
A Logical Mix of Approximation and Separation

Aquinas Hobor1, Robert Dockins2, and Andrew W. Appel2

1 National University of Singaporehobor@comp.nus.edu.sg
2 Princeton University{rdockins,appel}@cs.princeton.edu

Abstract. Semantic models can use indirection when the naı̈ve semantic defi-
nitions contain a contravariant circularity, and substructure when one wishes to
track resource accounting. If a model uses indirection, then its logic must rea-
son about the resulting approximation; if a model contains substructure,then its
logic often contains notations of separation. We show how to build program log-
ics for settings involving approximation and/or separation. Our work is machine
checked in Coq and available as part of the Mechanized Semantic Library.

1 Introduction

We are interested in building program logics for large-scale languages and mechaniz-
ing them in proof assistants. We are particularly interested in integrating two features
which have proven useful for modeling complex language features: higher-order stores
and separation. Higher-order stores are used to reason about certain kinds of recursion
that involve mutable state; many common language features exhibit this kind of state-
related recursion,e.g., ML references, Pthreads-style locks, and function pointers. Sep-
aration is an orthogonal feature which helps reasoning about some of the complications
introduced by an addressable memory such as pointer aliasing.

We model the assertion language of the program logic semantically via a Kripke
semantics. That is, formulae in the assertion language identified with metalogic propo-
sitions over a set ofworlds, which are some abstraction of the program states. This is
a common approach when mechanizing program logics, even among researchers who
choose to model the judgments of the program logic syntactically. [Nip02]

The classic example where one desires higher-order stores is that of ML-style refer-
ences. [Ahm04] It is convenient in certain styles of type soundness proofs for languages
with ML references to be able to have the program heap store not just thedynamicdata
generated by the program (i.e., the actual value in the reference) but alsostatic data
about the type of the reference. Then types are modeled as predicates which judge pro-
gram values and program heaps. This leads directly to a situation where we want to
store predicates (i.e. types) in the program heap, the hallmark of higher-order stores.

Separation logic has recently become quite popular in the programming languages
community. [Rey02] Separation logic introduces a substructural connective called sep-
arating conjunction,P ∗ Q, which means thatP and Q hold on “disjoint” areas of
the world. A simple and popular model for separation logic isto take worlds as par-
tial maps from addresses to values (i.e., heaps) and say thattwo heaps are disjoint if
they define disjoint sets of addresses. The formulae of separation logic are particularly

adept at describing inductively-defined data structures such as lists and trees. This abil-
ity has prompted research into shape-analysis, whereby oneattempts to automatically
infer datastructure invariants using the vocabulary of separation logic with the intent
of deriving more precise invariants than would be possible with traditional techniques.
[DOY06,GBCS07,CDOY09]

When defining a program logic, the choice of which worlds to usein the assertion
semantics depends strongly on the problem domain,i.e., the particular language being
modeled. Much previous work has focused on constructing these complicated types of
worlds and using the derived logic to prove some theorem of interest (often a soundness
result). [HDA10,Ahm04,DHA09,COY07] However, the important step of building the
logic on top of the worlds is often given short shrift. A reader is left with the general
impression that once the underlying model is in place, building the logic on top is
straightforward. Unfortunately, this is not always the case.

Here we fill in the missing piece by explaining how to build sophisticated logics on
top of clean axiomatizations. We construct a general framework for defining assertion
languages containing approximation and separation—that is, a logic for worlds that
contain higher-order stores and substructure. For higher-order stores, we follow Appel
et al. by constructing a G̈odel-Löb modal logic of approximation [AMRV07] to simplify
the task of using a step-indexed models. Separation appearsin the form of separation
logic [Rey02], and aids reasoning about languages with pointer manipulation.

In this paper, we largely abstract away from the details of any particular language,
and thus we hold the choice of worlds abstract as well. Instead, we will focus on ax-
iomatizing what features worlds must have in order to support higher-order stores and
separation, and showing how one can then build a powerful assertion logic contain-
ing both these features. However, many domains of interest contain only one of these
rather than both together; indeed some domains do not contain either. Our constructions
should work in all four settings in a modular way to prevent unnecessary duplication
since maintaining parallel code bases in a mechanized setting is painful.

One can imagine several ways to manage this modularity. We have chosen a “stacked”
approach in which we first axiomatize how our worlds become more approximate in§2,
and show how to satisfy our axioms for settings wherein our worlds have meaningful
approximation. If the domain of interest does not have any interesting approximation
behavior (e.g., a basic type system or separation logic), then we give methods for adding
trivial approximation behavior so that the rest of our framework will still work. After
defining the basic operators of our logic in§2.4, we define a multimodal layer on top
in §3 to build smooth and modular logical framework for reasoning in the presence of
approximation. In§4 we explain how to model and use the equirecursive operatorµ.

Once we have specified how approximation should be handled, we specify the
substructural properties of our worlds by forming a separation algebra in§5 as in
[DHA09,COY07]. If our worlds have no interesting separation structure, this step can
be omitted, or we can alternately provide a dummy implementation.

Our primary interest is in settings that combine both approximation and separation.
In §6 we characterize the relationship between these properties and prove that the stan-
dard connectives of separation logic mix well with our logicof approximation. We also
show how our multimodal framework adds value in a separationlogic.

2

In §7, we show how one can use indirection theory to satisfy all ofour approxima-
tion and separation axioms simultaneously in a nontrivial context.

Implementation.Our constructions and proofs are machine-checked in Coq, and made
freely available as part of the Mechanized Semantic Library. Our mechanization con-
tains a certain amount of “black magic Coqery” (e.g., typeclasses, implicit coercions) to
ensure that it slides together smoothly and works cleanly from the perspective of using
the logic. From time to time we will mention a few design choices that enable simpler
mechanical definitions/proofs, but readers particularly interested in this aspect of the
result should consult the mechanization. Our results are available at:

http://msl.cs.princeton.edu/

Numbering convention.In this presentation we present three classes of equations:def-
initions, numbered with roman numerals; Coq-verifiedtheorems, which we enumerate
with arabic numerals; andaxioms in a given interface, enumerated with letters. Many
models can satisfy a given interface; one must prove the axioms from its construction.

Constructiveness.In addition to the base axioms of CiC, our framework depends only
on the axioms of dependent and propositional extensionality; we do not require,e.g.,
the axiom of choice. In our presentation we will sweep such issues under the rug.

2 A Logic of Approximation

Here we present the framework of our Gödel-Löb logic of approximation. The formu-
lae of the logic will be identified with predicates on worlds that arehereditarywith
respect to an approximation relation. This simple base willallow us to build a powerful
intuitionistic logic into which we can later fit the modal andsubstructural features.

2.1 Hereditary scaffolding

We assume the existence of a set ofworlds W, whose precise construction depends
on the domain of interest; see [HDA10,§2] for seven examples drawn from various
program logics. Given a functionP from worldsW to truth valuesT (e.g., T ≡ Prop
in Coq) and a relationR between worlds, we say thatP is hereditary overR when, if
P holds on some worldw, then it also holds on all worlds reachable fromw throughR:

hereditary(P,R) ≡ ∀w,w′. P (w) → (wRw′) → P (w′) (i)

That is,P is hereditary overR whenP is stable underR. We assume that our worlds
come with two operations for axiomatizing approximation: “level” |w| : W → N and
“approximate”w w′ : W ⇀ W. The intuition is that|w| = n quantifies the “amount
of information” in the worldw, and approximatingw into w′ erases (i.e., approximates)
some information inw to make it “fit” into leveln− 1. A predicate P ∈ P is a function
from states to truth valuesT that is hereditary over the approximation relation:

3

P ≡
{

P ∈ W → T
∣

∣ hereditary(P,)
}

(ii)

In Coq, we define this type as a dependent pair and use implicitcoercions that allow us
to use the pair as a function when desired. We introduce the notationw |= P when we
wish to emphasize that we are thinking ofP as an assertion rather than a function:

w |= P ≡ P (w) (iii)

We sayP entailsQ, writtenP ⊢ Q, when the truth ofP forces the truth ofQ:

P ⊢ Q ≡ ∀w. (w |= P) → (w |= Q) (iv)

We write ∗ and + for the reflexive and irreflexive transitive closure of the approxi-
mate relation, respectively. We say that two worldsw andw′ arefashionable⋆, written
w ∼ w′, if they contain the same amount of information,i.e., if |w| = |w′|.

Connection to intuitionistic logic.Our framework has much in common with Kripke
models of intuitionistic logic in that predicates are hereditary over some relation be-
tween worlds. We develop this connection further in,e.g., our model for implication.

2.2 Axiomatization of Approximation

What kinds of properties do we require the approximation operations and | · | to
have? In fact, our categorization for approximation is quite simple:⋆⋆

Approximation functional: (w w′
1) → (w w′

2) → w′
1 = w′

2 (a)

Level total and functional: ∃!n. |w| = n (b)

Level of bottom: (6∃w′. w w′) → |w| = 0 (c)

Level of approximation: (w w′) → |w| = |w′| + 1 (d)

Weak unapproximation: (∃w. |w| = |w′| + 1) → ∃w. w w′ (e)

We require that approximation be functional(a) and that the level operation be a total
function (b). If the world w cannot be further approximated, the level ofw must be0
(c). If the worldw is approximated tow′ then the level ofw must be 1 larger than the
level of w′ (d). Finally, we sometimes wish to “unapproximate”—that is, given some
world w′, we would like to find a worldw such thatw w′; an unapproximation to a
givenw′ only exists if there is some world containing more information thanw′.

Three of the most important consequences of axioms(a)–(e)are the following:

⋆ The name “fashionable” is a play on words from when we used a time-based analogy for levels.
A predicateP which holds fashionably is true on every world “now,” but maybe not tomorrow.

⋆⋆ To avoid clutter in our presentation, when we write an interface axiom we omituniversal
quantifications for variables scoped over the entire equation;e.g., axiom(e) is actually:

∀w
′
.

`

(∃w. |w| = |w′| + 1) → ∃w. w w
′
´

4

Can’t approximate:|w| = 0 → (6∃w′. w w′) (1)

Can approximate: (|w| > 0) → ∃w′. w w′ (2)

Well founded:
(

∀w. (∀w′. (w w′) → w′ |=P) → w |=P
)

→ ∀w. w |=P (3)

That is, worlds of level0 cannot be approximated further; but any world of level greater
than0 can be approximated. Moreover, the approximate relation iswell-founded and
thus allows proofs by induction over the action of approximation.

2.3 Models

A model is a triple(W, , | · |) of set of worlds, approximate operation, and level
operation such that axioms(a)–(e) hold. We present a simple model to give intuition
and then a series ofgeneratorsthat build complex models from simpler components.
We conclude with a nontrivial model generated byindirection theory.

Naturals. A very simple model is the naturals,(N, N, | · |N), i.e., W ≡ N. It is simple
to define the approximation operations in this setting as follows:n N n′ ≡ n = n′+1
and|n|N ≡ n. Axioms (a)–(e) follow directly from these definitions.

Generators. Showing that a particular model satisfies a collection of axioms is not
always easy. A generator for a collection of axioms such as(a)–(e) is a method for con-
structing models for those axioms in a modular way by combining previous models in
well-behaved ways. This is a particularly valuable technique in mechanized frameworks
wherein small changes to the definitions can require significant amount of repair work.
We use generators over a variety of axiom sets to allow rapid construction of models.
From time to time we discover we are in some new setting and in that case our first task
is to define a new generator so that if we encounter that setting again we can apply our
new generator immediately. Our generators for the approximation axioms are:

– Trivial. Given any set of worldsW, we can define thetrivial model(W, 0, | · |0)
by settingw 0 w′ ≡ ⊥ and|w|0 ≡ 0. We stated axiom(e) delicately to enable
the trivial model, since we want neither approximation nor unapproximation. Note
that in the trivial model, all predicates are automaticallyhereditary.

– Product.Given a model(W, , |·|) and some other setS, we can define theproduct
model(W × S, W×S , | · |W×S) by defining approximate and level as follows:

(w, s) W×S (w′, s′) ≡ (s = s′) ∧ (w w′) and |(w, s)|W×S ≡ |w|.

Axioms (a)–(e) follow directly from the fact that they hold onW.
– Bijection.Given a model(W, , |·|), some other setS, and a bijectionf : W → S,

we can define thebijection model(S, f , | · |f) by setting

s f s′ ≡ f−1(s) f−1(s′) and |s|f ≡ |f−1(s)|.

Axioms (a)–(e) follow becausef is a bijection and because the axioms hold onW.

5

Although we only define a few generators here, we have found that they are sufficient
for a large number of settings. One typically splits worlds into parts with trivial and
nontrivial approximation behavior and combines the two using the product constructor,
perhaps defining a bijection to a form more convenient for theremainder of one’s proof.
The trivial model is useful in most cases when the set of worlds does not have interesting
approximation behavior; the exception is when one wishes touse the recursion operator
µ defined in§4 sinceµ requires nontrivial approximation. In this case, the product
model is useful in conjunction with the above model for the naturals(N, N, | · |N) to
addnon-trivial approximation behavior to an arbitrary set of worldsW.

Indirection theory. The flagship non-trivial model for our approximation axiomsis
given by indirection theory [HDA10]. Indirection theory produces approximate solu-
tions to a class of recursive domain equations defined by the pseudoequation:

K ≈ F ((K × O) → T)

HereF is a covariant functor,O is some “other” noncircular data, andK is the object
one wishes to model. A cardinality argument shows that this pseudoequation has no
solutions in set theory. Indirection theory approximates asolution by constructing a type
K (called theknot) and a model(K, K , |·|K) that satisfies axioms(a)–(e). Our current
construction ofK is similar to the one given in [HDA10,§8] but we have enhanced it so
that allpredicates contained in a knot are hereditary [ADH10,knot hered.v]. We
use the product constructor to build the related model(K × O, K×O, | · |K×O) and
defineP as the set of hereditary functions over K×O as in definition(ii) .

Indirection theory also constructs two functions,squash : N×F (P) → K and
unsquash : K → N×F (P) whose behavior is given by the following set of equivalences:

squash(unsquash(k)) = k

unsquash(squash(n, ̥)) = (n, fmap approxn ̥)

That is,squash ◦ unsquash is the identity function, andunsquash ◦ squash is a kind of
approximation function. Thefmap function transforms̥ : F (P) by locating all of the
predicatesP inside̥ and replacing them withapproxn(P), defined as:

approxn(P) ∈ P ≡ λw.

{

P (w) |w|K×O < n

⊥ |w|K×O ≥ n

The relationship betweensquash-unsquash and(K, K , | · |K) is given by:

|k| = (unsquash(k)).1
k k′ ↔ let (n, ̥) = unsquash(k) in (n > 1) ∧ k′ = squash(n − 1, ̥)

The level ofk is equal to the first projection ofk’s unsquashing and approximation is
equivalent tounsquashing and then resquashing to the next lower level. Axioms(a)–(d)
follow directly; for (e), unsquash and then resquash to the nexthigher level.

We have used indirection theory to reason about first-class locks in a concurrent
program [Hob08]; mutable references in the polymorphicλ-calculus; and program ter-
mination in a setting with function pointers and semanticassert statements [DH10].

6

2.4 Hereditary Base Logic

Truth constant: w |= ⊤ ≡ ⊤ (v)

Falsehood constant: w |= ⊥ ≡ ⊥ (vi)

Conjunction: w |= P ∧ Q ≡ (w |= P) ∧ (w |= Q) (vii)

Disjunction: w |= P ∨ Q ≡ (w |= P) ∨ (w |= Q) (viii)

Impredicative universal: w |= ∀x : τ. P (x) ≡ ∀x : τ. w |= P (x) (ix)

Impredicative existential:w |= ∃x : τ. P (x) ≡ ∃x : τ. w |= P (x) (x)

Implication: w |= P ⇒ Q ≡
∀w′. (w ∗ w′) →
(w′ |= P) → (w′ |= Q)

(xi)

Negation: ¬P ≡ P ⇒ ⊥ (xii)

Given a model of approximation, we can now give semantic definitions for the oper-
ators of our base intuitionistic logic, which includes the usual propositional connectives
as well as powerful higher-order quantification. Except forimplication, each defini-
tion consists simply of a direct lifting of the underlying metalogic operator. These can
be proved hereditary easily from the assumption that the subformulae are hereditary. In
contrast, implication requires that the hereditary assumption be baked in; in the vast ma-
jority of cases (including all cases in which the implication was already hereditary) this
does not change the meaning of the resulting formulae. The resulting model is exactly
a Kripke model of intuitionistic logic. The standard intuitionistic proof theory (e.g.,
introduction and elimination rules) can all be proved as lemmas from these definitions.

It is worth noting that theτ occuring above in the definition of quantification is
allowed to range over all the types of the metalogic, including the typepredicate itself;
this makes the quantifiersimpredicative. In contrast, a predicative quantifier would only
be allowed to quantify over objects that are smaller according to some stratification,
which turns out to be a significant technical restriction. Modeling certain programming
language features, such as function closures, requires thestronger impredicative style
of quantification, which we provide.

3 The Very Model of a Modern Multimodal Logic

Appelet al. [AMRV07] showed how to reason about the action of approximation using
modal logic; we go further using themultimodalapproach outlined in [DAH08]. A
modalityM ∈M is a binary relation that commutes with the approximation relation :

M ≡
{

M ∈Σ→Σ→T

∣

∣

∣

(

∃σ′.(σ σ′)∧(σ′Mσ′′)
)

↔
(

∃σ′.(σMσ′)∧(σ′ σ′′)
)

}

(xiii)

Most “reasonable” relations one would like to define are modalities. We have seen four
approximation relations: approximate and its reflexive ∗ and irreflexive + tran-
sitive closures, and the same-level relation fashionably∼; all four are modalities:

{ , ∗, +,∼} ⊂ M (4)

The point of characterizing modalities is that we can then define modal operators pa-
rameterized by various modalities.

7

Necessarily: σ |= �M P ≡ ∀σ′. (σMσ′) → (σ′ |= P) (xiv)

Hypothetically: σ′ |= ♦M P ≡ ∃σ. (σMσ′) ∧ (σ |= P) (xv)

Note we use the standard definition of the universal modality�M , but our definition of
the existential modality♦M is backwards from what one might expect; indeed, we use
the “proof-theoretic” dual discussed by Restall [Res00] asopposed to the more familiar
boolean dual. We choose to work with the “backward” existential modality because the
commutativity restrictions from definition(xiii) prove that this modality is hereditary,
and in this sense, the modalities belong together. To get theusual boolean dual, one
requires that the inverse relation commutes with approximation.

One of the major advantages of identifying and using modal operators is that there
are a variety of useful rules and equations that apply to all modal operators. A few of
these are listed below.

♦M P ⊢ Q = P ⊢ �MQ (5)

�M (P ⇒ Q) ⊢ �M P ⇒ �MQ (6)

�M (P ∧ Q) = �M P ∧�M Q (7)

♦M (P ∨ Q) = ♦M P ∨ ♦M Q (8)

�M

(

∀x : τ. P (x)
)

= ∀x : τ. �M P (x) (9)

♦M

(

∃x : τ. P (x)
)

= ∃x : τ. ♦M P (x) (10)

Lemma (5) gives the characteristic relationship between the � modality and its
associated dual♦ modality. Readers familiar with modal logics will recognize (6) as
axiom K, which is characteristic the “normal” modal logics.We prefer equalities (when
they can be achieved) to implications because they allow us to use substitution tactics
in mechanized proofs, (e.g., rewrite in Coq) which is significantly more convenient
than introducing a cut.

Given the data we have about worlds and approximation at thispoint, we can define
two important modal operators which capture some of the important aspects of the
approximation model.

Approximately: ⊲P ≡ �
 +P (xvi)

Fashionably: ©P ≡ �∼ P (xvii)

The approximation modality⊲ is especially important because it mediates the action
of approximation. It interacts in a significant way with boththe key G̈odel-Löb induc-
tion rule and with the recursion operator described in§4. The fashionability modality
also interacts in a strong way with recursion. Because of thespecial relationship has
with all the formulae of the logic,⊲ enjoys some additional properties.

⊲ (�M P) = �M (⊲ P) (11)

⊲ (P ⇒ Q) = ⊲ P ⇒ ⊲ Q (12)

⊲ (P ∨ Q) = ⊲ P ∨ ⊲ Q (13)

Q ∧ ⊲ P ⊢ P → Q ⊢ P (14)

8

Lemma (11) shows that⊲ commutes with every�modality; this is a consequence of
the validity condition for modal operators. Lemma (12) shows that⊲ enjoys a stronger
form of (6). Lemma (14), called the G̈odel-Löb rule, is especially notable because it
embodies a kind of induction principle. It says that we can prove thatQ entailsP if
we can show the (apparently) weaker statement thatQ ∧ ⊲P entailsP ; here⊲P is the
induction hypothesis.

4 Recursion

In addition to its other benefits, the approximation structure baked into our logic gives us
a powerful way to define recursive predicates. Suppose we have a predicate functionF :
predicate → predicate; then we can construct the recursive predicateµF : predicate

satisfying the usual fixpoint equationµF = F (µF) provided thatF is contractive.
Before we can formally define contractiveness we need a few additional definitions.

Recall from above the “fashionably” modality© P ≡ �∼ P . The underlying
relationw ∼ w′ holds iff |w| = |w′|, so© P holds whenP holds in all worlds of the
same level. Using©, we define a stronger form of implication called “subtyping.”

P ⊆ Q ≡ © (P ⇒ Q) (xviii)

Subtyping is quite a bit stronger than regular implication because the only information
it can “see” is the level of the current world. However, it is somewhat weaker than
unconditional entailment. That is, ifw |= P ⊆ Q it might not be the case thatP ⊢ Q.

We say thatP andQ areequivalentand writeP ∼= Q iff P ⊆ Q andQ ⊆ P . The
intuition is thatw |= P ∼= Q holds ifP andQ are indistinguishable on worlds of level
w and smaller. In other words, any world that separatesP from Q must have a level
greater than|w|.

We say thatF is contractive iff:

∀P,Q. ⊲ (P ∼= Q) ⊢ F (P) ∼= F (Q) (xix)

What does this mean? Roughly, it means that every time you iterate the predicate func-
tion F , it “consumes” one level of approximation before using its argument. Usually,
this means that the definition ofF contains a⊲ operator guarding the occurrence of its
argument.

What all this means is that we can defineµ as a finite number of iterations ofF :

w |= µF ≡ w |= F |w|(⊥) (xx)

HereFn meansF iteratedn times. The key point is that as long asF is contractive
then we can prove the defining fixpoint theorem forµ:

µF = F (µF) (15)

Note that in the end we get a strong fixpoint theorem such thatµF is simplyequalto
its one-step unfolding, which makes this a form ofequirecursion. In contrast, systems
with isorecursiontypically require some computational step to allow the folding and

9

unfolding of recursive definitions. Equirecursion is more convenient for our purposes
because it allows us to use the rewriting facilities of the proof assistant, and also because
it helps to decouple the semantics of the assertion logic from the (typically operational)
semantics of the language.

5 Separation Algebras

Separation algebras are mathematical structures used to model separation logic. They
provide the notion of disjoint merging that is central to themeaning of the operators
of separation logic. We use a variant called a disjoint multi-unit separation algebra
(hereafter just “DSA”) [DHA09]. Briefly, a DSA is a setS and an associated three-
place partialjoin relation⊕, writtenx ⊕ y = z, such that the join relation satisfies:

Functional: (x ⊕ y = z1) → (x ⊕ y = z2) → z1 = z2 (f)

Commutative: x ⊕ y = y ⊕ x (g)

Associative: x ⊕ (y ⊕ z) = (x ⊕ y) ⊕ z (h)

Cancellative: (x1 ⊕ y = z) → (x2 ⊕ y = z) → x1 = x2 (i)

Units: ∀x. ∃ux. x ⊕ ux = x (j)

Disjointness: (x ⊕ x = y) → x = y (k)

These axioms define a structure that is like a commutative monoid in many ways, except
that⊕ is allowed to be a partial operation. The partiality is important, because it encodes
disjointness. Ifx ⊕ y = z, thenx andy are disjoint, by definition.

Hidden in these axioms is the idea of anidentity. We sayx is an identity if whenever
x ⊕ y = z, theny = z. One fundamental property of identities is thatx an identity if
and only if x ⊕ x = x. The units axiom(j) asserts the existence of (possibly many)
identities. It is a consequence of the axioms that each element must have aunique
identity associated with it.

In the following section we shall see how to use a separation algebra to build a sep-
aration logic. For the remainder of this section, we will briefly touch on some example
DSAs and constructions for building more complicated ones.

5.1 Models

A model of a separation algebra is a set of worldsW together with a join relation⊕
satisfying axioms(f)–(k). We give two trivial examples, followed by a series of simple
generators, and conclude with some nontrivial generators and examples.

Examples and generators.The DSA axioms are well-behaved in the sense that they are
easily propagated across a variety of useful constructions. In our work we have used the
following, all of which are already implemented in Coq to enable rapid development:

– Discrete.Given a setS, define thediscrete DSA(S,⊕=) by defining

s1 ⊕= s2 = s3 ≡ s1 = s2 = s3

Every element joins only with itself and is an identity. Axioms(f)–(k) follow.

10

– Option.Given a setS, define theoption DSA(S?,⊕?) by settingS? ≡ None +
Some(s) and the join relation⊕? as the least relation satisfying (wheres? ∈ S?):

None ⊕? s? = s?

s? ⊕? None = s?

The⊕? relation includesNone ⊕? None = None. Axioms (f)–(k) follow easily.
– Products.If we are given two DSAs(A,⊕A) and(B,⊕B), we can define theprod-

uct DSA(A × B,⊕A×B) componentwise by setting:

(a1, b1) ⊕A×B (a2, b2) = (a3, b3) ≡ (a1 ⊕A a2 = a3) ∧ (b1 ⊕B b2 = b3)

Axioms (f)–(k) follow directly from the same axioms onA andB.
– Functions.Given a setA and a DSA(B,⊕B), we can define thefunction DSA

(A → B,⊕A→B) by lifting the DSA onB pointwise as follows:

f ⊕A→B g = h ≡ ∀a.
(

f(a) ⊕B g(a) = h(a)
)

Axioms (f)–(k) follow directly from the axioms onB.
– Bijection. Given a DSA(A,⊕A), a setB, and a bijectionf : A → B, we can

define thebijection DSA(B,⊕f) by setting

b1 ⊕f b2 = b3 ≡ f−1(b1) ⊕A f−1(b2) = f−1(b3)

Axioms (f)–(k) follow becausef is a bijection and the axioms hold onA.

The previous generators are simple but very useful. For example, if A is a set of ad-
dresses andV a set of values, then the archetypical example of partial program heaps
is given by the DSA(A → (V?),⊕A→(V?)), using the function and option generators.
We have a large number of other generators in our toolkit: void, unit, discrete, disjoint
sums, lists, subset, lift,Π-types,Σ-types, finite partial maps, and lattices; a number
of these are described in some detail in [DHA09]. Here we explain another generator,
similar in some ways to the bijection DSA covered above but more general:

– Section–retraction.The section–retraction generator is a bit tricky. Suppose we
have a DSA(B,⊕B). A functionh : B → B is a join homomorphismwhen:

b1 ⊕B b2 = b3 → h(b1) ⊕ h(b2) = h(b3) (xxi)

That is, joining is preserved byh. Now suppose we have a setA and a section–
retraction pair: two functionsf : A → B andg : B → A such thatg ◦ f is the
identity function onA; note that in any section–retraction pairf is automatically
injective whileg is automatically surjective. Suppose further thatf ◦ g : B → B is
a join homomorphism. Define thesection–retraction DSA(A,⊕〈f,g〉) by setting:

a1 ⊕〈f,g〉 a2 = a3 ≡ f(a1) ⊕B f(a2) = f(a3)

In other words, we take the separation structure induced on the preimage off .
Axioms (f), (i), and(k) follow directly from the injectivity off and the underlying

11

(w1 ⊕ w2 = w3) → (w1 w′
1) →

∃w′
2, w

′
3. (w′

1 ⊕ w′
2 = w′

3) ∧ (w2 w′
2) ∧ (w3 w′

3)

w1 w2 = w3

Ã Ã Ã
w’1 w’2 = w’3

Ã Ã Ã
1 2 3

(l)

(w1 ⊕ w2 = w3) → (w3 w′
3) →

∃w′
1, w

′
2. (w′

1 ⊕ w′
2 = w′

3) ∧ (w1 w′
1) ∧ (w2 w′

2)

w1 w2 = w3

Ã Ã Ã

w’1 w’2 = w’3
Ã Ã Ã

1 2 3

(m)

(w′
1 ⊕ w′

2 = w′
3) → (w1 w′

1) →

∃w1, w2. (w1 ⊕ w2 = w3) ∧ (w2 w′
2) ∧ (w3 w′

3)

w1 w2 = w3

Ã Ã Ã

w’1 w’2 = w’3

Ã Ã Ã

1 2 3

(n)

(w′
1 ⊕ w′

2 = w′
3) → (w3 w′

3) →

∃w1, w2. (w1 ⊕ w2 = w3) ∧ (w1 w′
1) ∧ (w2 w′

2)

w1 w2 = w3

Ã Ã Ã

w’1 w’2 = w’3

Ã Ã Ã

1 2 3

(o)

Fig. 1. Axioms for Mixing Separation and Approximation

axioms on⊕B . Axiom (g) is even simpler and is direct from the commutativity of
⊕B . The associativity(h) and units(j) axioms are tougher; both require thatg ◦ f

is the identity,f ◦ g is a join homomorphism, and the underlying axioms on⊕B .

The significance of the section–retraction generator is that it will be just what is
needed to handle theunsquash–squash pair constructed by indirection theory.

6 Mixing Separation and Approximation

Once we have defined the separation structure on a set of worlds, we are nearly ready to
define the operators of separation logic. However, to interface with the approximation
features of the logic, we need some additional axioms which ensure that separation
and approximation can play well together in the same sandbox(see figure 1). These
four axioms have the flavor of commuting diagrams; we requirethat the approximation
relation and separation and “slide around” each other cleanly. (There are a total of six
possible cases, but two are subsumed by commutativity). These axioms let us prove the
heredity of the operators of separation logic and to show certain useful results about the
commutativity of approximation operators with separationoperators.

Now we can give the definitions of the standard operators of separation logic.

Empty: σ |= emp ≡ identity σ (xxii)

Separation: σ |= P ∗ Q ≡ ∃σ1, σ2. (σ1 ⊕ σ2 = σ) ∧ (σ1 |= P) ∧ (σ2 |= Q) (xxiii)

Seplication: σ1 |= P −∗Q ≡ ∀σ′
1, σ2, σ. (σ1

∗ σ′
1) → (σ′

1 ⊕ σ2 = σ)
→ (σ2 |= P) → (σ |= Q) (xxiv)

12

The assertionemp and the separating conjunction∗ can be shown hereditary by using
axioms(l) and(m). Notice that the definition of seplication explicitly quantifies over
all more approximate worlds, just as does the definition of implication, making it im-
mediately hereditary from the definition. Just as with implication, the semantics takes
on an intuitionistic flavor, but in general works exactly as expected.

With these definitions stated, we can easily prove the standard inference rules of
separation logic and various equalities among formulae. Note equations (20) and (21);
these elegant equations are the result of our insistence that approximation and separation
interact smoothly. Their proofs make essential use of axioms (n) and(o).

Commutativity: P ∗ Q = Q ∗ P (16)

Associativity: (P ∗ Q) ∗ R = P ∗ (Q ∗ R) (17)

Identity: emp ∗ P = P (18)

Seplication adjoint: (P ∗ Q) ⊢ R = P ⊢ (Q−∗R) (19)

Approx sepconjunction: ⊲(P ∗ Q) = (⊲P ∗ ⊲Q) (20)

Approx seplication: ⊲(P −∗Q) = (⊲P −∗ ⊲ Q) (21)

Split sepconjunction: (P ⊢ Q) → (R ⊢ S) → (P ∗ R) ⊢ (Q ∗ S) (22)

Cut seplication: (P ⊢ Q−∗R) → (S ⊢ Q) → (P ∗ S) ⊢ R (23)

In addition to the standard operators of separation logic, we can define three sub-
structural modalities. First, we say thatw1 is asubstateof w2, writtenw1 � w2, when

w1 � w2 ≡ ∃w′. w1 ⊕ w′ = w2 (xxv)

Informally, w1 is a smaller state thanw2 because you can addw′ to w1 to getw2; it
corresponds to thesubstaterelation with respect to the separation structure. Second,we
say thatw1 andw2 areorthogonal, writtenw1♯w2, when

w1♯w2 ≡ ∃w′. w1 ⊕ w2 = w′ (xxvi)

Two states are orthogonal when they are compatible in the sense that they can join
together. Finally,w1 andw2 aresubstructurally comparable, writtenw1

⊕
∼w2, when

w1
⊕
∼w2 ≡ ∃w. (w1♯w) ∧ (w2♯w) (xxvii)

Two worlds are substructurally comparable when there exists some world (typically an
identity) that is orthogonal to both of them. We can considerthe elements of a DSA as
being divided into equivalence classes where there is one class for each unit, and every
element with the same unit is in the class. Then⊕

∼ ranges over all the elements in the
same equivalence class.

All of these substructural relations are valid modalities according to the definition
from §3. The validity proofs are direct consequence of axioms fromFigure 1.

{�, ♯, ⊕
∼} ⊂ M (24)

A further consequence is that our substructural modalitiesare all fashionable:

(w1 � w2) ∨ (w1♯w2) ∨ (w1
⊕
∼w2) → w1 ∼ w2 (25)

13

We often find it convenient to express substructural ideas using modalities like these.
For example, consider the diamond form of the substate relation; ♦�P holds exactly
when some substate of the current state satisfiesP . In other words, adding♦� makes a
predicate invariant under state expansion.† A little manipulation shows that:

♦�P = P ∗ ⊤. (26)

7 Separation logics over knots

An important use case (indeed, our motivating use case) for combining approximation
with separation are the “knots” of indirection theory. We can quite easily demonstrate
that knots satisfy the approximation axioms using the interface provided by indirec-
tion theory. However, to define a separation structure on knots, we need to define an
appropriate join relation and prove the DSA axioms. The knots provided to clients are
opaque, which means the client cannot examine the details of the construction. How-
ever, the client has provided the critical functorF describing the internal structure of
unsquashed knots. We require the client to define a separation structure overF which
we then use to induce a separation structure over knots.

We proceed in stages. First we must make the setN × F (P) into a DSA. We will
require that the client of indirection theory demonstrate thatF is a functor on DSAs,
i.e., wheneverX is a DSA, thenF (X) is also a DSA. Furthermore, we require that
wheneverf : X → Y is a join homomorphism, thenfmap f : F (X) → F (Y)
must also be a join homomorphism. Now we use our generators toconstruct the DSA
(N × F (P),⊕(N=)×(F (P=))): that is, we pair up a discrete DSA onN with the DSA
generated by applyingF to the discrete DSA onP.

We will use the section–retraction generator to induce a DSAfor the setA ≡ K

from the above DSA forB ≡ N × F (P). Indirection theory gives us the section–
retraction pair(unsquash, squash). It turns out to be quite simple to show thatunsquash◦
squash is a join homomorphism onB, completing the construction of the DSA forK.

We have two of the ingredients needed for a logic over knots with both separation
and approximation. We have the approximation structure andwe have a DSA. However,
in order to complete the picture we need to prove the distributive axioms from§6.

The two “forward” axioms(l) and(m) follow easily from the assumption thatF is
a functor on DSAs. The “backward” axioms(n) and(o), however, are more involved.
Proving these axioms appears to require additional technical restrictions on the func-
tor F , having to do with “unmapping.” The precise statement of these technical re-
quirements is given in Figure 2 and is rather involved. However, proving that particular
functorsF have this property is usually easy.

Suppose one has a functionf : A → B whereA andB are DSAs. We say thatf
hasleft unmappingswhen it satisfies axiom(p) andright unmappingswhen it satisfies
(q). We say a functorF preserves unmappingsif, wheneverf is a join homomorphism
with left (right) unmappings, thenfmap f has left (right) unmappings.

† Such predicates were calledintuitionistic in Reynolds’ work on separation logic. [Rey02]

14

x′ ⊕ f(y) = f(z) →

∃x, y0. x ⊕ y0 = z ∧ f(x) = x′ ∧ f(y0) = f(y)

x y0 = z

f f f

x’ f(y) = f(z)

f f f (p)

f(x) ⊕ f(y) = z′ →

∃y0, z. x ⊕ y0 = z ∧ f(y0) = f(y) ∧ f(z) = z′

x y0 = z

f f f

f(x) f(y) = z’

f f f (q)

Fig. 2.Left and right unmappings

The existence of unmappings means thatf has a weak kind of invertability property,
and the preservation of unmappings means that when such a weakly invertable function
is applied withfmap, the resulting function is itself weakly invertable.

As with approximation and DSAs, we can show that many standard constructions
(when considered as functors) have the property of preserving unmappings. For exam-
ple, products, disjoint sums, functions and lists all preserve unmappings.

If F preserves unmappings, then we can prove the “unapproximation” axioms(n)
and (o) for knots. The key is to note that theapprox function has left and right un-
mappings, and then lift the unmappings through the functorF using(p) and(q). The
unmappings offmap f then provide the required witnesses for axioms(n) and(o).

We now have all the pieces necessary to build a separation logic with approximation
over the knots of indirection theory. In the final accounting, the client must provide, in
addition to the data necessary for indirection theory itself, a proof thatF is a functor
on DSAs, and an easy technical proof about the preservation of unmappings. From this
basic data, a rich logic of separation and approximation is automatically built.

8 Conclusion

We have presented a method for constructing powerful assertion logics using a Kripke
semantics over a set ofworlds. We have given axiomatic interfaces that worlds must
satisfy in order to support higher-order stores in the step-indexing style, and to support
substrucural features in the style of separation logic. These two features interact in non-
trivial ways, and we have further shown how to get an elegant and well-behaved logic
by requiring the approximation and separation relations tocommute with one another.
Finally, we have shown throughout the paper how to constructmodels of these ax-
iomatic interfaces that support a variety of interesting programming language domains.
The proofs and constructions that appear in this paper have been mechanized in Coq
and are freely available as part of the Mechanized Semantic Library [ADH10].

Acknowledgements.Aquinas Hobor is supported by a Lee Kuan Yew Postdoctoral Fel-
lowship. Robert Dockins and Andrew W. Appel are supported inpart by NSF grant
CNS-0910448 and AFOSR grant FA9550-09-1-0138.

15

References

[ADH10] Andrew Appel, Robert Dockins, and Aquinas Hobor. Mechanized Semantic Library.
Available at http://msl.cs.princeton.edu, 2009–2010.

[Ahm04] Amal J. Ahmed.Semantics of Types for Mutable State. PhD thesis, Princeton Uni-
versity, Princeton, NJ, November 2004. Tech Report TR-713-04.

[AMRV07] Andrew W. Appel, Paul-Andre Mellìes, Christopher D. Richards, and Jerôme Vouil-
lon. A very modal model of a modern, major, general type system. InProc. 34th An-
nual Symposium on Principles of Programming Languages (POPL’07), pages 109–
122, January 2007.

[CDOY09] Cristiano Calcagno, Dino Distefano, Peter O’Hearn, and Hongseok Yang. Compo-
sitional shape analysis by means of bi-abduction. InProc. of 36th Annual Symp. on
Principles of Programming Languages (POPL), pages 289–300, 2009.

[COY07] Cristiano Calcagno, Peter W. O’Hearn, and Hongseok Yang.Local action and abstract
separation logic. InLICS ’07: Proceedings of the 22nd Annual IEEE Symposium on
Logic in Computer Science, pages 366–378, 2007.

[DAH08] Robert Dockins, Andrew W. Appel, and Aquinas Hobor. Multimodal separation logic
for reasoning about operational semantics. In24th Conference on the Mathematical
Foundations of Programming Semantics (MFPS XXIV), pages 5–20. Springer Elec-
tronic Notes in Theoretical Computer Science (ENTCS), 2008.

[DH10] Robert Dockins and Aquinas Hobor. A theory of termination via indirection. Under
submission, July 2010.

[DHA09] Robert Dockins, Aquinas Hobor, and Andrew W. Appel. A fresh look at separa-
tion algebras and share accounting. InThe 7th Asian Symposium on Programming
Languages and Systems. Springer ENTCS, 2009. To appear.

[DOY06] Dine Distefano, Peter W. O’Hearn, and Hongseok Yang. A local shape analysis based
on separation logic. InProc. of 12th Intl. Conf. on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS), pages 287–302. Springer, 2006.

[GBCS07] Alexey Gotsman, Josh Berdine, Byron Cook, and Mooly Sagiv. Thread-modular
shape analysis. InPLDI ’07: 2007 ACM SIGPLAN Conference on Programming
Language Design and Implementation, 2007.

[HDA10] Aquinas Hobor, Robert Dockins, and Andrew W. Appel. A theory of indirection via
approximation. InProc. 37th Annual ACM Symposium on Principles of Programming
Languages (POPL’10), pages 171–185, January 2010.

[Hob08] Aquinas Hobor.Oracle Semanatics. PhD thesis, Princeton University, Princeton, NJ,
November 2008.

[Nip02] Tobias Nipkow. Hoare logics for recursive procedures andunbounded nondeter-
minism. InComputer Science Logic, volume 2471/2002 ofLNCS, pages 155–182.
Springer, 2002.

[Res00] Greg Restall.An Introduction to Substructural Logics. Routledge, London, England,
2000.

[Rey02] John Reynolds. Separation logic: A logic for shared mutable data structures. InLICS
2002: IEEE Symposium on Logic in Computer Science, pages 55–74, July 2002.

16

