
-

Continuation-Passing, Closure-Passing Style

Andrew W. Appel*
Trevor Jim†

CS-TR-183-88

July 1988
Revised September 1988

ABSTRACT

We implemented a continuation-passing style (CPS) code generator for ML. Our CPS language is
represented as an ML datatype in which all functions are named and most kinds of ill-formed expres-
sions are impossible. We separate the code generation into phases that rewrite this representation
into ever-simpler forms. Closures are represented explicitly as records, so that closure strategies can
be communicated from one phase to another. No stack is used. Our benchmark data shows that the
new method is an improvement over our previous, abstract-machine based code generator.

To appear in POPL ’89.

* Supported in part by NSF Grant DCR-8603543 and by a Digital Equipment Corp. Faculty Incentive Grant.

† AT&T Bell Laboratories, Murray Hill, NJ. Current address: Laboratory for Computer Science, MIT, Cambridge, Mass.

- 2 -

1. Overview

Standard ML of New Jersey[1] is a compiler for
ML written in ML. Its first code generator, based
on an abstract stack machine, produced code with
acceptable but not stunning performance. Exami-
nation of the code revealed that the greatest
source of inefficiency seemed to be that each
value went on and off the stack too many times.
Rather than hack a register allocator into the
abstract stack machine, we decided to try a
continuation-passing style (CPS)[2] code genera-
tor. Kranz’s ORBIT compiler[3] [4] shows how
CPS provides a natural context for register alloca-
tion and representation decisions.

The beauty of continuation passing style is that
control flow and data flow can be represented in a
clean intermediate language with a known seman-
tics, rather than being hidden inside a ‘‘black
box’’ code generator. The ORBIT compiler
translates CPS into efficient machine code, mak-
ing representation decisions for each function and
each variable. ORBIT does an impressive set of
analyses in its back end, but they’re all tangled
together into a single phase. We have a series of
phases, each of which re-writes and simplifies the
representation of the program, culminating in a
final instruction emission phase that’s never
presented with complications.

The phases are:

1. Lexical analysis, parsing, typechecking,
producing an annotated abstract syntax
tree.

2. Translation into lambda-calculus (produc-
ing a simple representation described
in[1]).

3. Optimization of the lambda-calculus
(present here for historical reasons; this
phase duplicates some of the effort done by
our CPS optimizer).

4. Conversion into continuation-passing style,
producing a CPS representation described
in the next section.

5. Optimization of the CPS expression.

6. Closure conversion, producing a CPS
expression in which each function is closed
(i.e. has no free variables).

7. Elimination of nested scopes, producing a
CPS expression with one global set of
mutually-recursive, non-nested function

definitions.

8. ‘‘Register spilling,’’ producing a CPS
expression in which no sub-expression has
more than n free variables, where n is
related to the number of registers on the
target machine.

9. Generation of target-machine instructions.

10. Backpatching and jump-size optimization.

Where the ORBIT compiler has one black box
covering phases 6 through 9, we have four
smaller black boxes. The interfaces between the
phases are semantically well-defined, making it
easier to isolate individual parts of the analysis to
one phase.

This paper describes phases 4 through 9, and then
presents an analysis based on profiling and bench-
marks. Because of space limitations, we must
assume that the reader is familiar with
continuation-passing style.

2. Continuation-passing style

Our back-end representation language is a
continuation-passing style (CPS) representation
similar in spirit to Steele’s, but with a few impor-
tant differences: we use the ML datatype feature
to prohibit ill-formed expressions; we want every
function to have a name; and we have n-tuple
operators which make modelling closures con-
venient.

An important property of well-formed CPS
expressions in Steele’s representation is that a
function-application can never be the direct child
of another application. We can express this res-
triction directly in the ML datatype cexp (for
continuation-expression):

datatype cexp
= RECORD of

var list * var * cexp
| SELECT of

int * var * var * cexp
| APP of

var * var list
| FIX of

(var * var list * cexp) list * cexp
| SWITCH of

var * cexp list
| PRIMOP of
int * var list * var list * cexp list

- 3 -

The italicized var’s are binding occurrences, and
the others are uses of the variables.

All of Steele’s ‘‘atoms’’[2] are represented in our
cexp’s by variables. Constants are represented by
globally-free variables entered in an auxiliary
table. This means that a function application
(APP) can be represented by the name of the
function (var) and a series of arguments (var list).
The constraint that an APP can’t be a child of an
APP is enforced by the fact that the arguments of
the APP constructor are variables, not
continuation-expressions.

One of the useful properties of CPS is that every
intermediate value of a computation is given a
name. In Steele’s representation, however, func-
tions can still be anonymous, making it difficult
for a code generator to keep track of them.
Therefore, we eliminate LAMBDA from our CPS
datatype, in favor of FIX, a general-purpose
mutually recursive function definition in which
names are explicitly bound to functions:

FIX([(f,[x,y,z],
(...x...g...y...z...f...)),

(g,[i,j],
(...j...i...g...f...g...))],

...g...f...)

(In ML notation, [x,y,z] is a list of three elements
and (a,b,c) is a tuple of three elements.) This
example defines two mutually recursive functions
f and g of two and three arguments, respectively;
the ellipses are other expressions, and the entire
example is an expression. The binding is roughly
equivalent to the ML expression:

let fun f(x,y,z) =
...x...g...y...z...f...

and g(i,j) =
...j...i...g...f...g...

in ...g...f...
end

Function definitions can be nested in other
expressions; expressions (and functions) can, of
course, have free variables bound at outer levels.

RECORD and SELECT are used to manipulate
n-tuples. RECORD([a,b,c,d],r,cont)
means ‘‘let r = (a,b,c ,d) in cont’’, and

SELECT(i,r,v,cont) means ‘‘let v be the
i th field of r in cont’’.

We have a constructor for indexed jumps
(SWITCH), and a constructor (PRIMOP) for mis-
cellaneous in-line primitive operations like
integer and floating arithmetic, array subscript,
etc. The expression

PRIMOP(i,[a,b,c],[d,e],[F,G,H])

means to apply operator i to the arguments
(a,b,c) yielding the results d and e, and then
branch to one of the continuations F, G, or H.
Each primitive operator has its own ‘‘signature;’’
for example

PRIMOP(plus,[a,b],[d],[F])

takes two arguments, returns one result, and con-
tinues in only one way, whereas

PRIMOP(lessthan,[a,b],[],[F,G])

takes two arguments, produces no result, and
branches to F or G.

One goal in choosing our representation is to give
each object a name (i.e. a variable). Why did we
not represent the control-flow branches of a
SWITCH or PRIMOP by variables standing for
continuation functions? The problem is with the
free variables of the different control-flow
branches. In the CPS language as shown in this
section, any sub-expression and any (nested)
function may have free variables (that are bound
at an outer level of nesting). However, in one of
our code generation phases we will rewrite the
CPS graph to eliminate free variables from all
functions. If the control-flow branches are to be
represented as functions, then they could not have
free variables without creating extra closures; in
fact, it would be necessary to create closures for
all branches even though only one branch would
be taken. Therefore we compromise and leave
the branches as unnamed continuation expres-
sions instead of named continuation variables.

3. Conversion into CPS

The front end of our compiler produces a
lambda-calculus intermediate representation
(described in [1]). This must be translated into
continuation-passing style; the conversion algo-
rithm is similar to Steele’s and won’t be described
in detail here.

The conversion process doesn’t do many optimi-

- 4 -

zations; it’s simpler to do that in a separate phase.
The converter has its hands full just with the
semantics of the two languages (lambda-calculus
and continuation-passing style) that it is translat-
ing between. It does make these representation
decisions:

� Makes control flow explicit by the use of
continuations.

� ‘‘Lowers’’ typed constructs like ML’s dis-
joint union constructors into untyped con-
structs like RECORDs with integer tags.

� Optimizes the representation of case state-
ments (arising from ML pattern-matching)
into jump-tables or binary trees of com-
parisons.[5].

� The pattern (λx. M)(N), which has the
effect of let x = N in M, is treated spe-
cially. This is an optimization that could be
left for the next phase, but it is convenient
and cost-effective to recognize it here.

4. Reduction of the CPS

The next phase is a CPS ‘‘reducer’’ that performs
a variety of optimizations. They are listed here,
each with an indication of how often it is applica-
ble for each 1000 operands* of CPS graph:

205: Replace SELECT(i,r,...) with the i th

field of r, when r is a statically determin-
able record.

181: Perform beta-reduction (inline expansion)
on any function that is called only once, or
whose body is not too large.

72: Merge sets of mutually recursive function
definitions (FIXes) in the hope that they
will later share the same closure. Merging
can be done if one FIX is the immediate
child of another, and each has the same set
of free variables.

66: Perform eta-reduction (where f(x,y)=g(x,y),
replace all uses of f with g).

47: Perform constant-folding on SWITCHes
and PRIMOPs.

26: Hoist (un-nest, or enlarge the scope of visi-
bility of) function definitions to enable the
merging of FIXes.

������������������
* This is a larger and more useful quantity than the
number of nodes in the graph.

4: Remove unused arguments of functions.

2: Flatten the arguments of (nominally
single-argument) ML functions that are
always called with a tuple of actual param-
eters.

0.1: Remove the definitions of variables that
aren’t used.

Our optimizer makes several passes (typically
half a dozen) before no (or few) redexes remain.
The test that produced the frequencies above
counted all passes on a 16,000-line ML program
that had a graph of size 118514. If the optimizer
were to stop at module boundaries, the numbers
would be somewhat different. Our compiler, for
historical reasons, also has an optimizer in the
(non-CPS) lambda-calculus level, which has
some overlap with the CPS reducer and also will
affect the counts given here.

5. Closure conversion

When one function is nested inside another, the
inner function may refer to variables bound in the
outer function. A compiler for a language where
function nesting is permitted must have a
mechanism for access to these variables. The
problem is more complicated in languages (like
ML) with higher-order functions, where the inner
function can be called after the outer function has
returned.

The usual implementation technique uses a ‘‘clo-
sure’’ data structure: a record containing the free
variables of the inner function as well as a pointer
to its machine code. A pointer to this record is
made available to the machine code while it exe-
cutes so that the free variables are accessible. By
putting the code-pointer at a fixed offset (e.g. 0)
of the record, users of the function need not know
the format of the record or even its size in order
to call the function.

In fact, several functions can be represented by a
single closure record containing the union of their
free variables and code pointers. A closure
record is necessary only for a function that
‘‘escapes’’ — some of its call sites are unknown
because it is passed as an argument, stored into a
data-structure, or returned as a result of a
function-call. A call of an escaping function is
implemented by extracting the code pointer from
the closure record and jumping to the function
with the closure record as one of its arguments.

- 5 -

The closure of a ‘‘known’’ function (whose every
call site is known at compile-time) need not be
implemented as a record. Instead, the free vari-
ables can be added as extra arguments to the
function. A call of a known function must
arrange to pass along the appropriate variables to
the function. This implementation of closures is
intended to produce efficient code for loops.

Some functions escape and are also called from
known sites. These can be split into two func-
tions, where the escaping function is defined in
terms of the known one, in the hope that the
known calls will execute more efficiently.

Our closure converter rewrites a CPS expression,
making function-closure representation explicit;
we call this explicit representation ‘‘closure-
passing style.’’ After a pass to gather free vari-
able information,* the converter traverses the
CPS expression. At every FIX that binds an
escaping function, a RECORD is inserted to
create an explicit closure record, and a new argu-
ment corresponding to the closure record is added
to the argument list of each function.† Free vari-
ables accessed within the body of the function are
rewritten as SELECTs from this argument.

Known-function bindings are rewritten by adding
an argument for each free variable in the
function’s body. Applications of the function are
rewritten as the application to the arguments and
the necessary free variables.

The following code fragment shows a sample ML
function and the transformations applied to it. In
rewriting a function f, our convention is to call the
new, closed function f ′, its closure record (if any)
f, and the formal parameter corresponding to the
closure record f ′ ′. The first element of a closure
record f will be f ′, so that if f escapes to some
context where f ′ is not known, the code-pointer f ′
can be SELECTed from the closure record. All
other references to escaping functions become
references to closure records.

������������������
*Mutually-recursive functions complicate the free vari-
able analysis, but this turns out to be a classical dataflow
problem (live-variable analysis) that can be solved by
classical techniques.[6]
† This technique has been used in the Categorical
Abstract Machine[7]

fun f x =
let fun g y = x+y
in g z
end

...f 3...

in CPS:

FIX([(f,[x,c1],
FIX([(g,[y,c2],

PRIMOP(+,[x,y],[a],
[APP(c2,a)]))]
APP(g,[z,c1])))],

...APP(f,[3,c0])...)

after closure conversion:

FIX([(f’,[f’’,x,c1],
FIX([(g’,[y,c2,x],

PRIMOP(+,[x,y],[a],
[APP(c2,a)]))]

SELECT(1,f’’,z,
APP(g’,[z,c1,x])))],

RECORD([f’,z],f,

...SELECT(0,f,f’
APP(f’,[f,3,c0])...)

The function g is known, so its free variable x has
been added to its argument list; function f
escapes, and requires a closure record. See the
appendix for a larger example written in a more
readable notation.

In more complicated examples, involving many
variables from differing scopes, there can be a
number of possible closure representations for a
function.[8] One simple strategy is to use a flat
closure containing all the free variables. At the
other extreme, a number of closure records
already exist when a new closure must be created,
and a pointer or link to one can provide access to
several of the necessary variables. Combinations
of the two allow us to trade off time of closure
creation, size of closures, and ease of access to
variables from closures. The tradeoffs can be
subtle: for example, linked closures can take up
more space than flat closures because they hold

- 6 -

on to closures which might otherwise be
reclaimed by the garbage collector. Several stra-
tegies have been implemented in Standard ML of
New Jersey.

6. Flattening and spilling phases

After closure conversion, functions no longer
refer to non-constant free variables; therefore,
nesting of function definitions is not necessary. A
simple flattening pass gathers all the function
definitions of a compilation unit into a single set
of mutually-recursive function declarations; each
declaration will correspond to a code fragment in
the final machine code. Gathering the fragments
lets us generate code for functions in any order,
which helps make calls of known functions more
efficient (see section 7).

Next, a register-spilling phase rewrites the CPS
expression so that there are no more than n free
variables at any subexpression, where n is related
to the number of general purpose registers on the
target machine. Wherever the number of free
variables at a subexpression is larger than n, a
RECORD containing some of the free variables is
inserted. The appropriate SELECT is inserted at
uses of those variables in the rest of the expres-
sion.

For example, consider a program that fetches six
values from an array and adds them:

PRIMOP(subscr,[arr,1],a,
PRIMOP(subscr,[arr,2],b,
PRIMOP(subscr,[arr,3],c,
PRIMOP(subscr,[arr,4],d,
PRIMOP(subscr,[arr,5],e,
PRIMOP(+,[a,b],[g],[
PRIMOP(+,[g,c],[h],[
PRIMOP(+,[h,d],[i],[
PRIMOP(+,[i,e],[j],[...

There are five variables free in the first plus-
expression. If compiling for a machine with only
four registers, we can limit the number of simul-
taneous free variables by packing a,b,c into a
record r and d,e into a record s:

PRIMOP(subscr,[arr,1],a,
PRIMOP(subscr,[arr,2],b,
PRIMOP(subscr,[arr,3],c,
RECORD([a,b,c],r,
PRIMOP(subscr,[arr,4],d,
PRIMOP(subscr,[arr,5],e,
RECORD([d,e],s,
SELECT(0,r,a’,
SELECT(1,r,b’,
PRIMOP(+,[a’,b’],[g],[
SELECT(2,r,c’,
PRIMOP(+,[g,c’],[h],[
SELECT(0,s,d’,
PRIMOP(+,[h,d’],[i],[
SELECT(1,s,e’,
PRIMOP(+,[i,e’],[j],[...

Now each sub-expression of this continuation-
expression has only three variables free. The dis-
cerning reader will note that we could have re-
arranged the additions and the subscripts and
avoided the use of records entirely, but some pri-
mops have side-effects that prevent re-
arrangements. Furthermore, spilling is rarely
needed, so that improvements to the spilling algo-
rithm won’t affect overall performance much.

The spiller could have been combined with the
closure converter; this would let us apply the clo-
sure representation analysis to spill records.
However, spilling’s rarity and the extra complex-
ity required to combine the phases convinced us
to implement spilling separately.

Our method of spilling has two important conse-
quences. First, PRIMOPs and APPs must have
no more than n arguments (where n is the number
of registers on the machine). Thus we make sure
that the optimizer never flattens the arguments of
a known function if it would cross the limit, and
that the closure converter implements known
functions with more than n arguments and free
variables by packaging the free variables into a
closure record.

Second, it means that the CPS datatype described
in section 2 does not allow the creation of records
from more than n free variables. In practice, we
use a RECORD constructor with (var * path) ele-
ments. The var can be a spill record, in which
case the path specifies an element to select from
it. Large records are made by computing some of
the elements, spilling them, computing more, and
eventually constructing the final record from vari-

- 7 -

ables in both spill records and registers.
Although this might seem expensive, profiling
shows that all spill records take up only one or
two percent of the total heap allocation in our
Vax implementation, where n is 8.

7. Generation of target-machine instructions

Since modern garbage collectors are so cheap[9]
[10] we have dispensed with the stack. This
simplifies the code generator, which doesn’t need
to do the analysis[2] [4] [11] necessary to decide
which closure records can be allocated on the
stack; it also simplifies the runtime system, mak-
ing it easier to add multiple threads or state-
saving operators to the programming environ-
ment.

Eliminating the stack is advantageous not only
because it makes the compiler simpler. Opera-
tions like call-with-current-continuation (which,
though not in ML, is compatible with the ML
type system) are more efficient if there is no
stack; a generational garbage collector can
traverse just the newest call-frames, whereas it
would have to traverse all the call frames on a
stack; and in a multi-thread environment with
stacks, a large stack space must be allocated for
each thread even if it won’t all be used.

The expression handed to the target-machine
instruction generator has a very simple form
indeed. Procedures never return (as a result of
CPS conversion), procedures don’t have non-
constant free variables (as a result of closure
analysis), scopes aren’t nested, and there are
never more live variables than registers to hold
them.

Since all representation decisions have been made
in previous phases, the decisions made by the
instruction generator have mostly to do with
register allocation. As an example, consider the
fragment SELECT(3,v,w,cexp), which
requires that the third field of the record v be
fetched into the (newly-defined) variable w, and
execution to continue with the expression cexp.
Both v and w can be allocated to machine regis-
ters, as a result of the (previous) spilling analysis.
The variable v will have already been allocated at
the time it was bound in the enclosing expression.
The variable w must be allocated at this time to a
register. Several heuristics are used.

Two-address instructions:

Some instructions on some machines prefer
to have their result argument in the same
register as a source argument (this prefer-
ence doesn’t typically apply to fetches, so it
won’t probably wouldn’t be used for this
SELECT).

Targeting:

Sometimes there’s an opportunity to avoid
a move instruction later on. If the variable
w is used (in cexp) as the n th argument to a
function f whose calling sequence requires
the n th argument in register r, and if r is not
bound to any other live variable, then r
should be used for w to save the cost of a
move instruction when f is called.

Anti-targeting:

If there is a call in cexp to a function f , one
of whose arguments (which is not w) is to
be passed in register r, then r is to be given
less preference than another register, to
avoid the cost of moving w out of the way
when f is called.

Default:

Otherwise, any register not already allo-
cated to a live variable may be used. The
work done by the spiller ensures that there
will always be a register available.

As in the ORBIT compiler, the instruction gen-
erator treats ‘‘known’’ functions (those whose
call sites are all known statically) specially. The
parameters of a known function can be allocated
to registers in a way that optimizes at least one of
the calls to the function. Specifically, the code
for a known function is not generated until a call
site is found and generated. Then, the formal
parameters of the function can be allocated to the
same registers where the call’s actual parameters
are already sitting; and the transfer of control can
be by ‘‘falling through’’ without a jump. Thus, at
least one call to each known function can be at no
cost (except for actual parameters that are con-
stants, and must be fetched into registers).

8. Benchmarks

We ran five different compilers on five different
benchmark programs, all on a VAX 8650. The
compilers were:

Pascal Berkeley Pascal with -O option

ORBIT Version 3.0 of the T system from
Yale, with the ORBIT code genera-
tor.

- 8 -

Old Our old code generator for ML,
based on an abstract stack machine.

CPS Our new code generator, described in
this paper.

CPS’ Our new code generator with aggres-
sive cross-module optimization
enabled.

Of course, comparisons between compilers for
different programming languages may tell us
more about the languages than about the com-
pilers.

The programs were:

Hanoi The towers of Hanoi benchmark
from Kranz’s thesis[4].

Puzz A compute-bound program from
Forest Baskett[4].

LenL A tail-recursive function (or, in Pas-
cal, a while loop) to compute the
length of a list.

LenR A recursive function (not tail-
recursive) to compute the length of a
list.

Comp A 16000-line compilation job in
Standard ML. This is intended to
measure the performance of real sys-
tems, not just artificial benchmarks.

��
Hanoi Puzz LenL LenR Comp��

Pascal .42 2.02 1.43 7.52
ORBIT ˜.4 ˜2.1 .9 3.6
Old 1.28 8.81 5.62 5.71 1613
CPS .72 2.63 1.18 3.89 1432
CPS’ .21 2.87 1.09 4.53 1224���

�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

The table above gives execution times in seconds,
not including garbage-collection overhead (which
can be arbitrarily large or small depending on
memory size[10]).

9. Results

By separating the code generation into easily-
understood phases with clean interfaces, we make
it easier to produce robust optimizing compilers.
Our method is not difficult to implement, and
works well in practice.

Our CPS code generator produces code that runs
up to four times faster than our old, stack-based
code generator on small benchmarks, and seems
comparable to Pascal and ORBIT for the exam-
ples we tested. But on the large, ‘‘real world’’

benchmark, our CPS code generator did only 25%
better than the old one. The reason seems to be
that though the new code generator produces very
efficient code for tight, tail-recursive loops, big
programs tend to have more function calls requir-
ing saving of state.

It might be argued that since we save state by
making continuation closure records, it is our
stackless strategy that slows performance. How-
ever, we estimate that even if every closure
record were stack allocated we would save only
6% to 10%. Furthermore, the stackless strategy
tends to use less memory (typically on the order
of 20%, but sometimes a much greater savings)
than the old, stack-based code, because objects
tend to be retained on the stack after their last use.
And the stackless strategy has other advantages,
like a simpler runtime system and garbage collec-
tor.

Acknowledgements

David MacQueen was co-designer and co-
implementor of the front end of the ML compiler.
David Kranz made many useful suggestions about
benchmarks.

Appendix: An example in detail

To illustrate the several phases of the code gen-
eration, we show the transformations made to a
fragment of an ML program. The program has
function, count, that takes a predicate (a func-
tion from α to boolean, for some type α) as an
argument, and returns a function that counts how
many elements of a list (of α) satisfy that predi-
cate. Then a function countZeros is made by
applying count to a predicate that returns
true on 0 and false on other integers:

fun count(pred) =
let fun f(x::rest) =

if pred(x)
then 1+f(rest)
else f rest

| f nil = 0
in f
end

val countZeros =
count (fn 0 => true

| _ => false)

This function will be translated by the compiler
into lambda-calculus and then into CPS, but for
illustrative purposes we will show all the transfor-

- 9 -

mations using the syntax of ML. The first
transformation is in the front end of the compiler,
where pattern-matches are converted into deci-
sion trees (i.e. if-expressions):

fun count(pred) =
let fun f(a) =

if null(a)
then 0
else if pred(a.0)

then 1+f(a.1)
else f a.1

in f
end

val countZeros =
count (fn i => if i=0

then true
else false)

The next transformation is the conversion into
continuation-passing style: each function gets an
additional continuation argument and ‘‘returns’’
by calling the continuation:

fun count(pred,c1) =
let fun f(a,c2) =

if null(a)
then c2(0)
else
let fun c3(b) =

if b
then
let fun c4(i)=c2(1+i)
in f(a.1,c4)
end
else
let fun c5(i)=c2(i)
in f(a.1,c5)
end

in pred(a.0, c3)
end

in c1(f)
end

val countZeros = . . .

The next phase is the optimization phase. Here
there is one η-reduction (the removal of the func-
tion c5) and several β-reductions that can be
done. In particular, the function count is not
recursive (even though it contains a recursive
function nested within it), and is ‘‘small’’ enough
that the optimizer decides to put it ‘‘inline’’
inside countZeros. The function pred can
then be expanded inside the copy of count.

fun count (pred,c1) = . . .

fun countZeros(m,c0) =
let fun f(a,c2) =

if null(a)
then c2(0)
else if a.0 = 0

then
let fun c4(i)=c2(1+i)

in f(a.1,c4)
end

else f(a.1,c2)
in f(m,c0)
end

Now comes the closure conversion phase. The
function countZeros ‘‘escapes’’ — it can be
called by functions that don’t know its structure
— so it must use the standard calling sequence.
The standard calling sequence has three argu-
ments: closure record, user-argument, and con-
tinuation. Here, the function has no free vari-
ables, but a closure record must still be built,
since the function is first-class (i.e. escapes).

The function f doesn’t escape, and doesn’t hap-
pen to need a closure. The function c4 escapes
(it is an argument to a function), and needs a clo-
sure anyhow because it has a free variable c2
(renamed c7 here). Continuations have a two-
argument standard calling sequence (different
from the three-argument standard for user-
functions, since continuations don’t themselves
have a continuation argument). The closure for
c4 will be called c4, while the function that
implements it will be c4’, and the argument in
which the closure record is supposed to be passed
is called c4’’.

fun countZeros(e0,m,c0) =
let fun f(a,c2) =
if null(a)
then c2.0(c2,0)
else if a.0 = 0

then let fun c4’(c4’’,i) =
let val c7=c4’’.1
in c7.0(c7,1+i)
end
val c4 = [c4’,c7]

in f(a.1,c4)
end

else f(a.1,c2)
in f(m,c0)
end

- 10 -

The next phase is trivial: since functions no
longer have free variables, they can be un-nested.

fun countZeros(e0,m,c0) = f(m,c0)
and f(a,c2) =

if null(a)
then c2.0(c2,0)
else if a.0 = 0

then let val c4=[c4’,c2]
in f(a.1,c4)
end

else f(a.1,c2)
and c4’(c4’’,i) =

let val c7 = c4’’.1
in c7.0(c7,1+i)
end

The spilling phase won’t change this program,
since there are never very many variables free at
the same point. The next phase, register alloca-
tion and code generation (for the VAX, in this
example), has more to do. Since countZeros
escapes, it must be given a standard calling
sequence using registers 0, 1, and 2 for the clo-
sure, argument, and continuation. Two-argument
standard functions (e.g. the continuation c4’)
have a different calling sequence using registers 2
and 1 for closure and argument; we arrange it this
way because the continuation of a function will
typically be the same as the closure of the next
continuation called, and it will already be sitting
in the right register. The function f may have
any calling sequence, and this is chosen on the
first call so that countZeros won’t have to
shuffle any registers.

As described in [1], integers are represented with
a low-order 1 bit, pointers with a low-order zero.
Allocation (e.g. for the closure after L1 below) is
in-line, relying on a page fault to tell it when it
needs to garbage-collect; register 12 points to the
next available allocable space.

This program would be more efficient (and would
not allocate closures) if it had been written tail-
recursively, but even as it is, it will run very
quickly:

countZeros: e0 in r0, m in r1, c0 in r2
fall through: f(m,c0)

f: a in r1, c2 in r2
blbc r1,L1 branch if a is not null
clrl r1 arg0 in r2, arg1(=0) in r1
movl (r2),r0 r0 = c2.0
jmp (r0) c2.0(c2,0)
L1: else clause
movl (r1),r0 r0 = a.0
cmpl $1,r0 test for "zero"
jne L2 branch to else clause
movl r2,4(r12) second field of new record
moval c4’,(r12) make record [c4’,c2]
movl $0x21,-4(r12) descriptor of record
movl r12,r2 r2 = c4
addl2 $12,r12 allocation bookkeeping
movl 4(r1),r1 r1 = a.1
jbr f f(a.1,c4)
L2: second else clause
movl 4(r1),r1 r1 = a.1
jbr f f(a.1,c2)
c4’: r1 = i, r2 = c4’’
addl2 $2,r1 r1 = 1+i
movl 4(r2),r2 r2 = c7
movl (r2),r0 r0 = c7.0
jmp (r0) c7.0(c7,1+i)

References

1. Andrew W. Appel and David B. Mac-
Queen, ‘‘A Standard ML compiler,’’ in
Functional Programming Languages and
Computer Architecture (LNCS 274), pp.
301-324, Springer-Verlag, 1987.

2. Guy L. Steele, ‘‘Rabbit: a compiler for
Scheme,’’ AI-TR-474, MIT, 1978.

3. D. Kranz, R. Kelsey, J. Rees, P. Hudak, J.
Philbin, and N. Adams, ‘‘ORBIT: An
optimizing compiler for Scheme,’’ Proc.
Sigplan ’86 Symp. on Compiler Construc-
tion, vol. 21 (Sigplan Notices), no. 7, pp.
219-233, July 1986.

4. David Kranz, ‘‘ORBIT: An Optimizing
Compiler for Scheme,’’ PhD Thesis, Yale
University, 1987.

5. Andrew W. Appel, Christopher W. Fraser,
David R. Hanson, and Arthur H. Watson,
‘‘Generating code for the Case statement,’’
in preparation.

6. V. Vyssotsky and P. Wegner, A graph
theoretical Fortran source language
analyzer, AT&T Bell Laboratories, Murray

- 11 -

Hill, NJ, 1963.

7. G. Cousineau, P. L. Curien, and M. Mauny,
‘‘The Categorical Abstract Machine,’’ in
Functional Programming Languages and
Computer Architecture, LNCS Vol 201, ed.
J. P. Jouannaud, pp. 50-64, Springer-
Verlag, 1985.

8. Andrew W. Appel and Trevor Jim,
‘‘Optimizing closure environment
representations,’’ CS-TR-168-88, Princeton
University, 1988.

9. David Ungar, ‘‘Generation scavenging: a
non-disruptive high performance storage
reclamation algorithm,’’ SIGPLAN Notices
(Proc. ACM SIGSOFT/SIGPLAN Software
Eng. Symp. on Practical Software Develop-
ment Environments), vol. 19, no. 5, pp.
157-167, ACM, 1984.

10. A. W. Appel, ‘‘Garbage collection can be
faster than stack allocation,’’ Information
Processing Letters, vol. 25, no. 4, pp. 275-
279, 1987.

11. David R. Chase, ‘‘Safety considerations for
storage allocation optimizations,’’ SIG-
PLAN ’88 Conf. on Prog. Lang. Design and
Implementation, pp. 1-10, ACM, 1988.

