A Logical Mix of Approximation and Separation

Aquinas Hobot, Robert Docking, and Andrew W. Appél

1 National University of Singaporeobor @onp. nus. edu. sg
2 Princeton University{r docki ns, appel }@s. pri ncet on. edu

Abstract. Semantic models can use indirection when thivexaemantic defi-
nitions contain a contravariant circularity, and substructure when orfeewi®
track resource accounting. If a model uses indirection, then its logit¢ reas
son about the resulting approximation; if a model contains substruthene jts
logic often contains notations of separation. We show how to build progrgm lo
ics for settings involving approximation and/or separation. Our work ishinac
checked in Coq and available as part of the Mechanized Semantic Library

1 Introduction

We are interested in building program logics for large-sdahguages and mechaniz-
ing them in proof assistants. We are particularly inteisteintegrating two features
which have proven useful for modeling complex languageaufeat higher-order stores
and separation. Higher-order stores are used to reasoi @rtain kinds of recursion
that involve mutable state; many common language featwtabiethis kind of state-
related recursiore.g, ML references, Pthreads-style locks, and function pasntgep-
aration is an orthogonal feature which helps reasoningtamue of the complications
introduced by an addressable memory such as pointer a@iasin

We model the assertion language of the program logic seoadigtivia a Kripke
semantics. That is, formulae in the assertion languagéifaehwith metalogic propo-
sitions over a set ofvorlds which are some abstraction of the program states. This is
a common approach when mechanizing program logics, even@nesearchers who
choose to model the judgments of the program logic syntlbtigNip02]

The classic example where one desires higher-order stotiestiof ML-style refer-
ences. [AhmO04] It is convenient in certain styles of typersiness proofs for languages
with ML references to be able to have the program heap stangisithedynamicdata
generated by the program (i.e., the actual value in theerfe) but alsstatic data
about the type of the reference. Then types are modeled dieaires which judge pro-
gram values and program heaps. This leads directly to atisituevhere we want to
store predicates (i.e. types) in the program heap, the hatliof higher-order stores.

Separation logic has recently become quite popular in thgrpmming languages
community. [Rey02] Separation logic introduces a substinat connective called sep-
arating conjunctionP x @), which means thaf’ and @ hold on “disjoint” areas of
the world. A simple and popular model for separation logitoitake worlds as par-
tial maps from addresses to values (i.e., heaps) and sawtbdieaps are disjoint if
they define disjoint sets of addresses. The formulae of agparogic are particularly

adept at describing inductively-defined data structureh sis lists and trees. This abil-
ity has prompted research into shape-analysis, wherebatb@epts to automatically
infer datastructure invariants using the vocabulary ofasaipon logic with the intent

of deriving more precise invariants than would be possilith waditional techniques.

[DOY06,GBCS07,CDOY09]

When defining a program logic, the choice of which worlds toinsthe assertion
semantics depends strongly on the problem doma&nthe particular language being
modeled. Much previous work has focused on constructingetitemplicated types of
worlds and using the derived logic to prove some theoremtefést (often a soundness
result). [HDA10,Ahm04,DHAQ09,COY07] However, the impantastep of building the
logic on top of the worlds is often given short shrift. A readeleft with the general
impression that once the underlying model is in place, ujdhe logic on top is
straightforward. Unfortunately, this is not always theecas

Here we fill in the missing piece by explaining how to build kigicated logics on
top of clean axiomatizations. We construct a general fraonkevior defining assertion
languages containing approximation and separation—that isgic for worlds that
contain higher-order stores and substructure. For highder stores, we follow Appel
et al. by constructing a@lel-Lob modal logic of approximation [AMRV07] to simplify
the task of using a step-indexed models. Separation apjmetivs form of separation
logic [Rey02], and aids reasoning about languages withtppmanipulation.

In this paper, we largely abstract away from the details gf@articular language,
and thus we hold the choice of worlds abstract as well. laste@ will focus on ax-
iomatizing what features worlds must have in order to supipigher-order stores and
separation, and showing how one can then build a powerf@réss logic contain-
ing both these features. However, many domains of intea#ta only one of these
rather than both together; indeed some domains do not cogither. Our constructions
should work in all four settings in a modular way to prevenhecessary duplication
since maintaining parallel code bases in a mechanizetgéstpainful.

One can imagine several ways to manage this modularity. Wedtesen a “stacked”
approach in which we first axiomatize how our worlds becomesrapproximate if§2,
and show how to satisfy our axioms for settings wherein ouldgchave meaningful
approximation. If the domain of interest does not have atgr@sting approximation
behavior €.g, a basic type system or separation logic), then we give ndstfur adding
trivial approximation behavior so that the rest of our fravoek will still work. After
defining the basic operators of our logic§d.4, we define a multimodal layer on top
in §3 to build smooth and modular logical framework for reasgrimthe presence of
approximation. Ir§4 we explain how to model and use the equirecursive operator

Once we have specified how approximation should be handledspecify the
substructural properties of our worlds by forming a sepamnatlgebra ing5 as in
[DHA09,COY07]. If our worlds have no interesting separatgiructure, this step can
be omitted, or we can alternately provide a dummy implent@nta

Our primary interest is in settings that combine both apjonaxion and separation.
In §6 we characterize the relationship between these propentie prove that the stan-
dard connectives of separation logic mix well with our logf@pproximation. We also
show how our multimodal framework adds value in a separadtigit.

In §7, we show how one can use indirection theory to satisfy atiusfapproxima-
tion and separation axioms simultaneously in a nontrivagitext.

Implementation.Our constructions and proofs are machine-checked in Cabjreaale
freely available as part of the Mechanized Semantic Libr@wyr mechanization con-
tains a certain amount of “black magic Cogerg’d, typeclasses, implicit coercions) to
ensure that it slides together smoothly and works cleaoiyfthe perspective of using
the logic. From time to time we will mention a few design clesichat enable simpler
mechanical definitions/proofs, but readers particulamtgriested in this aspect of the
result should consult the mechanization. Our results aaiadle at:

http://nsl.cs.princeton. edu/

Numbering conventionln this presentation we present three classes of equatiefis:

initions, numbered with roman numerals; Cog-veriftedoremswhich we enumerate

with arabic numerals; anaxioms in a given interfageenumerated with letters. Many
models can satisfy a given interface; one must prove tharaxfoom its construction.

Constructivenessln addition to the base axioms of CiC, our framework depemig o
on the axioms of dependent and propositional extensignali do not requiree.g,
the axiom of choice. In our presentation we will sweep sushés under the rug.

2 A Logic of Approximation

Here we present the framework of oud@l-Lob logic of approximation. The formu-
lae of the logic will be identified with predicates on worldsat arehereditarywith
respect to an approximation relation. This simple basealldhw us to build a powerful
intuitionistic logic into which we can later fit the modal asdbstructural features.

2.1 Hereditary scaffolding

We assume the existence of a setwairlds W, whose precise construction depends
on the domain of interest; see [HDA18R] for seven examples drawn from various
program logics. Given a functioR from worldsW to truth valuesT (e.g, T = Pr op
in Coq) and a relatior? between worlds, we say th&t is hereditary overR when, if
P holds on some world, then it also holds on all worlds reachable franthroughR:

hereditary(P,R) = Vw,w'. P(w)— (wRw') — P(w') 0]

That is, P is hereditary ovel®? when P is stable undeR. We assume that our worlds
come with two operations for axiomatizing approximatiotevel” |w| : W — N and
“approximate™w ~» w’ : W — W. The intuition is thatw| = n quantifies the “amount
of information” in the worldw, and approximating into w’ erasesi(e., approximates)
some information inv to make it “fit” into leveln — 1. A predicate P € P is a function
from states to truth valuedT that is hereditary over the approximation relation;

P = {PeW—T | hereditary(P,~)} (ii)

In Coq, we define this type as a dependent pair and use imgdieicions that allow us
to use the pair as a function when desired. We introduce tteionw = P when we
wish to emphasize that we are thinkingi@fas an assertion rather than a function:

wE P = P(w) (iii)
We sayP entails@, written P - @), when the truth of” forces the truth of):
PHQ = Vw. (w = P) — (w = Q) (iv)

We write~* and~-7 for the reflexive and irreflexive transitive closure of thewegxi-
mate relation, respectively. We say that two wordandw’ arefashionablé, written
w ~ w', if they contain the same amount of informatiae,, if |w| = |w’|.

Connection to intuitionistic logic.Our framework has much in common with Kripke
models of intuitionistic logic in that predicates are héta@y over some relation be-
tween worlds. We develop this connection furthererg, our model for implication.

2.2 Axiomatization of Approximation

What kinds of properties do we require the approximation aig@ns~- and| - | to
have? In fact, our categorization for approximation is ggimple**

Approximation functional: (w ~ w}) — (w~ wh) — wj = w) €))
Level total and functional: 3n. |w|=n (b)
Level of bottom: (Fw'. w~w') — |w =0 (c)
Level of approximation: (w ~ w') — |w|=|w'|+1 (d)
Weak unapproximation: (Jw. |w| = [w'|+1) — Jw. w ~ w’ (e)

We require that approximation be functiora) and that the level operation be a total
function (b). If the world w cannot be further approximated, the levekemust be0
(c). If the world w is approximated tav’ then the level ofv must be 1 larger than the
level of w’ (d). Finally, we sometimes wish to “unapproximate”—that is,egivsome
world w’, we would like to find a worldv such thatw ~» w’; an unapproximation to a
givenw’ only exists if there is some world containing more inforroatthanw’.

Three of the most important consequences of axi@jge) are the following:

* The name “fashionable” is a play on words from when we used a timedkzasalogy for levels.
A predicateP which holds fashionably is true on every world “now,” but maybe notdmow.
** To avoid clutter in our presentation, when we write an interface axiom we oniiersal
quantifications for variables scoped over the entire equagian;axiom(e)is actually:

v’ (Gw. |w| = |w'|+1) = Jw. w~ w')

Can't approximatefw| =0 — (Zw’. w ~ w') 1)
Can approximate: (jw| > 0) — Jw'. w ~ w’ 2
Well founded: (Vw. (Vw'. (w~w') > w' =P) » wEP) - Yw. wEP (3)

That is, worlds of level cannot be approximated further; but any world of level great
than0 can be approximated. Moreover, the approximate relatiaveitfounded and
thus allows proofs by induction over the action of approxioma

2.3 Models

A model is a triple(W,~-,| - |) of set of worlds, approximate operation, and level
operation such that axiomg@)(e) hold. We present a simple model to give intuition
and then a series @eneratorsthat build complex models from simpler components.
We conclude with a nontrivial model generatedibgirection theory

Naturals. A very simple model is the naturalgy, ~y, | - |n), i.e, W = N. Itis simple
to define the approximation operations in this setting dei@: n ~y n' =n=n'+1
and|n|y = n. Axioms (a)~(e) follow directly from these definitions.

Generators. Showing that a particular model satisfies a collection obms is not
always easy. A generator for a collection of axioms sucfagge)is a method for con-
structing models for those axioms in a modular way by conmigigirevious models in
well-behaved ways. This is a particularly valuable techeiop mechanized frameworks
wherein small changes to the definitions can require sigmifiamount of repair work.
We use generators over a variety of axiom sets to allow ramigtcuction of models.
From time to time we discover we are in some new setting antbindase our first task
is to define a new generator so that if we encounter that gettiain we can apply our
new generator immediately. Our generators for the appration axioms are:

— Trivial. Given any set of world&V, we can define thivial model (W, ~~q, | - |o)
by settingw ~~¢ w’ = L and|w|o = 0. We stated axionfe) delicately to enable
the trivial model, since we want neither approximation noapproximation. Note
that in the trivial model, all predicates are automatichkyeditary.

— Product.Given a mode[(W, ~, |-|) and some other sét we can define thproduct
model(W x S, ~»wxs, | - [wxs) by defining approximate and level as follows:

(w, 8) ~wxs (W,s") = (s=)A(w~w') and [(w,s)|wxs = |wl.

Axioms (a)e) follow directly from the fact that they hold oW .
— Bijection.Given a mode(W, ~-, |-|), some other sef, and a bijectiory : W — S,
we can define thbijection model.S, ~,| - |) by setting

swypst = fTHs)w TS and sy = 7))

Axioms (a)—e)follow becausef is a bijection and because the axioms holdyén

Although we only define a few generators here, we have fouatithiey are sufficient
for a large number of settings. One typically splits world&iparts with trivial and
nontrivial approximation behavior and combines the twmgshe product constructor,
perhaps defining a bijection to a form more convenient foréneainder of one’s proof.
The trivial model is useful in most cases when the set of veatlobs not have interesting
approximation behavior; the exception is when one wisheséahe recursion operator
1 defined in§4 sinceu requires nontrivial approximation. In this case, the peidu
model is useful in conjunction with the above model for thauras(N, ~>y, | - |y) to
addnon-trivial approximation behavior to an arbitrary set of worlds

Indirection theory. The flagship non-trivial model for our approximation axioms
given by indirection theory [HDA10]. Indirection theoryquuces approximate solu-
tions to a class of recursive domain equations defined bysbedoequation:

K ~ F(Kx0)—T)

HereF is a covariant functor) is some “other” noncircular data, ard is the object
one wishes to model. A cardinality argument shows that teesudoequation has no
solutions in set theory. Indirection theory approximateslation by constructing a type
K (called theknof) and a model K, ~~ i, |-| k) that satisfies axiom@&)—(e). Our current
construction ofK is similar to the one given in [HDA1G8] but we have enhanced it so
that all predicates contained in a knot are hereditary [ADHIMot _her ed. v]. We
use the product constructor to build the related m@élx O, ~ o0, | - |xxo) and
definel as the set of hereditary functions overy o as in definition(ii).

Indirection theory also constructs two functiosguash : Nx F(P) — K and
unsquash : K — NxF'(IP) whose behavior is given by the following set of equivalences

squash(unsquash(k)) = k
unsquash(squash(n, F)) = (n, fmap approx,, F)

That is,squash o unsquash is the identity function, andnsquash o squash is a kind of
approximation function. Thémap function transformg : F(P) by locating all of the
predicates P insidef and replacing them withpprox,, (P), defined as:

P
approx, (P) € P A { (w) |wlkxo < n

uE |7~U|K><O >n
The relationship betweemjuash-unsquash and(K, ~, | - |k) is given by:

|| = (unsquash(k)).1
k~k < let(n,F)=unsquash(k) in (n>1) A k' =squash(n —1,F)

The level ofk is equal to the first projection df's unsquashing and approximation is
equivalent taunsquashing and then requashing to the next lower level. Axiom&)—(d)
follow directly; for (e), unsquash and then requash to the nextigherlevel.

We have used indirection theory to reason about first-cladsslin a concurrent
program [Hob08]; mutable references in the polymorptizalculus; and program ter-
mination in a setting with function pointers and semaatigsert statements [DH10].

2.4 Hereditary Base Logic

Truth constant: wkET = T V)
Falsehood constant: w = L = 1 (vi)
Conjunction: wEPAQ = (wWEP)A(wEQ) (vii)
Disjunction: wkEPVQ = (wWEP)V(wEQ) (viii)
Impredicative universal: w = Vx: 7. P(x) = Vz:7. wkE P(x) (ix)
Impredicative existentialw &= Jx: 7. P(x) = 3Jz:7. wE P(x) (x)
Yw'. (w ~* w') —
!/

Implication: wkEP=Q

WEP) k|
Negation: -P = P=>1 (xii)

Given a model of approximation, we can now give semantic digfits for the oper-
ators of our base intuitionistic logic, which includes tteeial propositional connectives
as well as powerful higher-order quantification. Exceptifaplication, each defini-
tion consists simply of a direct lifting of the underlying talogic operator. These can
be proved hereditary easily from the assumption that théosulollae are hereditary. In
contrast, implication requires that the hereditary asgiomppe baked in; in the vast ma-
jority of cases (including all cases in which the implicatiwas already hereditary) this
does not change the meaning of the resulting formulae. Thdtieg model is exactly
a Kripke model of intuitionistic logic. The standard infoiistic proof theory (e.g.,
introduction and elimination rules) can all be proved asrfeas from these definitions.

It is worth noting that ther occuring above in the definition of quantification is
allowed to range over all the types of the metalogic, incigdhe typepredicate itself;
this makes the quantifienqpredicative In contrast, a predicative quantifier would only
be allowed to quantify over objects that are smaller acogrdd some stratification,
which turns out to be a significant technical restriction.ddling certain programming
language features, such as function closures, requirestritieger impredicative style
of quantification, which we provide.

3 The Very Model of a Modern Multimodal Logic

Appelet al.[AMRV07] showed how to reason about the action of approxiomatising
modal logic; we go further using theaultimodalapproach outlined in [DAHO8]. A
modalityM € M is a binary relation that commutes with the approximatidatien ~-:

M E{M € EHEHT‘ (3o'.(g~0")N (o' Mc")) < (Elo’.(aMU’)A(a'wa”))} (xiii)

Most “reasonable” relations one would like to define are nlitda. We have seen four
approximation relations: approximate and its reflexive~* and irreflexive~* tran-
sitive closures, and the same-level relation fashionablgll four are modalities:

{~ "~ C M (4)

The point of characterizing modalities is that we can thefindemodal operators pa-
rameterized by various modalities.

Necessarily: cEOyP = Vo' (cMdo')— (o' =EP) (xiv)
Hypothetically: o =0y P = Fo.(oMd')A(cEP) (xv)

Note we use the standard definition of the universal modality, but our definition of
the existential modality),, is backwards from what one might expect; indeed, we use
the “proof-theoretic” dual discussed by Restall [ResOQ)@zosed to the more familiar
boolean dual. We choose to work with the “backward” exiseémiodality because the
commutativity restrictions from definitiofxiii) prove that this modality is hereditary,
and in this sense, the modalities belong together. To getishal boolean dual, one
requires that the inverse relation commutes with approtioma

One of the major advantages of identifying and using modatatprs is that there
are a variety of useful rules and equations that apply to allahoperators. A few of
these are listed below.

Om PHQ = PFOu@ (5)
Om (P = Q) F Ou P=0u0Q (6)
Om (PAQ) = Oy PAOn@ (7)
Om (PVQ) = Om PV OmQ 8

Op (Vo : 7. P(z)) = Va:7.0y P2) 9
Om (Elx 1T, P(l)) = Jz:7.0Mm Px) (20)

Lemma (5) gives the characteristic relationship betweenthmodality and its
associated duap modality. Readers familiar with modal logics will recogaif6) as
axiom K, which is characteristic the “normal” modal logi®ge prefer equalities (when
they can be achieved) to implications because they allow wsé substitution tactics
in mechanized proofse(g, r ewr i t e in Coq) which is significantly more convenient
than introducing a cut.

Given the data we have about worlds and approximation apthid, we can define
two important modal operators which capture some of the mapb aspects of the
approximation model.

Approximately: >P = O4+P (xvi)
Fashionably: OP = O. P (xvii)

The approximation modality is especially important because it mediates the action
of approximation. It interacts in a significant way with bakie key Gdel-Lob induc-
tion rule and with the recursion operator described4nThe fashionability modality
also interacts in a strong way with recursion. Because ofpleeial relationship~ has
with all the formulae of the logic; enjoys some additional properties.

>(0Opn P) = Op (P (11)
>(P=Q) = >pP=>Q (12)
>(PVQ) = p>PveQ (13)
QA>PHP — QFP (14)

Lemma (11) shows thatcommutes with everly] modality; this is a consequence of
the validity condition for modal operators. Lemma (12) skdhat> enjoys a stronger
form of (6). Lemma (14), called the @el-Lob rule, is especially notable because it
embodies a kind of induction principle. It says that we caovprthat@) entails P if
we can show the (apparently) weaker statement@hat>P entails P; herexP is the
induction hypothesis.

4 Recursion

In addition to its other benefits, the approximation streestiaked into our logic gives us
a powerful way to define recursive predicates. Suppose wedpredicate functioh’ :
predicate — predicate; then we can construct the recursive predigate : predicate
satisfying the usual fixpoint equatignF’ = F(uF') provided thatF' is contractive
Before we can formally define contractiveness we need a fektiadal definitions.
Recall from above the “fashionably” modality) P = 0., P. The underlying
relationw ~ w’ holds iff jw| = |w’|, soO P holds whenP holds in all worlds of the
same level. Using), we define a stronger form of implication called “subtyping.

PCQ = OFP=Q) (xviii)

Subtyping is quite a bit stronger than regular implicati@cduse the only information
it can “see” is the level of the current world. However, it mmewhat weaker than
unconditional entailment. That is,df = P C @ it might not be the case th& F Q.

We say that? and (@ areequivalentand writeP? = Q iff P C Q andQ C P. The
intuition is thatw = P = @ holds if P and@ are indistinguishable on worlds of level
w and smaller. In other words, any world that separdesom) must have a level
greater tharw|.

We say thaiF' is contractive iff:

VP, Q. »(P= Q)+ F(P) 2 F(Q) (XiX)

What does this mean? Roughly, it means that every time ycatééhe predicate func-
tion F', it “consumes” one level of approximation before using itgument. Usually,
this means that the definition @f contains a- operator guarding the occurrence of its
argument.

What all this means is that we can definas a finite number of iterations &f:

w E pF = w k= FIUI(L) (xX)
Here F'* meanskF’ iteratedn times. The key point is that as long &Sis contractive
then we can prove the defining fixpoint theorem gor
pF = F(uF) (15)

Note that in the end we get a strong fixpoint theorem suchtlais simply equalto
its one-step unfolding, which makes this a formegfuirecursionIn contrast, systems
with isorecursiontypically require some computational step to allow the ifmjdand

unfolding of recursive definitions. Equirecursion is moomeenient for our purposes
because it allows us to use the rewriting facilities of thegpassistant, and also because
it helps to decouple the semantics of the assertion login the (typically operational)
semantics of the language.

5 Separation Algebras

Separation algebras are mathematical structures useddel meparation logic. They
provide the notion of disjoint merging that is central to theaning of the operators
of separation logic. We use a variant called a disjoint mutit separation algebra
(hereafter just “DSA") [DHAQ9]. Briefly, a DSA is a sef and an associated three-
place partiajoin relation &, writtenx & y = z, such that the join relation satisfies:

Functional: (tdy=2) — (x®yYy=22) — 21 =29)]
Commutative: rhy = yda ()]
Associative: r®Ydz2) = (2dy ®2 (h)
Cancellative: (r11Dy=2) — (a®y=2) — o =1 0]
Units: Ve, Jug. xDug, = 0]
Disjointness: (z@z=9y) — z=y (k)

These axioms define a structure that is like a commutativeoidon many ways, except
that@ is allowed to be a partial operation. The partiality is intpat, because it encodes
disjointness. Ifr © y = z, thenz andy are disjoint, by definition.

Hidden in these axioms is the idea ofidentity. We sayz is an identity if whenever
x @y = z, theny = z. One fundamental property of identities is tha&n identity if
and only ifz @ = = x. The units axiom(j) asserts the existence of (possibly many)
identities. It is a consequence of the axioms that each elemest have ainique
identity associated with it.

In the following section we shall see how to use a separatgebaa to build a sep-
aration logic. For the remainder of this section, we wilkflgf touch on some example
DSAs and constructions for building more complicated ones.

5.1 Models

A model of a separation algebra is a set of worlistogether with a join relatior®
satisfying axiomgf)—(k). We give two trivial examples, followed by a series of simple
generators, and conclude with some nontrivial generatmsaamples.

Examples and generatord.he DSA axioms are well-behaved in the sense that they are
easily propagated across a variety of useful constructlarsur work we have used the
following, all of which are already implemented in Coq to bleerapid development:

— Discrete.Given a sefS, define thediscrete DSALS, ¢-) by defining
ST D= S92 = 83 = S§1 = 89 = 83

Every element joins only with itself and is an identity. Axis (f)—(k) follow.

10

— Option. Given a setS, define theoption DSA(S-, ®-) by settingS, = None +
Some(s) and the join relatiomp, as the least relation satisfying (whesee S-):

None &~ S? = 7
S? @2 None = s9

The - relation includesNone & None = None. Axioms (f)—(k) follow easily.
— Productsf we are given two DSA$A, & 4) and(B, &), we can define thprod-
uct DSA(A x B, @4« p) cOmponentwise by setting:

(a1,01) @axp (az2,b2) = (as,b3) = (a1 Paaz =a3)A (b1 &p by =b3)

Axioms (f)—k) follow directly from the same axioms a# andB.
— Functions.Given a setA and a DSA(B, ®g), we can define théunction DSA
(A — B,®4_p) by lifting the DSA onB pointwise as follows:

[®a—B g = h = Va. (f(a) &5 g(a) = h(a))

Axioms (f)—(k) follow directly from the axioms orB.
— Bijection. Given a DSA(A, @ 4), a setB, and a bijectionf : A — B, we can
define thebijection DSA(B, &) by setting

by @y by = b3 = F7Hb1) @a fH(b2) = F(bs)
Axioms (f)—(k) follow becausef is a bijection and the axioms hold oh

The previous generators are simple but very useful. For planf A is a set of ad-
dresses anl” a set of values, then the archetypical example of partiainam heaps

is given by the DSAA — (V2),®4_(v,)), using the function and option generators.
We have a large number of other generators in our toolkitd manit, discrete, disjoint
sums, lists, subset, liftf7-types, X-types, finite partial maps, and lattices; a number
of these are described in some detail in [DHAQ9]. Here wearphnother generator,
similar in some ways to the bijection DSA covered above butegeneral:

— Section—retractionThe section-retraction generator is a bit tricky. Suppose w
have a DSA(B, @). Afunctionh : B — B is ajoin homomorphismvhen:

by ®p by = b3 - h(b1) @ h(b2) = h(bs) (xxi)

That is, joining is preserved by. Now suppose we have a sétand a section—
retraction pair: two functiong : A — B andg : B — A such thatg o f is the
identity function onA; note that in any section—retraction pgiis automatically
injective whileg is automatically surjective. Suppose further tlfiatg : B — B is
a join homomorphism. Define tisection—retraction DSAA, & 4y) by setting:

ay Dpg) a2 = a3 = fla1) B fla2) = f(as)

In other words, we take the separation structure inducechemteimage off.
Axioms (), (i), and(k) follow directly from the injectivity of f and the underlying

11

_ , w, & w, = w,
(w1 B w2 = ws) — (w1 ~ wi) — ; '"“i- _____ E"' 0
Fwy, wi. (Wi O wy = wh) A (w2 ~ wy) A (ws ~ wh))))
wl:® w,= wg:
, w, © w, = w,
(w1 @ w2 = w3) — (wz ~» w3) — R TS m)
1 ' m
Fuwh, wh. (W S wy = wh) A (wr ~» wh) A (wg ~ wh) 1 s,
W D w2=:w3
e e e e e e e =2
w, P w, = w E
(wh @ wh = wh) — (wy ~ wi) — A)
1 1 n
Fwi, wa. (w1 @ wa = wsz) A (we ~ wh) A (ws ~ wh) , ToTTTe il
w, & w,= w,
w, b w =iw
(wh @ wh = wh) — (ws ~ wh) — PR ©
1 1 O
Jwi, we. (w1 ® we = ws3) A (w1 ~ wh) A (wz ~ wh) bosmmommmmemet
w, & w,= w,

Fig. 1. Axioms for Mixing Separation and Approximation

axioms ond . Axiom (g) is even simpler and is direct from the commutativity of
@®p. The associativityh) and units(j) axioms are tougher; both require that f
is the identity,f o g is a join homomorphism, and the underlying axiomsos.

The significance of the section—retraction generator isithaill be just what is
needed to handle thewsquash—squash pair constructed by indirection theory.

6 Mixing Separation and Approximation

Once we have defined the separation structure on a set ofsyerddare nearly ready to
define the operators of separation logic. However, to iaterfwith the approximation
features of the logic, we need some additional axioms whiduee that separation
and approximation can play well together in the same san@bes figure 1). These
four axioms have the flavor of commuting diagrams; we reghia¢ the approximation

relation and separation and “slide around” each other tle@rhere are a total of six

possible cases, but two are subsumed by commutativityséfarioms let us prove the
heredity of the operators of separation logic and to shotareuseful results about the
commutativity of approximation operators with separatiperators.

Now we can give the definitions of the standard operatorspdirsgion logic.

Empty: oclEemp = identity o (xxii)
Separation: o= PxQ = Fo1,092. (01 oz =0)A (01 F P) A (02 E Q) (xxiii)
Seplication: o1 = P—+«Q = Voi,09,0. (01 ~* 0]) — (0] ® oz =0)

~ (o P) = (0 Q) (o)

12

The assertiormp and the separating conjunctiercan be shown hereditary by using
axioms(l) and(m). Notice that the definition of seplication explicitly quéigs over
all more approximate worlds, just as does the definition gflication, making it im-
mediately hereditary from the definition. Just as with iroglion, the semantics takes
on an intuitionistic flavor, but in general works exactly apected.

With these definitions stated, we can easily prove the standéerence rules of
separation logic and various equalities among formulage Mquations (20) and (21);
these elegant equations are the result of our insistentagpeoximation and separation
interact smoothly. Their proofs make essential use of agi@gand(o).

Commutativity: Px@Q = Q@QxP (16)
Associativity: (Px@Q)xR = Px(QxR) an
Identity: empxP = P (18)
Seplication adjoint: (P*xQ)FR = Pk (Q—*R) (29)
Approx sepconjunction: >(PxQ) = (bP*>Q) (20)
Approx seplication: >(P=Q) = (EP—=>Q) (21)
Split sepconjunction: (P F Q) — (RFES) - (PxR)F(Q=xS) (22)
Cut seplication: (PFQ—R) - (SFQ) — (P*S)FR (23)

In addition to the standard operators of separation logecan define three sub-
structural modalities. First, we say that is asubstateof ws, writtenw; < ws, when
wy = Wy = Jw'. wy S w = ws (XxV)

Informally, wy is a smaller state tham, because you can add' to w; to getws; it
corresponds to theubstateelation with respect to the separation structure. Seocead,
say thatw; andwsy areorthogonal written w wy, when

wi fws = FJw'. w; Pwy = (xxvi)

Two states are orthogonal when they are compatible in theestrat they can join
together. Finally;v; andws aresubstructurally comparablevritten w; $w,, when

w1 Swo = Fw. (wifw) A (wefw) (xxvii)

Two worlds are substructurally comparable when there gzisine world (typically an
identity) that is orthogonal to both of them. We can consttierelements of a DSA as
being divided into equivalence classes where there is @®s ¢br each unit, and every
element with the same unit is in the class. Tiemnanges over all the elements in the
same equivalence class.

All of these substructural relations are valid modalitiesading to the definition
from §3. The validity proofs are direct consequence of axioms fragure 1.

{=,4,8} ¢ M (24)
A further consequence is that our substructural modaktiesall fashionable:

(w1 2 wa) V (wifws) V (w1 Bwa) — w1 ~ wo (25)

13

We often find it convenient to express substructural ideagusodalities like these.
For example, consider the diamond form of the substateioalap < P holds exactly
when some substate of the current state satisfida other words, adding < makes a
predicate invariant under state expansidghlittle manipulation shows that:

O<xP = PxT. (26)

7 Separation logics over knots

An important use case (indeed, our motivating use case)fmbiing approximation
with separation are the “knots” of indirection theory. Wen cpiite easily demonstrate
that knots satisfy the approximation axioms using the fater provided by indirec-
tion theory. However, to define a separation structure oniskrivee need to define an
appropriate join relation and prove the DSA axioms. The &mobvided to clients are
opaque which means the client cannot examine the details of thetoaction. How-
ever, the client has provided the critical funci@rdescribing the internal structure of
unsquashed knots. We require the client to define a sepausttiacture overr” which
we then use to induce a separation structure over knots.

We proceed in stages. First we must make théNset F'(P) into a DSA. We will
require that the client of indirection theory demonstréig £ is a functor on DSAs,
i.e, wheneverX is a DSA, thenF'(X) is also a DSA. Furthermore, we require that
wheneverf : X — Y is a join homomorphism, thefmap f : F(X) — F(Y)
must also be a join homomorphism. Now we use our generatarsstruct the DSA
(N x F(P), Brv_yx(rr-y)): that is, we pair up a discrete DSA dwith the DSA
generated by applying to the discrete DSA off.

We will use the section—retraction generator to induce a B@Ahe setd = K
from the above DSA forB = N x F(P). Indirection theory gives us the section—
retraction paifunsquash, squash). It turns out to be quite simple to show thaquasho
squash is a join homomorphism o, completing the construction of the DSA féf.

We have two of the ingredients needed for a logic over knotk bdth separation
and approximation. We have the approximation structurersmblave a DSA. However,
in order to complete the picture we need to prove the didivie@xioms fromg6.

The two “forward” axiomgl) and(m) follow easily from the assumption that is
a functor on DSAs. The “backward” axionfs) and(o), however, are more involved.
Proving these axioms appears to require additional teahréstrictions on the func-
tor F, having to do with “unmapping.” The precise statement okéhtechnical re-
quirements is given in Figure 2 and is rather involved. Haveproving that particular
functorsF have this property is usually easy.

Suppose one has a functign: A — B whereA and B are DSAs. We say that
hasleft unmappingsvhen it satisfies axior{p) andright unmappingsvhen it satisfies
(q). We say a functoF’ preserves unmappings wheneverf is a join homomorphism
with left (right) unmappings, thefmap f has left (right) unmappings.

t Such predicates were callettuitionistic in Reynolds’ work on separation logic. [Rey02]

14

@ fy) =flz) — if fl i fl

Jr,y0. 2@ yo =2 A f(z) =2" A f(yo) = f(y) L_i'_-é;"}'@)“:- f(2) ?
N

f@efly) =2 — v | (@
Jyo.z. c@yo =2 A flyo) = f(y) A f(z) =7 f(a:)l SR

Fig. 2. Left and right unmappings

The existence of unmappings means thatas a weak kind of invertability property,
and the preservation of unmappings means that when suchkdyimaertable function
is applied withfmap, the resulting function is itself weakly invertable.

As with approximation and DSAs, we can show that many stahdanstructions
(when considered as functors) have the property of presgnmmappings. For exam-
ple, products, disjoint sums, functions and lists all pres@nmappings.

If F' preserves unmappings, then we can prove the “unapproxiniakioms(n)
and (o) for knots. The key is to note that thgprox function has left and right un-
mappings, and then lift the unmappings through the funétarsing (p) and(q). The
unmappings ofmap f then provide the required witnesses for axigimsand(o).

We now have all the pieces necessary to build a separatianddidy approximation
over the knots of indirection theory. In the final accountitige client must provide, in
addition to the data necessary for indirection theoryfifgeproof thatF' is a functor
on DSAs, and an easy technical proof about the preservationmappings. From this
basic data, a rich logic of separation and approximatiomiisraatically built.

8 Conclusion

We have presented a method for constructing powerful assdaogics using a Kripke
semantics over a set @forlds We have given axiomatic interfaces that worlds must
satisfy in order to support higher-order stores in the stelpxing style, and to support
substrucural features in the style of separation logics€heo features interact in non-
trivial ways, and we have further shown how to get an elegadtveell-behaved logic
by requiring the approximation and separation relationsoflmmute with one another.
Finally, we have shown throughout the paper how to constmmtels of these ax-
iomatic interfaces that support a variety of interestinggopamming language domains.
The proofs and constructions that appear in this paper hege mechanized in Coq
and are freely available as part of the Mechanized Semaifiraty [ADH10].

AcknowledgementsAquinas Hobor is supported by a Lee Kuan Yew Postdoctoral Fel

lowship. Robert Dockins and Andrew W. Appel are supportegan by NSF grant
CNS-0910448 and AFOSR grant FA9550-09-1-0138.

15

References

[ADH10]

[Ahm04]

Andrew Appel, Robert Dockins, and Aquinas Hobor. Metizad Semantic Library.
Available at http://msl.cs.princeton.edu, 2009-2010.

Amal J. Ahmed.Semantics of Types for Mutable StafehD thesis, Princeton Uni-
versity, Princeton, NJ, November 2004. Tech Report TR-713-04.

[AMRVO07] Andrew W. Appel, Paul-Andre Melés, Christopher D. Richards, anddee Vouil-

lon. A very modal model of a modern, major, general type systerRrdo. 34th An-
nual Symposium on Principles of Programming Languages (POPL{isfes 109—
122, January 2007.

[CDOYO09] Cristiano Calcagno, Dino Distefano, Peter O’Hearn, andgdenk Yang. Compo-

[COYO07]

[DAHO8]

[DH10]

[DHA09]

[DOY06]

sitional shape analysis by means of bi-abductionPioc. of 36th Annual Symp. on
Principles of Programming Languages (POPRpages 289-300, 2009.

Cristiano Calcagno, Peter W. O'Hearn, and Hongseok Yaoggl action and abstract
separation logic. ILICS '07: Proceedings of the 22nd Annual IEEE Symposium on
Logic in Computer Scien¢pages 366—-378, 2007.

Robert Dockins, Andrew W. Appel, and Aquinas Hobor. Multidal separation logic
for reasoning about operational semantics24th Conference on the Mathematical
Foundations of Programming Semantics (MFPS XXPp&Ages 5-20. Springer Elec-
tronic Notes in Theoretical Computer Science (ENTCS), 2008.

Robert Dockins and Aquinas Hobor. A theory of termination vidiriection. Under
submission, July 2010.

Robert Dockins, Aquinas Hobor, and Andrew W. Appel. A&dgh look at separa-
tion algebras and share accounting. Time 7th Asian Symposium on Programming
Languages and Systen®pringer ENTCS, 2009. To appear.

Dine Distefano, Peter W. O’Hearn, and Hongseok Yang. Allsbape analysis based
on separation logic. IfProc. of 12th Intl. Conf. on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS)es 287-302. Springer, 2006.

[GBCSO07] Alexey Gotsman, Josh Berdine, Byron Cook, and MoolyinSa@hread-modular

[HDA10]

[Hob08]

[Nip02]

[Res00]

[Rey02]

shape analysis. IRLDI '07: 2007 ACM SIGPLAN Conference on Programming
Language Design and Implementatj@907.

Aquinas Hobor, Robert Dockins, and Andrew W. Appel. Adheof indirection via
approximation. IrProc. 37th Annual ACM Symposium on Principles of Programming
Languages (POPL'1Qpages 171-185, January 2010.

Aguinas HoborOracle Semanatic?hD thesis, Princeton University, Princeton, NJ,
November 2008.

Tobias Nipkow. Hoare logics for recursive procedures antounded nondeter-
minism. InComputer Science Logizolume 2471/2002 ofNCS pages 155-182.
Springer, 2002.

Greg RestallAn Introduction to Substructural LogicRoutledge, London, England,
2000.

John Reynolds. Separation logic: A logic for shared mutalteeddauctures. ILICS
2002: IEEE Symposium on Logic in Computer Sciepeges 55-74, July 2002.

16

