-
‘wise, it splits up the largef of A and B, for the pur-
poses of this calculation, and calculateé all of the
attractions between members of the other clump and mem-
bers of each of the two subclumps.

Suppose, for example, that B is the larger clump
(larger in volume, not necessarily in mass), and fur-
thermore that rB/d is larger than 3, Then the second
BEGIN-END clause will be performed. This computes all
attractions of galaxies such that one member is in A
and the other is in Bl‘ Then it computes all attrac-

tions of one member from A and the other from 82 (see

figure 3).

B;
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This procedure assignsbacceleration vectors both
to clumps and to individual galaxies (which are special
cases of clumps, having zero radius and no subclumps).
To find the net acceleration of an individual galaxy,
the accelerations of all of its enclosing clumps must
be summed. If 8 is set to zero, then the TwoNode Pro-
cedure will always recur down to the level of individ-
ual galaxies, and the accelerations assigned to the
nontrivial clumps will be zero. .In this case, the
accelerations given the individual galaxies will be
exactly equal to the accelerations computed by the
straightforward method. If & is not equal to zero,
then the acceleration of a single galaxy found by sum-
ming all of the accelerations of the surrounding clumps
(together with its own assigned acceleration) will be
an approximation to the true acceleration found by the
straightforward algorithm. The smaller & is, the bet-
ter this approximation will be, with each two-clump

R . . 2
comparison having a possible error of no more than §°.

Speed and Accuracy Considerations:

There is a considerable ambunt of overhead
involved in the calculation. Rather than computing N
"different accelerations, approximately 2N are actually
computed, since the number of nontrivial clumps is N-1.

Furthermore, the recursion implicit in procedures Com-
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puieAccel and TwoNode is somewhat more costly than the
looping of the straightforward algorithm. However, the
running time of procedure ComputeAccel is proportional
to N*logN. Thus, no matter how much overhead is
involved, this changes only the constant of proportion-
ality; for large enough N, ComputeAccel will be much
faster than the straightforward method.

To see that the number of calculations made will
be roughly proportional to N*logN, consider the number
of times a particular galaxy X is compared with othe;
clumps for the purposes of adding to an acceleration
" vector. Suppose there is a spherical shell around X of
radius r and thickness d*r. If this shell is filled
with clumps of diameter &8*r, then there will be 4,82
clumps in the shell. The smallest shell will have a
size such that one would expect to find one galaxy in
it, ﬁhat is, volume equal to m/p. The largest shell
will enclose volume equal to Nm4>. The quotient of the
radii of the largest and smallest shells will be N1/3.
This will be equal to (1+8)k, where k is the number of
shells. Then k=logN/3log(1+3), and the number of
clumps for which there must be calculation of accelera-
fion relative to galaxy'x is approximately

4 1log(N)
3 1og (1+6)

Note that this number overestimates the number of

calculations done, in that some of the calculations
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will involve not the comparison of X with another
clump, but the comparison with an enclosing clump of X
with another clump. That calculation would also be
counted in this analysis as a calculation for X's
sibling clump, and all other subclumps of the encom-
passing clump. However, this will do no more than
change the constant of proportionality: for each of
the N galaxies, const*logN calculations must be done,
giving a total execution time proportional to N*logN
(when § is held constant).

When the universe is heavily clustered, the algor-
"ithm should speed up, since there will be fewer, denser
clumps; the condition that a clump's size must be a
factor of § smaller than its distance will occur much
more often, saving many recursions of the procedure
TwoNode.

The parameter § is a measure of the accuracy of
the calculation. When one clump is compared with
another, and the ratio of diameter to separation is
less than §, then the computed acceleration will have a
fractional error less than 32. When all of the accel-
erations that clump X feels from other clumps are sum-
med, the error in acceleration should be proportional
to § squared divided by the square root of the number
of clumps compared with. Furthermore, larger clumps

will tend to approach some sort of spherically symme-
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tric distribution, simply because of the large number
of randomly positioned particles. ~Thus the error in
acceleration, on the average, should be significantly
smaller than 32.

In fact, the distribution of errors, shown in fig-
ure 4, is such that there is a maximum absolute error
range, such that for most particles the error is less
than 82. For particles with large accelerations, the

Proportional error is practically zero.

Moving the Galaxies:

Once the accelerations of all clumps are computed
for any time t, the clumps can be moved according to
their new velocities. This process takes time propor-
tional to the number of clumps, or to the number of
galaxies, as in the "straightforward" version. 1In this
version, note that the clumps are moved according to
the accelerations given them by the ComputeAccel proce-
dure: ComputeAccel leaves acceleration vectors at all
levels in the clump hierarchy, and the Move procedure
(see figure 9) applies them at the level in which they
are found -- they are not propagated down to the lowest
level (that of individual galaxies), as this happens
automatically.

This is accomplished by having the coordinates of

each subclump of clump C written relative to the center
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Result of TwoNode when B is large
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for § = 0.3
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of mass of C. The position, velocity, or aﬁceleration
vector of C1 -—- subclump 1 of clump C -- areﬁstored as

|
the position, velocity, or acceleration as séen by an

observer located at the position named Pos having

velocity VC' and acceleration AC. Thus when procedure
Move changes the veiocity and position of C, it de
facto changes the position and velocity of all galaxies
in C. This in itself does not change the speed of Move
by more than a proportionality constant, but it makes
many calculations simpler.

Storing coordinates relative to the parent clump
does imprdve the precision of the calculation. Since
all computations must be carried out with floating
point numbers, which are repfesented as a k-digit num-
ber multiplied by 2 taken to some e-digit number, it is
important that no number be required to have a propor-
tional error of less than 2-k. Suppose, however, that
two galaxies are very close to each other and that
positions are stored in absolute coordinates. It is
quite conceivable that the ratio of the size of the
universe to the separation of two galaxies could
approach 2k. In that case, the two galaxies could not
be as close as they are without having the same float-
ing point representation, and the computer would neces-

sarily have to consider them to be at the same point.
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In relative coordinates, all of the k digits of

|

the precision can be used to write their posﬁtion rela-

tive to the center of mass.

their absolute position
the position vectors of
way, the absolute error

the same as before, but

The task of specifying
in the universe can be left to
their enclosing clumps. This

of their center of mass will be

the much more important rela-

tive position (from which huge accelerations may come,

since they are so close) will be specified to many more

digits of accuracy.

defined above does not reflect this detail;

(Note:

for purposes of clarity.)

BEGIN _Bl

Procedure Move( B ,
=V

:= P
1?1 hag’
\'

P

nu

!BZ
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(X} ul-d

nu

N

END

Figure 9:

How Big‘i§ dat?:
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the procedure TwoNode as
this was
at );
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subc?umps THEN Move(B );
ML

subc?umps THEN Move(B );

Details of the Move procedure.

The time increment dt between iterations is deter-

mined after each iteration.

minimum over all clumps

the clumps.

It is set equal to the

of the characteristic time of

The characteristic time for a clump C is

the time in which C will move a distance of approxi-
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mately d times the distance of C from its parent
clump's center of mass. This is easy to calculate,
since the position vector of C is stored as the vector
from (the center of mass of) C's parent. So the char-
acteristic time of C is the smaller of tv and ta’ where
3x|PCl = t, x lVCI
§x1p 1 = IALIx§ €]

In each iteration, the accelerations are computed
by ComputeAccel, then the minimum characteristic time
dt is found, and then Move calculates the new positions
and velocities. Things, unfortunately, are not so sim-
ple. Suppose two or three galaxies get into a tight
orbit around each other. Their characteristic time may
be an order of magnitude shorter than the characteris-
tic time of any other object in the universe. It would
be nice to be able to iterate them at shorter time
intervals than the rest of the universe, saving a large
amount of calculation. This is not too difficult; what
is needed, again, is a way to organize this process.

Let such a clump be considered to be one object,
indivisible, of nonzero radius. Since any clump is
considered as one object -- albeit with internal struc-
ture -- already, the first and third qualifications are
met trivially. Lét indivisibility be defined: a clump

is indivisible if for all clumps outside it, its ratio

of size to distance is less than 8. what indivisibil-
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ity effectively means is that such clumps w%ll never be
"split" by procedure TwoNode to calculate aécelerations
of its subclumps with another clump. This ys easy to
detect -- simély flag clump A in the first ThEN clause .
or clump B in the second THEN clause of procedure TwoN-
ode. Any clump which is never flagged during the pro-
cess of computing all the accelerations is indivisible.
Now, procedure Move, procedure ComputeAccel, and
the procedure which determines dt will be altered so
that they never look at the internal structure of such
a clump. Note that TwoNode need not be altered, since
the way indivisible clumps are defined is that TwoNode
never looks at their internai structure. Now the prob-
lem is gone: the small, tight clustef of galaxies has
become a point (although with radius!). The time
increment dt will be much larger than it could have
been otherwise. At the end of the iteration, the
internal mechanics of the point can be resolved. This
is done relative to the center of mass of the point,
which will have been moved, even accelerated -- but all
motion and acceleration from external sources will act
equally on all the masses within, just due to the
restrictions placed on indivisibility. This resolution
will usually take several iterations; these iterations
involving three or four galaxies are in place of unnec-

essary iterations which would have involved thousands.
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Two-body Solutions:

When an indivisible object itself is a clump con-
taining two indivisible subclumps (usually, but not
always, simply individual galaxies), then its orbit may
be solved in closed form. 1In this case, the calcula-
tions to resolve internal motion may be put off not
merely to the end of the global iteration, but until
such time as another clump gets near enough to see the
object as something with structure. This may be many
iterations of the universe later -- and many times more
iterations of the tight pair, which typically has a
much shorter characteristic time. Only one calculation
needs to be made in closed form; furthermore, this cal-
culation will be exceedingly accurate, since no approx-
imations are being made internally to the system. Both
elliptical and hyperbolic orbits are treated in closed
form. Parabolic orbits will never come up at random,
since the chance of this occurring (for 48 bits of pre-
cision) is 1 'in 1013.

Thus the univefse might contain some dense clumps,
some of which contain tight three-body systems and
binary galaxies, so that there are many levels of sys-
tems, each with a different time increment per itera-
tidn -- all while conserving momentum and preserving

the validity of the approximation.
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Preserving the Clump Structure: 1
I

It will usually be the case, with clumpg that are ..

not indivisible, that after a Move, the coordinates of
a clump will no longer correspond exactly to the center
of mass of the two subclumps. This is due to a nearby
object attracting one subclump more strongly than the
other. It is a simple matter, however, to adjust the
position of each clump after its subclumps have been
moved. Sometimes, however, anofher subclump will
intrude.into a clump so that the clumps no longer rep-
resent disjoint clusters. In this case, it is neces-
sary that the clumps be rearranged (while keeping the
actual galaxies in the same place). The condition to
aim for is this: for all clumps C, the closest clump
to C external to C shall be its parent clump. Let
Closest(C) be the nearest clump which C is compared
with in procedure TwoNode. 1If the distance from C to
Closest(C) is less than the distance from C to its
parent (which is simply IPCI), then a new clump W will
be formed, which will become the subclump of Parent(C)
which C used to be. W will contain as subclumps C and
Closeét(C). Now the o0ld parent clump of Closest(C) has
only one subclump, so it can be liquidated, promoting

its subclump. This process is represented in figure 6.
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These adjustments (which shall be known as Grabs)
take place immediétely after procedure ComputeAccel
finishes running. Each Grab is a purely local (vis-a-
vis the data structure) phenomenon, and preserves the
positions, velocities, accelerations, and all other
important data of all the clumps involved. The process
of Grabbing guarantees that close pairs will be sub-
clumps of the same clump, and that the clumps will be
close to optimally arranged for quickly computing
accelerations. It is probably impossible to find the
"best” arrangement in a number of execution steps which

is not exponential in the number of galaxies.

Initial Creation of the Clump Structure:

»VWhile grabbing is very useful in maintaining the
clump structure, it will not be able to create one in
the first place from a randomly arranged set of galax-
ies. This will be done as follows. The universal
clump -- which contains all the galaxies -- will be
divided initially into two subclumps chosen so that the
first contains all galaxies whose X coordinate is less
than the median X coordinate, and the other subclump
will contain all galaxies with X larger than or equal

to the median X.
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Each of those subclumps will then be divided into

t
\

two subclumps using the median Y as the splitting cri-

terion. Each lower level of clump will be split on 2,

then X, then Y, then Z, until the clumps consist of
only one galaxy. Note that this procedure dbes not
require that the number of clumps be a power of two,
although that might seem most natural.

The resulting structure will be far from optimal
-— nearby objects will not be in the same clump much of
the time. However, it turns out that the Grab proce-
dure does a very good job of cleaning up the structure
(which could not have been predicted!). (See figure

7.)

Figure 7 is on the following page. The top diagram
depicts the clump structure as first created, by alter-
nately splitting at the median X, Y, and Z. The bottom
diagram shows the structure after several iterations of
Grab. Note that the galaxies are in the same posi-
tions, but the structure is cleaner -- close pairs are
now all linked together.

For purposes of clarity, three things have been
modified for this drawing: - the universe is two-dimen-
sional instead of three-dimensional, it is not peri-
odic, and the galaxies have not been moved between
iterations, as they normally would be.
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II. Simulating a part of the Friedman Universe

We wish to use this machine in order to\simulate

thé development over time of galaxy structurés in a
real universe. It is impossible to model thé entire
universe in this fashion; far too many galaxies are
involved, and the interaction of very distant galaxies
is not well approximated by a Newtonian force law. For
these reasons, only a small part of the universe -- a
volume element of dimension axaxa -- will be modelled.
The dominant accelerations on any galaxies in this
box will not be from the other galaxies in the box.
Rather, it ié the rest of the universe whose mass and
geometry will have the most effect on the motions of
particles in the volume element. Intergalactic attrac-
tions within the box, which are being examined in this
numerical experiment, are mefely the result of local
fluctuations in mass density. The net effect of inter-
actions from outside the box will be quite significant:
they cause the Hubble expansion to slow down, which has
a huge effect on the positions and velocities of the
galaxies. 1In comparison, the local accelerations will
cause galaxies possibly to orbit around each other and
possibly to cluster, but the absolute position of the
galaxies with respect to the universe as a whole will

not be much affected by local interactions.
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It will be useful to find a way to remove the term
coming from the geometry and mass of the entire uni-
verse and to focus on the effect from‘clustering and
local mass density fluctuations. Fortunately, the
behavior of a universe without fluctuations is reason-

ably well understood.

Einstein's Equation:

Suppose the universe has a mass density P(t) which
is the same everywhere. Choose a pair of masses in
this universe separated by distance a(t). Then the

values a and p must satisfy the Einstein equation:
(EEY:: gﬁIG - k
Q 3 @

The constant k depends on the geometry of the uni-
verse, or equivalently, upon the relationship between
the mass density and the parameters of expansion. When
k is negative, the density of the universe is not suf-
ficient to halt its expansion, and a(t) grows infi-
nitely. When k = +1, the universe at first expands,
but ultimately collapses. If k = 0, there will be no
collapse, but the expansion rate will approach zero.
Present estimates of the mass density of the universe
place its value within two orders of magnitude of the
value necessary to exactly halt the expansion. Much of
the evidence indicates that k is negative, and that

there is less mass than would halt the expansion of the
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universe, but there are various reasons for believing
that k is zero. One reason is that this is a nice sym-
metry, and such symmetries are not only convenient to
make use 6f, but often physically justified. Perform-
ing the N-body calculation with a particular assumption
aboutf> and k is a means of testing that assumption; if
all assumptions are correct, one would expect to see
clustering similar to that observed in nature.

In this case the assumption will be made that k=0.
The results of the N-body integration, compared with
astronomical observations of the real Universé, will
- test whether it is reasonable to believe that the uni-
verse is just on the borderline between collapse and
infinite explosion. 1Ideally, one would want to try
several different assumptions about the geometry of the
universe, and initial positions of the galaxies, but
time did not suffice to do these calculations.

When k=0, Einstein's field equation reduces to:
o 2
a)__ 8T
(2)= F6r
Suppose any axaxa volume element in this (homogenous)
universe contains mass M. As a(t) grows, the density
will go down, but the mass M in any volume element of

size a3 will remain constant. Since the density p is

then M/a3, we have:
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Comoving Coordinates:

In order to focus on fluctuations from a uniform
outward (with respect to any given galaxy) flow, coor-
dinates are chosen such that; in a continuous, fluctua—
tionless universe, there is no motion with respect to
these coordinates. (These are called comoving coordi-
nates, since they follow the motion of the mass ele-
ments of a homogenous universe.) These coordinates X
can be placed within the axaxa box, such that they run
from 0 to 1 in each dimension, while the real coordi-
nates r would run from 0 to a(t). Now, obviously, if
the separation between two mass elements is d é(t) as
‘time progresses, then their separation in the coordi-
nates x will be simply 4 -- i.e., r = ax. Taking the
secoﬁd derivative with respect to time of each side, we
obtain the relationship between accelerations in the
two coordinate systems:

¥ = 8x + 2ax + aXx

The acceleration g is caused by two things: the
mass and geometry of the continuous universe, and the
local fluctuations:

I=g,+49
In a homogenous universe, 9¢=0, and ¥x=x=0. Thus,

gh = ax. This acceleration would be simulated in the
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coordinates x by simply leaving each mass e%ement at
|
X = const. The "interesting” term, g is simply the

sum of the local gravitational attractions:

Gm Gm:(a&'-ax)
;? laxicaxP
9‘:.::3, Xyl

Sdn%

¢ i

Egocentric Coordinates:

What is meant by "local galaxies”™ has not been
precisely defined. The galaxies "local™ to any galaxy
G must be chosen so that, if the universe were indeed
homogenous, g, acting on G would be 0. This can be
achieved by choosing a cube of dimensions axaxa, filled
with galaxies, and with G at its center. Obviously, if
there were a homogenous mass'distribution inside the
cube, there would be no net force on G from local
attractions. Furthermore, there will be only a finite
number of galaxies inside the cube, making calculation
of g, possible.

The only problem is that each galaxy must be at
the center of the cube for this to work. This can be
achieved by taking the same cube, and letting each gal-
axy consider itself to be at the center. That is, the
universe will be periodic with period a(t). That would

mean that each galaxy is repeated infinitely many times
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Figure 9: With periodic boundary conditions, two
In this

stars may have more than one center of mass.
case, the average of the coordinates of A and B is at
the point marked +. Other candidates for center-of-mass
are marked with dots. However, the "true" center of
mass —-- the one nearest to both of them -- lies at point
Xx. Point x is found by taking the shortest vector
between A and B (that is, P(B-3) ), and taking its

midpoint.
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Figure 10: Efficliency of
ComputeAccel
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in each direction, but each galaxy in the cube "sees"
only the galaxies whose x coordinates have values
within 1/2 of its own. Thus, as in figure 8, galaxy A

sees the same galaxies as galaxy D, but different

.D [

*>»
*rn o

Figure 8: The Periodic Universe

"instances" of them.

The periodicity of the universe is not, of course,
a real effect. Furthermore, on scales which approach
the size of the box (the period length), no conclusions
may be made about any observed clustering. But on any
smaller scales, the periodicity will have no effect on
smali neighborhoods, and should hot affect the validity
of the result.

So, let a function P(x) be defined: for each com-
ponent i of x, Ei is the (unique) number between -1/2

and +1/2 which differs from X; by an integer. Then the

summation for dg can be precisely defined:

Z Grm P(x:-x
IP(X;-X”3

5dua
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Note that the periodicity does inject some subtle
: i

\
complications into any calculation involving centers of

mass. Any given pair of objects will actualgy have
eight "centers of mass."”™ That is, there wili be eight-
points where the net gravitational attraction from both
objects will be zero. Simply taking the weighted aver-
age of the coordinates of the two bodies will yield one
of these eight points, but not necessarily the one

which will be useful in further calculations. See fig-

ure 9 for an example and an explanation.

Transforming between x and r:

To track the motions of the galaxies in X coordi-
nates, it is necessary to find X- From g(t) and dt,
for any particular galaxy we can compute a value for

g(t+dt), and from g we can compute x(t+dt). Since we

know
r-g,= 9¢ = 2ax + ax
then
o 1 Gme B(xi~x) d .
2 %o 1Pes-n)) A5 X

The summation is the result of executing Compute-
Accel., Note that TwoNode must be modified to compute

P(x

P —A_iB) as its first operation, but that otherwise the

procedures are unmodified. Let the mass of each galaxy

be equal to 1. This means that M, the mass contained
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in the volume element axaxa, is equal to N, the number
of galaxies in the volume element. In addition, let G,
the gravitational constant, be equal to 1. Then, after

executing ComputeAccel to find

4; = 5 Eoa-x)

-3 w;
& 1 Pae-x

we can find 5j:

A. 4 .
4 - -_;_j\ _ —— x '
X% @meNn ~ 3¢ A

This is a simple calculation to perform (in time pro-
portional to N, the number of galaxies for which the

calculation must be done).

Initial Conditions:

In keeping with the assumption that the universe
once consisted of randomly distributed galaxies, the N
galaxies will be placed in the box with random x coor-
dinates. That is, each of the three components of the
position vector of eéch star will be taken from a uni-
form random distribution between 0 and 1.

Each galaxy will, of course, have a significant
initial velocity just from the mechanics of the trans-
formation between x and r -- if the velocity in x coor-
dinates is zero, then the velocity in r coordinates is
é§° HoweQer, it is desirable to give each galaxy addi-
tional velocity so that X will not be zero initially.
It is useful to do this so that nearby galaxies do not

immediately crash right into each other.
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The virial theorem is applicable here,%if we
assume that we have not chosen a particularl& special
time to look at the galaxies. In general (for a 1/r2
force law), if a set of particles are to mai;tain a
roughly constant distance from each other (for example,
two particles in a circular orbit), each particle's
kinetic energy will be one-half its potential energy.
(The potential energy will, of course, be negative, so
actually T = -V/2.) Therefore, the peculiar velocity
(velocity relative to the comoving coordinates) of each
galaxy will be set equal to V/M , where V is the
potential energy of a particular galaxy due to local
gravitational fields. The direction of the peculiar
velocity will be chosen at random from the unit sphere.
Note that the potential energies of all galaxies may be

computed in time proportional to NlogN by a procedure

very similar to ComputeAccel.
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ITI. Efficiency of the Algorithm as Impfemented

Although it is considerably more important to
reduce the order of the complexity function iexecution_
time as a function of N) than it is to worry about the
constant of proportionality, this does not mean that
the constant of proportionality can be ignored. Simi—
larly, the space complexity (amount of memory used as a
function of N) must be éonsidered, both in terms 6f its
functional form and its constant of proportionality. .

Several things influence the time complexity. The
most important, of course, is the parameter J, whose
effect has already been calculated. The periodicity of
the cube-shaped patch of space tends to degrade the
performance of ComputeAccel, since each galaxy is
closer to all of the galaxies_that would have been on
the other side of the box, and thus the labor-saving
approximation can be used less frequently.

One effect which is difficult to predict quantita-
tively is the influence of actual galaxy clustering on
the running time of the program. If the universe
becomes highly clustered, then the conditions rA/d <4
will be met much more frequently, and TwoNode will have
less of a job to do. However, inrsuch a universe,
since each galaxy is closer to neighboring galaxies
than it would otherwise be, the time increment between

iterations will be smaller. These two effects tend to
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cancel each other, and it is not obvious which will
predominate.

A mysterious effect for which there is no obvious
explanation is that the Grab procedure does not seem to
work as well in the presence of periodic boundary con-
ditions as it does without them. Due to the nature of
the procedure, in which many local changes are made
without regard to the global structure (although always
preserving the physics of the situation), it is diffi-
cult to determine a priori how well the overall struc-
ture will be kept. The optimality of the clump struc-
- ture may be studied by noting the variation in the time
required to compute one iteration. Computation time
for iteration i, versus i, is plotted in figure 10.

One can»conclude from this graph that the Grab proce-
dure does work at least well enough that local cluster-
ing effects may be taken advantage of, since ComputeAc-

cel does not get much slower after many iterations.

Memory Space:

The amount of memory used by the algorithm is pro-
portional to the number of clumps, which is approxi-
mately twice the number of galaxies. The constant of
proportionality is larger than that of the straightfor-
ward algorithm, however. Figure 11 shows the data

stored for each clump.
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Clump = POINTER TO RECORD \
P,V,A : Vector; |
S1,82,Parent : Clump; ‘
U,R2 : Real;

M : Integer;
Dclose : Real; i
Sclose : Clump;
Flags : SET OF (Below,Here,Done,
Tracer,Split,Binary);
ID : Integer;
END;

Figure 11: Definition of a Clump

As can be seen from figure 11, each clump has a
position vector, a velocity vector, and an acceleration
vector (P, V, and A). Also, it has pointers to its two
subclumps (S1 and S2) and to its parent clump (Parent).
The variables U and R2 are used for potential energy
and approximate clump diameter, and M is simply the
mass of the clump. Dclose and Sclose fefer to the
closest other clump found during the ComputeAccel pro-
cess, and are used by the Gra5 procedure to determine
exactly which clump to grab. Flags and ID are used for
bookkeeping.

All in all, this amounts to 124 bytes of storage.
per clump, or 248 per galaxy. This is assuming that
double-precision (8-byte) real numbers are used. Due
to the fact that this algorithm does not heavily rely
on extended precision of the variables (since it stores
positions and velocities relative to the parent
clumps), single-precision (4-byte) real numbers would

certainly suffice with no loss of accuracy. This would
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reduce the memory demands to 76 bytes per clump, or a
total of 152 per galaxy (plus, of course, a constant
amount of overhead).

Typical large computers have between 1 and 10 mil-
lion bytes of fast storage, and much larger amounts of
disk storage. Disk storage can be exchanged with fast
storage in large chunks with a cost that makes it pro-
hibitively expensive to access the disk for every
instruction; it is reasonable, however, to access the
disk after each several thousana calculations.

As an example of how the disk can be used, con-
sider running the straightforward algorithm with only
enough fast memory to hold one-fifth of the galaxies.
The algorithm can still be run efficiently in the fol-
lowing manner. The galaxies will be divided into ten
sublists. Then each pair of sublists will be brought
into fast memory, and all computations involving pairs
of galaxies from each pair will be executed when that
pair is in fast memory. The details of this method are
‘not important, but the result is: the straightforward
algorithm still takes const*N2 time, and only (on the
order of) 100 disk operations are needed.

Using a crude version ofbthe improved algorithm
(ComputeAccel), the order in which data from the disk
is needed is not systematic, and thus far too many disk

operations would be needed. However, if the structure
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of'clumps is arranged such that entire clumps contain-
ing many thousand bodies are in the same area on the
disk, then the procedure TwoNode will not require an
excessive amount of disk operations. This is certainly
worth doing in order to accommodate tens of thousands
of galaxies, but for the sake of avoiding excessive
complications in this area, it was not implemented.
Thus, the version of ComputeAccel which was implemented
must run entirely in fast memory.
The compiler used for the program was incapable of
dealing with single-precision numbers, and thus, double
- Precision had to be used. The computer which was used
has 2 million bytes of fast storage, some of which is
taken up by operating system overhead. Thus, the larg-
est number of galaxies which could be simulated, due to
memory constraints, was approximately 3000; the largest
simulation which was actually run successfully (in the

face of logistical problems) contained 1000 galaxies.

The Proportionality Constant:

Each previous mention of the constant of propor-
tionality relating to»NlogN vs. N2 has simply dismissed
the question. This was necessary because, although the
functional form of the time complexity function may be
determined froh the structure of the algorithm, the
constant of proportionality may be determined only from

a specific implementation.
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In this particular implementation,

t(N) = 0.015xN=1n(N) per iteration. The straightfor-
ward algorithm would take, in simiiar circumstances,
ts(N) = 0.0001:N2. (This is for a computer approxi-
mately five times slower than Princeton University's
IBM 3033.) The breakeven point, where.the improved
algorithm becomes cheaper than the straightforward
algorithm in computing one iteration, is at about 1000
galaxies. However, this does not take into account the
fact that the improved algotithm permits a greater dt
per iteration, and will thus require fewer iterations
to perform a given integration. To compare the running
times of the two algorithms for an entire integration
rather than just oneriteration would require actually
executing the straightforward algorithm, which would be
somewhat informative but not very interesting.

The time required to compute a specific integra-
tion varies, of course, with the behavior of the galax-
ies; the time required per iteration and the numbe; of
iterations cannot be predicted in advance. 1In an
actual run of the program, however, 1000 galaxies were
integrated with a $ parameter of 0.3, For a fifty¥fold
expansion of the universe, ten hours of computation
time were required (the equivalent of two hours on the
Princeton University IBM 3033 computer) and 150 itera-

tions were done.
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Although the execution times of the two algorithms
are comparable for N=1000, and it was not possible to
try N much larger than 1000, the improved algorithm
should produce a great saving for large N.' If we
assume that the NlogN term is the dominant term for

N > 1000 (which is likely, although not necessarily

true -- linear time overhead may still be significant

at this size), then there should be a tenfold advantage
in running the improved algorithm rather than the

straightforward algorithm, for N=10000.
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IV. Computed Behavior of the Galaxies

There are two types of interesting results that
can come from this experiment: information on the effi-
ciency of the method, and configurations of galaxies.

The obvious thing to do with the list of galaxies
and their positions at time t=tf is to plot a picture
of it. A two-dimensional projection can be taken very
easily just by suppressing the z-coordinate of each
positi&n vector. Because of the way in which the uni-
verse was made periodic, all areas of the picture can
‘be treated in the same way, i.e. there is no preferred
area with respect to density. (In contrast, if a non-
periodic, spherical group of galaxies had been chosen,
then any two-dimensional picture would tend to look
denser in the middle.) Figqures 12a through 17a show
the evolution of a 1000-galaxy patch of space.

Note that clustering is indeed taking place. 1In
the early projections clustering is happening on small
| scales, but clusters of clusters have not yet formed.
By the last projection, where t=374, the one superclus-
ter is almost as big as the box. Any continuation of
the integration beyond this point will not be valid, as
the periodic edge effects Qill manifest themselves.

A less obvious, though somewhat more quantitative,
approach, is to define a function which measures the

typical separations of pairs of galaxies: the two-
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point correlation function. Let fo(r) be the number of
pairs of galaxies which are between r and r+dr apart.
Let £(r) be fo(r)/rz, that is, normalized by the amount
of volume in the shell between r and r+dr. If there is
a uniform distribution of galaxies, then f(r) will be
constant for all r (up to the size of the periodic
box). Actually, f(r) shall be further normalized by a
constant so that in the uniform case, f(r)=1. (Note

" that the correlation function can be computed in NlogN
time by an algorithm similar to ComputeAccel.)

If there is a random distribution of galaxies,

- £(r) should still be equal to 1 for all r, except for
small r, where there would be (on the average) oniy 1
galaxy in the volume r3, then f(r) will approach zero.

On the other hand, a clustered distribution of
galaxies will manifest itself with £(r) much higher
than 1 for small r, and somewhat lower than 1 for large
r. |

Figures 12b through 17b show the two-point corre-
lation functions for the confiqurations pictured in
figures 12a through 17a. They indicate that the scale
on which clustering is taking place starts out small,
but gradually increases. In the final plot, for t=374,
there are some interesting notches in the correlation
function which have no obvious explanation. If they
are physical, and not a result of the boundary condi-

tions, then something interesting is happening.
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Conclusion:

i

The Nlogﬁ algorithm for the N-body probiem, as
adapted to the special conditions required for the sim-
ulation of a patch of the Friedman universe, has sev-
eral advantages over simpler methods. 1Its distinguish-
ing characteristic, the grouping of the mass points
into a clump data Structure, enables not only a reduc-
tion in the number of individual forces which must be
computed, but makes possible the easy recognition of
important features of a situation. Recognizing these
features, such as tight two-body or n-body clusters
which can be integrated with a different characteristic
time, makes possible a further reduction in computation
time.

Not only is it thus possible to reasonably effi-
ciently integrate an N-body problem, but the results of
doing so indicate that this is an informative thing to
do. The assumption that the expansion of a universe
initially containing randomly distribﬁted galaxies will
lead to clustering seems, in light of the results
obtained, to be justified. 1If this is indeed the case,
- then N-body integrations can be used to examine quanti-
tatively, rather than just qualitatively, the history

of the universe.
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